IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 旭化成株式会社の特許一覧

特開2022-165733織機上での原糸異常検知・予測システム
<>
  • 特開-織機上での原糸異常検知・予測システム 図1
  • 特開-織機上での原糸異常検知・予測システム 図2
  • 特開-織機上での原糸異常検知・予測システム 図3
  • 特開-織機上での原糸異常検知・予測システム 図4
  • 特開-織機上での原糸異常検知・予測システム 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022165733
(43)【公開日】2022-11-01
(54)【発明の名称】織機上での原糸異常検知・予測システム
(51)【国際特許分類】
   D03D 47/28 20060101AFI20221025BHJP
【FI】
D03D47/28
【審査請求】未請求
【請求項の数】21
【出願形態】OL
(21)【出願番号】P 2021071209
(22)【出願日】2021-04-20
(71)【出願人】
【識別番号】000000033
【氏名又は名称】旭化成株式会社
(74)【代理人】
【識別番号】100099759
【弁理士】
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【弁理士】
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100108903
【弁理士】
【氏名又は名称】中村 和広
(74)【代理人】
【識別番号】100142387
【弁理士】
【氏名又は名称】齋藤 都子
(74)【代理人】
【識別番号】100135895
【弁理士】
【氏名又は名称】三間 俊介
(72)【発明者】
【氏名】九十九 弘
(72)【発明者】
【氏名】中田 貴之
(72)【発明者】
【氏名】東村 欣人
(72)【発明者】
【氏名】小林 優介
【テーマコード(参考)】
4L050
【Fターム(参考)】
4L050AA14
4L050AB03
4L050CB04
4L050CB82
4L050EA03
4L050EA08
4L050EB05
4L050EC04
4L050ED11
4L050ED13
4L050EE05
(57)【要約】
【課題】本発明は、生産性及び経済性を向上させるだけでなくエコロジー・グリーン技術としても有用な異常検知システム、織機上での原糸異常検知・予測システム、又はフィラメント糸の毛羽検知システムを提供することを目的とする。
【解決手段】織機の緯入れにおいて緯糸の到達タイミングのばらつき度合いに基づき緯糸の異常度を判定し、その異常度が所定値以上の場合には織機を停止可能な異常検知システムが提供される。
【選択図】図1
【特許請求の範囲】
【請求項1】
織機の緯入れにおいて緯糸の到達タイミングのばらつき度合いに基づき前記緯糸の異常度を判定し、前記異常度が所定値以上の場合に前記織機を停止可能な異常検知システム。
【請求項2】
前記異常度が所定値以上の場合に、画面表示、印刷、官能刺激、及びデータ送信から成る群から選択される少なくとも1つにより前記異常度の判定結果を示す、請求項1に記載の異常検知システム。
【請求項3】
フィラメント糸の毛羽検知システムであって、
異常度算出式記憶手段に記憶された算出式を用いて、織機の緯入れにおいて緯糸の到達タイミングのばらつき度合いから前記緯糸の異常度を算出する異常度計算手段と、前記異常度が所定値以上の場合に前記織機に運転停止信号を送る織機異常停止手段と、を備える毛羽検知システム。
【請求項4】
前記異常度が所定値以上の場合に、アラームを上げる織機異常警報手段を備える、請求項3に記載の毛羽検知システム。
【請求項5】
前記算出式は、前記緯入れにおいてセンサの測定値列に基づいて緯糸の異常度を計算する関数又は対応表を含む、請求項3又は4に記載の毛羽検知システム。
【請求項6】
特徴量変換式記憶手段に記憶された変換式を用いて、前記ばらつき度合いを特徴量に変換する特徴量変換手段を備える、請求項3~5のいずれか1項に記載の毛羽検知システム。
【請求項7】
前記変換式は、前記緯入れにおいてセンサの測定値列を特徴量に変換する関数又は対応表を含む、請求項6に記載の毛羽検知システム。
【請求項8】
