(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022161642
(43)【公開日】2022-10-21
(54)【発明の名称】弁開閉時期制御ユニット
(51)【国際特許分類】
F02D 13/02 20060101AFI20221014BHJP
F01L 1/352 20060101ALI20221014BHJP
【FI】
F02D13/02 G
F01L1/352
【審査請求】未請求
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2021066604
(22)【出願日】2021-04-09
(71)【出願人】
【識別番号】000000011
【氏名又は名称】株式会社アイシン
(71)【出願人】
【識別番号】000003137
【氏名又は名称】マツダ株式会社
(74)【代理人】
【識別番号】110001818
【氏名又は名称】特許業務法人R&C
(72)【発明者】
【氏名】藤本 賢哉
(72)【発明者】
【氏名】徳永 禎斉
(72)【発明者】
【氏名】田邊 滋弘
(72)【発明者】
【氏名】中井 敬野
(72)【発明者】
【氏名】鴨山 剛之
(72)【発明者】
【氏名】高橋 博志
(72)【発明者】
【氏名】弘田 徹
【テーマコード(参考)】
3G018
3G092
【Fターム(参考)】
3G018AB07
3G018AB17
3G018CA04
3G018CA13
3G018EA02
3G018FA01
3G018FA07
3G018GA23
3G092DA03
3G092FA13
3G092HB01Z
3G092HE01Z
3G092HE03Z
(57)【要約】
【課題】軸受の摩耗を抑制し得る弁開閉時期制御ユニットを構成する。
【解決手段】駆動側回転体と、従動側回転体と、これらの相対回転位相を設定する電動モータM、及び、減速ギヤと、駆動側回転体と従動側回転体との実位相を検出する位相センサとで成る弁開閉時期制御機構VTを備えている。実位相と、目標位相との位相差を小さくする方向に電動モータMを制御する制御部40を備え、制御部40は、目標位相が一定値に維持され、実位相の変動量が設定値未満となる保持領域に保持された場合に、保持された実位相の付近で目標位相を動揺させる動揺制御部43を備えた。
【選択図】
図1
【特許請求の範囲】
【請求項1】
内燃機関のクランクシャフトと同期回転する駆動側回転体と、
前記内燃機関の燃焼室のバルブを開閉するカムシャフトと一体回転し、前記駆動側回転体の回転軸芯と同軸芯、かつ、軸受を介して前記駆動側回転体に対して相対回転位相を変更可能に配置された従動側回転体と、
前記相対回転位相を設定するための電動モータ、及び、減速ギヤと、
前記駆動側回転体と前記従動側回転体との前記相対回転位相を、前記回転軸芯を中心とした実位相として検出する位相センサとで成る弁開閉時期制御機構を備え、
前記位相センサで検出された前記実位相と、目標位相との位相差を小さくする方向に前記電動モータを制御する制御部を備え、
前記制御部は、前記目標位相が維持され、前記実位相の変動量が前記目標位相に対して設定値未満となる保持領域に保持された場合に、前記目標位相の付近で前記目標位相を動揺させる動揺制御部を備えている弁開閉時期制御ユニット。
【請求項2】
前記動揺制御部が、前記目標位相の値を基準に進角側と遅角側とに等しい量だけ変位させた動揺目標位相を設定し、2つの前記動揺目標位相の間において、設定周期で前記目標位相を往復動揺させる請求項1に記載の弁開閉時期制御ユニット。
【請求項3】
前記位相センサが、前記クランクシャフトの回転角を検出するクランク角センサと、前記カムシャフトの回転角を検出するカムシャフト角センサと、前記クランク角センサおよび前記カムシャフト角センサの検出信号から前記実位相を求める演算部とで構成され、
前記演算部で求めた前記実位相の最大値と最小値との差の絶対値を前記変動量とする請求項1又は2に記載の弁開閉時期制御ユニット。
【請求項4】
前記動揺制御部における前記目標位相の動揺量が、前記保持領域において前記実位相が変動する変動量より大きい値に設定されている請求項1に記載の弁開閉時期制御ユニット。
【請求項5】
前記クランクシャフトの単位時間あたりの回転数を検出する回転数検出部を備え、
前記回転数検出部で検出した回転数が設定値を超えた場合に、前記動揺制御部での制御を開始する請求項1~3のいずれか一項に記載の弁開閉時期制御ユニット。
【請求項6】
前記内燃機関が、前記弁開閉時期制御機構として、吸気バルブの開閉時期を制御する吸気側弁開閉時期制御機構と、排気バルブの開閉時期を制御する排気側弁開閉時期制御機構とを備えており、
前記制御部は、前記吸気側弁開閉時期制御機構と、前記排気側弁開閉時期制御機構との一方の前記目標位相を前記動揺制御部によって動揺させる制御に連係して、他方の前記目標位相を同じ位相動揺方向に動揺させる連係作動を行わせる請求項1~5のいずれか一項に記載の弁開閉時期制御ユニット。
【請求項7】
前記内燃機関が、前記弁開閉時期制御機構として、吸気バルブの開閉時期を制御する吸気側弁開閉時期制御機構と、排気バルブの開閉時期を制御する排気側弁開閉時期制御機構とを備え、
前記排気側弁開閉時期制御機構による前記排気バルブが閉じる以前のタイミングにおいて、前記吸気側弁開閉時期制御機構による前記吸気バルブが開放するオーバラップ領域が設定され、
前記排気側弁開閉時期制御機構および前記排気側弁開閉時期制御機構の何れか一方の開閉時期を前記オーバラップ領域が拡大する方向に変位させた状態において、
前記動揺制御部によって前記吸気側弁開閉時期制御機構および前記排気側弁開閉時期制御機構の何れか他方の目標位相を動揺させる請求項1~5のいずれか一項に記載の弁開閉時期制御ユニット。
【請求項8】
前記内燃機関が、前記弁開閉時期制御機構として、吸気バルブの開閉時期を制御する吸気側弁開閉時期制御機構を備え、燃焼室に供給される吸気量を制御する電動型のスロットルを備えると共に、
前記制御部は、前記吸気側弁開閉時期制御機構において前記動揺制御部による制御が行われる際に、前記吸気側弁開閉時期制御機構の進角方向への変位量の増大に連係して、前記スロットルによる吸気量の増大を図る請求項1~5のいずれか一項に記載の弁開閉時期制御ユニット。
【請求項9】
前記内燃機関が、燃焼室に燃料を供給する燃料噴射装置を備えると共に、
