(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022164372
(43)【公開日】2022-10-27
(54)【発明の名称】昇圧回路、および、当該昇圧回路を備える溶接電源装置
(51)【国際特許分類】
H02M 3/155 20060101AFI20221020BHJP
H02M 7/48 20070101ALI20221020BHJP
【FI】
H02M3/155 W
H02M7/48 E
【審査請求】未請求
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2021069813
(22)【出願日】2021-04-16
(71)【出願人】
【識別番号】000000262
【氏名又は名称】株式会社ダイヘン
(74)【代理人】
【識別番号】100135389
【弁理士】
【氏名又は名称】臼井 尚
(74)【代理人】
【識別番号】100168044
【弁理士】
【氏名又は名称】小淵 景太
(72)【発明者】
【氏名】宮島 雄一
(72)【発明者】
【氏名】田中 和裕
(72)【発明者】
【氏名】成定 佑樹
【テーマコード(参考)】
5H730
5H770
【Fターム(参考)】
5H730AS04
5H730BB14
5H730BB82
5H730BB88
5H730CC01
5H730DD03
5H730DD04
5H730EE57
5H730EE59
5H730FD01
5H730FD11
5H730FG05
5H770AA05
5H770BA09
5H770CA02
5H770HA02Z
(57)【要約】 (修正有)
【課題】広い範囲の入力電圧に対して、有効に機能する昇圧回路及び当該昇圧回路を備える溶接電源装置を提供する。
【解決手段】昇圧回路7において、スイッチング素子Q1を有する昇圧コンバータ71と、スイッチング素子Q2を有し、かつ、昇圧コンバータ71と、並列接続された昇圧コンバータ72と、昇圧コンバータ71のスイッチング素子Q1および昇圧コンバータ72のスイッチング素子Q2を駆動させる制御部76とを備える。制御部76は、各スイッチング素子Q1、Q2を互いに位相をずらして駆動させる第1駆動モードと、各スイッチング素子Q1、Q2を同じ位相で駆動させる第2駆動モードとを切り替える。
【選択図】
図1
【特許請求の範囲】
【請求項1】
それぞれがスイッチング手段を有し、かつ、互いに並列接続された複数の昇圧コンバータと、
前記複数の昇圧コンバータの各スイッチング手段を駆動させる制御部と、
を備え、
前記制御部は、前記各スイッチング手段を互いに位相をずらして駆動させる第1駆動モードと、前記各スイッチング手段を同じ位相で駆動させる第2駆動モードとを切り替える、
昇圧回路。
【請求項2】
前記昇圧回路の入力電圧を検出する入力電圧センサをさらに備え、
前記制御部は、前記入力電圧が所定の第1電圧以上の場合には第1駆動モードになり、前記入力電圧が前記第1電圧未満の場合には第2駆動モードになる、
請求項1に記載の昇圧回路。
【請求項3】
前記昇圧回路の出力電圧を検出する出力電圧センサをさらに備え、
前記制御部は、前記各スイッチング手段を駆動させないときの前記出力電圧が所定の第1電圧以上の場合には第1駆動モードになり、前記出力電圧が前記第1電圧未満の場合には第2駆動モードになる、
請求項1に記載の昇圧回路。
【請求項4】
前記昇圧回路の出力電圧を検出する出力電圧センサをさらに備え、
前記制御部は、前記出力電圧が所定の第2電圧以上の間は第1駆動モードを継続し、前記出力電圧が前記第2電圧未満の間は第2駆動モードに切り替わる、
請求項1に記載の昇圧回路。
【請求項5】
請求項1ないし4のいずれかに記載の昇圧回路と、
前記昇圧回路に直流電圧を入力する第1整流回路と、
前記昇圧回路から入力される直流電圧を高周波電圧に変換するインバータ回路と、
前記高周波電圧を変圧するトランスと、
前記トランスによって変圧された高周波電圧を整流する第2整流回路と、
前記インバータ回路を制御する制御回路と、
を備える溶接電源装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、昇圧回路、および、当該昇圧回路を備える溶接電源装置に関する。
【背景技術】
【0002】
溶接電源装置は、電力系統から入力される交流電圧を整流回路によって整流し、インバータ回路によって高周波電圧に変換し、トランスによって変圧し、整流回路によって整流する。電力系統の電圧は国によって異なるので、溶接電源装置を他国でも使用可能にするためには、例えば、整流回路とインバータ回路との間に昇圧回路を配置し、インバータ回路に入力される直流電圧を所定電圧に昇圧することが考えられる。
【0003】
従来、インターリーブ方式の昇圧回路が知られている。インターリーブ方式の昇圧回路は、複数の昇圧コンバータが並列接続されており、各昇圧コンバータのスイッチング手段を互いに位相をずらして駆動させる。これにより、入出力電流のリップルが軽減される。例えば、特許文献1には、インターリーブ方式のスイッチングコンバータが開示されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
