(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022163818
(43)【公開日】2022-10-27
(54)【発明の名称】炭化珪素半導体装置の製造方法
(51)【国際特許分類】
H01L 21/66 20060101AFI20221020BHJP
H01L 21/301 20060101ALI20221020BHJP
H01L 29/12 20060101ALI20221020BHJP
H01L 29/78 20060101ALI20221020BHJP
H01L 21/336 20060101ALI20221020BHJP
C30B 29/36 20060101ALI20221020BHJP
C30B 25/20 20060101ALI20221020BHJP
【FI】
H01L21/66 A
H01L21/66 N
H01L21/78 Q
H01L29/78 652T
H01L29/78 653A
H01L29/78 652J
H01L29/78 652H
H01L29/78 652G
H01L29/78 658L
C30B29/36 A
C30B25/20
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2021068880
(22)【出願日】2021-04-15
(71)【出願人】
【識別番号】000005234
【氏名又は名称】富士電機株式会社
(74)【代理人】
【識別番号】100104190
【弁理士】
【氏名又は名称】酒井 昭徳
(72)【発明者】
【氏名】中村 英達
【テーマコード(参考)】
4G077
4M106
5F063
【Fターム(参考)】
4G077AA03
4G077BE08
4G077DB01
4G077ED06
4G077GA02
4G077GA06
4G077HA06
4G077HA12
4G077TA04
4G077TK01
4M106AA01
4M106CB19
4M106DA01
4M106DA15
4M106DJ20
4M106DJ27
4M106DJ28
5F063AA36
5F063AA43
5F063BA25
5F063BA31
5F063BA45
5F063CB02
5F063CB08
5F063DD37
(57)【要約】
【課題】良品率を向上させることができる炭化珪素半導体装置の製造方法を提供すること。
【解決手段】炭化珪素からなる半導体ウェハのエピタキシャル層の結晶欠陥の種類、大きさ、位置を検出する。次に、所定の素子構造が形成されて半導体ウェハから個片化された個々の半導体チップから、半導体ウェハの結晶欠陥の位置情報に基づいて、結晶欠陥を含まない半導体チップと、拡張欠陥(フランク型欠陥、キャロット型欠陥)のみを含む半導体チップと、を良品候補として選別し、異物欠陥および三角欠陥を含む半導体チップを不良チップとして除去する。次に、すべての良品候補の半導体チップについて電気特性を検査する。次に、予め取得した良品規格に基づいて、すべての良品候補の半導体チップの規格判定を行い、良品となる半導体チップを選別する。
【選択図】
図4
【特許請求の範囲】
【請求項1】
炭化珪素からなる出発基板上にエピタキシャル層をエピタキシャル成長させてなる半導体チップに作製された炭化珪素半導体装置の製造方法であって、
前記出発基板となる炭化珪素からなる出発ウェハ上に前記エピタキシャル層をエピタキシャル成長させてなる半導体ウェハを用意する前工程と、
前記エピタキシャル層の結晶欠陥を検出する検出工程と、
前記半導体ウェハに所定の素子構造を形成する形成工程と、
前記形成工程の後、前記半導体ウェハをダイシングして前記半導体チップに個片化する切断工程と、
前記検出工程で検出された前記結晶欠陥のうちの所定の前記結晶欠陥を含まない前記半導体チップを良品候補として選別する第1選別工程と、
前記第1選別工程で選別された前記半導体チップの電気特性を検査する検査工程と、
前記検査工程の結果と予め取得した所定の規格とに基づいて、前記第1選別工程で選別された前記半導体チップから良品となる前記半導体チップを選別する第2選別工程と、
を含むことを特徴とする炭化珪素半導体装置の製造方法。
【請求項2】
前記第1選別工程では、異物欠陥および三角欠陥を含まない前記半導体チップを良品候補として選別することを特徴とする請求項1に記載の炭化珪素半導体装置の製造方法。
【請求項3】
前記第1選別工程では、前記結晶欠陥を含まない前記半導体チップと、前記結晶欠陥がフランク型欠陥もしくはキャロット型欠陥、またはその両方のみである前記半導体チップと、を良品候補として選別し、残りの前記半導体チップを不良チップとすることを特徴とする請求項1または2に記載の炭化珪素半導体装置の製造方法。
【請求項4】
前記所定の規格として、前記結晶欠陥を含まない前記半導体チップの電気特性を基準として設定された第1規格を取得し、
前記第2選別工程では、前記第1選別工程で選別されたすべての前記半導体チップに同一の前記第1規格を適用することを特徴とする請求項1~3のいずれか一つに記載の炭化珪素半導体装置の製造方法。
【請求項5】
前記所定の規格として、
前記結晶欠陥を含まない前記半導体チップの電気特性を基準として設定された第1規格と、
前記結晶欠陥を含む前記半導体チップの電気特性を基準として設定された1つ以上の第2規格と、を取得し、
前記第2選別工程では、前記第1選別工程で選別された前記半導体チップのうち、前記結晶欠陥を含む前記半導体チップに前記第2規格を適用することを特徴とする請求項1~3のいずれか一つに記載の炭化珪素半導体装置の製造方法。