前記制御部は、前記スロットルによる吸気量の増減に対応して前記燃料噴射装置による燃料の噴射量を制御する請求項8に記載の弁開閉時期制御ユニット。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、弁開閉時期制御ユニットに関する。
【背景技術】
【0002】
内燃機関として4サイクル型のエンジンでは、吸気バルブ、あるは、排気バルブの開閉タイミングを調整するため以下の特許文献1~3に示される可変動弁装置等が知られている。
【0003】
特許文献1には、吸気弁のリフト量及び作動角(リフト特性)を同時に連続的に制御するため、偏心カムを備えた制御軸の回転位置によってバルブリフト特性が決まる可変動弁装置が示されている。この装置では、制御軸をウォームギヤ機構で連係したアクチュエータで駆動することでリフト特性を設定する制御形態が行われる。
【0004】
特に、この特許文献1では、制御軸の目標回転位置が所定期間一定値に維持されている場合に、制御軸を微小振幅で強制的に往復作動させるようにアクチュエータを制御することが記載されている。
【0005】
また、特許文献2には、電動モータでナットを回転駆動することで、ナットに螺合するプラネタリシャフトを直線的に作動させ、吸気バルブの最大リフト量を変更する可変動弁機構が記載されている。また、特許文献2では、最大リフト量の変更が終了した時点での、最大リフト量が所定値を超えている場合に、電動モータを往復移動させる制御形態が記載されている。
【0006】
特許文献3には、クランクシャフトと同期回転する駆動側回転体と、カムシャフトと一体回転する従動側回転体とを同軸芯上に配置し、これらの相対回転位相を電動アクチュエータの駆動力により設定するように入力ギヤと出力ギヤとオルダム継手等を有する減速機構を備えた弁開閉時期制御装置が示されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2004-332671号公報
【特許文献2】特開2008-286120号公報
【特許文献3】特開2019-157679号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
電動アクチュエータ(電動モータ)の駆動力によって減速機構を介してバルブタイミングを設定するものでは、所定のバルブタイミングに維持した状態で、ギヤの特定位置に対して継続的に圧力が作用することから、ギヤの接触位置に摩耗を招きやすく、このような摩耗を抑制するため、特許文献1,2では、電動アクチュエータを往復するように作動させることで、特定位置のギヤの摩耗を抑制する制御が行われている。
【0009】
このような摩耗は、ギヤに限るものではなく、例えば、特許文献3に記載されるように減速ギヤを支持するボールベアリング型の軸受に作用し、ボールを摩耗させることも考えられた。
【0010】
つまり、特許文献3に記載される減速機構は、出力ギヤの内歯型の出力ギヤの一部に対して、入力ギヤの外歯の一部を咬合させるように、偏心部材から圧力を作用させる構成であるため、軸受に対し径方向から偏った力が過剰に作用し、ボールに摩耗を招き、円滑作動を損なうことも懸念されたのである。
【0011】
このような理由から軸受の摩耗を抑制し得る弁開閉時期制御ユニットが求められる。
【課題を解決するための手段】
【0012】
本発明に係る弁開閉時期制御ユニットの特徴構成は、内燃機関のクランクシャフトと同期回転する駆動側回転体と、前記内燃機関の燃焼室のバルブを開閉するカムシャフトと一体回転し、前記駆動側回転体の回転軸芯と同軸芯、かつ、軸受を介して前記駆動側回転体に対して相対回転位相を変更可能に配置された従動側回転体と、前記相対回転位相を設定するための電動モータ、及び、減速ギヤと、前記駆動側回転体と前記従動側回転体との前記相対回転位相を、前記回転軸芯を中心とした実位相として検出する位相センサとで成る弁開閉時期制御機構を備え、前記位相センサで検出された前記実位相と、目標位相との位相差を小さくする方向に前記電動モータを制御する制御部を備え、前記制御部は、前記目標位相が維持され、前記実位相の変動量が前記目標位相に対して設定値未満となる保持領域に保持された場合に、前記目標位相の付近で前記目標位相を動揺させる動揺制御部を備えている点にある。
【0013】
弁開閉時期制御機構には、内燃機関の稼動時にカムシャフトのカムからの力(カム変動トルク)が作用しており、電動モータの駆動力で減速ギヤの複数のギヤの回転が継続している場合に、軸受が回転するため、カムからの力が作用しても、この力が軸受の周方向の領域に分散されることになり、軸受の周方向での特定箇所に圧力が強く作用することはない。これに対して、実位相が目標位相の近傍に達し、実位相の変動量が減少した場合には、カムからの力が軸受の周方向での特定の位置に対して作用することになる。つまり、目標位相と実位相との偏差が設定値を超えた状態では、位相差収束制御が継続するため、例えば、転がり軸受の場合、ボールの回転量は比較的大きく、ボールやレースの特定の部位に強い力が継続的に作用する不都合を抑制できるものであるが、位相差収束制御によって偏差が小さくなった場合には、例えば、転がり型の軸受のボールの回転量が少なくなり局部的に圧力が作用する結果、摩耗を招いていたのである。
【0014】
このような理由から、目標位相が維持され、実位相の変動量が設定値未満に保持された場合に、目標位相の付近で目標位相を動揺させる位相動揺制御を行うことで軸受を積極的に回転させることで、軸受の周方向での圧力が作用する領域を拡大し、軸受の特定の部位に強い力が継続的に作用する不都合を解消する。
従って、軸受の摩耗を抑制し得る弁開閉時期制御ユニットが構成された。
【0015】
上記構成に加えた構成として、前記動揺制御部が、前記目標位相の値を基準に進角側と遅角側とに等しい量だけ変位させた動揺目標位相を設定し、2つの前記動揺目標位相の間において、設定周期で前記目標位相を往復動揺させても良い。
【0016】
これによると、目標位相を設定周期で往復動揺させることが可能となり、軸受の摩耗を抑制すると共に、動揺した目標位相の平均値を本来の目標位相に維持できるため、平均したバルブタイミングを本来のバルブタイミングに維持できる。
【0017】
上記構成に加えた構成として、前記位相センサが、前記クランクシャフトの回転角を検出するクランク角センサと、前記カムシャフトの回転角を検出するカムシャフト角センサと、前記クランク角センサおよび前記カムシャフト角センサの検出信号から前記実位相を求める演算部とで構成され、前記演算部で求めた前記実位相の最大値と最小値との差の絶対値を前記変動量としても良い。