溶接電源装置が接続される電力系統の電圧は、国によって大きく異なる。例えば、200Vの国もあるし、575Vの国もある。したがって、溶接電源装置に配置される昇圧回路は、入力電圧が低い場合でも高い場合でも、有効に機能する昇圧回路が求められる。しかしながら、インターリーブ方式の昇圧回路は、入力電圧が低い場合、昇圧比を大きくするためにデューティ比を大きくすると、各スイッチング手段のオンが重なり合ってしまうので、リップルの軽減という効果を奏さなくなる。
【0006】
本発明は上記した事情のもとで考え出されたものであって、広い範囲の入力電圧に対して、有効に機能する昇圧回路を提供することをその目的としている。
【課題を解決するための手段】
【0007】
上記課題を解決するため、本発明では、次の技術的手段を講じている。
【0008】
本発明の第1の側面によって提供される昇圧回路は、それぞれがスイッチング手段を有し、かつ、互いに並列接続された複数の昇圧コンバータと、前記複数の昇圧コンバータの各スイッチング手段を駆動させる制御部とを備え、前記制御部は、前記各スイッチング手段を互いに位相をずらして駆動させる第1駆動モードと、前記各スイッチング手段を同じ位相で駆動させる第2駆動モードとを切り替える。
【0009】
本発明の好ましい実施の形態においては、前記昇圧回路の入力電圧を検出する入力電圧センサをさらに備え、前記制御部は、前記入力電圧が所定の第1電圧以上の場合には第1駆動モードになり、前記入力電圧が前記第1電圧未満の場合には第2駆動モードになる。
【0010】
本発明の好ましい実施の形態においては、前記昇圧回路の出力電圧を検出する出力電圧センサをさらに備え、前記制御部は、前記各スイッチング手段を駆動させないときの前記出力電圧が所定の第1電圧以上の場合には第1駆動モードになり、前記出力電圧が前記第1電圧未満の場合には第2駆動モードになる。
【0011】
本発明の好ましい実施の形態においては、前記昇圧回路の出力電圧を検出する出力電圧センサをさらに備え、前記制御部は、前記出力電圧が所定の第2電圧以上の間は第1駆動モードを継続し、前記出力電圧が前記第2電圧未満の間は第2駆動モードに切り替わる。
【0012】
本発明の第2の側面によって提供される溶接電源装置は、本発明の第1の側面によって提供される昇圧回路と、前記昇圧回路に直流電圧を入力する第1整流回路と、前記昇圧回路から入力される直流電圧を高周波電圧に変換するインバータ回路と、前記高周波電圧を変圧するトランスと、前記トランスによって変圧された高周波電圧を整流する第2整流回路と、前記インバータ回路を制御する制御回路とを備える。
【発明の効果】
【0013】
本発明に係る昇圧回路は、互いに並列接続された複数の昇圧コンバータを備えている。そして、制御部は、第1駆動モードと第2駆動モードとで切り替え可能である。制御部は、入力電圧が高い場合に、各スイッチング手段を互いに位相をずらして駆動させて(第1駆動モード)、インターリーブ制御を行うことができる。この場合、本発明に係る昇圧回路は、入出力電流のリップルを軽減できる。一方、制御部は、入力電圧が低い場合に、各スイッチング手段を同じ位相で駆動させて(第2駆動モード)、複数の昇圧コンバータを並列運転させることができる。この場合、本発明に係る昇圧回路は、デューティ比を大きくできる。また、オン時間が長くなることで入力電流が大きくなるが、入力電流は各昇圧コンバータに分散して流れるので、各昇圧コイルに流れる電流を抑制可能である。このように、本発明に係る昇圧回路は、広い範囲の入力電圧に対して、有効に機能する。
【0014】
本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。
【図面の簡単な説明】
【0015】
【
図1】第1実施形態に係る昇圧回路を説明するための図である。
【
図2】
図1の昇圧回路の制御部の一例を説明するための図である。
【
図3】第2実施形態に係る昇圧回路を説明するための図である。
【
図4】第3実施形態に係る昇圧回路の制御部の一例を示すブロック図である。
【
図5】第4実施形態に係る昇圧回路の制御部の一例を示すブロック図である。
【
図6】第5実施形態に係る昇圧回路を説明するための図である。
【発明を実施するための形態】
【0016】
以下、本発明の実施の形態を、本発明に係る昇圧回路を溶接電源装置に用いた場合を例として、図面を参照して具体的に説明する。
【0017】
〔第1実施形態〕
図1は、第1実施形態に係る昇圧回路7を説明するための図である。
図1(a)は、昇圧回路7を備えた溶接電源装置Aの全体構成を示す図である。
図1(b)は、昇圧回路7を示す回路図である。
【0018】
溶接電源装置Aは、溶接トーチTの電極の先端と、被加工物Wとの間にアークを発生させ、アークに電力を供給するものである。溶接電源装置Aは、
図1(a)に示すように、整流回路1、昇圧回路7、インバータ回路2、トランス3、整流回路4、制御回路5、および電流センサ6を備えている。
【0019】
整流回路1は、電力系統Bから入力される交流電圧を整流して、直流電圧を出力する。昇圧回路7は、整流回路1から入力される直流電圧を所定電圧に昇圧して出力する。なお、昇圧回路7の詳細は後述する。インバータ回路2は、昇圧回路7から入力される直流電圧を高周波電圧に変換して、トランス3に出力する。トランス3は、インバータ回路2から入力される高周波電圧を変圧して、整流回路4に出力する。整流回路4は、トランス3から入力される高周波電圧を整流して、直流電圧を出力する。電流センサ6は、整流回路4が出力する直流電流を検出する。制御回路5は、出力電流制御を行っており、電流センサ6が検出した電流に基づいて駆動信号を生成し、インバータ回路2に出力する。
