IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東京電力株式会社の特許一覧

特開2022-161615不明水分析方法、不明水分析装置、および、不明水分析プログラム
<>
  • 特開-不明水分析方法、不明水分析装置、および、不明水分析プログラム 図1
  • 特開-不明水分析方法、不明水分析装置、および、不明水分析プログラム 図2
  • 特開-不明水分析方法、不明水分析装置、および、不明水分析プログラム 図3
  • 特開-不明水分析方法、不明水分析装置、および、不明水分析プログラム 図4
  • 特開-不明水分析方法、不明水分析装置、および、不明水分析プログラム 図5
  • 特開-不明水分析方法、不明水分析装置、および、不明水分析プログラム 図6
  • 特開-不明水分析方法、不明水分析装置、および、不明水分析プログラム 図7
  • 特開-不明水分析方法、不明水分析装置、および、不明水分析プログラム 図8
  • 特開-不明水分析方法、不明水分析装置、および、不明水分析プログラム 図9
  • 特開-不明水分析方法、不明水分析装置、および、不明水分析プログラム 図10
  • 特開-不明水分析方法、不明水分析装置、および、不明水分析プログラム 図11
  • 特開-不明水分析方法、不明水分析装置、および、不明水分析プログラム 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022161615
(43)【公開日】2022-10-21
(54)【発明の名称】不明水分析方法、不明水分析装置、および、不明水分析プログラム
(51)【国際特許分類】
   C02F 1/00 20060101AFI20221014BHJP
   E03F 5/22 20060101ALI20221014BHJP
【FI】
C02F1/00 V
E03F5/22
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2021066556
(22)【出願日】2021-04-09
(71)【出願人】
【識別番号】000003687
【氏名又は名称】東京電力ホールディングス株式会社
(74)【代理人】
【識別番号】100114890
【弁理士】
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100116403
【弁理士】
【氏名又は名称】前川 純一
(74)【代理人】
【識別番号】100162880
【弁理士】
【氏名又は名称】上島 類
(72)【発明者】
【氏名】松村 良樹
(72)【発明者】
【氏名】新井 克彦
(72)【発明者】
【氏名】濱口 恭彦
(72)【発明者】
【氏名】松原 光
【テーマコード(参考)】
2D063
【Fターム(参考)】
2D063DC05
(57)【要約】
【課題】不明水を容易かつ高精度に分析し、かつ、不明水の場所を容易に特定できるようにする。
【解決手段】下水管渠に外部から流入する不明水を分析する不明水分析方法であって、下水管渠を流れる下水を送り出すポンプ設備(10)の電力量データ(143)をデジタル式の電力量計(20)から電力量取得部(11)により取得する電力量取得ステップと、ポンプ設備(10)の場所における降雨量を表す降雨量データ(142)を降雨量取得部(11)によって取得する降雨量取得ステップと、電力量データ(143)に基づく電力量の変化と、降雨量データ(142)に基づく降雨量の変化との相関関係に応じて不明水分析部(18)により不明水を分析する不明水分析ステップとを備える。
【選択図】図11
【特許請求の範囲】
【請求項1】
下水管渠に外部から流入する不明水を分析する不明水分析方法であって、
前記下水管渠を流れる下水を送り出すポンプ設備の電力量データをデジタル式の電力量計から電力量取得部により取得する電力量取得ステップと、
前記ポンプ設備の場所における降雨量を表す降雨量データを降雨量取得部によって取得する降雨量取得ステップと、
前記電力量データに基づく電力量波形の変化と、前記降雨量データに基づく降雨量波形の変化との相関関係に応じて不明水分析部により前記不明水を分析する不明水分析ステップと
を備える不明水分析方法。
【請求項2】
前記不明水分析ステップでは、前記電力量波形と前記降雨量波形との間に前記相関関係が存在しないと判断した場合、前記不明水に降雨による影響はないと判定する
請求項1に記載の不明水分析方法。
【請求項3】
前記不明水分析ステップでは、前記電力量データに基づく電力量波形の増加および減少のパターンが前記降雨量データに基づく降雨量波形の増加および減少のパターンに追従している場合、前記不明水が降雨による直接流入によるものであると判定する
請求項1に記載の不明水分析方法。
【請求項4】
前記不明水分析ステップでは、前記電力量データに基づく電力量波形の増加が前記降雨量データに基づく降雨量波形の増加に追従し、前記電力量波形の減少が前記降雨量波形の減少よりも緩やかである場合、前記不明水が降雨による直接流入および地下浸透水による遅延流入によるものであると判定する
請求項1に記載の不明水分析方法。
【請求項5】
前記不明水分析ステップでは、前記電力量データに対して移動平均処理を施すことにより平滑化し、
前記不明水分析ステップでは、前記降雨量データに対して移動平均処理を施すことにより平滑化する
請求項1乃至4何れか1項に記載の不明水分析方法。
【請求項6】
下水管渠に外部から流入する不明水を分析する不明水分析装置であって、
前記下水管渠を流れる下水を送り出すポンプ設備の電力量データをデジタル式の電力量計から取得する電力量取得部と、
前記ポンプ設備の場所における降雨量を表す降雨量データを取得する降雨量取得部と、
前記電力量データに基づく電力量波形の変化と、前記降雨量データに基づく降雨量波形の変化との相関関係に応じて前記不明水を分析する不明水分析部と
を備える不明水分析装置。