【0018】
従動側回転体は、カムシャフトからカム変動トルクが作用するため、所定の周期で回転速度が増減し、これに伴い実位相も変動することになる。このため、クランク角センサの検出値と、カムシャフト角センサの検出値とに基づいて制御部によって実位相を求め、求めた実位相の最大値と最小値との差の絶対値を変動量とすることができる。
【0019】
上記構成に加えた構成として、前記動揺制御部における前記目標位相の動揺量が、前記保持領域において前記実位相が変動する変動量より大きい値に設定されても良い。
【0020】
これによると、動揺制御部において設定される目標位相の動揺量が、弁開閉時期制御機構の実位相が保持領域に保持された状態での実位相の変動量より大きくなるため、軸受やギヤに圧力が作用する領域を拡大し、軸受やギヤの特定の部位に圧力が局部的に作用する不都合を確実に解消できる。
【0021】
上記構成に加えた構成として、前記クランクシャフトの単位時間あたりの回転数を検出する回転数検出部を備え、前記回転数検出部で検出した回転数が設定値を超えた場合に、前記動揺制御部での制御を開始しても良い。
【0022】
弁開閉時期制御機構が比較的低い回転数(単位時間あたりの回転数)で回転する場合には、駆動側回転体と従動側回転体とが自然に回転方向に動揺(回転速度が増減)することにより、実位相が動揺する「ゆらぎ」が発生するものである。この「ゆらぎ」の振幅はクランクシャフトの回転数が増大するにつれて低下する傾向にある。従って、回転数検出部で検出される回転数が低い場合には動揺制御部での制御を行わずとも、軸受やギヤに圧力が作用する領域を拡大し、軸受やギヤの特定の部位に強い力が継続的に作用する不都合を抑制できるものであるが、回転数が増大した場合には、不都合の抑制が困難になる。
【0023】
このような理由から、回転数が設定値を超えた場合に位相動揺制御を行うことにより、軸受やギヤに圧力が作用する領域を拡大し、軸受の周方向での特定の部位に強い力が継続的に作用する不都合を解消できる。
【0024】
上記構成に加えた構成として、前記内燃機関が、前記弁開閉時期制御機構として、吸気バルブの開閉時期を制御する吸気側弁開閉時期制御機構と、排気バルブの開閉時期を制御する排気側弁開閉時期制御機構とを備えており、前記制御部は、前記吸気側弁開閉時期制御機構と、前記排気側弁開閉時期制御機構との一方の前記目標位相を前記動揺制御部によって動揺させる制御に連係して、他方の前記目標位相を同じ位相動揺方向に動揺させる連係作動を行わせても良い。
【0025】
これによると、位相動揺制御を行う際には、吸気側弁開閉時期制御機構の目標位相と、排気側弁開閉時期制御機構の目標位相とを同時に、同じ動揺方向に連動して動揺させるため、吸気バルブによる吸気タイミングと、排気バルブによる排気タイミングとの関係を維持できる。特に、吸気側弁開閉時期制御機構の開閉時期(バルブタイミング)と、排気側弁開閉時期制御機構の開閉時期(バルブタイミング)との間にオーバラップ領域が設定されているものではオーバラップ領域の領域長を維持でき、良好な吸排気を可能にする。
【0026】
上記構成に加えた構成として、前記内燃機関が、前記弁開閉時期制御機構として、吸気バルブの開閉時期を制御する吸気側弁開閉時期制御機構と、排気バルブの開閉時期を制御する排気側弁開閉時期制御機構とを備え、前記排気側弁開閉時期制御機構による前記排気バルブが閉じる以前のタイミングにおいて、前記吸気側弁開閉時期制御機構による前記吸気バルブが開放するオーバラップ領域が設定され、前記排気側弁開閉時期制御機構および前記排気側弁開閉時期制御機構の何れか一方の開閉時期を前記オーバラップ領域が拡大する方向に変位させた状態において、前記動揺制御部によって前記吸気側弁開閉時期制御機構および前記排気側弁開閉時期制御機構の何れか他方の目標位相を動揺しても良い。
【0027】
これによると、吸気側弁開閉時期制御機構と排気バルブ排気側弁開閉時期制御機構との一方の開閉時期を、オーバラップ領域が拡大する方向に変位させておき、吸気側弁開閉時期制御機構と排気バルブ排気側弁開閉時期制御機構との他方を動揺制御によって動揺させることにより、オーバラップ領域が減少するタイミングでも、燃焼室の吸排気に必要なオーバラップ領域を確保することが可能となり、内燃機関の吸排気性能を低下させることはない。
【0028】
上記構成に加えた構成として、前記内燃機関が、前記弁開閉時期制御機構として、吸気バルブの開閉時期を制御する吸気側弁開閉時期制御機構を備え、燃焼室に供給される吸気量を制御する電動型のスロットルを備えると共に、前記制御部は、前記吸気側弁開閉時期制御機構において前記動揺制御部による制御が行われる際に、前記吸気側弁開閉時期制御機構の進角方向への変位量の増大に連係して、前記スロットルによる吸気量の増大を図っても良い。
【0029】
これによると、吸気側弁開閉時期制御機構において位相動揺制御が行われる際に、吸気側弁開閉時期制御機構の吸気タイミングが進角方向に変位して吸気量の増大が図られている場合には、進角方向への変位量に対応してスロットルでの流量を増大させることで燃焼室の吸気量が不足する不都合を解消できる。
【0030】
上記構成に加えた構成として、前記内燃機関が、燃焼室に燃料を供給する燃料噴射装置を備えると共に、前記制御部は、前記スロットルによる吸気量の増減に対応して前記燃料噴射装置による燃料の噴射量を制御しても良い。
【0031】
これによると、動揺制御部による制御に連係して、吸気バルブでの吸気量が増減した場合に、燃料噴射装置による燃料の噴射量を増減することにより、空燃比を一定に維持して良好な燃焼を可能にする。
【図面の簡単な説明】
【0032】
【
図1】エンジンの断面と制御ユニットとを示す図である。
【
図7】バルブタイミングとオーバラップ領域とを示すチャートである。
【
図8】クランクシャフトの回転数と吸気側可変動弁機構のタイミングとフラグと排気側可変動弁機構とスロットルの開度とのタイミングチャートである。
【
図9】別実施形態(a)のバルブタイミングとオーバラップ領域とを示すチャートである。
【発明を実施するための形態】
【0033】
以下、本発明の実施形態を図面に基づいて説明する。
〔基本構成〕