前記特徴量は、前記到達タイミングの平均、分散又は分布である、請求項6又は7に記載の毛羽検知システム。
【請求項9】
緯糸異常判定式記憶手段に記憶された判定式を用いて、前記緯糸が異常か否かを判定する緯糸異常判定手段を備える、請求項3~8のいずれか1項に記載の毛羽検知システム。
【請求項10】
前記判定式は、前記異常度、又はその推移に基づいて製織中に前記緯糸が品質基準を満たしているか否かを判断する関数又は合否マップを含む、請求項9に記載の毛羽検知システム。
【請求項11】
前記織機が設置されている場所の周囲環境情報を収集する織機設置環境情報収集手段を備える、請求項3~10のいずれか1項に記載の毛羽検知システム。
【請求項12】
前記周囲環境情報が、温度、湿度、及び風向から成る群から選択される少なくとも1つである、請求項11に記載の毛羽検知システム。
【請求項13】
前記緯糸の一部について前記緯入れ前の物性情報を記憶している緯糸事前物性情報記憶手段を備える、請求項3~12のいずれか1項に記載の毛羽検知システム。
【請求項14】
前記織機の特性情報を記憶している織機特性情報記憶手段を備える、請求項3~13のいずれか1項に記載の毛羽検知システム。
【請求項15】
前記織機の特性情報が、前記織機の機種、メンテナンス回数、直近メンテナンス日時、メンテナンス手段、及び前記織機に含まれる筬の機種から成る群から選択される少なくとも1つである、請求項14に記載の毛羽検知システム。
【請求項16】
前記特徴量を蓄積し、蓄積された特徴量に基づいて所定の評価基準を満たすように、前記異常度算出式記憶手段に記憶された前記算出式を回分変更する異常度算出式事前変更手段を備える、請求項6~8のいずれか1項に記載の毛羽検知システム。
【請求項17】
前記特徴量を蓄積し、蓄積された特徴量に基づいて正常な状態と異常な状態を逐次的に学習し、前記正常な状態と前記異常な状態に基づいて、前記異常度算出式記憶手段に記憶された前記算出式を逐次変更する異常度算出式逐次変更手段を備える、請求項6~8のいずれか1項に記載の毛羽検知システム。
【請求項18】
前記異常度算出式逐次変更手段は、前記算出式中のパラメータ又は閾値を逐次変更する、請求項17に記載の毛羽検知システム。
【請求項19】
前記特徴量の列の変化、及び/又は前記織機の停止時間を検出することで前記緯糸の交換を検出し、前記特徴量への変換式、及び/又は前記異常度の算出式を調節する緯糸変更検知手段を備える、請求項6~8、及び16~18のいずれか1項に記載の毛羽検知システム。
【請求項20】
オフラインで使用される、請求項3~19のいずれか1項に記載の毛羽検知システム。
【請求項21】
インラインで使用される、請求項3~19のいずれか1項に記載の毛羽検知システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、織機上での原糸異常検知・予測システム、フィラメント糸の毛羽検知システム及び毛羽検知方法、並びにフィラメント糸の製織加工システム及び製織加工方法に関する。
【背景技術】
【0002】
フィラメント糸は、例えば、ガラス、合成樹脂、天然樹脂、カーボン、金属等の原料を紡糸することにより得られる繊維モノフィラメントを、複数集束することにより得られる。フィラメント糸は、例えば、積層板、プリント配線板、ステントグラフト、複合材料、補強材料、コンクリートのクラック抑制材料等の様々な部材の製造に利用される。中でも、プリント配線板の原材料としてガラスフィラメント糸が知られている。
【0003】
例えば、溶融ガラスを紡糸することによって得られる数μm~数十μmのガラス繊維モノフィラメントを、数十本から数千本集束してガラスフィラメント糸とし、これを一旦ドラムに巻き取ってケーキと呼ばれる状態にする。その後、ケーキからガラスフィラメント糸を巻き戻し、このガラスフィラメント糸に撚りを掛けたガラスヤーン(ガラス糸)の形態で出荷される。ガラス糸は、製織されてクロス化され、必要に応じて開繊及び/又は糊付けされ、エポキシ樹脂等のマトリックス樹脂と複合化及び積層化されて、プリント配線板に加工される。
【0004】