【請求項6】
前記第2規格は、前記半導体チップに含まれる前記結晶欠陥の大きさ、個数、種類および位置に基づいて設定されることを特徴とする請求項5に記載の炭化珪素半導体装置の製造方法。
【請求項7】
前記前工程と前記検出工程との間に、前記半導体ウェハの表面に位置特定マークを形成する工程をさらに含むことを特徴とする請求項1~6のいずれか一つに記載の炭化珪素半導体装置の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、炭化珪素半導体装置の製造方法に関する。
【背景技術】
【0002】
従来、炭化珪素(SiC)を半導体材料とした炭化珪素半導体装置(半導体チップ)の信頼性を評価するにあたって、結晶欠陥検査装置(例えばレーザーテック株式会社製のSiCウェハ欠陥検査/レビュー装置SICA88)によって半導体ウェハ(SiCウェハ)の表面および内部の結晶欠陥を検出することで、半導体ウェハから切断されて個片化される複数の半導体チップ中の不良チップを選別している。結晶欠陥検査装置によって検出された結晶欠陥を含む半導体チップは、電気特性試験の結果に関係なく、または電気特性試験を行うことなく、すべて例外なく不良チップとしている。
【0003】
従来の炭化珪素半導体装置の製造方法について説明する。
図7は、従来の炭化珪素半導体装置の製造方法の概要を示すフローチャートである。まず、炭化珪素を半導体材料とした半導体ウェハ(SiCウェハ)を用意する(ステップS101)。半導体ウェハは、炭化珪素からなる出発ウェハ上にエピタキシャル層をエピタキシャル成長させてなるエピタキシャルウェハである。次に、半導体ウェハのエピタキシャル層表面(主面)に、半導体ウェハの結晶欠陥の位置(ウェハ表面に平行な方向の座標)を特定するためのマーク(以下、位置特定マークとする)を形成する(ステップS102)。
【0004】
次に、結晶欠陥検査装置によって半導体ウェハのエピタキシャル層の結晶欠陥を検出し、ステップS102の処理で形成した位置特定マークに基づいて当該結晶欠陥の位置情報等を取得する(ステップS103)。ステップS103の処理では、エピタキシャル層のエピタキシャル成長中に発生する、異物混入やカーボン(C)インクルージョンに起因するダウンフォールおよびラージピットと、ポリタイプ(結晶多形)インクルージョンに起因する三角欠陥と、貫通らせん転位(TSD:Threading Screw Dislocation)に起因するフランク型欠陥およびキャロット型欠陥と、が検出される。
【0005】
次に、半導体ウェハの各チップ領域(半導体チップとなる領域)に所定の素子構造を形成するための各種プロセスを行う(ステップS104)。次に、半導体ウェハを切断(ダイシング)して、半導体ウェハの各チップ領域を個々の半導体チップ(SiCチップ)に個片化する(ステップS105)。次に、ステップS103の処理で取得した位置情報に基づいて、ステップS103の処理で検出された結晶欠陥を完全に含まない半導体チップを良品(良チップ)候補として選別する(ステップS106)。ステップS103の処理で検出された結晶欠陥を1つでも含む半導体チップは不良チップとして除去される。
【0006】
次に、ステップS106の処理で良品候補とした各半導体チップについて、それぞれ所定の通電試験を行って電気特性を検査し(ステップS107)、ステップS107の結果に基づいて、予め取得した良品規格を満たすか否かを判定する(ステップS108)。良品規格とは、炭化珪素半導体装置の所定耐量および所定の信頼性を確保可能な諸特性の限界値であり、予め取得される。その後、ステップS108の結果に基づいて、良品規格を満たす半導体チップを良品(良チップ)として選別することで(ステップS109)、炭化珪素半導体装置の評価が完了する。
【0007】
従来の炭化珪素半導体装置の製造方法として、定格電圧を印加して行う第1耐圧試験で良品と判定された半導体チップのうち、活性領域にマイクロパイプを含まない半導体チップについてはアバランシェ試験によって電気特性を評価し、活性領域にマイクロパイプを含む半導体チップについては定格電圧よりも高電圧を印加して行う第2耐圧試験によって電気特性を評価する方法が提案されている(例えば、下記特許文献1参照。)。下記特許文献1では、第1耐圧試験で良品と判定された半導体チップについて、マイクロパイプの有無によって異なる試験を行って評価した結果に応じて使用用途を振り分けている。
【先行技術文献】
【特許文献】
【0008】
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、上述した従来の炭化珪素半導体装置の製造方法(
図7参照)では、結晶欠陥検査装置によって検出された結晶欠陥を1つでも含む半導体チップはすべて不良チップとして除去される。このため、ステップS106の処理において不良チップとして除去される半導体チップの中には、良品として使用可能な電気特性を有する半導体チップが含まれている。このように良品として使用可能な半導体チップを不良チップとして除去しているため、良品率が低下して、チップコストの上昇を招いている。
【0010】
この発明は、上述した従来技術による課題を解消するため、良品率を向上させることができる炭化珪素半導体装置の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体装置の製造方法は、炭化珪素からなる出発基板上にエピタキシャル層をエピタキシャル成長させてなる半導体チップに作製された炭化珪素半導体装置の製造方法であって、次の特徴を有する。前記出発基板となる炭化珪素からなる出発ウェハ上に前記エピタキシャル層をエピタキシャル成長させてなる半導体ウェハを用意する前工程を行う。前記エピタキシャル層の結晶欠陥を検出する検出工程を行う。前記半導体ウェハに所定の素子構造を形成する形成工程を行う。