図1に示すように、内燃機関としてのエンジンEの吸気バルブVaのバルブタイミング(開閉時期)を設定する吸気側可変動弁機構VTa(吸気側弁開閉時期制御機構の一例)と、エンジンEの排気バルブVbのバルブタイミング(開閉時期)を設定する排気側可変動弁機構VTb(排気側弁開閉時期制御機構の一例)とを備えると共に、吸気側可変動弁機構VTaと排気側可変動弁機構VTbとを制御するエンジン制御装置40(制御部の一例)を備えて弁開閉時期制御ユニットAが構成されている。
【0034】
エンジンE(内燃機関の一例)は、乗用車等の走行駆動力を得るために車両に備えられたものを示している。エンジン制御装置40は、可変動弁機構VT(吸気側可変動弁機構VTaと排気側可変動弁機構VTbとの上位概念)を制御するだけでなく、エンジンEの始動と、エンジンEの停止とを制御する。特に、エンジン制御装置40は、エンジンEが稼動する状況において、所定の条件が成立した場合に、可変動弁機構VTの実位相P(
図4を参照)を動揺(進角側と遅角側とに往復動揺)させる動揺制御を行うことにより、可変動弁機構VTの軸受やギヤの摩耗の抑制を実現する。この制御形態は後述する。
【0035】
〔エンジン〕
図1、
図2に示すように、エンジンEは、クランクシャフト1を回転自在に支持するシリンダブロック2の上部にシリンダヘッド3を連結し、シリンダブロック2に形成された複数のシリンダボアにピストン4を往復作動自在に収容し、ピストン4をコネクティングロッド5によりクランクシャフト1に連結して4サイクル型に構成されている。
【0036】
シリンダヘッド3には、吸気バルブVaと排気バルブVbとが備えられ、シリンダヘッド3の上部に吸気バルブVaを制御する吸気カムシャフト7と、排気バルブVbを制御する排気カムシャフト8とが備えられている。また、クランクシャフト1の出力プーリ1Sと、吸気側可変動弁機構VTa、排気側可変動弁機構VTbの夫々の駆動プーリ21Sとに亘ってタイミングベルト6が巻回されている。
【0037】
シリンダヘッド3には、燃焼室に燃料を噴射するインジェクタ9(燃料噴射装置の一例)と点火プラグ10とが備えられている。シリンダヘッド3には、吸気バルブVaを介して燃焼室に空気を供給するインテークマニホールド11と、燃焼室の燃焼ガスを、排気バルブVbを介して送り出すエキゾーストマニホールド12とが連結している。
【0038】
更に、インテークマニホールド11の上流位置には、スロットル制御モータ13aの制御により吸気量を調節する電動型のスロットル13を備え、エキゾーストマニホールド12の中間位置には、排気ガスを浄化する触媒14を備えている。エンジンEは、始動時にクランクシャフト1を駆動回転するスタータモータ15(
図2を参照)を備えている。
【0039】
〔可変動弁機構〕
吸気側可変動弁機構VTa(吸気側弁開閉時期制御機構)と排気側可変動弁機構VTb(排気側弁開閉時期制御機構)とは共通する構成であるため、
図2、
図3には、共通する構成に対して共通する符号を付し、区別が必要な部位には区別を可能にする符号を付している。
【0040】
図2、
図3に示すように、可変動弁機構VTは、駆動ケース21(吸気駆動側回転体/排気駆動側回転体の一例)と、内部ロータ22(吸気従動側回転体/排気従動側回転体の一例)とを、吸気カムシャフト7あるいは排気カムシャフト8の回転軸芯Xと同軸芯に配置し、これらの相対回転位相を、電動モータとしての位相制御モータM(吸気側位相制御モータMaと排気側位相制御モータMbの上位概念)の駆動力により制御する位相調節機構G(減速ギヤの一例)を備えている。
【0041】
駆動ケース21は、外周に駆動プーリ21Sが形成されている。内部ロータ22は、駆動ケース21に内包され、連結ボルト23により吸気カムシャフト7あるいは排気カムシャフト8に連結固定されている。この構成により、内部ロータ22の外周部位に駆動ケース21が相対回転自在に支持され、内部ロータ22は、対応するカムシャフト(吸気カムシャフト7あるいは排気カムシャフト8)と一体回転する。
【0042】
駆動ケース21の開口部分を覆う位置に、複数の締結ボルト25によりフロントプレート24が締結されている。これにより、位相調節機構Gと内部ロータ22との回転軸芯Xに沿う方向での変位がフロントプレート24によって規制される。
【0043】
可変動弁機構VTは、
図1、
図3に示すように、タイミングベルト6からの駆動力により全体が駆動回転方向Sに回転する。また、位相制御モータMの駆動力が位相調節機構Gを介して内部ロータ22に伝えられることで駆動ケース21に対する内部ロータ22の相対回転位相が変位する。この変位のうち駆動回転方向Sと同方向へ向かう変位方向を進角方向Saと称し、この逆方向を遅角方向Sbと称している。
【0044】
〔可変動弁機構:位相調節機構〕
位相調節機構Gは、内部ロータ22の内周に回転軸芯Xと同軸芯に形成したリングギヤ26と、内部ロータ22の内周側に偏心軸芯Yと同軸芯で回転自在に配置されるインナギヤ27と、インナギヤ27の内周側に配置される偏心カム体28と、フロントプレート24と、継手部Jとを備えている。偏心軸芯Yは、回転軸芯Xと平行する姿勢で形成されている。
【0045】
リングギヤ26は複数の内歯部26Tを有し、インナギヤ27は複数の外歯部27Tを有し、偏心カム体28の外周の偏心カム面28Aに沿う位置に、このインナギヤ27を配置することにより、偏心軸芯Yと同軸芯でインナギヤ27が配置され、外歯部27Tの一部がリングギヤ26の内歯部26Tに咬合する。この位相調節機構Gは、リングギヤ26の内歯部26Tの歯数と比較して、インナギヤ27の外歯部27Tの歯数が1歯だけ少ない内接型遊星ギヤ減速機として構成されている。
【0046】
継手部Jは、鋼板材をプレス加工して成る継手部材33を有しており、この継手部材33の外周部を駆動ケース21に係合させ、この継手部材33の内周部にインナギヤ27の係合突部27Uに係合させたオルダム継手型に構成されている。これにより、継手部Jは、駆動ケース21に対してインナギヤ27が偏心する位置関係を維持しつつ、インナギヤ27と駆動ケース21とを一体的に回転させる作動を実現する。
【0047】
偏心カム体28は、全体に筒状であり、内周に対し一対の係合溝28Bが回転軸芯Xと平行姿勢で形成されている。偏心カム体28は、回転軸芯Xと同軸芯で回転するようにフロントプレート24に対し、転がり軸受として機能する第1軸受31(軸受の一例)によって支持されている。更に、この第1軸受31の支持位置より吸気カムシャフト7の側の部位の外周に偏心カム面28Aが形成されている。