また、ガラス糸をボビンに巻いた状態であるボビン単位、ガラスフィラメント糸を数十本束ねて合糸したガラスロービング、又はガラスフィラメント糸を数mm~数十mmにカットしたチョップドストランドの商品形態で出荷されることもある。ボビン単位から原糸が経糸及び/又は緯糸として製織工程に供されることができる。ガラスロービングはガラス繊維強化プラスチック(FRP、FRTP)の原材料として使用され、チョップドストランドは熱可塑性樹脂の補強材として使用される。
【0005】
複数本の繊維モノフィラメントをフィラメント糸に集束する工程、ケーキからフィラメント糸を巻き戻す工程、製織工程、又は加工工程において、繊維モノフィラメント同士が接触して擦れ合うため、ガラス繊維モノフィラメントが部分的に切断したり、切断したまま織り込まれたりするという毛羽欠陥が発生することがある。毛羽欠陥は、作業性を悪化させるだけでなく、最終製品の品質に影響することもある。従来、製織工程において糸切れによる緯入れミス発生を抑制する観点から、織機の制御方法が検討されていた(例えば、特許文献1を参照)。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2019-196556号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
例えば、特許文献1に記述されるとおり、エアジェットで飛ばした緯糸の到達時間を検出する技術が知られている。
【0008】
しかしながら、従来の織機及びその制御方法には、生産性、経済性、エコロジー及び/又はグリーン技術の観点から改良の余地がある。
【0009】
したがって、本発明は、生産性及び経済性を向上させるだけでなくエコロジー・グリーン技術としても有用な異常検知システム、織機上での原糸異常検知・予測システム、又はフィラメント糸の毛羽検知システムを提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明者らは、鋭意検討した結果、製造プロセスにおいて低品質な中間体又は製品を作る状況を検知し、必要に応じて製造装置の運転を停止可能にすることにより上記課題を解決し得ることを見出し、本発明を完成させた。したがって、本開示は、以下の態様を包含する。
<1>
織機の緯入れにおいて緯糸の到達タイミングのばらつき度合いに基づき前記緯糸の異常度を判定し、前記異常度が所定値以上の場合に前記織機を停止可能な異常検知システム。
<2>
前記異常度が所定値以上の場合に、画面表示、印刷、官能刺激、及びデータ送信から成る群から選択される少なくとも1つにより前記異常度の判定結果を示す、項目1に記載の異常検知システム。
<3>
フィラメント糸の毛羽検知システムであって、
異常度算出式記憶手段に記憶された算出式を用いて、織機の緯入れにおいて緯糸の到達タイミングのばらつき度合いから前記緯糸の異常度を算出する異常度計算手段と、前記異常度が所定値以上の場合に前記織機に運転停止信号を送る織機異常停止手段と、を備える毛羽検知システム。
<4>
前記異常度が所定値以上の場合に、アラームを上げる織機異常警報手段を備える、項目3に記載の毛羽検知システム。
<5>
前記算出式は、前記緯入れにおいてセンサの測定値列に基づいて緯糸の異常度を計算する関数又は対応表を含む、項目3又は4に記載の毛羽検知システム。
<6>
特徴量変換式記憶手段に記憶された変換式を用いて、前記ばらつき度合いを特徴量に変換する特徴量変換手段を備える、項目3~5のいずれか1項に記載の毛羽検知システム。
<7>
前記変換式は、前記緯入れにおいてセンサの測定値列を特徴量に変換する関数又は対応表を含む、項目6に記載の毛羽検知システム。
<8>
前記特徴量は、前記到達タイミングの平均、分散又は分布である、項目6又は7に記載の毛羽検知システム。
<9>
緯糸異常判定式記憶手段に記憶された判定式を用いて、前記緯糸が異常か否かを判定する緯糸異常判定手段を備える、項目3~8のいずれか1項に記載の毛羽検知システム。
<10>
前記判定式は、前記異常度、又はその推移に基づいて製織中に前記緯糸が品質基準を満たしているか否かを判断する関数又は合否マップを含む、項目9に記載の毛羽検知システム。
<11>
前記織機が設置されている場所の周囲環境情報を収集する織機設置環境情報収集手段を備える、項目3~10のいずれか1項に記載の毛羽検知システム。
<12>
前記周囲環境情報が、温度、湿度、及び風向から成る群から選択される少なくとも1つである、項目11に記載の毛羽検知システム。
<13>