【0012】
前記形成工程の後、前記半導体ウェハをダイシングして前記半導体チップに個片化する切断工程を行う。前記検出工程で検出された前記結晶欠陥のうちの所定の前記結晶欠陥を含まない前記半導体チップを良品候補として選別する第1選別工程を行う。前記第1選別工程で選別された前記半導体チップの電気特性を検査する検査工程を行う。前記検査工程の結果と予め取得した所定の規格とに基づいて、前記第1選別工程で選別された前記半導体チップから良品となる前記半導体チップを選別する第2選別工程を行う。
【0013】
また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記第1選別工程では、異物欠陥および三角欠陥を含まない前記半導体チップを良品候補として選別することを特徴とする。
【0014】
また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記第1選別工程では、前記結晶欠陥を含まない前記半導体チップと、前記結晶欠陥がフランク型欠陥もしくはキャロット型欠陥、またはその両方のみである前記半導体チップと、を良品候補として選別し、残りの前記半導体チップを不良チップとすることを特徴とする。
【0015】
また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記所定の規格として、前記結晶欠陥を含まない前記半導体チップの電気特性を基準として設定された第1規格を取得する。前記第2選別工程では、前記第1選別工程で選別されたすべての前記半導体チップに同一の前記第1規格を適用することを特徴とする。
【0016】
また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記所定の規格として、前記結晶欠陥を含まない前記半導体チップの電気特性を基準として設定された第1規格と、前記結晶欠陥を含む前記半導体チップの電気特性を基準として設定された1つ以上の第2規格と、を取得する。前記第2選別工程では、前記第1選別工程で選別された前記半導体チップのうち、前記結晶欠陥を含む前記半導体チップに前記第2規格を適用することを特徴とする。
【0017】
また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記第2規格は、前記半導体チップに含まれる前記結晶欠陥の大きさ、個数、種類および位置に基づいて設定されることを特徴とする。
【0018】
また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記前工程と前記検出工程との間に、前記半導体ウェハの表面に位置特定マークを形成する工程をさらに含むことを特徴とする。
【0019】
上述した発明によれば、検出工程で検出した結晶欠陥のうち所定種類の結晶欠陥(拡張欠陥)のみを含む半導体チップについては、結晶欠陥を含まない半導体チップと同様に良品か否かの規格判定を行う。これによって、従来方法(
図7参照)において不良チップとしていた半導体チップの一部を良品とすることができる。
【発明の効果】
【0020】
本発明にかかる炭化珪素半導体装置の製造方法によれば、良品率を向上させることができ、チップコストを低減させることができるという効果を奏する。
【図面の簡単な説明】
【0021】
【
図1】実施の形態にかかる炭化珪素半導体装置の製造方法による半導体ウェハをおもて面側から見た状態を示す平面図である。
【
図2】
図1の半導体ウェハから切断された半導体チップをおもて面側から見たレイアウトを示す平面図である。
【
図3】
図2の活性領域の断面構造の例を示す断面図である。
【
図4】実施の形態にかかる炭化珪素半導体装置の製造方法の概要を示すフローチャートである。
【
図5】
図4のステップS3の処理で検出可能な結晶欠陥の形状を模式的に示す説明図である。
【
図6】
図4のステップS7の判定基準の例を示す図表である。
【
図7】従来の炭化珪素半導体装置の製造方法の概要を示すフローチャートである。
【発明を実施するための形態】
【0022】
以下に添付図面を参照して、この発明にかかる炭化珪素半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、本明細書では、ミラー指数の表記において、“-”はその直後の指数につくバーを意味しており、指数の前に“-”を付けることで負の指数を表している。
【0023】
(実施の形態)
実施の形態にかかる炭化珪素半導体装置の製造方法は、例えば、ショットキーバリアダイオード(SBD:Schottky Barrier Diode)や、MOSFET(Metal Oxide Semiconductor Field Effect Transistor:金属-酸化膜-半導体の3層構造からなる絶縁ゲートを備えたMOS型電界効果トランジスタ)に適用しているが、pin(p-intrinsic-n)ダイオードやIGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)に適用してもよい。
【0024】
図1は、実施の形態にかかる炭化珪素半導体装置の製造方法による半導体ウェハをおもて面側から見た状態を示す平面図である。
図2は、