【0048】
偏心カム面28Aは、回転軸芯Xに平行する姿勢の偏心軸芯Yを中心とする円形(断面形状が円形)に形成されている。この偏心カム面28Aの外周に対して転がり軸受として機能する第2軸受32(軸受の一例)を介してインナギヤ27が回転自在に支持されている。また、偏心カム面28Aに形成した凹部にバネ体29を嵌め込み、このバネ体29の付勢力を、第2軸受32を介してインナギヤ27に作用させるように構成されている。このような構成から、リングギヤ26の内歯部26Tの一部にインナギヤ27の外歯部27Tの一部が咬合し、バネ体29の付勢力により咬合状態が維持される。
【0049】
位相制御モータMは、エンジンEに支持され、出力軸Msに形成された係合ピン34を偏心カム体28の内周の係合溝28Bに嵌め込んでいる。詳細を図示していないが、位相制御モータMは、永久磁石を有するロータと、このロータを取り囲む位置に配置される複数の界磁コイルを有するステータと、ロータの回転が伝達される出力軸Msとを備えることで三相モータと共通する構造のブラシレス型に構成されている。
【0050】
この可変動弁機構VTでは、エンジンEの稼動時には、カムシャフトと等しい速度で、出力軸Msを駆動回転方向Sに駆動回転することにより、可変動弁機構VTの相対回転位相を維持する。また、相対回転位相を進角方向Saに変位させる場合には出力軸Msの回転速度を減じ、相対回転位相を遅角方向Sbに変位させる場合には出力軸Msの回転速度を増大する制御が行われる。
【0051】
エンジンEが停止する状況で説明すると、位相調節機構Gは、インナギヤ27の外歯部27Tがリングギヤ26の内歯部26Tに噛み合っているため、位相制御モータMの駆動により出力軸Msの回転に伴い偏心カム体28が回転軸芯Xを中心に回転する際には、この回転に伴い、インナギヤ27が、回転軸芯Xを中心に公転すると同時に偏心軸芯Yを中心に自転する。
【0052】
また、インナギヤ27が回転軸芯Xを中心に1回転(公転)する毎に、インナギヤ27とリングギヤ26との歯数差に対応する角度だけ、インナギヤ27をリングギヤ26に対して相対回転(自転)させることになり大きい減速を実現する。その結果、位相制御モータMの回転速度の制御により、インナギヤ27に対し継手部Jを介して一体回転する駆動ケース21と、リングギヤ26に連結ボルト23により連結するカムシャフトとを相対回転させ、バルブタイミングの調節を実現する。
【0053】
〔制御構成〕
図1、
図2に示すように、エンジンEにはクランクシャフト1を駆動回転するスタータモータ15を備え、クランクシャフト1の近傍位置には回転角の検出が可能なクランク角センサ16(回転数検出部としても機能する)を備え、吸気カムシャフト7の近傍には、吸気カムシャフト7の回転角の検出が可能な吸気側カムシャフト角センサ17を備え、排気カムシャフト8の近傍には排気カムシャフト8の回転角の検出が可能な排気側カムシャフト角センサ18を備えている。
【0054】
クランク角センサ16と、吸気側カムシャフト角センサ17と、排気側カムシャフト角センサ18とは、回転に伴い間歇的にパルス信号を出力するピックアップ型に構成されている。クランク角センサ16は、クランクシャフト1の回転時にクランクシャフト1の回転基準からのパルス信号をカウントすることで回転基準からの回転角を取得する。これと同様に、吸気側カムシャフト角センサ17と排気側カムシャフト角センサ18とは、吸気カムシャフト7の回転時に吸気カムシャフト7の回転基準からパルス信号をカウントすることで、エンジン制御装置40において、回転基準からの回転角を取得できるように構成されている。
【0055】
このような構成から、例えば、
図3に示す駆動ケース21と内部ロータ22とが所定の基準位相(例えば、中間位相)にある状態でのクランク角センサ16のカウント値と、吸気側カムシャフト角センサ17、あるいは、排気側カムシャフト角センサ18のカウント値とを記憶しておくことにより、相対回転位相が、基準位相から進角側(進角方向Sa)と、遅角側(遅角方向Sb)との何れに変位しても2種のカウント値の比較により相対回転位相を取得できるように構成している。
【0056】
このようにクランク角センサ16と、吸気側カムシャフト角センサ17とで吸気側の位相センサが構成され、クランク角センサ16と排気側カムシャフト角センサ18とで排気側の位相センサが構成されている。
【0057】
図1に示すように、エンジン制御装置40は、クランク角センサ16と、吸気側カムシャフト角センサ17と、排気側カムシャフト角センサ18とからの検出信号が入力すると共に、メインスイッチ45と、アクセルペダルセンサ47とからの検出信号が入力する。エンジン制御装置40は、スタータモータ15と、位相制御モータM(吸気側位相制御モータMaおよび排気側位相制御モータMb)と、燃焼管理部19と、スロットル制御モータ13aとに制御信号を出力する。
【0058】
また、エンジン制御装置40は、エンジン制御部41と、位相制御部42と、動揺制御部43と、補正制御部44とを備えている。これはソフトウエアで構成されるものであるが、これらの一部をハードウエアだけで構成することが可能であり、ハードウエアとソフトウエアとの組み合わせで構成することも可能である。
【0059】
エンジン制御部41は、エンジンEの始動から停止までの制御を行い、位相制御部42は、エンジンEの始動時、エンジンEの稼動時、エンジンEを停止する際に吸気側可変動弁機構VTaと排気側可変動弁機構VTbとのバルブタイミング(開閉時期)を制御する。動揺制御部43は、
図6のフローチャートに示す動揺制御を実行することで軸受(第1軸受31および第2軸受32)やギヤ(リングギヤ26およびインナギヤ27)の摩耗を抑制する。補正制御部44は、動揺制御部43の実行時において吸気量等の補正を行う。
【0060】
この制御構成においてメインスイッチ45は、車両の運転座席のパネル部分に配置され、エンジンEの人為操作による始動と、人為操作による完全停止を可能にしている。アクセルペダルセンサ47は、アクセルペダル(図示せず)の踏み込み量を取得する。燃焼管理部19は、インジェクタ9に対して燃料を供給するポンプ類の作動を管理すると共に、点火プラグ10に電力を供給するイグニッション回路の制御により点火順序や点火タイミングを管理する。
【0061】
〔制御形態〕