【0020】
本実施形態では、溶接電源装置Aは、様々な電圧の電力系統Bに接続可能である。電力系統Bから入力される交流電圧は、整流回路1で直流電圧に変換される。昇圧回路7は、整流回路1から入力される直流電圧を所定電圧に昇圧して、インバータ回路2に出力する。
【0021】
昇圧回路7は、
図1(b)に示すように、直流電圧を入力される第1入力端子P1および第2入力端子P2と、昇圧後の直流電圧を出力する第1出力端子P3および第2出力端子P4とを備えている。第1入力端子P1は整流回路1の正極側の出力端子に接続され、第2入力端子P2は整流回路1の負極側の出力端子に接続されている。第1出力端子P3はインバータ回路2の正極側の入力端子に接続され、第2出力端子P4はインバータ回路2の負極側の入力端子に接続されている。第2入力端子P2と第2出力端子P4とは、接続されている。また、昇圧回路7は、昇圧コンバータ71,72、コンデンサC、入力電圧センサ74,出力電圧センサ75、および制御部76を備えている。
【0022】
昇圧コンバータ71は、コイルL1、スイッチング素子Q1、およびダイオードD1を備えている。コイルL1およびダイオードD1は、第1入力端子P1と第1出力端子P3との間で、直列接続されている。具体的には、コイルL1の第1端子が第1入力端子P1に接続されており、コイルL1の第2端子がダイオードD1のアノード端子に接続されている。また、ダイオードD1のカソード端子が第1出力端子P3に接続されている。なお、コイルL1およびダイオードD1の種類は限定されない。スイッチング素子Q1は、コイルL1とダイオードD1との接続部と、第2入力端子P2との間に接続されている。本実施形態において、スイッチング素子Q1は、IGBT(Insulated Gate Bipolar Transistor : 絶縁ゲート・バイポーラトランジスタ)である。なお、スイッチング素子Q1の種類は、限定されず、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)やバイポーラトランジスタなどの他のトランジスタであってもよい。スイッチング素子Q1のコレクタ端子がコイルL1とダイオードD1との接続部に接続され、エミッタ端子が第2入力端子P2に接続されている。コレクタ端子とエミッタ端子との間には、還流ダイオードが逆並列に接続されている。ゲート端子は、制御部76に接続され、駆動信号Dr1を入力される。第1入力端子P1と第2入力端子P2との間に入力される入力電圧は、スイッチング素子Q1がオンの間、コイルL1に印加される。そして、スイッチング素子Q1がオフの間、コイルL1に蓄積されたエネルギーが放出されることで、入力電圧が昇圧された出力電圧として出力される。なお、昇圧コンバータ71の回路構成は限定されない。
【0023】
昇圧コンバータ72は、コイルL2、スイッチング素子Q2、およびダイオードD2を備えている。コイルL2およびダイオードD2は、第1入力端子P1と第1出力端子P3との間で、直列接続されている。具体的には、コイルL2の第1端子が第1入力端子P1に接続されており、コイルL2の第2端子がダイオードD2のアノード端子に接続されている。また、ダイオードD2のカソード端子が第1出力端子P3に接続されている。なお、コイルL2およびダイオードD2の種類は限定されない。スイッチング素子Q2は、コイルL2とダイオードD2との接続部と、第2入力端子P2との間に接続されている。本実施形態において、スイッチング素子Q2は、IGBTである。なお、スイッチング素子Q2の種類は、限定されない。スイッチング素子Q2のコレクタ端子がコイルL2とダイオードD2との接続部に接続され、エミッタ端子が第2入力端子P2に接続されている。コレクタ端子とエミッタ端子との間には、還流ダイオードが逆並列に接続されている。ゲート端子は、制御部76に接続され、駆動信号Dr2を入力される。第1入力端子P1と第2入力端子P2との間に入力される入力電圧は、スイッチング素子Q2がオンの間、コイルL2に印加される。そして、スイッチング素子Q2がオフの間、コイルL2に蓄積されたエネルギーが放出されることで、入力電圧が昇圧された出力電圧として出力される。なお、昇圧コンバータ72の回路構成は限定されない。
【0024】
このように、昇圧コンバータ71と昇圧コンバータ72とは、互いに並列接続されている。スイッチング素子Q1が駆動信号Dr1に応じてスイッチングを行い、スイッチング素子Q2が駆動信号Dr2に応じてスイッチングを行うことで、第1入力端子P1および第2入力端子P2から入力された直流電圧が所定の直流電圧に昇圧されて、第1出力端子P3および第2出力端子P4から出力される。
【0025】
コンデンサCは、第1出力端子P3と第2出力端子P4との間に接続されている。なお、コンデンサCの種類は限定されない。また、コンデンサCは、昇圧コンバータ72に含まれず、第1出力端子P3と第2出力端子P4とに外付けされてもよい。
【0026】