前記緯糸の一部について前記緯入れ前の物性情報を記憶している緯糸事前物性情報記憶手段を備える、項目3~12のいずれか1項に記載の毛羽検知システム。
<14>
前記織機の特性情報を記憶している織機特性情報記憶手段を備える、項目3~13のいずれか1項に記載の毛羽検知システム。
<15>
前記織機の特性情報が、前記織機の機種、メンテナンス回数、直近メンテナンス日時、メンテナンス手段、及び前記織機に含まれる筬の機種から成る群から選択される少なくとも1つである、項目14に記載の毛羽検知システム。
<16>
前記特徴量を蓄積し、蓄積された特徴量に基づいて所定の評価基準を満たすように、前記異常度算出式記憶手段に記憶された前記算出式を回分変更する異常度算出式事前変更手段を備える、項目6~8のいずれか1項に記載の毛羽検知システム。
<17>
前記特徴量を蓄積し、蓄積された特徴量に基づいて正常な状態と異常な状態を逐次的に学習し、前記正常な状態と前記異常な状態に基づいて、前記異常度算出式記憶手段に記憶された前記算出式を逐次変更する異常度算出式逐次変更手段を備える、項目6~8のいずれか1項に記載の毛羽検知システム。
<18>
前記異常度算出式逐次変更手段は、前記算出式中のパラメータ又は閾値を逐次変更する、項目17に記載の毛羽検知システム。
<19>
前記特徴量の列の変化、及び/又は前記織機の停止時間を検出することで前記緯糸の交換を検出し、前記特徴量への変換式、及び/又は前記異常度の算出式を調節する緯糸変更検知手段を備える、項目6~8、及び16~18のいずれか1項に記載の毛羽検知システム。
<20>
オフラインで使用される、項目3~19のいずれか1項に記載の毛羽検知システム。
<21>
インラインで使用される、項目3~19のいずれか1項に記載の毛羽検知システム。
【発明の効果】
【0011】
本発明によれば、異常検知システム、織機上での原糸異常検知・予測システム、及びフィラメント糸の毛羽検知システムが提供され、それらにより、低品質な中間体又は製品を作り続けてしまう状況を検知し、必要に応じて製造装置を停止することができるので、生産性及び経済性を向上させるだけでなく、エコロジー及びグリーン技術として環境に配慮することもできる。
【図面の簡単な説明】
【0012】
図1】本発明の一実施形態に係る毛羽検知システムの構成を模式的に説明する概略図であり、織機の概略図(a)と毛羽検知システムの概略図(b)を表す。
図2】本発明の一実施形態に係る毛羽検知方法のフローチャートである。
図3】本発明の好ましい実施形態に係る毛羽検知システムの構成を模式的に説明する概略図である。
図4】予測検知アルゴリズムの一例を表すフローチャートである。
図5】本発明の一実施形態に係る毛羽検知システムを含むプロセスフロー全体を模式的に説明する概略図である。
【発明を実施するための形態】
【0013】
以下、本発明を実施するための形態(以下、「実施形態」という)について図面を参照しながら詳細に説明するが、本発明は、以下に説明する実施形態又は図面に限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
【0014】
〔第一の実施形態〕
第一の実施形態では、織機の緯入れにおいて緯糸の到達タイミングのばらつき度合いに基づき緯糸の異常度を判定し、その異常度が所定値以上の場合には織機を停止可能な異常検知システムが提供される。第一の実施形態に係る異常検知システムは、低品質な中間体又は製品を作り続けてしまう異常な状況を検知し、必要に応じて織機を停止して、生産性及び経済性を向上させることでき、かつエコ・グリーン技術としても有用である。
【0015】
第一の実施形態に係る異常検知システムは、経糸及び緯糸を用いて織機により緯入れを行なう分野において、異常を検知する装置又は方法として使用されることができる。例えば、製織工程、フィラメント糸の製織加工工程等において緯入れが行われる。ガラスフィラメント糸を用いる場合には、第一の実施形態に係る異常検知システムは、ガラスクロスの製造、及びプリント配線板のための原材料の製造において使用されることが好ましい。
【0016】
緯糸の到達タイミングは、筬に配置された経糸に対して緯糸を配置する装置、及び緯入れの開始と終了を検知する装置等により、例えば、圧力、圧力の角度、レーザー光の遮蔽度合い等として計測されることができる。複数の緯糸の到達タイミングのばらつき度合い及びそれに基づく異常度の判定は、演算処理部を含む計算部品、及び/又は記憶媒体により行われることができる。計算部品及び/又は記憶媒体は、モニタ等の表示部、又はモデム等の発信装置を備えてよい。