図1の半導体ウェハから切断された半導体チップをおもて面側から見たレイアウトを示す平面図である。
図2には、
図1の半導体ウェハ50の1つのチップ領域51の切断後の状態を示している。
図3は、
図2の活性領域の断面構造の例を示す断面図である。
図3には、実施の形態にかかる炭化珪素半導体装置の製造方法による炭化珪素半導体装置の例として、トレンチゲート構造のnチャネル型の縦型MOSFETを示す。
【0025】
図2,3に示す実施の形態にかかる炭化珪素半導体装置10は、一般的な製造方法(後述する
図4のステップS4,S5の処理に相当)により、炭化珪素(SiC)を半導体材料として用いた半導体ウェハ50の各チップ領域51(
図1参照)にそれぞれ作製(製造)され、当該チップ領域51を半導体チップ(半導体基板)30に個片化してなる。半導体ウェハ50は、炭化珪素からなるn
+型出発ウェハ55(
図5参照、ダイシング後に
図3のn
+型出発基板31となる部分)上にエピタキシャル層56(
図5参照、ダイシング後に
図3のエピタキシャル層35となる部分)をエピタキシャル成長させてなる。
【0026】
半導体ウェハ50は、面方位を示す例えばオリエンテーションフラット(エッジ端の一部に設けられた直線状の切り欠け)54またはノッチ(エッジ端の一部に設けられたV字状の切り欠け:不図示)を有していてもよい。半導体ウェハ50の各チップ領域51がダイシングライン52に沿ってそれぞれ切断(ダイシング)されることで個々の半導体チップ30に個片化される。同一の半導体ウェハ50から個片化されたすべての半導体チップ30は、同一のエピタキシャル層35(
図3参照)を有し、同一工程で形成された同一の素子構造(ここではトレンチゲート構造:
図3参照)を有する。
【0027】
チップ領域51は、略矩形状の平面形状を有し、半導体ウェハ50の略中央部にマトリクス状に複数配置されている。ダイシングライン52は、チップ領域51の周囲を格子状に囲む。ダイシングライン52は、半導体ウェハ50の主面(
図5のエピタキシャル層56側の表面)に形成された溝である。ダイシングライン52内には、半導体ウェハ50の表面に平行な方向の位置(座標)を特定するためのマーク(位置特定マーク:不図示)が形成されている。位置特定マークは、各チップ領域51の位置や、後述する
図4のステップS3の処理で検出される結晶欠陥の位置を特定するための目印である。
【0028】
位置特定マークは、例えばダイシングライン52内において半導体ウェハ50の主面(
図5のエピタキシャル層56側の表面)にエッチングにより形成された所定の平面形状(例えば十字状)の凸部または凹部である。位置特定マークは、半導体ウェハ50の無効領域53に設けられていてもよい。無効領域53とは、半導体ウェハ50の最も外側のチップ領域51と半導体ウェハ50の端部との間の、半導体チップ30として用いられない部分である。位置特定マークとして、チップ領域51に形成される素子構造の各部の位置合わせ(アライメント)のためのアライメントマークを用いてもよい。
【0029】
図2,3に示す実施の形態にかかる炭化珪素半導体装置10は、活性領域41において、炭化珪素からなる半導体チップ30のおもて面側に、トレンチゲート構造を備えたnチャネル型の縦型MOSFETである。活性領域41は、MOSFETがオン状態のときに主電流(ドリフト電流)が流れる領域であり、MOSFETの同一構造の複数の単位セル(素子の機能単位)が隣接して配置される。
図3には、MOSFETの1つの単位セルを示す。活性領域41は、例えば半導体チップ30の略中央に配置され、エッジ終端領域42に周囲を囲まれている。
【0030】
エッジ終端領域42は、活性領域41と半導体チップ30の端部との間の領域である。エッジ終端領域42は、半導体チップ30のおもて面側の電界を緩和して耐圧を保持する機能を有する。エッジ終端領域42には、フィールドリミッティングリング(FLR:Field Limiting Ring)、接合終端拡張(JTE:Junction Termination Extension)構造またはガードリング等の耐圧構造(不図示)が配置されている。耐圧とは、リーク電流が過度に増大せず、炭化珪素半導体装置10が誤動作や破壊を起こさない限界の電圧である。
【0031】
トレンチゲート構造は、p型ベース領域4、n
+型ソース領域5、p
++型コンタクト領域6、トレンチ7、ゲート絶縁膜8およびゲート電極9で構成される。半導体チップ30は、炭化珪素からなるn
+型出発基板31のおもて面上にn型バッファ領域2a、n
-型ドリフト領域2bおよびp型ベース領域4となる各エピタキシャル層32~34(
図3には、これらのエピタキシャル層をまとめて符号35で示す)を順にエピタキシャル成長させてなる。半導体チップ30の、エピタキシャル層35側の主面をおもて面とし、n
+型出発基板31側の主面(n
+型出発基板31の裏面)を裏面とする。
【0032】
n
+型出発基板31は、n
+型ドレイン領域1である。n型バッファ領域2aは、p型ベース領域4とn
-型ドリフト領域2bとのpn接合界面で発生したホール(正孔)がn型バッファ領域2a内で再結合してn
+型出発基板31に到達することを防止する機能を有する。また、n型バッファ領域2aは、n
+型出発基板31からエピタキシャル層35への転位の伝搬によってエピタキシャル層33,34中に積層欠陥(後述する
図5の三角欠陥62、フランク型欠陥64a、キャロット型欠陥64b)が拡張することを抑制する機能を有する。n型バッファ領域2aは設けられていなくてもよい。
【0033】