入力電圧センサ74は、第1入力端子P1と第2入力端子P2との間に接続されており、昇圧回路7の入力電圧Vinを検出する。入力電圧センサ74は、検出した入力電圧Vinを制御部76に入力する。
【0027】
出力電圧センサ75は、第1出力端子P3と第2出力端子P4との間に接続されており、昇圧回路7の出力電圧Voutを検出する。出力電圧センサ75は、検出した出力電圧Voutを制御部76に入力する。
【0028】
制御部76は、昇圧回路7の出力電圧Voutをフィードバック制御する。制御部76は、例えばマイクロコンピュータなどによって実現されている。制御部76は、出力電圧センサ75から入力される出力電圧Voutと、入力電圧センサ74から入力される入力電圧Vinとに基づいて、スイッチング素子Q1を駆動するための駆動信号Dr1、および、スイッチング素子Q2を駆動するための駆動信号Dr2を生成する。制御部76は、生成した駆動信号Dr1をスイッチング素子Q1に出力し、生成した駆動信号Dr2をスイッチング素子Q2に出力する。
【0029】
制御部76は、出力電圧センサ75から入力される出力電圧Voutを、あらかじめ設定されている目標電圧Vout*にするための駆動信号Dr1,Dr2を生成する。目標電圧Vout*は、インバータ回路2の入力電圧の目標電圧として設定されている。駆動信号Dr1,Dr2の周期T0はあらかじめ設定されている。また、駆動信号Dr1,Dr2の周期T0に対するオン(ハイレベル)の時間であるデューティ比は、目標電圧Vout*に対する出力電圧Voutの偏差に応じて変化する。
【0030】
また、制御部76は、入力電圧センサ74から入力される入力電圧Vinに応じて、駆動信号Dr1,Dr2の出力方法を切り替える。具体的には、制御部76は、入力電圧Vinが所定の第1電圧Vref1以上の場合には、駆動信号Dr1と駆動信号Dr2とを位相を180°ずらして出力する。この状態を、以下では、「第1駆動モード」と記載する。この場合、駆動信号Dr1を入力されたスイッチング素子Q1と、駆動信号Dr2を入力されたスイッチング素子Q2とは、互いに位相を180°ずらして駆動する。つまり、制御部76は、インターリーブ制御を行う。一方、制御部76は、入力電圧Vinが所定の第1電圧Vref1未満の場合には、駆動信号Dr1と駆動信号Dr2とを同じ位相で出力する。この状態を、以下では、「第2駆動モード」と記載する。この場合、駆動信号Dr1を入力されたスイッチング素子Q1と、駆動信号Dr2を入力されたスイッチング素子Q2とは、同じ位相で駆動する。つまり、制御部76は、昇圧コンバータ71,72を並列運転させる。
【0031】
第1電圧Vref1は、昇圧コンバータ71,72を、第1駆動モードで駆動させるか、第2駆動モードで駆動させるかを切り替えるための閾値としてあらかじめ設定されている。第1電圧Vref1は、目標電圧Vout*などに応じて設定される。昇圧回路7では、駆動信号Dr1,Dr2のデューティ比に応じて、入力電圧Vinが出力電圧Voutに昇圧される。昇圧回路7は、デューティ比が50%の場合、入力電圧Vinを2倍の電圧にして出力する。しかし、インターリーブ制御において、入出力電流のリップルを軽減するという効果を奏するためには、駆動信号Dr1,Dr2のオンが重ならないようにする必要があるので、デューティ比を50%より小さくする必要がある。つまり、入力電圧Vinが出力電圧Voutの半分より大きくなければ、インターリーブ制御による効果を奏さない。したがって、第1電圧Vref1は、目標電圧Vout*の半分より大きい値が設定される。また、第1電圧Vref1は、負荷の変動による影響なども考慮して、実験やシミュレーションなどに基づいて、適宜設定される。
【0032】
図2(a)は、制御部76の一例を示す機能ブロック図である。
図2(b)は、制御部76が出力する駆動信号Dr1,Dr2を示す波形図である。
図2(c)は、制御部76が出力する駆動信号Dr1,Dr2、昇圧コンバータ71が出力する電流I1、昇圧コンバータ72が出力する電流I2、昇圧コンバータ71および昇圧コンバータ72の出力する出力電流Ioutを示す波形図である。
【0033】
図2(a)に示すように、制御部76は、機能ブロックとして、デューティ比調整部761、切替部762、第1パルス生成部763、第2パルス生成部764を備えている。デューティ比調整部761は、出力電圧センサ75から出力電圧Voutを入力され、目標電圧Vout
*に対する偏差に基づいてデューティ比を調整する。デューティ比調整部761は、調整したデューティ比を切替部762に出力する。切替部762は、入力電圧センサ74から入力電圧Vinを入力され、第1電圧Vref1と比較する。切替部762は、入力電圧Vinが第1電圧Vref1以上の場合、デューティ比調整部761から入力されたデューティ比を第1パルス生成部763に出力する。一方、入力電圧Vinが第1電圧Vref1未満の場合、切替部762は、デューティ比を第2パルス生成部764に出力する。
【0034】
第2パルス生成部764は、切替部762から入力されたデューティ比と、あらかじめ設定されている周期T
0とに基づいて、駆動信号Dr1,Dr2を生成する。第2パルス生成部764は、駆動信号Dr1と駆動信号Dr2とを同じ位相で出力する。
図2(b)は、第2パルス生成部764が出力する駆動信号Dr1,Dr2、すなわち、第2駆動モードのときに制御部76が出力する駆動信号Dr1,Dr2の波形を示している。