【請求項7】
下水管渠に外部から流入する不明水を分析する不明水分析プログラムであって、
コンピュータに対し、
前記下水管渠を流れる下水を送り出すポンプ設備の電力量データをデジタル式の電力量計から取得する電力量取得ステップと、
前記ポンプ設備の場所における降雨量を表す降雨量データを取得する降雨量取得ステップと、
前記電力量データに基づく電力量波形の変化と、前記降雨量データに基づく降雨量波形の変化との相関関係に応じて前記不明水を分析する不明水分析ステップと
を実行させる不明水分析プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、不明水分析方法、不明水分析装置、および、不明水分析プログラムに関し、例えば、下水管渠に流れ込む不明水を分析する不明水分析方法、不明水分析装置、および、不明水分析プログラムに関する。
【背景技術】
【0002】
下水管渠には、家庭からの汚水や雨水等の下水の他に不明水が流れ込むことがある。ここで、不明水とは、水管網の途中から侵入する雨水や地下水等のことであり、不明水=総汚水量-有収水量として定義することができる。なお、有収水量とは、下水処理場で処理した全汚水量のうち、不明水を除いた下水道使用料徴収の対象となる水量のことである。
【0003】
このような不明水としては、降雨による雨水等が下水マンホールの蓋等からマンホールに直接流れ込む直接流入と、地下に浸透した雨水等が時間をかけて緩やかにマンホールに流れ込む遅延流入とに分類される。直接流入の原因としては、例えば雨どいの誤接続等が考えられる。また、遅延流入の原因としては、配管の損傷、地下の管路や下水マンホールの破損等が考えられる。
【0004】
このような流入経路の不明な不明水を推定する手法としては、マンホールポンプの稼働状態をクランプ式交流電流センサによって検出し、一定期間におけるマンホールポンプの稼働状態を記録し、その稼働状態に基づいて分析することにより不明水の有無を推定するものがある(例えば、特許文献1参照。)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2018-12094号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献1に開示された手法では、不明水の発生している場所が不明であるにも拘わらず、マンホールポンプの稼働状態を検出するクランプ式交流電流センサを闇雲に現地に設置し、データ処理装置に接続した後にディスプレイに表示された検出結果を確認する必要がある。
【0007】
すなわち、不明水の有無を推定するためには、何れかの場所に設置されたクランプ式交流電流センサの現場へ赴き、クランプ式交流電流センサとデータ処理装置とを接続する必要がある等、必ずしも容易に不明水の有無を推定することはできなかった。
【0008】
また、特許文献1に開示された手法では、不明水の推定精度が十分とはいえず、更に高精度に不明水を分析することが求められている。
【0009】
本発明は上記問題に鑑みてなされたものであって、不明水を容易かつ高精度に分析し、かつ、不明水の場所を容易に特定し得る不明水分析方法、不明水分析装置、および、不明水分析プログラムを実現することを目的とする。
【課題を解決するための手段】
【0010】
本発明においては、下水管渠に外部から流入する不明水を分析する不明水分析方法であって、前記下水管渠を流れる下水を送り出すポンプ設備の電力量データをデジタル式の電力量計から電力量取得部により取得する電力量取得ステップと、前記ポンプ設備の場所における降雨量を表す降雨量データを降雨量取得部によって取得する降雨量取得ステップと、前記電力量データに基づく電力量波形の変化と、前記降雨量データに基づく降雨量波形の変化との相関関係に応じて不明水分析部により前記不明水を分析する不明水分析ステップとを備える。
【0011】
本発明の不明水分析方法において、前記不明水分析ステップでは、前記電力量波形と前記降雨量波形との間に前記相関関係が存在しないと判断した場合、前記不明水に降雨による影響はないと判定することが好ましい。
【0012】
本発明の不明水分析方法において、前記不明水分析ステップでは、前記電力量データに基づく電力量波形の増加および減少のパターンが前記降雨量データに基づく降雨量波形の増加および減少のパターンに追従している場合、前記不明水が降雨による直接流入によるものであると判定することが好ましい。
【0013】
本発明の不明水分析方法において、前記不明水分析ステップでは、前記電力量データに基づく電力量波形の増加が前記降雨量データに基づく降雨量波形の増加に追従し、前記電力量波形の減少が前記降雨量波形の減少よりも緩やかである場合、前記不明水が降雨による直接流入および地下浸透水による遅延流入によるものであると判定することが好ましい。
【0014】
本発明の不明水分析方法において、前記不明水分析ステップでは、前記電力量データに対して移動平均処理を施すことにより平滑化し、前記不明水分析ステップでは、前記降雨量データに対して移動平均処理を施すことにより平滑化することが好ましい。
【0015】
本発明においては、下水管渠に外部から流入する不明水を分析する不明水分析装置であって、前記下水管渠を流れる下水を送り出すポンプ設備の電力量データをデジタル式の電力量計から取得する電力量取得部と、前記ポンプ設備の場所における降雨量を表す降雨量データを取得する降雨量取得部と、前記電力量データに基づく電力量波形の変化と、前記降雨量データに基づく降雨量波形の変化との相関関係に応じて前記不明水を分析する不明水分析部とを備える。
【0016】
本発明においては、下水管渠に外部から流入する不明水を分析する不明水分析プログラムであって、コンピュータに対し、前記下水管渠を流れる下水を送り出すポンプ設備の電力量データをデジタル式の電力量計から取得する電力量取得ステップと、前記ポンプ設備の場所における降雨量を表す降雨量データを取得する降雨量取得ステップと、前記電力量データに基づく電力量波形の変化と、前記降雨量データに基づく降雨量波形の変化との相関関係に応じて前記不明水を分析する不明水分析ステップとを実行させる。