吸気側可変動弁機構VTaと排気側可変動弁機構VTbとは、リングギヤ26の内歯部26Tの一部と、インナギヤ27の外歯部27Tの一部を咬合させるように、偏心カム体28を備え、この偏心カム体28からバネ体29の付勢力を作用させている。
【0062】
このような構成から、リングギヤ26とインナギヤ27とを互いに偏心する位置関係に保持し、且つ、相対回転位相を変位可能にする第1軸受31と第2軸受32とに強い力が作用すると同時に、内歯部26Tと外歯部27Tとの接触面にも強い力が作用している。
【0063】
特に、第1軸受31と第2軸受32とは、インナレースとアウタレースとの間に複数のボールを配置した構造であるため、エンジンEが稼動する状況でカム変動トルクに伴う圧力が第1軸受31と第2軸受32とに作用した場合には、インナレースとアウタレースとにボールが径方向に圧接し、ボールに摩耗を招くことも考えられた。
【0064】
これと同様に、エンジンEが稼動する状況でカム変動トルクの作用に伴う圧力が内歯部26Tと外歯部27Tとの接触面に作用することから、接触面に摩耗を招くことも考えられた。
【0065】
このような摩耗を抑制するために、エンジン制御装置40は、
図5のフローチャートに示す制御を行う。このフローチャートには、エンジンEが稼動する状況において、吸気バルブVaのバルブタイミング(開閉時期)を制御するため吸気側可変動弁機構VTaの位相制御の制御形態を示している。
【0066】
つまり、アクセルペダルセンサ47で検出されるアクセルペダルの踏み込み量、あるいは、クランク角センサ16でカウントされる回転数(単位時間あたりのクランクシャフト1の回転数)等の情報に基づいて設定される目標位相を取得し(#01ステップ)、クランク角センサ16のカウント値と吸気側カムシャフト角センサ17のカウント値とに基づいて吸気側可変動弁機構VTaの実位相を取得する(#02ステップ)。
【0067】
この#01、#02ステップは、位相制御部42が実行するものであり、このように取得された目標位相と、実位相との位相差が設定値(例えば、1.0CA~1.2CA)未満にあるか、設定値以上であるかを判定する(#03ステップ)。この#03ステップは、位相制御部42が実行するものであり、位相差が設定値未満でないことを判定した場合(#03ステップのNo)には、位相差収束制御(位相差を小さくする方向に吸気側位相制御モータMaを作動させる制御)を行い(#04ステップ)、この後に位相制御を抜けてリターンする。この#04ステップは位相制御部42が実行する。
【0068】
特に、
図4に示すように、位相差収束制御では、目標位相Tを基準に進角側と遅角側とに亘って保持領域Kが形成され、実位相Pが保持領域Kに含まれる状態に達することで位相差収束制御(#04ステップの制御)が収束(停止)する。保持領域Kは比較的狭い領域に形成され、位相差収束制御が収束した状態では、実位相Pが保持領域Kの含まれる状態でカム変動トルクの作用により進角側と遅角側とに交互に変動する(吸気カムシャフト7の回転速度が増減する)状態となる。尚、同図のうち初期領域Qには、目標位相Tと実位相Pとが収束した状態を示している。
【0069】
#03ステップにおいて位相差が設定値未満であることを判定した場合(#03ステップのYes)には、この状態が設定時間(例えば0.1秒程度)以上継続した場合(#05ステップのYes)に、クランクシャフト1の回転数(単位時間あたりの回転数)を取得し、このように取得した回転数が、設定数以上であるかを判定する(#06、#07ステップ)。また、位相差が設定値未満である場合(#03ステップのYes)において、この状態の継続時間が設定時間未満である場合(#05ステップのNo)には、この位相制御を抜けてリターンする。
【0070】
また、#07ステップで設定数以上であることが判定された場合(#07ステップのYes)には動揺制御(#100ステップ)が実行され、回転数が設定数未満である場合(#07ステップのNo)では制御を抜けてリターンする。尚、#05~#07は動揺制御への移行の要否を判定するための処理であり、動揺制御部43が実行する。
【0071】
このように、動揺制御(#100ステップ)は、位相差が設定値未満(収束した状態)にあり、この状態が設定時間を超えて継続し、クランクシャフト1の回転数が設定回転数以上である場合に実行される。
【0072】
動揺制御(#100ステップ)はサブルーチンとして設定され、基本的に動揺制御部43が実行する。つまり、
図6のフローチャートに示すように、吸気側と排気側との目標位相T(
図4を参照、同図には吸気側と排気側とのうちの一方だけを示している)を取得し、取得した2つの目標位相を基準に等しい量だけ離れた動揺目標位相Tx,Tyを設定する(#102、#103ステップ)。
【0073】
また、
図4のタイミングチャートには目標位相Tを基準に、偏差が拡大する方向と減少する方向とに(
図4では上下方向に)等しい振幅となるように、動揺目標位相Tx,Tyが設定される。この動揺目標位相Tx,Tyの動揺方向(
図4で上下方向)の間隔が目標位相の動揺量であり、この動揺量が、カム変動トルクの作用による実位相Pの変動量より大きく設定されている。
【0074】
吸気カムシャフト7は、カム変動トルクの作用により回転速度が進角方向と遅角方向とに交互に変動するため、回転数が短い周期で増減する。このため実位相Pは、
図4のタイミングチャートに実線で示すように所定の振幅の波状に変動し、この変動の振幅が変動量となる。
【0075】
実位相Pの変動量は小さいため、保持領域Kにある状態が継続すると、第1軸受31と第2軸受32の夫々のボールに対して局部的に作用する圧力に起因する摩耗が発生するおそれがある。そこで、この摩耗を抑制するため、動揺制御によってボールを所定角度(例えば45度や90度等)以上回転させることが望ましい。このような理由から、ボールを所定角度以上回転させるように動揺目標位相Tx,Tyを設定しており、動揺目標位相Tx,Tyの値は保持領域Kにおいて実位相Pが変動する変動量より大きい値に構成されている。
【0076】
このように動揺目標位相Tx,Tyが設定された後に動揺作動(#103ステップ)の処理が行われる。尚、#103ステップで実行される位相差収束制御は、駆動ケース21と内部ロータ22とを動揺させるために、位相差収束制御のルーチンを利用しているだけであり、実位相Pを目標位相T(保持領域K)に収束させるための制御と異なるものである。
【0077】