n-型ドリフト領域2bは、p型ベース領域4とn型バッファ領域2a(n型バッファ領域2aを設けない場合はn+型ドレイン領域1)との間に、これらの領域に接して設けられている。p型ベース領域4とn-型ドリフト領域2bとの間に、n型電流拡散領域3およびp+型領域21,22が設けられてもよい。この場合、n-型ドリフト領域2bは、n-型エピタキシャル層33の、n型電流拡散領域3およびp+型領域21,22を除く部分である。n型電流拡散領域3およびp+型領域21,22は、トレンチ7の底面よりもn+型ドレイン領域1側に深い位置に設けられる。
【0034】
n型電流拡散領域3は、キャリアの広がり抵抗を低減させる、いわゆる電流拡散層(CSL:Current Spreading Layer)である。p+型領域21,22は、トレンチ7の底面のゲート絶縁膜8にかかる電界を緩和させる機能を有する。p+型領域21は、p型ベース領域4と離れて設けられ、深さ方向にトレンチ7の底面に対向する。p+型領域21は、トレンチ7の底面に達していてもよい。p+型領域22は、互いに隣り合うトレンチ7間に、p+型領域21およびトレンチ7と離れて設けられ、かつp型ベース領域4に接する。
【0035】
p型ベース領域4は、半導体チップ30のおもて面とn-型ドリフト領域2bとの間に設けられている。p型ベース領域4は、p型エピタキシャル層34の、n+型ソース領域5およびp++型コンタクト領域6を除く部分である。n+型ソース領域5およびp++型コンタクト領域6は、半導体チップ30のおもて面とp型ベース領域4との間にそれぞれ選択的に設けられている。n+型ソース領域5およびp++型コンタクト領域6は、p型ベース領域4に接し、かつ後述する層間絶縁膜11のコンタクトホールにおいてオーミック電極13にオーミック接触している。
【0036】
p++型コンタクト領域6は設けられていなくてもよい。p++型コンタクト領域6が設けられていない場合、p++型コンタクト領域6に代えて、p型ベース領域4がオーミック電極13にオーミック接触する。これらn型電流拡散領域3、p+型領域21,22、n+型ソース領域5およびp++型コンタクト領域6は、イオン注入により形成された拡散領域であり、エピタキシャル層35の内部に選択的に設けられている。トレンチ7は、n+型ソース領域5およびp型ベース領域4を貫通してn型電流拡散領域3(n型電流拡散領域3が設けられていない場合はn-型ドリフト領域2b)に達する。
【0037】
トレンチ7の内部には、ゲート絶縁膜8を介してゲート電極9が設けられている。層間絶縁膜11は、半導体チップ30のおもて面に設けられ、ゲート電極9を覆う。層間絶縁膜11と後述するおもて面電極14との間の全面に、例えばおもて面電極14側からゲート電極9側への金属原子の拡散を防止するバリアメタル12が設けられてもよい。オーミック電極13は、層間絶縁膜11のコンタクトホールにおいて半導体チップ30のおもて面上に設けられたシリサイド膜である。オーミック電極13は、p型ベース領域4、n+型ソース領域5およびp++型コンタクト領域6に電気的に接続されている。
【0038】
おもて面電極14は、層間絶縁膜11のコンタクトホールを埋め込むように、活性領域41において半導体チップ30のおもて面の略全面に設けられている。おもて面電極14は、オーミック電極13を介してp型ベース領域4、n+型ソース領域5およびp++型コンタクト領域6に電気的に接続されている。バリアメタル12、オーミック電極13およびおもて面電極14は、ソース電極として機能する。裏面電極15は、半導体チップ30の裏面(n+型出発基板31の裏面)全面に設けられ、n+型ドレイン領域1に電気的に接続されている。裏面電極15は、ドレイン電極として機能する。
【0039】
次に、実施の形態にかかる炭化珪素半導体装置10の製造方法について説明する。
図4は、実施の形態にかかる炭化珪素半導体装置の製造方法の概要を示すフローチャートである。
図5は、
図4のステップS3の処理で検出可能な結晶欠陥の形状を模式的に示す説明図である。
図5には、(a)に結晶欠陥が形成された状態での半導体ウェハ50の断面を示し、(b)~(f)に半導体ウェハ50に形成される起因の異なる複数の結晶欠陥を示す。
図6は、
図4のステップS8の判定基準の例を示す図表である。
図6には、炭化珪素半導体装置10の良品規格をリーク電流値で設定した場合の判定基準を示す。
【0040】
まず、炭化珪素を半導体材料とした半導体ウェハ(SiCウェハ)50を用意する(ステップS1:前工程)。半導体ウェハ50は、炭化珪素からなる出発ウェハ55(
図3のn
+型出発基板31に相当)上にエピタキシャル層56(
図3のエピタキシャル層35に相当)をエピタキシャル成長させてなる(
図5参照)。ステップS1の処理においては、炭化珪素からなる出発ウェハ55を用意して半導体ウェハ50を作製してもよいし、半導体ウェハ50自体を購入してもよい。次に、半導体ウェハ50の主面(エピタキシャル層56側の表面)に位置特定マーク(不図示)を形成する(ステップS2)。
【0041】
ステップS2の処理においては、フォトリソグラフィおよびエッチングにより、ダイシングライン52内において半導体ウェハ50の主面に位置特定マーク(不図示)を形成する。位置特定マークは、半導体ウェハ50の結晶欠陥の位置(ウェハ表面に平行な方向の座標)を特定するための基準となる。ステップS1の処理において用意した半導体ウェハ50にダイシングライン52が形成されていない場合には、ステップS1の処理の後、ステップS2の処理の前に、フォトリソグラフィおよびエッチングにより、半導体ウェハ50の主面にダイシングライン52(