図2(b)に示すように、駆動信号Dr1と駆動信号Dr2とが同じ位相なので、オン時間Tonを大きくすることができ、デューティ比(Ton/T
0)を50%以上にすることができる。
【0035】
第1パルス生成部763は、切替部762から入力されたデューティ比と、あらかじめ設定されている周期T
0とに基づいて、駆動信号Dr1,Dr2を生成する。第1パルス生成部763は、駆動信号Dr1と駆動信号Dr2とを位相を180°ずらして出力する。
図2(c)は、第1パルス生成部763が出力する駆動信号Dr1,Dr2、すなわち、第1駆動モードのときに制御部76が出力する駆動信号Dr1,Dr2の波形を示している。また、
図2(c)には、昇圧コンバータ71が出力する電流I1、昇圧コンバータ72が出力する電流I2、および、昇圧回路7の出力電流Iout(=I1+I2)の波形も示している。
図2(c)に示すように、駆動信号Dr1と駆動信号Dr2とでは位相が180°ずれている。駆動信号Dr1と駆動信号Dr2とでオンが重ならないようにするためには、オン時間Tonを大きくすることができず、デューティ比(Ton/T
0)を50%未満にする必要がある。また、電流I1および電流I2の変化の周期は、駆動信号Dr1および駆動信号Dr2と同じ周期T
0であり、同じ周波数である。一方、電流I1と電流I2とが合成された出力電流Ioutの変化の周期は、電流I1および電流I2の変化の周期T
0の半分になり、周波数は2倍になっている。また、出力電流Ioutのリップルは、電流I1および電流I2のリップルと比較して、軽減されている。
【0036】
なお、制御部76の機能構成は、
図2(a)に示したものに限定されない。制御部76は、入力電圧Vinに応じて、第1駆動モードと第2駆動モードとを切り替える構成であればよい。なお、制御部76は、ディジタル回路として実現してもよいし、アナログ回路として実現してもよい。
【0037】
溶接電源装置Aの昇圧回路7は、溶接電源装置Aが接続された電力系統Bの電圧に応じて、制御部76での制御を第1駆動モードと第2駆動モードとで切り替える。したがって、昇圧回路7は、電力系統Bの電圧が高い場合には、第1駆動モードによりインターリーブ制御を行い、電力系統Bの電圧が低い場合には、第2駆動モードにより並列運転を行う。
【0038】
次に、昇圧回路7の作用効果について説明する。
【0039】
本実施形態によると、昇圧回路7は、互いに並列接続された昇圧コンバータ71および昇圧コンバータ72を備えている。そして、制御部76は、入力電圧Vinが高い場合に、駆動信号Dr1と駆動信号Dr2とを位相を互いに180°ずらして出力して(第1駆動モード)、インターリーブ制御を行う。この場合、昇圧率は低くていいので、デューティ比を小さくできる。したがって、昇圧回路7は、インターリーブ制御を有効に機能させて、入出力電流のリップルを軽減できる。一方、制御部76は、入力電圧Vinが低い場合に、駆動信号Dr1と駆動信号Dr2とを同じ位相で出力して(第2駆動モード)、昇圧コンバータ71および昇圧コンバータ72を並列運転させる。この場合、昇圧回路7は、デューティ比を大きくして、昇圧率を高くできる。また、オン時間が長くなることで入力電流が大きくなるが、入力電流は昇圧コンバータ71と昇圧コンバータ72とに分散して流れるので、コイルL1,L2に流れる電流を抑制可能である。このように、昇圧回路7は、広い範囲の入力電圧に対して、有効に機能する。
【0040】
また、本実施形態によると、制御部76は、入力電圧センサ74から入力される入力電圧Vinを第1電圧Vref1と比較して、第1駆動モードとするか第2駆動モードとするかを決定する。したがって、昇圧回路7は、入力電圧Vinに応じて、第1駆動モードと第2駆動モードとを、適切に切り替えることができる。
【0041】
また、本実施形態によると、昇圧回路7は、制御部76以外の構成は、従来のインターリーブ方式の昇圧回路と共通する。したがって、従来のインターリーブ方式の昇圧回路の制御部を制御部76に置き換えるだけで、昇圧回路7とすることができる。制御部がマイクロコンピュータによって実現されている場合、当該制御部のプログラムを書き換えるだけで、昇圧回路7を実現できる。したがって、昇圧回路7は、従来のインターリーブ方式の昇圧回路の製造ラインを利用して製造可能である。
【0042】
また、本実施形態によると、溶接電源装置Aの昇圧回路7は、溶接電源装置Aが接続された電力系統Bの電圧に応じて、制御部76での制御を第1駆動モードと第2駆動モードとで切り替える。したがって、溶接電源装置Aは、電力系統Bの電圧が高い場合でも低い場合でも、昇圧回路7を有効に機能させて、インバータ回路2に所定電圧を供給することができる。これにより、溶接電源装置Aは、電力系統Bの電圧が異なる国においても、使用可能である。
【0043】
図3~
図6は、本発明の他の実施形態を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付して、重複する説明を省略する。
【0044】
〔第2実施形態〕
図3は、第2実施形態に係る昇圧回路7aを説明するための図である。
図3(a)は、昇圧回路7aを示す回路図である。