【発明の効果】
【0017】
本発明によれば、不明水を容易かつ高精度に分析し、かつ、不明水の場所を容易に特定し得る不明水分析方法、不明水分析装置、および、不明水分析プログラムを実現することができる。
【図面の簡単な説明】
【0018】
図1】本発明の第1の実施の形態に係る不明水分析システムの全体構成を示す略線図である。
図2】本発明の第1の実施の形態に係るスマートメータの機能部の構成を示すブロック図である。
図3】本発明の第1の実施の形態に係る不明水分析装置の機能部の構成を示すブロック図である。
図4】本発明の第1の実施の形態に係る不明水分析処理部の機能部の構成を示すブロック図である。
図5】本発明の第1の実施の形態に係る電力量データ処理部により荷重平均処理を行う前の元の電力量データを示す線形図である。
図6】本発明の第1の実施の形態に係る電力量データ処理部により荷重平均処理を行う前の元の電力量データの波形と、荷重平均処理を行った後の電力量データの波形とを示す波形図である。
図7】本発明の第1の実施の形態において降雨による直接流入の可能性が高いと判断される場合の波形図である。
図8】本発明の第1の実施の形態において降雨による影響が無いと判断される場合の波形図である。
図9】本発明の第1の実施の形態において降雨による直接流入および地下水等による遅延流入の可能性が高いと判断される場合の波形図である。
図10】本発明の第1の実施の形態において、ある場所の日時が異なる2つの電力量データおよび降雨量データの波形図である。
図11】本発明の第1の実施の形態に係る不明水分析処理手順の説明に供するフローチャートである。
図12】本発明の第2の実施の形態に係る不明水分析処理部により不明水を直接流入と遅延流入に分割する前と分割した後の波形図である。
【発明を実施するための形態】
【0019】
〔1〕本発明における実施の形態の概要
先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。なお、以下の説明では、一例として、発明の構成要素に対応する図面上の参照符号を、括弧を付して記載している。
【0020】
[1] 代表的な実施の形態においては、下水管渠に外部から流入する不明水を分析する不明水分析方法であって、下水管渠を流れる下水を送り出すポンプ設備(10)の電力量データ(143)をデジタル式の電力量計(20)から電力量取得部(31)により取得する電力量取得ステップと、ポンプ設備(10)の場所における降雨量を表す降雨量データ(142)を降雨量取得部(31)によって取得する降雨量取得ステップと、電力量データ(143)に基づく電力量の変化と、降雨量データ(142)に基づく降雨量の変化との相関関係に応じて不明水分析部(38)により不明水を分析する不明水分析ステップとを備える。
【0021】
[2] 上記不明水分析方法において、不明水分析ステップでは、電力量データ(143)と降雨量データ(142)との間に相関関係が存在しないと判断した場合、不明水に降雨による影響はないと判定する。
【0022】
[3] 上記不明水分析方法において、不明水分析ステップでは、電力量データ(143)に基づく電力量の増加および減少のパターンが降雨量データ(142)に基づく降雨量の増加および減少のパターンに追従している場合、不明水が降雨による直接流入によるものであると判定する。
【0023】
[4] 上記不明水分析方法において、不明水分析ステップでは、電力量データ(143)に基づく電力量の増加が降雨量データ(142)に基づく降雨量の増加に追従し、電力量の減少が降雨量の減少よりも緩やかである場合、不明水が降雨による直接流入および地下浸透水による遅延流入によるものであると判定する。
【0024】
[5] 上記不明水分析方法において、不明水分析ステップでは、電力量データ(143)に対して移動平均処理を施すことにより平滑化し、不明水分析ステップでは、降雨量データ(142)に対して移動平均処理を施すことにより平滑化する。
【0025】
[6] 代表的な実施の形態においては、下水管渠に外部から流入する不明水を分析する不明水分析装置(30)であって、下水管渠を流れる下水を送り出すポンプ設備(10)の電力量データ(143)をデジタル式の電力量計(20)から取得する電力量取得部(31)と、ポンプ設備(20)の場所における降雨量を表す降雨量データを取得する降雨量取得部(31)と、電力量データ(143)に基づく電力量の変化と、降雨量データ(142)に基づく降雨量の変化との相関関係に応じて不明水を分析する不明水分析部(38)とを備える。
【0026】
[7] 代表的な実施の形態においては、下水管渠に外部から流入する不明水を分析する不明水分析プログラム(140)であって、コンピュータに対し、下水管渠を流れる下水を送り出すポンプ設備(20)の電力量データ(143)をデジタル式の電力量計(20)から取得する電力量取得ステップと、ポンプ設備(20)の場所における降雨量を表す降雨量データ(142)を取得する降雨量取得ステップと、電力量データ(143)に基づく電力量の変化と、降雨量データ(142)に基づく降雨量の変化との相関関係に応じて不明水を分析する不明水分析ステップとを実行させる。
【0027】
〔2〕第1の実施の形態
以下、第1の実施の形態の具体例について図を参照して説明する。なお、以下の説明において、第1実施の形態において共通する構成要素には同一の参照符号を付し、繰り返しの説明を省略する。また、図面は模式的なものであり、各要素の配置、データの形式、通信方法などは、現実と異なる場合があることに留意する必要がある。
【0028】
以下、本発明の第1の実施の形態にかかる不明水分析システム100の構成について、図1乃至図11を参照しながら詳細に説明する。
【0029】