例えば、動揺目標位相Txを、目標位相Tを基準に進角側であるとし、動揺目標位相Tyを、目標位相Tを基準に遅角側であるとした場合に、動揺作動(#103ステップ)では、2つの動揺目標位相Tx,Tyを、設定周期Rで切り換え、かつ、位相差収束制御を行うことで、これらの制御に伴う吸気量の変動に対応してスロットル13を制御する。このスロットル13の制御は、補正制御部44が実行する。
【0078】
この#103ステップの制御では、進角側(進角方向Sa)と遅角側(遅角方向Sb)とに2つの動揺目標位相Tx,Tyを、等しい設定周期Rで切り換え、吸気側可変動弁機構VTaと排気側可変動弁機構VTbとにおいて位相差収束制御を行うことにより、
図4のタイミングチャートに破線で山と谷とで示されるパターンに追従するように、等しい量だけ往復作動することになる。そして、この#103ステップの制御の後には、
図5の位相制御にリターンする。動揺目標位相、設定周期はエンジン状態(回転数や負荷)によって設定しても良い。
【0079】
特に、この動揺作動では、
図7に示すように、排気側可変動弁機構VTbの排気バルブタイミングExと吸気側可変動弁機構VTaの吸気バルブタイミングInとがクランク角の方向で同じ方向に同じタイミングで等しい量だけ往復作動することになる。
【0080】
このように、動揺作動を行うことにより、駆動ケース21と内部ロータ22とが相対的に動揺することになり、第1軸受31と第2軸受32とのボールがインナレースあるいはアウタレースに圧接して摩耗が進む不都合や、リングギヤ26の内歯部26Tと、インナギヤ27の外歯部27Tとが圧接し、これらの圧接面で摩耗が進む不都合を抑制できる。更に、
図7に示すように、吸気側可変動弁機構VTaと排気側可変動弁機構VTbとが連係して同じ方向に作動(連係作動)するように動揺作動が行われることによりオーバラップ領域Wの領域長を変化させず、吸気量を変動させることもない。
【0081】
尚、
図7には、排気側可変動弁機構VTbの初期の排気バルブタイミングExを実線で示し、吸気側可変動弁機構VTaの吸気バルブタイミングInを破線で示している。また、排気バルブVbは、排気バルブタイミングExのバルブ閉タイミングEVCで閉じ状態に移行し、これ以前に、吸気バルブVaが、吸気バルブタイミングInのバルブ開タイミングIVOで開状態に移行するように相対的なタイミングが設定されている。これにより、バルブ閉タイミングEVCと、バルブ開タイミングIVOとの間の領域がオーバラップ領域Wとなる。
【0082】
〔タイミングチャート〕
また、
図8のタイミングチャートには、エンジンEの始動から停止までの過程において動揺制御が行われる際のクランクシャフト1の回転数と、吸気側可変動弁機構VTaのバルブタイミングと、動揺制御を実行する際のフラグとを示している。
【0083】
尚、このチャートには排気側可変動弁機構VTbのバルブタイミングと、スロットル13の開度とを示しているが、これらは、別実施形態(b)において説明する。
【0084】
図8のタイミングチャートに示すように、エンジンEの始動時には吸気側可変動弁機構VTaのバルブタイミングは最進角位相にあり、エンジンEが始動した後に、遅角側に変更される。また、エンジンEの始動直後には、クランクシャフト1の回転数を比較的高めた状態で触媒暖機が行われる。
【0085】
吸気側可変動弁機構VTaのバルブタイミングを遅角側に設定する際には、所定の目標位相T(
図4を参照)が設定され、吸気側位相制御モータMaの制御により、実位相Pが、目標位相Tに収束するため、前述した#03ステップと、#05ステップとの条件が成立することになる。このように条件が成立することにより、フラグがOFFからONに切換わり、動揺制御(
図5の#100ステップ)が行われることになる。
【0086】
このタイミングチャートには吸気側可変動弁機構VTaにおける動揺制御だけを示しているが、吸気側可変動弁機構VTaと同期して、この吸気側可変動弁機構VTaの動揺方向と同じ方向に、同じタイミングで排気側可変動弁機構VTbの実位相Pを動揺させる動揺制御が行われ、この動揺制御によりオーバラップ領域Wを一定に維持している。
【0087】
更に、目標位相と実位相との位相差が設定値以上である場合と、エンジンEがアイドル状態にある状況のように、クランクシャフト1の回転数が低い場合とにおいて動揺制御が行われることはなく、目標位相と実位相との位相差が設定値未満に収束し(#03ステップ)、乗用車等が走行する状況のようにクランクシャフト1の回転数が高い状態に達し(#05ステップ)た場合のように条件が成立する第1領域U1と、第2領域U2と、第3領域U3との3つの領域でフラグがONとなり、これらの領域に対応して動揺制御が行われる。
【0088】
〔実施形態の作用効果〕
目標位相と実位相との偏差が設定値を超えた状態では、位相差収束制御(位相差を小さくする方向に位相制御モータMを作動させる制御)が行われており、軸受のボールがインナレースとアウタレースとの間で回転して移動するため、これらが特定の位置に圧接する不都合を抑制し、摩耗を招く不都合がない。これと同様の理由から位相制御が行われている場合には、内歯部26Tと外歯部27Tとの接触箇所が移動するため、内歯部26Tと外歯部27Tとが圧接して摩耗する不都合を招くことがない。
【0089】
また、可変動弁機構VT(吸気側可変動弁機構VTaあるいは排気側可変動弁機構VTb)が比較的低い回転数で回転する場合には、駆動ケース21と、内部ロータ22との回転数が自然に相対的に増減し、実位相が動揺する「ゆらぎ」が発生するものである。この「ゆらぎ」の振幅(回転角度差)は可変動弁機構VTの回転数が増大するにつれて低下する傾向にある。従って、クランク角センサ16(回転数検出部)で検出される回転数が低い場合には動揺制御を行わずとも、軸受(第1軸受31あるいは第2軸受32)やギヤ(リングギヤ26とインナギヤ27)に圧力が作用する領域を拡大し、軸受やギヤの特定の部位に強い力が圧接方向の継続的に作用する不都合が抑制されている。
【0090】
これに対し、可変動弁機構VTの回転数が上昇した場合には、「ゆらぎ」の振幅が縮小し軸受やギヤの特定の位置に作用する圧力が上昇し摩耗を招くことになる。このような理由から、位相差収束制御によって駆動ケース21と内部ロータ22とが相対回転を変化させる制御が殆ど行われない状況に達した状態で、かつ、クランク角センサ16で検出される回転数が設定数以上に達した場合に、動揺制御(#100ステップ)を実行して実位相Pを動揺させる制御を行うことで、軸受やギヤの特定の部位に強い力が圧接方向の継続的に作用する現象を抑制し摩耗を解消する。