【0017】
異常度の所定値は、例えば、原糸の欠陥、緯糸の毛羽欠陥、緯糸ボビンの欠陥、織機欠陥等に起因して、単数又は複数が予め定められ、記憶媒体に記憶されることができる。織機の停止手段は、織機を物理的に停止する部品、織機に停止信号を送達する部品、織機に停止信号を発信する部品、又はそれらの組み合わせでよく、そして織機に当接したり、織機から離間して配置したりすることができる。
【0018】
第一の実施形態に係る異常検知システムは、上記で説明された異常度が所定値以上の場合には、異常度の判定結果を示して警報を上げることが好ましく、画面表示、印刷、官能刺激、及びデータ送信から成る群から選択される少なくとも1つにより異常度の判定結果を示すことがより好ましい。画面表示、及びデータ送信は、上記で説明された表示部及び発信装置等により同時に又は個別に行われることができる。印刷は、印刷機により被印刷媒体に判定結果を刷ることにより行われる。官能刺激としては、ヒトの感覚を刺激して警報を上げることができる限り、任意の刺激でよく、例えば、発音、発光、発香、変音、変色、変形、変温等でよい。
【0019】
第一の実施形態に係る異常検知システムは、例えば、オフライン又はインラインで使用されることができる。
【0020】
〔第二の実施形態〕
第二の実施形態では、フィラメント糸の毛羽検知システムであって、
異常度算出式記憶手段に記憶された算出式を用いて、織機の緯入れにおいて緯糸の到達タイミングのばらつき度合いから緯糸の異常度を算出する異常度計算手段と、
算出された異常度が所定値以上の場合に織機に運転停止信号を送る織機異常停止手段と
を備える毛羽検知システムが提供される。
【0021】
第二の実施形態に係る毛羽検知システムは、異常度計算手段、及び織機異常停止手段を備えることにより、毛羽欠陥のあるフィラメント糸又はガラスクロスを作り続けてしまう状況を検知し、必要に応じて織機の運転を停止して、生産性及び経済性を向上させることでき、かつエコ・グリーン技術としても有用である。
【0022】
第二の実施形態では、測定値を特徴量に変換した後に、過去の正常な挙動時、及び異常な挙動時の特徴量と比較して異常度を算出し、数値又はグラフで表示することができる。このため、測定値を収集しない場合又は表示しない場合と比較して、緯糸の異常を逐次知ることが可能となり、異常度が高い場合には織機を停止することで品質の悪い織物の生産を最小限に抑えることができる。
【0023】
第二の実施形態に係るフィラメント糸の毛羽検知システムは、例えば、オフライン又はインラインで使用されることができる。
【0024】
〔第三の実施形態〕
第三の実施形態では、第一と第二の実施形態に係る構成を組み合わせたフィラメント糸の毛羽検知システムが提供される。
【0025】
第一、第二及び第三の実施形態に共通する構成、又は他の構成、並びに好ましい実施形態について、以下に説明する。
【0026】
〔構成〕
図1には、織機200(a)と毛羽検知システム100(b)の構成が模式的に示される。図1(a)を参照すると、織機200は、ボビン210、メタルファイバー検知器220、ピン230付きFDP240、筬250、電空レギュレータ260付きメインノズル270、サブノズル280、カッター290、フィーラ300等を備える。緯入れは、緯糸ボビン210から緯糸を繰り出して、メインノズル270から緯糸を、例えばエアジェット等により、筬250に配置された経糸に対して進行させることにより行われることができる。緯入れは、任意の機台角度で行われることができ、例えば90°~240°の機台角度で行われる。
【0027】
メインノズル270、及びサブノズル280は、それぞれ緯入れ用のノズルとして設けられたものである。メインノズル270は、緯糸搬送方向の上流側に配置され、他方、サブノズル280は、メインノズル270よりも緯糸搬送方向の下流側に配置されている。メインノズル270は、単数で設けられ、他方では、サブノズル280が複数設けられている。
【0028】
メインノズル270は、メインバルブ(図示せず)が開状態のときにエアを噴射し、メインバルブが閉状態のときにエアの噴射を停止する。メインノズル270又はメインバルブは、検知システムの織機異常停止手段と、物理的に、電気的に、又はデータ連通的に、接続されることができる。