図3(b)は、昇圧回路7aの制御部76aの一例を示すブロック図である。本実施形態にかかる昇圧回路7aは、制御部76aが出力電圧センサ75から入力される出力電圧Voutに応じて、第1駆動モードと第2駆動モードとを切り替える点で、昇圧回路7と異なる。
【0045】
本実施形態では、昇圧回路7aは、
図3(a)に示すように、入力電圧センサ74を備えていない。制御部76aは、昇圧回路7aが起動されるとすぐに、駆動信号Dr1,Dr2を出力するまでの間に、出力電圧センサ75から出力電圧Voutを入力される。スイッチング素子Q1,Q2が、駆動信号Dr1,Dr2を入力されず、駆動していない状態では、昇圧回路7aは、昇圧動作を行わないので、入力電圧Vinをそのまま出力電圧Voutとして出力する。したがって、出力電圧センサ75が検出した出力電圧Voutは、入力電圧Vinと同じである。制御部76aは、駆動信号Dr1,Dr2を出力する前に出力電圧センサ75によって出力電圧Voutを検出することで、入力電圧Vinを検出する。そして、制御部76aは、スイッチング素子Q1,Q2が駆動していないときの出力電圧Vout(すなわち入力電圧Vin)が所定の第1電圧Vref1以上の場合には第1駆動モードになり、当該出力電圧Voutが所定の第1電圧Vref1未満の場合には第2駆動モードになる。
【0046】
図3(b)に示すように、制御部76aの切替部762は、入力電圧Vinを入力されず、代わりに出力電圧Voutを入力される。切替部762は、昇圧回路7aが起動されるとすぐに駆動信号Dr1,Dr2を出力するまでの間に、出力電圧センサ75から出力電圧Voutを入力され、第1電圧Vref1と比較する。切替部762は、出力電圧Vout(=入力電圧Vin)が第1電圧Vref1以上の場合、デューティ比調整部761から入力されたデューティ比を第1パルス生成部763に出力する。一方、出力電圧Vout(=入力電圧Vin)が第1電圧Vref1未満の場合、切替部762は、デューティ比を第2パルス生成部764に出力する。切替部762は、その後、デューティ比の出力先を固定し、出力電圧Voutの比較を行わない。
【0047】
本実施形態においても、昇圧回路7aは、入力電圧Vinが高い場合に、インターリーブ制御を有効に機能させて、入出力電流のリップルを軽減できる。また、昇圧回路7aは、入力電圧Vinが低い場合に、デューティ比を大きくして昇圧率を高くでき、また、コイルL1,L2に流れる電流を抑制可能である。このように、昇圧回路7aは、広い範囲の入力電圧に対して、有効に機能する。
【0048】
また、本実施形態によると、制御部76aは、スイッチング素子Q1,Q2が駆動していないときの出力電圧Vout(すなわち入力電圧Vin)を第1電圧Vref1と比較して、第1駆動モードとするか第2駆動モードとするかを決定する。したがって、昇圧回路7aは、入力電圧Vinに応じて、第1駆動モードと第2駆動モードとを、適切に切り替えることができる。また、本実施形態においても、昇圧回路7aは、昇圧回路7と共通する構成により、昇圧回路7と同等の効果を奏する。さらに、本実施形態によると、昇圧回路7aは、入力電圧センサ74を備える必要がない。したがって、昇圧回路7aは、昇圧回路7と比較して、製造コストを抑制できる。
【0049】
〔第3実施形態〕
図4は、第3実施形態に係る昇圧回路7bを説明するための図である。
図4は、昇圧回路7bの制御部76bの一例を示すブロック図である。本実施形態にかかる昇圧回路7bは、制御部76bが出力電圧センサ75から入力される出力電圧Voutに応じて、第1駆動モードと第2駆動モードとを切り替える点で、昇圧回路7と異なる。
【0050】
本実施形態に係る昇圧回路7bの回路図は、第2実施形態に係る昇圧回路7aの回路図(
図3(a)参照)と同様である。本実施形態では、制御部76bは、出力電圧Voutを適切に制御できているときには第1駆動モードを継続し、出力電圧Voutを制御できないときにだけ第2駆動モードに切り替わる。昇圧回路7bは、入力電圧Vinが高い場合には、第1駆動モードによりインターリーブ制御を行うことができるが、負荷変動などにより、インターリーブ制御では出力電圧Voutを目標電圧Vout
*に制御できなくなる場合がある。また、昇圧回路7bは、入力電圧Vinが低い場合にも、インターリーブ制御では出力電圧Voutを目標電圧Vout
*に制御できなくなる。制御部76bは、出力電圧Voutが所定の第2電圧Vref2以上の間は、出力電圧Voutを適切に制御できていると判断して、第1駆動モードを継続する。一方、制御部76bは、出力電圧Voutが第2電圧Vref2未満の間は、出力電圧Voutを制御できないと判断して、第2駆動モードに切り替わる。第2電圧Vref2は、目標電圧Vout
*の例えば95%程度の値が設定される。なお、第2電圧Vref2は、限定されない。
【0051】
本実施形態によると、制御部76bは、出力電圧Voutが第2電圧Vref2以上の間は、第1駆動モードによりインターリーブ制御を行う。この場合、出力電圧Voutを適切に制御できているので、昇圧回路7bは、インターリーブ制御を有効に機能させて、入出力電流のリップルを軽減できる。一方、制御部76bは、出力電圧Voutが第2電圧Vref2未満になると第2駆動モードに切り替えて、昇圧コンバータ71および昇圧コンバータ72を並列運転させる。この場合、昇圧回路7bは、デューティ比を大きくして、昇圧率を高くできるので、出力電圧Voutを適切に制御できる。また、入力電流は昇圧コンバータ71と昇圧コンバータ72とに分散して流れるので、コイルL1,L2に流れる電流を抑制可能である。このように、昇圧回路7bは、広い範囲の入力電圧に対して、有効に機能する。また、昇圧回路7bは、負荷変動などに応じて、駆動モードを切り替えることができる。