【0091】
また、動揺制御を行う際には、吸気側可変動弁機構VTaと排気側可変動弁機構VTbとを同じ方向に同期して、等しい量だけ動揺させるため、軸受やギヤの摩耗を抑制するだけでなく、吸気量を変動させることがなく、オーバラップ領域Wの領域長を維持できるため、吸排気性能を変動させることもない。
【0092】
〔別実施形態〕
本発明は、上記した実施形態以外に以下のように構成しても良い(実施形態と同じ機能を有するものには、実施形態と共通の番号、符号を付している)。
【0093】
(a)排気側可変動弁機構VTbと吸気側可変動弁機構VTaとの一方だけ動揺制御する場合に、オーバラップ領域Wのラップ長を設定値以上に維持するために、動揺制御を行わない側の可変動弁機構VTのタイミングを、オーバラップ領域Wのラップ長が拡大する方向に、予め移動させる制御を行う。
【0094】
この別実施形態(a)では、例えば、排気側可変動弁機構VTbとして油圧で排気タイミングが制御される構成のものを使用し、吸気側可変動弁機構VTaだけを動揺制御させる場合の制御形態を示している。具体例を挙げると、
図9には、排気側可変動弁機構VTbの初期の排気バルブタイミングExを実線で示し、動揺制御を行う前の吸気側可変動弁機構VTaの吸気バルブタイミングInを破線で示している。また、排気バルブタイミングExと吸気バルブタイミングInとが重複する領域を初期オーバラップ領域Wp(オーバラップ領域Wの一例)として示している。
【0095】
このように夫々のバルブタイミングが設定された状態で、吸気側可変動弁機構VTaが動揺制御される場合(同図で進角方向Saと遅角方向Sbとに動揺する場合)に、初期オーバラップ領域Wpを確保できるように、排気バルブタイミングExを初期のタイミングから遅角方向Sbに予め、二点鎖線で示す設定タイミングZだけ変位させることで拡大した拡大オーバラップ領域Ws(オーバラップ領域Wの一例)を予め設定するように、制御形態が設定されている。
【0096】
このような制御を行うことにより、吸気バルブタイミングInが動揺制御によって遅角方向Sbに変位した場合でも、オーバラップ領域Wにおいて燃焼室のガスの排出と吸入とを容易に行わせるが可能となる。このように排気バルブタイミングExを初期のタイミングから遅角方向Sbに予め設定タイミングZだけ変位させる制御は補正制御部44の制御によって実現する。この設定タイミングZを、吸気側可変動弁機構VTaが動揺制御されるときの動揺目標位相Ty(Tyが遅角方向Sbとした場合)以上に設定することにより、吸気側可変動弁機構VTaが動揺目標位相Tyに到達したときでも、初期オーバラップ領域Wpを確保できる。
【0097】
また、この別実施形態(a)は、排気側可変動弁機構VTbの実位相Pだけを動揺制御する場合に、吸気側可変動弁機構VTaのバルブタイミングを進角側に設定タイミングZだけ予め変位させる制御を行うことでも実現可能である。このようにバルブタイミングを予めシフトさせる可変動弁機構VTとして、油圧式にバルブタイミングが制御される構成のものを使用できる。
【0098】
(b)
図8のタイミングチャートに示すように、吸気側可変動弁機構VTaが動揺制御される際に、この動揺制御と同期したタイミングで排気側可変動弁機構VTbのバルブタイミングの設定と、スロットル13の制御によって吸気量の増減を制御する。
【0099】
同図では、動揺制御が、第1領域U1と、第2領域U2と、第3領域U3との3つの領域において実行されている。第1領域U1、第2領域U2の動揺制御では、吸気量を増大するために吸気側可変動弁機構VTaを進角方向への変位量を増大し、第3領域U3では、吸気量を低減するために進角方向への変位量が小さく吸気量の低減が図られている。
【0100】
このような吸気量の増減を確実の行えるように、第1領域U1と第2領域U2との動揺制御では、排気側可変動弁機構VTbのタイミングにおいて破線で示すように排気タイミングを遅角方向に変位させると共に、スロットル13のタイミングにおいて破線で示すようにスロットル13での吸気量を増大している。
【0101】
これに対し、第3領域U3の動揺制御では排気側可変動弁機構VTbのタイミングにおいて破線で示すように、排気タイミングを進角方向に変位させると共に、スロットル13のタイミングにおいて破線で示すようにスロットル13での吸気量を低減している。
【0102】
この別実施形態(b)では、排気側可変動弁機構VTbとスロットル13との制御は補正制御部44の制御によって実現している。このような制御により、吸気側可変動弁機構VTaを動揺制御した場合の吸気量の変動を抑制できる。また、この別実施形態(b)では、排気側可変動弁機構VTbで高速な作動を必要としないため、油圧で排気タイミングが制御される構成のものを使用できる。
【0103】
(c)先に説明した別実施形態(b)のように吸気側可変動弁機構VTaを進角方向への変位量を増大し、排気側可変動弁機構VTbを遅角方向に変位させた状況において、インジェクタ9による燃料供給量を増大させる制御を行う。このような制御を行うことにより、空燃比を一定にして燃焼室での適正な燃焼を維持できる。
【産業上の利用可能性】
【0104】
本発明は、弁開閉時期制御ユニットに利用することができる。
【符号の説明】
【0105】
1 クランクシャフト
9 インジェクタ(燃料噴射装置)
13 スロットル
16 クランクシャフトセンサ(回転数検出部)
17 吸気側カムシャフト角センサ(カムシャフト角センサ)
18 排気側カムシャフト角センサ(カムシャフト角センサ)
21 駆動ケース(駆動側回転体)
22 内部ロータ(従動側回転体)
31 第1軸受(軸受)
32 第2軸受(軸受)
40 エンジン制御装置(制御部)
43 動揺制御部
E エンジン(内燃機関)
G 位相調節機構(減速ギヤ)
M 電動モータ
Ma 吸気側位相制御モータ(電動モータ)
Mb 排気側位相制御モータ(電動モータ)
Tx,Ty 動揺目標位相
Va 吸気バルブ(カムシャフト)
Vb 排気バルブ(カムシャフト)
VT 可変動弁機構(弁開閉時期制御機構)
VTa 吸気側可変動弁機構(吸気側弁開閉時期制御機構)
VTb 排気側可変動弁機構(排気側弁開閉時期制御機構)
R 設定周期
W オーバラップ領域
X 回転軸芯