【0029】
メインノズル270には電空レギュレータ260を接続して、エアコンプレッサ(図示せず)で生成された圧縮エアの圧力を調整することができる。圧縮エアは、メインバルブ(図示せず)を介してメインノズル270に供給されて緯糸を飛ばすために使用される。電空レギュレータ260は、検知システムの織機異常停止手段と、物理的に、電気的に、又はデータ連通的に、接続されることができる。
【0030】
複数のサブノズル280は、それぞれに対応するサブバルブ(図示せず)の開閉状態に応じてエアを噴射または停止する。複数のサブノズル280は、図1に示されるとおり筬250の長手方向に沿うように配置されることができ、かつ/又はサブノズル方向は、メインノズル270の射出方向に対して約45°の角度を成すように設定されることができる。サブノズル280には、メインノズル270と同様に、バルブ、エアコンプレッサ、レギュレータ、検知システムの織機異常停止手段等が接続されることができる。
【0031】
フィーラ300は、メインノズル270、及びサブノズル280から、それぞれエアを噴射して緯糸を緯入れする際に、その緯糸が予め設定された所定の位置に到達したか否かを検知するものであり、到達センサ(13)と呼ばれることもある。所定の位置は、筬250の長手方向において、メインノズル270から遠い側となる緯入れ終端側に、織布の織幅に合わせて設定されることができる。
【0032】
フィーラ300は、例えば光学式センサによって構成される。フィーラ300は、緯入れ用ノズルからのエア噴射によって筬250の長手方向に搬送される緯糸の先端部が所定の位置に到達したときに検知信号を出力することができる。したがって、緯糸が所定の位置に到達する緯糸到達タイミングは、フィーラ300が検知信号を出力したタイミングでよい。
【0033】
図1(b)を参照すると、異常又は毛羽の検知システム100は、メインノズルセンサ11、サブノズルセンサ12、及び到達センサ13等を備える入力装置1と、プログラム制御により動作するデータ処理装置2と、情報を記憶する記憶装置3と、ディスプレイ装置、モバイル端末機器又は印刷装置等の出力装置4とを含む。
【0034】
入力装置1において、メインノズルセンサ11、サブノズルセンサ12、及び到達センサ13は、それぞれメインノズル270、サブノズル280、及びフィーラ300に物理的に、電気的に、又はデータ連通的に、接続されることができる。また、フィーラ300そのものが、到達センサ13でもよい。
【0035】
メインノズルセンサ11は、例えば、緯糸のエアジェット開始タイミング、緯入れ回数、緯入れ圧力、緯糸の種類、緯糸の本数などを検知し、信号として出力する。中でも、メインノズルセンサ11は、圧力、緯糸の本数、又は緯入れ回数を検知・出力することが好ましい。
【0036】
サブノズルセンサ12は、例えば、緯入れ回数、緯入れ圧力、緯入れ方向の補整回数、緯糸の種類、緯糸の本数、メインノズル状態などを検知し、信号として出力する。中でも、サブノズルセンサ12は、圧力を検知・出力することが好ましい。
【0037】
到達センサ13は、緯糸が所定の位置に到達する緯糸到達タイミング、緯入れ回数、緯入れ圧力、緯糸の種類、緯糸の本数などを検知し、信号として出力する。中でも、到達センサ13は、光学式センサにより緯糸到達タイミングを検知・出力することが好ましい。なお、緯入れについては、到達タイミング=到達角度として把握することができる。
【0038】
記憶装置3は、特徴量変換式記憶部31と、異常度算出式記憶部32と、緯糸異常判定式記憶部33とを備えている。
【0039】
特徴量変換式記憶部31は、各センサの測定値列を、異常度を計算するために用いる特徴量へと変換するための関数又は対応表などの変換式を予め記憶している。関数の例としては、平均、分散又は分布などの基本統計量などがある。
【0040】
異常度算出式記憶部32は、各特徴量を基にして、緯糸の異常度を算出するために用いる事前に用意した関数又は対応表などの算出式を予め記憶している。関数の例としては、回帰式、又はIf-thenルールに基づく決定木などがある。
【0041】