図1参照)を形成すればよい。
【0042】
次に、結晶欠陥検査装置によって半導体ウェハ50のエピタキシャル層56の表面および内部の結晶欠陥の種類、大きさ(長さや表面積等)および位置情報を検出して取得する(ステップS3:検出工程)。結晶欠陥検査装置とは、例えばレーザーテック株式会社製のSiCウェハ欠陥検査/レビュー装置SICA88である。ステップS3の処理で検出される結晶欠陥は、エピタキシャル層56に形成される異物欠陥61、三角欠陥62および拡張欠陥64である(
図5参照)。これらの結晶欠陥の大きさおよび位置情報は、例えばステップS2の処理で形成した位置特定マークに基づいて取得する。
【0043】
異物欠陥61は、エピタキシャル層56のエピタキシャル成長中の異物(原料ガスの分解による副生成物等)混入に起因するダウンフォール61a(
図5(b))や、エピタキシャル層56のエピタキシャル成長中のカーボン(C)インクルージョンに起因するラージピット61bである(
図5(c))。三角欠陥62は、エピタキシャル成長中のポリタイプ(結晶多形)インクルージョンに起因して新たに形成されるポリタイプの三角形状の積層欠陥である(
図5(d))。異物欠陥61および三角欠陥62は、炭化珪素半導体装置10の耐量、信頼性および電気特性の著しい低下を引き起こすキラー欠陥である。
【0044】
拡張欠陥64は、エピタキシャル層56のエピタキシャル成長時に出発ウェハ55内の貫通らせん転位(TSD)が伝搬され拡張することでエピタキシャル層56中の基底面または結晶面(TSDの転位線の向き(C軸に平行な方向)に直交し、バーガーズベクトルb=<11-20>に平行な結晶面)に形成される積層欠陥を有するフランク型欠陥またはキャロット型欠陥である。フランク型欠陥は、1層の積層欠陥を有する。キャロット型欠陥は、貫通らせん転位から伝搬した複数の部分転位間に立体的に形成された積層欠陥を有する。拡張欠陥64は、炭化珪素半導体装置10のリーク電流を増大させる虞がある。
【0045】
次に、半導体ウェハ50の各チップ領域51に所定の素子構造(
図1,3参照)を形成するための各種プロセスを行う(ステップS4:形成工程)。このとき、後述するステップS6の処理後に不良チップとなるチップ領域51に素子構造を形成しなくてもよい。次に、半導体ウェハを切断(ダイシング)して、半導体ウェハ50の各チップ領域51を個々の半導体チップ30(SiCチップ:
図2参照)に個片化する(ステップS5:切断工程)。次に、ステップS3の処理で所得した情報に基づいて、所定の結晶欠陥を含まない半導体チップ30を良品候補として選別し、残りの半導体チップ30を不良チップとして除去する(ステップS6:第1選別工程)。
【0046】
具体的には、ステップS6の処理において、異物欠陥61および三角欠陥62を含まない半導体チップ30を良品候補として選別する。すなわち、異物欠陥61、三角欠陥62および拡張欠陥64のすべてを含まない半導体チップ30と、拡張欠陥64(フランク型欠陥64aもしくはキャロット型欠陥64b、またはその両方)のみを含む半導体チップ30と、が良品候補として選別される。拡張欠陥64は、リーク電流を増大させるが、電気特性への悪影響が比較的小さい。拡張欠陥64のみを含む半導体チップ30には、結晶欠陥を含まない半導体チップ30と同じ良品規格を満たす半導体チップ30が存在することが本発明者により確認されている。
【0047】
拡張欠陥64のみを含む半導体チップ30は、拡張欠陥64の大きさ、個数および種類や半導体チップ30の面内の位置を問わず、すべて良品候補となる。一方、キラー欠陥である異物欠陥61および三角欠陥62をいずれか1つでも含む半導体チップ30は、結晶欠陥を含まない半導体チップ30と同じ良品規格を満たさない確率が高いため、ステップS6以降の工程を行わずに不良チップとして除去する。このようにステップS6の処理においてキラー欠陥を含む半導体チップ30を取り除くことで、後述するステップS7の総処理時間を短くすることができ、スループットを向上させることができる。
【0048】
次に、ステップS6の処理で良品候補とした各半導体チップ30について、それぞれ所定の通電試験を行って電気特性を検査する(ステップS7:検査工程)。ステップS7においては、後述するステップS8の処理で良品規格と比較するため、良品規格を取得したときと同じ通電試験を行って電気特性を取得する。良品規格とは、炭化珪素半導体装置10の所定耐量および所定の信頼性を確保可能な諸特性の限界値(上限値・下限値またはその両方)であり、耐量評価のための電気特性を測定する1つ以上の試験と、信頼性評価のための1つ以上の試験と、を例えば予備試験として行って得たすべての結果のうちの一番厳しい条件で設定される。
【0049】
良品規格をリーク電流値(SBDの場合は逆回復電流Ir、MOSFETの場合はドレイン電流Idssの電流値)で設定する場合、耐量評価のための電気特性とは、例えば、順方向サージ電流耐量(IFSM耐量)、逆回復耐量、アバランシェ耐量、逆バイアス安全動作領域(RBSOA:Reverse Bias Safety Operation Area)、および、短絡電流遮断時の安全動作領域(SCSOA:Short Circuit Safe Operation Area)である。この場合、良品規格の上限値は、定格となるときのリーク電流値である。
【0050】