ここで、図1は、本発明の第1の実施の形態に係る不明水分析システムの全体構成を示す略線図である。図2は、本発明の第1の実施の形態に係るスマートメータの機能部の構成を示すブロック図である。図3は、本発明の第1の実施の形態に係る不明水分析装置の機能部の構成を示すブロック図である。図4は、本発明の第1の実施の形態に係る不明水分析処理部の機能部の構成を示すブロック図である。
【0030】
図5は、本発明の第1の実施の形態に係る電力量データ処理部により荷重平均処理を行う前の元の電力量データを示す線形図である。図6は、本発明の第1の実施の形態に係る電力量データ処理部により荷重平均処理を行う前の元の電力量データの波形と、荷重平均処理を行った後の電力量データの波形とを示す波形図である。図7は、本発明の第1の実施の形態において降雨による直接流入の可能性が高いと判断される場合の波形図である。
【0031】
図8は、本発明の第1の実施の形態において降雨による影響が無いと判断される場合の波形図である。図9は、本発明の第1の実施の形態において降雨による直接流入および地下水等による遅延流入の可能性が高いと判断される場合の波形図である。図10は、本発明の第1の実施の形態において、ある場所の日時が異なる2つの電力量データおよび降雨量データの波形図である。図11は、本発明の第1の実施の形態に係る不明水分析処理手順の説明に供するフローチャートである。
【0032】
図1に示すように、不明水分析システム100は、マンホール(図示せず)の中に設置されたマンホールポンプ10の電力使用量を計測するスマートメータ20と、スマートメータ20とネットワーク(例えばインターネット等)を介して接続された不明水分析装置30とによって構成されている。
【0033】
マンホールポンプ10は、マンホール(図示せず)の中に設置され、マンホールの下水を地表付近まで汲み上げ、下水道管から自然流下により下水を流し、下水処理場まで送るものである。ここでは、一般的なマンホールポンプが用いられているものとする。
【0034】
スマートメータ20は、デジタル式の電力量計である。スマートメータ20は、その内部に演算処理機能および外部との通信を行う通信機能を有している。スマートメータ20は、1個ずつ全て異なる固有の電力量計であり、それぞれ固有のスマートメータ識別情報を有している。スマートメータ識別情報は、スマートメータ20の設置場所の情報(住所情報や緯度経度情報等)と紐付けられており、スマートメータ識別情報に基づいてスマートメータ20の設置場所を知ることが可能である。
【0035】
図2に示すように、スマートメータ20は、電力使用量計量部21、スマートメータ記憶部22、および、通信処理部25を有している。電力使用量計量部21は、マンホールポンプ10が電力を使用したときの電力使用量を計量し、その電力使用量データを保持する機能部であり、電流を計測する電流センサ、電圧を計測する電圧センサ等により検出された検出値に基づいて電力使用量データを算出する演算処理を行う。
【0036】
電力使用量計量部21は、例えば、CPU(Central Processing Unit)、メモリ、インタフェースを含むMCU(Micro Control Unit)等によって構成される。なお、スマートメータ20は、スマートメータ識別情報をスマートメータ記憶部22に記憶している。
【0037】
スマートメータ記憶部22は、スマートメータ20に割り当てられている固有(ユニーク)のスマートメータ識別情報を書き換え不能な状態で記憶している機能部である。スマートメータ記憶部22は、例えばROM(Read Only Memory)等からなる。
【0038】
通信処理部25は、電力使用量計量部21によって算出された電力使用量データを外部の不明水分析装置30へ送信する機能部であり、スマートメータ識別情報と共に、電力使用量データを例えば1分間隔ごとに不明水分析装置30へ送信する。
【0039】
不明水分析装置30は、本発明における不明水分析装置として機能し、その機能ブロックとして、図3に示すように、データ取得部31、入力部32、表示部33、記憶部34、バス35、および、制御部37を有するコンピュータである。
【0040】
データ取得部31は、いわゆるデータの入出力を行うインタフェース部であり、外部のサーバからデータを取得する機能部である。入力部32は、いわゆるキーボード等のデータ入力手段である。表示部33は情報を表示するためのディスプレイである。記憶部34はハードディスクドライブやフラッシュメモリ等の記憶装置である。制御部37は、全体を統括制御すると共に各種処理を実行するためのマイクロコンピュータ構成の演算処理装置である。
【0041】
これらの各機能ブロックは、不明水分析装置30を構成するハードウェア資源が、当該不明水分析装置30にインストールされたアプリケーションプログラムであるソフトウエア(不明水分析プログラム)と協働することによって実現される。
【0042】
実際上、不明水分析装置30を構成するハードウェア資源としては、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、ハードディスクドライブ、キーボード、モニタ等である。
【0043】
記憶部34には、不明水分析装置30を統括的に制御する基本プログラムの他、不明水分析プログラム340や点検箇所推定プログラム341が予めインストールされている。
【0044】
したがって制御部37の不明水分析部38では、この不明水分析プログラム340に基づいて不明水を分析し、その分析結果のデータ(以下、これを「分析結果データ」と言う。)344を記憶部34に保持することが可能である。
【0045】
また制御部37の点検箇所推定部39では、点検箇所推定プログラム341に基づいて分析結果データ344とスマートメータ識別情報とを用いることにより点検すべきマンホールの設置場所を推定し、その推定結果のデータ(以下、これを「推定結果データ」と言う。)345を記憶部34に保持することが可能である。