緯糸異常判定式記憶部33は、異常度、又はその推移に基づいて製織中の緯糸が品質基準を満たしているか否かを判断するために用いる関数、合否マップ、又は対応表などの判定式を予め記憶している。関数の例としては、異常度が閾値以上の状態が一定区間を超えた場合に初めて異常と判定する逐次検定などがある。
【0042】
データ処理装置2は、特徴量変換手段21と、異常度計算手段22と、緯糸異常判定手段23とを備える。
【0043】
特徴量変換手段21は、入力装置1から与えられた測定値列を関数又は対応表の入力として、特徴量変換式記憶部31に記憶された変換式を用いて特徴量に変換する。特徴量は、上記で説明された到達タイミングの平均、分散又は分布でよい。
【0044】
異常度計算手段22は、特徴量変換手段21で変換された測定値の特徴量を入力として、異常度算出式記憶部32に記憶された算出式を用いて異常度を算出する。
【0045】
緯糸異常判定手段23は、異常度計算手段22で計算された測定値の異常度を入力として、緯糸異常判定記憶部33に記憶された判定式を用いて緯糸が異常か否かを判定する。
【0046】
〔動作〕
図1及び図2を参照して、第一、第二又は第三の実施形態に係る検知システムの動作について詳細に説明する。図2には、毛羽検知方法のフローチャートが示される。
【0047】
入力装置1から与えられた測定値列は、特徴量変換手段21に供給される(ステップA1)。
【0048】
特徴量変換手段21は、この測定値列を特徴量変換式記憶部31に記憶された変換式に入力する。この変換式は、測定値の平均や分散や分布などを特徴量として出力し、この特徴量を異常度計算手段22に与え、また同時に、特徴量の推移を出力装置4に数値又はグラフで出力する(ステップA2)。
【0049】
次に、異常度計算手段22は、特徴量変換手段21で変換された測定値の平均や分散や分布などの特徴量を受け取り、異常度算出式記憶部32に記憶された算出式を用いて異常度を算出する。この算出式は、過去の正常な挙動時および異常な挙動時の特徴量に基づいて、異常であることの蓋然性が高い場合に高い異常度を算出する。この異常度を緯糸異常判定手段23に与え、また同時に、異常度の推移を出力装置4に数値又はグラフで出力する(ステップA3)。
【0050】
次に、緯糸異常判定手段23は、異常度計算手段22で計算された測定値の異常度を受け取り、緯糸異常判定記憶部33に記憶された判定式を用いて緯糸が異常か否かを判定する。この判定式は、異常度列が一定区間において連続して高い指標を示す場合など、異常であることの蓋然性が高い場合に異常が起こっていると判定し、また同時に、異常判定結果の推移を出力装置4に数値又はグラフで出力する(ステップA4)。
【0051】
〔好ましい実施形態〕
図3には、本発明の好ましい実施形態に係る検知システムの構成が模式的に示される。好ましい実施形態に係る異常又は毛羽検知システム100は、上記で説明された構成に加えて、織機設置環境センサ14、緯糸事前物性情報記憶部34、織機特性情報記憶部35、異常度算出式事前変更手段24、異常度算出式逐次変更手段25、緯糸変更検知手段5、織機異常警報装置41、及び織機異常停止装置42から成る群から選択される少なくとも1つを備える。
【0052】
織機設置環境センサ14は、織機が設置されている場所の温度、湿度、風向などの周囲環境の状況又は情報をデータ収集する。これらのデータを用いることで、織機が設置されている環境の影響を反映し、環境が変化した場合は、その影響を異常度の算出に織り込むことができる。
【0053】
緯糸事前物性情報記憶部34は、事前に緯糸の一部の状態を検査機で詳細に検査した結果などの物性情報を記憶している。検査結果の例としては、緯糸の切れ、緩みの数などがあり、これらの事前情報を特徴量として取り込むことで、より精度の高い異常度の算出が可能となる。
【0054】
織機特性情報記憶部35は、各織機のメーカーや機種、メンテナンスの手段や回数、直近メンテナンス日時、織機に含まれる筬の種類や機種などの織機の特性情報を記憶している。異常度算出時にこれらの情報に基づいてパラメータ又は閾値を調整することで、各織機に応じたより精度の高い異常度の算出が可能となる。
【0055】
異常度算出式事前変更手段24は、過去の一定期間に収集して変換された特徴量を蓄積し、その特徴量に基づいて、ある一定の又は所定の評価基準を満たすように、異常度算出式記憶部32の算出式を変更する。この算出式の変更は回分で行われることが好ましい。評価基準としては、異常度だけでなく異常の種類を細分化して出力するものもある。