また、良品規格をリーク電流値で設定する場合、耐量評価のための電気特性とは、例えば、連続通電時の順方向サージ電流耐量、連続通電寿命、連続通電時の逆回復耐量、連続通電時のアバランシェ耐量、連続通電時のRBSOA、および、連続通電時のSCSOAである。この場合、良品規格は、これらの電気特性の設計値からの変動量が所定比率(例えば20%)以下となるときのリーク電流値の範囲である。MOSFETにおいては、さらに、良品規格をリーク電流値で設定する場合、耐量評価のための電気特性とは、ゲート絶縁膜8(
図3参照)の絶縁破壊耐量である。なお、良品規格をリーク電流値で設定する場合の耐量評価のための電気特性は、あくまで例示に過ぎず、上記に示した例に限るものではなく、その他のものであってもよい。上記に示した例、あるいは、それ以外のものを状況に応じて適宜用いることができる。
【0051】
ゲート絶縁膜8の絶縁破壊耐量とは、例えば、タイムゼロ絶縁破壊(TZDB:Time Zero Dielectric Breakdown)耐量、ドレインおよびソースを接地した状態でのゲート電圧印加による経時絶縁破壊(TDDB:Time Dependant Dielectric Breakdown)耐量、および、ソースを接地した状態でのドレインに所定電圧(例えば1200V)印加およびゲート電圧印加による経時絶縁破壊(DTDDB)耐量である。この場合、良品規格は、ゲート絶縁膜8の絶縁破壊耐量の設計値からの変動量が所定比率(例えば20%)以下となるときのリーク電流値(ドレイン電流Idssの電流値)の範囲である。なお、ゲート絶縁膜8の絶縁破壊耐量は、あくまで例示に過ぎず、上記に示した例に限るものではなく、その他のものであってもよい。上記に示した例、あるいは、それ以外のものを状況に応じて適宜用いることができる。
【0052】
また、良品規格をリーク電流値で設定する場合、信頼性評価のための試験とは、例えば、高温下での高電圧印加により電気特性を評価する高温高電圧印加試験、高温高湿下での高電圧印加により電気特性を評価する高温高湿高電圧印加試験、断続的に通電して自己発熱と冷却とを交互に繰り返すことで熱疲労による動作寿命を評価するパワーサイクル(Power Cycle)試験、および、低温下での高電圧印加により電気特性を評価する低温高電圧印加試験である。この場合、良品規格は、これらの試験で得た電気特性の設計値からの変動量が所定比率(例えば20%)以下となるときのリーク電流値の範囲である。なお、良品規格をリーク電流値で設定する場合の信頼性評価のための試験は、上記した例に限るものではない。あくまで例示に過ぎず、上記に示した例に限るものではなく、その他のものであってもよい。上記に示した例、あるいは、それ以外のものを状況に応じて適宜用いることができる。
【0053】
ここでは説明を省略するが、上述した耐量評価および信頼性評価のための試験の他に、耐量や信頼性に影響しない条件を確認または評価するための他の各種試験を行う。これら他の試験は、半導体ウェハ50の状態で行っても支障のない場合には、ステップS5の処理後、ステップS6の処理前のタイミングで行ってもよいし、ステップS6の処理後に半導体チップ30に対して行ってもよい。ステップS7においては、半導体ウェハ50の状態で行うことが難しい試験や、所定温度になるまで加熱または冷却する場合など半導体ウェハ50の状態で行うと時間がかかる試験を行えばよい。
【0054】
次に、ステップS7の結果と予め取得した良品規格とに基づいて、良品候補の半導体チップ30の規格判定を行う(ステップS8)。ステップS8の処理においては、良品候補のすべての半導体チップ30に1つの良品規格(第1規格)が適用される。拡張欠陥64のみを含む半導体チップ30に、結晶欠陥を含まない半導体チップ30に適用する良品規格(第1規格)と異なる条件の良品規格(第2規格)を適用してもよい。その後、ステップS8の結果に基づいて、良品規格を満たす半導体チップ30を良品(良チップ)として選別することで(ステップS9:第2選別工程)、炭化珪素半導体装置10の評価が完了する。
【0055】
上述した実施の形態にかかる炭化珪素半導体装置10の製造方法において、半導体チップ30に含まれる結晶欠陥の大きさ、個数、種類および半導体チップ30の面内の位置(活性領域41、エッジ終端領域42)等に基づいて複数の良品規格(第2規格)を用意してもよい(
図6参照)。
図6には、結晶欠陥A,B,Cのための良品規格をそれぞれ用意した場合を示すが、良品規格の個数は増減可能である。これら複数の良品規格は、適用する結晶欠陥を含む半導体チップの電気特性に応じて設定される。複数の良品規格を用意することで、各良品規格を満たす半導体チップ30をそれぞれ用途ごと振り分けることができる。
【0056】
また、複数の良品規格を用意する場合、ステップS6を省略して、ステップS7の処理において、半導体ウェハ50から切断されたすべての半導体チップ30の電気特性を検査してもよい。この場合、良品規格を用意する結晶欠陥(
図6では結晶欠陥をA,B,C)として、拡張欠陥64(フランク型欠陥64a、キャロット型欠陥64b)に加えて、三角欠陥62、拡張欠陥64および異物欠陥61、さらに半導体ウェハ50の表面のスクラッチ(傷:不図示)や、欠陥転位や異物を起点に表面にステップバンチングによる凹凸が生じて形成される三角形状の積層欠陥である大三角欠陥(不図示)を追加してもよい。
【0057】