【0046】
なお、記憶部34には、不明水分析装置30が外部の例えば気象庁のサーバ装置(図示せず)からデータ取得部31を介して取得した降雨量を表すデータ(以下、これを「降雨量データ」と言う。)342を保持することが可能である。
【0047】
同様に、記憶部34には、不明水分析装置30がマンホールポンプ10からデータ取得部31を介して取得した電力使用量を表すデータ(以下、これを「電力量データ」と言う。)343についても保持することが可能である。
【0048】
制御部37の不明水分析部38は、図4に示すように、機能ブロックとして、電力量データ処理部381と、降雨量データ処理部382と、分析処理部383と、データ処理結果提示部384と、分析結果記憶処理部385とを有している。
【0049】
不明水分析部38の電力量データ処理部381は、マンホールポンプ10から取得した電力量データ343org (図5)に対して加重平均処理および移動平均処理を施すことにより、マンホールポンプ10の電力量データの変化を実際の降雨量の変化に近づけた電力量データ343vis (図7)を生成する機能部である。
【0050】
ここで、電力量データ処理部381が行う加重平均処理について説明する。図5は、マンホールポンプ10の電力量データ343org の変化を時系列に沿って示す線形図である。この電力量データ343org は、電力量データ処理部381によって何ら処理の施されていないオリジナル(元)の状態の生データである。
【0051】
例えば、この場合の電力量データ343org では、2019年5月19日0時00分から2019年5月20日0時00分までの24時間のうち、電力量が「0kWh」の時間帯が存在する。すなわちマンホールポンプ10が作動していない時間帯が存在する。例えば、真夜中のような生活排水の少ない時間帯や午後の時間帯等である。
【0052】
しかし、マンホールポンプ10が作動していないような真夜中の時間帯に降雨があると、少なからずマンホール内には生活排水に加えて降雨による不明水が流入している可能性があるものの、マンホールから汲み出す必要がない程度の水量しか溜まっていない場合にはマンホールポンプ10は作動しない。
【0053】
しかしながら、マンホールポンプ10は作動していないとしても、実際の降雨量にほぼ等しい電力量の近似波形を生成する必要がある。マンホールへの下水流入量は時間帯に応じた降雨量により変化する。そのため、各時間帯に均一ではなく、時間帯毎に異なる割合(重み付け)を設定する必要がある。
【0054】
そのため、電力量が「0kWh」の時間帯であっても、その直後の時間帯において電力量(例えば1.0kWh)を記録した場合、その電力量を「0kWh」を記録した時間帯別に所定の割合で重み付けすることにより電力量を平均化した近似波形を生成する。
【0055】
具体的には、例えば、午前1時から午前3時の時間帯において電力量が「0kWh」であるが、直後の午前4時の時間帯において10kWhの電力量が使用されていた場合、この時間帯に配分する電力量を10kWhとし、時間帯別の重み付け係数を1:00=0.2、2:00=0.3、3:00=0.5とする。この場合、これらの重み付け係数により補正された電力量は、1:00=2kWh、2:00=3kWh、3:00=5kWhとなる。因みに、重み付け係数については、電力量データの時間帯別の値に基づいて統計的に決定すればよい。
【0056】
このようにして電力量データ処理部381が加重平均処理のノイズフィルタリング処理を行うことにより、図6に示すように元の電力量データ343org の波形を滑らかにすると共に、実際にマンホールに流入していると思われる降雨量に近似した近似波形の電力量データ343appを生成する。
【0057】
続いて、電力量データ処理部381が行う移動平均処理について説明する。移動平均処理とは、データを時系列に沿って移動しながら直近N個の平均値を求めることにより時系列データを平滑化する手法である。
【0058】
例えば、1,2,3,4,5,6,7,8,9,10の値のデータがあった場合、移動平均処理では、1,2,3の平均値(この場合「2」)を求め、次に、2,3,4の平均値(この場合、「3」)を求め、3,4,5の平均値(この場合「4」)を求め、このように順次1つずつデータを移動しながら平均値を求める手法である。
【0059】
電力データ処理部381では、電力量データ343app に対して直近12時間のデータ範囲で移動平均処理を複数回(例えば4回)行うことにより、電力量データ343app の表す波形を平滑化し、実際に降雨のあった時間帯の電力量の波形部分を際立たせることができる。
【0060】
具体的には、例えば、午前8時の電力量に着目すると、午前7時の電力量が2kWh,午前8時の電力量が2kWh,午前9時の電力量が3kWhの場合を7:00(2.0), 8:00(2.0), 9:00(3.0)と表したとき、8:00の電力量の移動平均の値は、1回目として2.333となります。次に、この8:00(2.333)を用いて、7:00(1.0), 8:00(2.333), 9:00(3.0)の移動平均の値を算出すると、8:00の移動平均値は、2回目として2.111となります。同様に、8:00(2.111)を用いて、7:00(2.0), 8:00(2.111), 9:00(3.0)の移動平均の値を算出すると、8:00の移動平均値は、3回目として2.370となります。最後に、8:00(2.370)を用いて、7:00(2.0), 8:00(2.370), 9:00(3.0)の移動平均の値を算出すると、8:00の移動平均値は、4回目として2.456となります。したがって、8:00の電力量を2.456とします。
【0061】