【0052】
また、本実施形態によると、制御部76bは、出力電圧Voutを第2電圧Vref2と比較して、第1駆動モードと第2駆動モードとを切り替える。したがって、昇圧回路7bは、出力電圧Voutに応じて、第1駆動モードと第2駆動モードとを、適切に切り替えることができる。また、本実施形態においても、昇圧回路7bは、昇圧回路7と共通する構成により、昇圧回路7と同等の効果を奏する。さらに、本実施形態によると、昇圧回路7bは、入力電圧センサ74を備える必要がない。したがって、昇圧回路7bは、昇圧回路7と比較して、製造コストを抑制できる。
【0053】
なお、本実施形態では、制御部76bは、出力電圧Voutが第2電圧Vref2未満になったときに第2駆動モードに切り替える場合について説明したが、これに限られない。制御部76bは、出力電圧Voutが第2電圧Vref2未満になった状態が所定時間継続したときに第2駆動モードに切り替えてもよい。この場合、出力電圧Voutが瞬間的に低下しただけだと第2駆動モードに切り替わらないので、駆動モードの不要な切り替えを抑制できる。また、本実施形態では、制御部76bは、出力電圧Voutが第2電圧Vref2以上になったときに第1駆動モードに切り替える場合について説明したが、これに限られない。入力電圧Vinが低い場合には、第2駆動モードに切り替えたことで、出力電圧Voutを適切に制御でき、出力電圧Voutが第2電圧Vref2以上になるが、このとき第1駆動モードに切り替えても、また、出力電圧Voutを適切に制御できなくなる。したがって、第1駆動モードと第2駆動モードとの切り替えが繰り返されることになる。この状態を防止するために、制御部76bは、第1駆動モードから第2駆動モードに切り替えた場合には、その後は第1駆動モードに切り替えないようにしてもよい。
【0054】
〔第4実施形態〕
図5は、第4実施形態に係る昇圧回路7cを説明するための図である。
図5は、昇圧回路7cの制御部76cの一例を示すブロック図である。本実施形態にかかる昇圧回路7cは、制御部76cが、入力電圧センサ74から入力される入力電圧Vinと、出力電圧センサ75から入力される出力電圧Voutとに応じて、第1駆動モードと第2駆動モードとを切り替える点で、昇圧回路7と異なる。
【0055】
本実施形態に係る昇圧回路7cの回路図は、第1実施形態に係る昇圧回路7の回路図(
図1(b)参照)と同様である。本実施形態では、制御部76cは、入力電圧センサ74から入力された入力電圧Vinと、出力電圧センサ75から入力された出力電圧Voutとに基づいて、第1駆動モードと第2駆動モードとを切り替える。
図5に示すように、制御部76cの切替部762は、入力電圧Vinおよび出力電圧Voutを入力される。切替部762は、入力電圧Vinおよび出力電圧Voutに基づいて、インターリーブ制御を有効に機能できるか否により、デューティ比調整部761から入力されたデューティ比を第1パルス生成部763に出力するか第2パルス生成部764に出力するかを決定する。なお、切替部762によるデューティ比の出力先の決定方法は限定されない。
【0056】
本実施形態によると、制御部76cは、入力電圧Vinおよび出力電圧Voutに基づいて、第1駆動モードと第2駆動モードとを切り替える。昇圧回路7cは、第1駆動モードになると、インターリーブ制御を有効に機能させて、入出力電流のリップルを軽減できる。また、昇圧回路7cは、第2駆動モードになると、デューティ比を大きくして昇圧率を高くでき、また、コイルL1,L2に流れる電流を抑制可能である。このように、昇圧回路7cは、広い範囲の入力電圧に対して、有効に機能する。また、本実施形態においても、昇圧回路7cは、昇圧回路7と共通する構成により、昇圧回路7と同等の効果を奏する。
【0057】
〔第5実施形態〕
図6は、第5実施形態に係る昇圧回路7dを説明するための図である。
図6(a)は、昇圧回路7dを示す回路図である。
図6(b),(c)は、制御部76dが出力する駆動信号Dr1~Dr3を示す波形図である。本実施形態に係る昇圧回路7dは、昇圧コンバータ73をさらに備えている点で、昇圧回路7と異なる。
【0058】
昇圧回路7dは、