また、結晶欠陥を含む半導体チップに適用する良品規格(リーク電流の電流値)を、例えば10mA程度の大電流を流して行う耐圧試験に基づいて設定してもよい。なお、通常の耐圧試験で流す電流は1mA程度である。MOSFETにおいて、結晶欠陥を含む半導体チップに適用する良品規格を、ゲート閾値電圧Vthの変動量が±100mV以内となるリーク電流値の範囲としてもよい。結晶欠陥の有無によらず、良品規格を、リーク電流値に代えて、ゲート漏れ電流Igssの電流値や、順方向電圧Vf,逆回復電圧Vr(耐圧)、オン電圧Von、ゲート閾値電圧Vthまたはブレークダウン電圧BVdssの電圧値で設定してもよい。
【0058】
複数の良品規格を用意する場合、例えば、次のように良品規格を設定する。結晶欠陥Aを含むと耐量や信頼性が若干低下する場合、結晶欠陥Aを含む半導体チップ30には、結晶欠陥を含まない半導体チップ30(結晶欠陥なし)に適用する良品規格と比べて若干厳しい良品規格を適用する。結晶欠陥Bを含んでも耐量や信頼性が良品とほぼ変わらない場合、結晶欠陥Bを含む半導体チップ30には、結晶欠陥を含まない半導体チップ30と同じ良品規格を適用する。結晶欠陥Cを含むと耐量や信頼性が著しく低下する場合、結晶欠陥Cを含む半導体チップ30には、結晶欠陥を含まない半導体チップ30に適用する良品規格と比べて厳しい良品規格にする。
【0059】
なお、本実施の形態で説明した炭化珪素半導体装置10の製造方法は、予め用意されたプログラムをパーソナル・コンピュータやワークステーションなどのコンピュータや、データベースサーバー、ウェブサーバーで実行することにより実現することができる。このプログラムや予め取得した炭化珪素半導体装置10の良品規格は、ソリッドステートドライブ(SSD:Solid State Drive)、ハードディスク、ブルーレイディスク(BD:Blu-ray(登録商標) Disc)、フレキシブルディスク、USBフラッシュメモリ、CD-ROM、MO、DVDなどのコンピュータで読み取り可能な記録媒体に記録され、コンピュータやサーバーによって記録媒体から読み出されることによって実行される。また、このプログラムは、インターネットなどのネットワークを介して配布することが可能な伝送媒体であってもよい。
【0060】
以上、説明したように、実施の形態によれば、半導体ウェハのエピタキシャル層中の結晶欠陥(異物欠陥、三角欠陥および拡張欠陥)を検出し、当該結晶欠陥の種類や位置に基づいて、所定の結晶欠陥(ここでは異物欠陥および三角欠陥)を含まない半導体チップを良品候補として選別する。結晶欠陥を含まない半導体チップだけでなく、上記所定の結晶欠陥以外の結晶欠陥(ここでは拡張欠陥)を含む半導体チップについても良品候補とし、これら良品候補の中から、予め取得した良品規格に基づいて良品を選別する。
【0061】
従来方法(
図7参照)では、検出された結晶欠陥を含む半導体チップのすべてを例外なく不良チップとして除去しているのに対し、実施の形態によれば、拡張欠陥のみを含む半導体チップについては、結晶欠陥を含まない半導体チップと同様に電気特性の検査および良品規格判定を行う。これによって、従来方法において不良チップとしていた半導体チップの一部を良品とすることができる。このため、良品率を向上させることができ、チップコストを低減させることができる。
【0062】
また、実施の形態によれば、半導体ウェハの状態で結晶欠陥の種類および位置を取得することで、半導体ウェハのダイシング後、半導体チップの電気特性の検査を行う前に、電気特性を著しく低下させる確率の高いキラー欠陥(異物欠陥および三角欠陥)を含む半導体チップを、電気特性を検査することなく不良チップとして除去することができる。半導体チップの電気特性を検査する処理の総処理時間を短くすることができ、スループットを向上させることができる。
【0063】
以上において本発明は、上述した実施の形態に限らず、本発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、上述した実施の形態では、ステップS6の処理において良品候補とする半導体チップに含まれていてもよい結晶欠陥をフランク型欠陥およびキャロット型欠陥としたが、これに限らず、結晶欠陥を含まない半導体チップと同じ良品規格を満たす可能性のある結晶欠陥であれば、良品候補とする半導体チップに含まれていてもよい。また、本発明は、導電型(n型、p型)を反転させても同様に成り立つ。また、ダイシング前の半導体ウェハの状態で、半導体チップの電気特性の検査の一部または全部を実施してもよい。また、良品規格としては、耐量や信頼性に関する電気特性であれば、あらゆる電気特性を採用可能である。
【産業上の利用可能性】
【0064】
以上のように、本発明にかかる炭化珪素半導体装置の製造方法は、6インチの半導体ウェハから半導体チップ(炭化珪素半導体装置)を量産する場合に有用であり、特にSBDやMOSFETに適している。
【符号の説明】
【0065】
1 n+型ドレイン領域
2a n型バッファ領域
2b n-型ドリフト領域
3 n型電流拡散領域
4 p型ベース領域
5 n+型ソース領域
6 p++型コンタクト領域
7 トレンチ
8 ゲート絶縁膜
9 ゲート電極
10 炭化珪素半導体装置
11 層間絶縁膜
12 バリアメタル
13 オーミック電極
14 おもて面電極
15 裏面電極
21,22 p+型領域
30 半導体チップ
31,55 n+型出発基板
32 n型エピタキシャル層
33 n-型エピタキシャル層
34 p型エピタキシャル層
35,56 エピタキシャル層
41 活性領域
42 エッジ終端領域
50 半導体ウェハ
51 半導体ウェハのチップ領域
52 半導体ウェハのダイシングライン
53 半導体ウェハの無効領域
61 異物欠陥
61a ダウンフォール
61b ラージピット
62 三角欠陥
64 拡張欠陥
64a フランク型欠陥
64b キャロット型欠陥