次に、午前9時に着目すると、8:00(2.456), 9:00(3.0), 10:00(5.0)の移動平均値を算出し、その移動平均値を用いて上述のように4回移動平均を行った値を算出する。ここで、午前8時の電力量としては、既に移動平均値として求めた2.456を用いる。当然、午前10時の電力量としても、移動平均値を用いてもよい。つまり、着目する時間の前後1時間のデータ範囲における移動平均の計算により算出された値を再度用いて前後1時間のデータ範囲における移動平均を計算すればよい。
【0062】
このようにして電力量データ処理部381が電力量データ343app に対して移動平均処理を行うことにより、図7に示すように電力量データ343app の波形を平滑化し、実際の降雨の影響範囲EFに対応したマンホールポンプ10の電力量の波形部分を確認可能に可視化した状態の電力量データ343vis に変換することができる。
【0063】
また、不明水分析部38の降雨量データ処理部382は、電力量データ処理部381と同様に、気象庁のサーバ装置から取得したオリジナルの降雨量データ342org に対して直近12時間のデータ範囲で移動平均処理を複数回(例えば4回)行う機能部である。これにより降雨量データ処理部382は、降雨量データ342org の表す波形を平滑化し、降雨のあった時間帯を際立たせて確認可能に可視化した状態の降雨量データ342vis に変換することができる。
【0064】
データ処理結果提示部384は、電力量データ343vis の電力量波形と、降雨量データ342vis の降雨量波形とを表示部33に同時に表示することにより可視化して比較可能な状態で提示する機能部である。
【0065】
分析処理部383は、電力量データ処理部381によって変換された電力量データ343vis と、降雨量データ処理部382によって変換された降雨量データ342vis とに基づいて、電力量波形に基づく電力量の変化と降雨量波形に基づく降雨量の変化との相関関係に応じて不明水を分析する機能部である。
【0066】
具体的には、分析処理部383は、図7に示すように、電力量データ343vis の電力量波形と、降雨量データ342vis の降雨量波形とをパターンマッチングにより比較し、その一致度が所定の割合(任意に設定可能)以上である場合のように一定の類似性が認められる場合に相関関係があると判断する。
【0067】
この場合、分析処理部383は、降雨量データ342vis のうち、移動平均による降雨範囲RRの降雨量波形と、電力量データ343vis のうち実際の降雨の影響範囲EFの電力量波形との一致度に基づいて、「(1)降雨影響なし」、「(2)直接流入」、あるいは、「(3)直接流入+遅延流入」の何れに該当するかを分析する。
【0068】
例えば、図7では、降雨量データ342vis の降雨量波形が移動平均による降雨範囲RRにおいて一定の降雨量(7.5mm)を確認できるとともに、電力量データ343vis の電力量波形が右肩上がりであり、かつ、電力量波形の立上りタイミングと降雨量波形の立上りタイミングとが同じであり、電力量波形の立下りタイミングと降雨量波形の立下りタイミングについても同じであることを確認することができる。なお、電力量波形の減少は降雨量の減少に比べて僅かに遅いものの立下りタイミングから速やかに一定のレベルまで収束していると認められる。
【0069】
したがって分析処理部383は、降雨量波形と電力量波形との一致度が所定の割合以上であり、かつ、電力量波形および降雨量波形の立上りタイミングおよび立下りタイミングとしても追従しており同一性が認められるため、両者の間には相関関係があるとみられ、「降雨による直接流入」の可能性が高いとの分析結果(「(2)直接流入」)を得ることができる。
【0070】
また、図8では、降雨量データ342vis の降雨量波形が移動平均による降雨範囲RRにおいて一定の降雨量を確認できるのに対し、電力量データ343vis の電力量波形には電力量の変化が殆どなく、両者の間には相関関係がみられない。このような場合、分析処理部383は波形パターンの一致度が所定の割合を下回ることになり、「降雨影響なし」に該当するとの分析結果(「(1)降雨影響なし」)を得ることができる。
【0071】
また、図9では、降雨量データ342vis の降雨量波形と、電力量データ343vis の電力量波形とを比較すると、両者の波形は必ずしも類似しているとは言えない(一致度が所定の割合を下回る)。
【0072】
しかしながら、電力量データ343vis に基づく電力量波形の増加の立上りタイミングが降雨量データ342vis に基づく降雨量波形の増加のタイミングに追従し、電力量データ343vis に基づく電力量波形の減少の立下りタイミングが降雨量波形の減少の立下りタイミングに追従する。すなわち、この部分については降雨による直接流入の可能性が高いと考えられる。
【0073】
また、電力量波形の減少の立下りタイミングが降雨量波形の減少の立下りタイミングに追従するものの、降雨量が0になっても電力量は増加する前のレベルにまで十分に減少せず、降雨量波形の減少速度よりも電力量波形の減少速度が緩やかな曲線を描いている。すなわち、この部分については不明水が地下浸透水による遅延流入の可能性が高いと考えられる。したがって、総合的には、降雨による直接流入と地下浸透水による遅延流入の可能性が高いとの分析結果(「(3)直接流入+遅延流入」)を得ることができる。
【0074】
したがって図9においては、降雨量データ342vis の降雨量波形と電力量データ343vis の電力量波形との間には波形パターンとしての一致度は高くないものの、波形の変化点である立上りタイミングや立下りタイミングの時期的な一致において一定の類似性が認められるため、両者の間には少なくとも一定の相関関係があると考えられる。
【0075】
例えば、図10(A)および(B)においては、ある同一地点において異なる月日の降雨時に検出した降雨量データ342vis の降雨量波形と電力量データ343vis の電力量波形との比較結果を示している。
【0076】