図6(a)に示すように、昇圧コンバータ73をさらに備えている。昇圧コンバータ73は、コイルL3、スイッチング素子Q3、およびダイオードD3を備えている。コイルL3およびダイオードD3は、第1入力端子P1と第1出力端子P3との間で、直列接続されている。具体的には、コイルL3の第1端子が第1入力端子P1に接続されており、コイルL3の第2端子がダイオードD3のアノード端子に接続されている。また、ダイオードD3のカソード端子が第1出力端子P3に接続されている。なお、コイルL3およびダイオードD3の種類は限定されない。スイッチング素子Q3は、コイルL3とダイオードD3との接続部と、第2入力端子P2との間に接続されている。本実施形態において、スイッチング素子Q3は、IGBTである。なお、スイッチング素子Q3の種類は、限定されない。スイッチング素子Q3のコレクタ端子がコイルL3とダイオードD3との接続部に接続され、エミッタ端子が第2入力端子P2に接続されている。コレクタ端子とエミッタ端子との間には、還流ダイオードが逆並列に接続されている。ゲート端子は、制御部76dに接続され、駆動信号Dr3を入力される。第1入力端子P1と第2入力端子P2との間に入力される入力電圧は、スイッチング素子Q3がオンの間、コイルL3に印加される。そして、スイッチング素子Q3がオフの間、コイルL3に蓄積されたエネルギーが放出されることで、入力電圧が昇圧された出力電圧として出力される。なお、昇圧コンバータ73の回路構成は限定されない。
【0059】
昇圧コンバータ71~73は、互いに並列接続されている。スイッチング素子Q1が駆動信号Dr1に応じてスイッチングを行い、スイッチング素子Q2が駆動信号Dr2に応じてスイッチングを行い、スイッチング素子Q3が駆動信号Dr3に応じてスイッチングを行うことで、第1入力端子P1および第2入力端子P2から入力された直流電圧が所定の直流電圧に昇圧されて、第1出力端子P3および第2出力端子P4から出力される。
【0060】
制御部76dは、駆動信号Dr1,Dr2に加えてさらに、スイッチング素子Q3を駆動するための駆動信号Dr3を生成する。制御部76dは、生成した駆動信号Dr3をスイッチング素子Q3に出力する。駆動信号Dr3は、駆動信号Dr1,Dr2と同じ周期T
0で、同じデューティ比である。制御部76dは、入力電圧Vinが所定の第1電圧Vref1以上の場合には、駆動信号Dr1~Dr3を位相を互いに120°ずつずらして出力する(第1駆動モード)。
図6(c)は、第1駆動モードのときに制御部76dが出力する駆動信号Dr1~Dr3の波形を示している。
図6(c)に示すように、駆動信号Dr1~Dr3は位相が互いに120°ずつずれている。この場合、駆動信号Dr1を入力されたスイッチング素子Q1、駆動信号Dr2を入力されたスイッチング素子Q2、および、駆動信号Dr3を入力されたスイッチング素子Q3は、位相を互いに120°ずつずらして駆動する。つまり、制御部76dは、インターリーブ制御を行う。この場合、出力電流Ioutの変化の周期は、周期T
0の1/3になり、周波数は3倍になる。また、出力電流Ioutのリップルは軽減される。
【0061】
一方、制御部76dは、入力電圧Vinが所定の第1電圧Vref1未満の場合には、駆動信号Dr1~Dr3を同じ位相で出力する(第2駆動モード)。
図6(b)は、第2駆動モードのときに制御部76dが出力する駆動信号Dr1~Dr3の波形を示している。
図6(b)に示すように、駆動信号Dr1~Dr3が同じ位相である。この場合、駆動信号Dr1を入力されたスイッチング素子Q1、駆動信号Dr2を入力されたスイッチング素子Q2、および、駆動信号Dr3を入力されたスイッチング素子Q3は、同じ位相で駆動する。つまり、制御部76dは、昇圧コンバータ71~73を並列運転させる。
【0062】
本実施形態によると、昇圧回路7dは、互いに並列接続された昇圧コンバータ71~73を備えている。そして、制御部76dは、入力電圧Vinが高い場合に、駆動信号Dr1~Dr3を位相を互いに120°ずらして出力して(第1駆動モード)、インターリーブ制御を行う。この場合、昇圧率は低くていいので、デューティ比を小さくできる。したがって、昇圧回路7dは、インターリーブ制御を有効に機能させて、入出力電流のリップルを軽減できる。一方、制御部76dは、入力電圧Vinが低い場合に、駆動信号Dr1~Dr3を同じ位相で出力して(第2駆動モード)、昇圧コンバータ71~73を並列運転させる。この場合、昇圧回路7は、デューティ比を大きくして、昇圧率を高くできる。また、オン時間が長くなることで入力電流が大きくなるが、入力電流は昇圧コンバータ71~73に分散して流れるので、コイルL1~L3に流れる電流を抑制可能である。このように、昇圧回路7dは、広い範囲の入力電圧に対して、有効に機能する。また、本実施形態においても、昇圧回路7dは、昇圧回路7と共通する構成により、昇圧回路7と同等の効果を奏する。
【0063】
なお、本実施形態では、昇圧回路7dが互いに並列接続された昇圧コンバータ71~73を備える場合について説明したが、これに限られない。昇圧回路7dは、4以上の昇圧コンバータを並列接続してもよい。
【0064】
上記第1~5実施形態においては、本発明に係る昇圧回路7(7a,7b,7c,7d)を溶接電源装置に用いた場合について説明したが、これに限られない。本発明は、入力される直流電圧を昇圧する用途で、各種装置に用いることができる。本発明は、入力される直流電圧が広範囲である場合に、特に有効である。
【0065】
本発明に係る昇圧回路および当該昇圧回路を備える溶接電源装置は、上述した実施形態に限定されるものではない。本発明に係る昇圧回路および当該昇圧回路を備える溶接電源装置の各部の具体的な構成は、種々に設計変更自在である。
【符号の説明】
【0066】
A:溶接電源装置、1,4:整流回路、2:インバータ回路、3:トランス、5:制御回路、7,7a~7d:昇圧回路、71~73:昇圧コンバータ、Q1~Q3:スイッチング素子、74:入力電圧センサ、75:出力電圧センサ、76,76a~76d:制御部