この場合、図10(A)における降雨日(2019年5月21日)では、「(3)直接流入+遅延流入」を考えることができるが、図10(B)における他の降雨日(2019年7月18日)では、電力量波形および降雨量波形の双方ともに振幅レベルが小さいため、降雨量の影響は小さく、「(3)直接流入+遅延流入」ではないとの分析結果を得ることができる。
【0077】
分析結果記憶処理部385は、分析処理部383によって得られた分析結果(「(1)降雨影響なし」、「(2)直接流入」、あるいは、「(3)直接流入+遅延流入」)を表す分析結果データ344を記憶部34に記憶する機能部である。
【0078】
ところで、制御部37の点検箇所推定部39は、点検箇所推定プログラム341に基づいて分析結果データ344とスマートメータ識別情報とを用いることにより、点検すべきマンホールの設置場所についても推定し、その推定結果データ345を分析結果データ344と共に記憶部34に保持する。
【0079】
このような構成の不明水分析装置30による不明水分析処理手順について説明する。図11に示すように、制御部37の不明水分析部38は、まず、マンホールポンプ10の中に設置されたスマートメータ20の電力使用量計量部21から供給される電力量データ343を取得する(ステップsp1)。このとき、不明水分析部38は、マンホールポンプ10の固有のスマートメータ識別情報についてもデータ取得部31を介して取得する。
【0080】
不明水分析部38は、スマートメータ識別情報に基づいてマンホールポンプ10の設置場所を認識することができるので、その設置場所に対応した降雨量データ342を気象庁のサーバからデータ取得部31を介して取得する(ステップsp1)。
【0081】
これにより不明水分析部38は、マンホールポンプ10の設置場所の降雨量データ342と当該マンホールポンプ10の中に設置されたスマートメータ20の電力量データ343とを対応付けて記憶部34に記憶することができる。
【0082】
不明水分析部38は、元の電力量データ343org に対して加重平均処理および移動平均処理を施すことにより、マンホールポンプ10の電力量データ343org の変化を実際の降雨量の変化に近似させた電力量データ343vis の電力量波形(近似波形)に変換する(ステップsp2)。
【0083】
また、不明水分析部38は、元の降雨量データ342org に対して直近12時間のデータ範囲で移動平均処理を4回行うことにより、降雨量データ342org の表す波形を平滑化し、降雨のあった時間帯を際立たせて可視化した近似波形の降雨量データ342vis に変換する(ステップsp2)。
【0084】
次に不明水分析部38は、電力量データ343vis の電力量波形と、降雨量データ342vis の降雨量波形とをパターンマッチングにより比較し、両者に相関関係があるか否かを判定する(ステップsp3)。
【0085】
不明水分析部38は、電力量データ343vis に基づく電力量波形の増加が降雨量データ342vis に基づく降雨量波形の増加に追従しているか否かを判定し(ステップsp4)、追従していない場合には否定結果を得(ステップsp4:No)、追従している場合には肯定結果を得る(ステップsp4:Yes)。
【0086】
不明水分析部38は、電力量波形の増加が降雨量波形の増加に追従していない場合には、図8のケースに相当すると判断し、マンホールポンプ10の動作と降雨量とは無関係であるので不明水はそもそも発生していない、すなわち、「(1)降雨影響なし」の分析結果を得て処理を終了する(ステップsp5)。
【0087】
不明水分析部38は、電力量波形の増加が降雨量波形の増加に追従している場合、さらに、図9に示すように、電力量波形が右肩上がりの状態から緩やかに下降する波形パターンであるか否かを判定する(ステップsp6)。
【0088】
不明水分析部38は、電力量波形が右肩上がりの状態から緩やかに下降する波形パターンではない場合(ステップsp6:No)、図7のケースに相当すると判断し、降雨による直接流入の可能性が高いとの分析結果(「(2)直接流入」)を得る(ステップsp7)。
【0089】
一方、不明水分析部38は、電力量波形が右肩上がりの状態から緩やかに下降する波形パターンである場合(ステップsp6:Yes)、図9のケースに相当すると判断し、降雨による直接流入および地下水等の遅延流入の双方の可能性が高いとの分析結果(「(3)直接流入+遅延流入」)を得る(ステップsp8)。
【0090】
次に、不明水分析部38は、他の降雨日においても同様に電力量波形が右肩上がりの状態から緩やかに下降する波形パターンであるか否かを判定する(ステップsp9)。
【0091】
不明水分析部38は、他の降雨日においては同様の電力波形パターンではない場合(ステップsp9:No)、図10(B)のケースに相当すると判断し、降雨による直接流入および地下水等の遅延流入の双方の可能性(「(3)直接流入+遅延流入」)はあるものの、降雨の影響は小さい、すなわち、降雨による「(3)直接流入+遅延流入」ではないとの分析結果を得る(ステップsp10)。
【0092】
一方、不明水分析部38は、他の降雨日においても同様の電力波形パターンである場合(ステップsp9:Yes)、降雨の影響が大きいので、降雨による「(3)直接流入および遅延流入」の可能性が高いとの分析結果を得て(ステップsp11)、処理を終了する。
【0093】
その後、点検箇所推定部39は、降雨の影響により直接流入および遅延流入が発生していると考えられるマンホールポンプ10の設置場所をスマートメータ識別情報に基づいて推定し、配管等の破損を検査する検査対称地域としてその設置場所を表示部13に提示することができる。
【0094】
以上の第1の実施の形態によれば、不明水分析装置30では、実際の降雨量の変化と、マンホールポンプ10の電力量の変化との相関関係に基づいて、マンホールに流入する不明水の原因が「(1)降雨影響なし」、「(2)直接流入」、「(3)直接流入+遅延流入」の何れであるかを高精度に判定することができる。
【0095】
特に、不明水分析装置30の不明水分析部38は、元の電力量データ343org から実際の降雨の影響範囲EFを考慮した近似波形の電力量データ343appを生成し、その電力量データ343app に対して移動平均処理を施すことにより、実際の降雨量の変化に対応した電力量データ343vis を求めることができる。
【0096】
また、不明水分析装置30は、直接流入の可能性が高いことや、直接流入および遅延流入の可能性が高いことを分析すると、その分析した際のマンホールポンプ10の設置場所に基づいて直接流入および遅延流入が生じる可能性のある配管等の破損を調査すべき場所を提示することができる。これにより、作業者は短時間かつ容易に配管等の破損を発見し、補修または交換等のメンテナンスを実行することができる。
【0097】
〔3〕第2の実施の形態
次に第2の実施の形態における不明水分析装置30について説明する。第2の実施の形態における不明水分析装置30は、基本的に第1の実施の形態と同一構成であり、不明水分析部38の分析処理部383による処理内容が異なるだけである。
【0098】
分析処理部383では、図12に示したように、電力量データ343vis (例えば図9)と降雨量データ342vis (例えば図9)とに基づいて互いに相関関係があって、降雨による影響があるであろうと思われる分析対象となる区間(以下、これを「分析区間」と言う。)を抽出する。具体的には、分析処理部383は、電力量波形と降雨量波形との間に相関性が有ると判断した場合、電力量データ343vis の立上りタイミングおよび立下りタイミングを含み、それより広い範囲を抽出する。
【0099】
分析処理部383は、この分析区間における各時間帯における電力量を用いて、次の次式(1)により、直接流入に対応した電力量(以下、これを「直接流入電力量移動平均結果」と言う。)を求めることができる。ここで、直接流入係数Pは、降雨量データ342vis および電力量データ343vis に対して非線形解析手法を用いることにより算出される値であり、0<P<1.0である。
直接流入電力量移動平均結果=降雨量データ342vis ×直接流入係数P………(1)
【0100】
また、分析処理部383は、この分析区間における各時間帯における電力量を用いて、次の次式(2)により、遅延流入に対応した電力量(以下、これを「遅延流入電力量移動平均結果」と言う。)を求めることができる。ここで、遅延流入係数Qは、降雨量データ342vis および電力量データ343vis に対して非線形解析手法を用いることにより算出される値であり、0<Q<1.0である。但し、P+Q≦1.0である。ここで、記号「^」は、べき乗を意味する。
遅延流入電力量移動平均結果=降雨量データ342vis ×遅延流入係数Q×((基準時間+経過時間)^減衰率)………(2)
すなわち、(基準時間+経過時間)の「減衰率」乗となることを意味する。
【0101】
この場合、地下に浸透した雨水(以下、これを「遅延流入水」と言う。)が管路内に侵入する量は、時間経過により減少していくものと考えられる。この減少割合を「減衰率」と定義する。したがって、30分前の降雨が地下に浸透し、遅延流入水として管路内に侵入する場合、遅延流入電力量移動平均結果は、30分前の降雨量データ342vis ×遅延流入係数Q×((基準時間+30分)^減衰率)により表すことができる。これをある任意の点nまで繰り返し計算した値の合算値が遅延流入電力量移動平均結果となる。なお、任意の点nを規定する事が難しい場合、48時間前まで等、一定のしきい値を設ければよい。この減衰率についても、遅延流入係数Qと同様に非線形解析手法により算出することができる。なお、30分=経過時間である。
【0102】
これにより分析処理部383は、電力量データ343vis を直接流入電力量移動平均結果と遅延流入電力量移動平均結果に分解することができるので、直接流入電力量移動平均結果および遅延流入電力量移動平均結果に基づいてどちらがどれだけ影響が大きいかの判別結果についても得ることができる。
【0103】
例えば、降雨による直接流入だけである場合、分析処理部383は直接流入電力量移動平均結果の値を求めることができるが、遅延流入電力量移動平均結果の値については0または殆ど0となる。このように、分析処理部383は、直接流入および遅延流入を数値化した分析結果として得ることができる。
【0104】
〔4〕他の実施の形態
以上の第1および第2の実施の形態においては、不明水分析部38の分析処理部383によって電力量波形と降雨量波形との間の相関関係に基づいて不明水を分析するようにした場合について述べたが、本発明はこれに限定されず、データ処理結果提示部384が表示部33に提示した電力量波形と降雨量波形とに基づいて作業者自身が不明水の原因を分析するようにしてもよい。
【0105】
さらに、不明水分析装置30による上述のフローチャート(図12)は、不明水を分析するまでの処理の流れを説明するための一例を示すものであって、これに限定されない。すなわち、不明水分析装置30によるフローチャートの各ステップは具体例であって、このフローに限定されるものではない。例えば、一部のステップの順番が変更されてもよいし、各ステップの処理間に他の処理が挿入されてもよいし、場合によっては一部のステップの処理が並列に行われてもよい。
【符号の説明】
【0106】
10…マンホールポンプ、20…スマートメータ、21…電力使用量計量部、22…スマートメータ記憶部、25…通信処理部、30…不明水分析装置、31…データ取得部、32…入力部、33…表示部、34…記憶部、35…バス、37…制御部、38…不明水分析部、381…電力量データ処理部、382…降雨量データ処理部、383…分析処理部、384…データ処理結果提示部、385…分析結果記憶処理部、39…点検箇所推定部、100…不明水分析システム。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12