【0056】
異常度算出式逐次変更手段25は、過去の一定期間に収集して変換された特徴量を蓄積し、その特徴量に基づいて、正常な状態と異常な状態を逐次的に学習し、それらに伴い、異常度算出式記憶部32の算出式のパラメータ又は閾値を逐次変更する。これにより、周囲環境や織機、緯糸の緩やかな変化に追従した評価基準に基づく異常度を算出することが可能となる。
【0057】
緯糸変更検知手段5は、特徴量列の変化、及び/又は織機の停止時間を検出することで緯糸の交換を検出し、特徴量への変換式、及び/又は異常度の算出式を調節する。この算出結果を用いることで、緯糸が交換されたことが自動的に判断でき、緯糸事前物性情報記憶部から該当する緯糸の情報を引き出すことが容易となる。
【0058】
織機異常警報装置41は、出力装置4に集められた結果を統合し、緯糸が異常と判定される場合には織機のオペレータにアラームを上げることにより織機運転継続の可否判断を求める。
【0059】
織機異常停止装置42は、出力装置4に集められた結果を統合し、緯糸が異常と判定される場合には織機に停止信号を送ることにより織機の運転を強制的に停止する。
【0060】
〔予測検知アルゴリズム〕
図4には、予測検知アルゴリズムのフローチャートが例示される。到達タイミング=到達角度とすると、予測検知アルゴリズムは、緯糸の到達角度などの織機データ収集、緯糸の到達角度の統計量への変換に続いて、到達角度の標準偏差、歪度、及び尖度の項目に基づいて毛羽個数(n1,n2,n3,n4,n5,n6,n7…)を予測検知する。なお、予測検知アルゴリズムとしては、回帰木が例示されるが、それに限定する必要はなく、例えば、Trevor Hastie,Robert Tibshirani,Jerome Friedman著「統計的学習の基礎-データマイニング・推論・予測-」(共立出版)に記載の回帰手法、分類手法、ニューラルネットワーク、SVM、ランダムフォレスト等を用いてよい。また、予測検知アルゴリズムの階層については、単層、又は複数の階層でよく、到達角度の標準偏差、歪度、及び尖度の項目の組み合わせ、置換、又は並べ替えを含んでよい。
【0061】
図4に示される予測検知アルゴリズムは、毛羽検知システムに組み込まれ、好ましくは、異常度計算手段、織機異常停止手段、異常度算出式事前変更手段24、異常度算出式逐次変更手段25、及び緯糸変更検知手段5の少なくとも1つに組み込まれ、織機が低品質又は品質の悪いクロスを作り続けないようにすることができる。
【0062】
〔フィラメント糸の毛羽検知方法〕
本発明のフィラメント糸の毛羽検知方法は、上述の異常度計算手段と織機異常停止手段を備える毛羽検知装置を用いて実行される。より詳細には、フィラメント糸の毛羽検知方法において、次の工程:
異常度算出式記憶手段に記憶された算出式を用いて、織機の緯入れにおいて緯糸の到達タイミングのばらつき度合いから緯糸の異常度を算出する異常度計算工程と、
上記異常度が所定値以上の場合には、織機に運転停止信号を送る織機異常停止工程と
を実行する。
【0063】
フィラメント糸の毛羽検知方法は、例えば図2に示されるフローチャートに沿って、行われることができる。
【0064】
〔製織加工の全体プロセスフロー〕
図5には、上記で説明された毛羽検知システムを含む製織加工プロセスフロー全体図が、模式的に示される。プロセスフローの上流から下流へ向けて、(糸の)表層検査機400、センシング対応織機201、及び毛羽検査機500が配置されており、そして本発明に係る異常又は毛羽検知システムは、プロセスフローの検査工程に組み込まれることができる。
【0065】
代替的には、異常又は毛羽検知システムの記憶装置3、データ処理装置2、出力装置4などは、システムから孤立した場所に、データ連通して、又はクラウド上に存してよい。
【0066】
全体プロセスフローは、アプリケーション基盤6と分析基盤7に大別され、両基盤はデータサーバ678により重複又は連結される。
【0067】
アプリケーション基盤6は、データ収集及び処理を自動化して、データ精度を向上させたり、オペレータの作業負担を軽減したりする。アプリケーション基盤6は、データサーバ678と表層検査機400の間では、糸径、糸欠陥等のデータ(ii)を送受信し、データサーバ678とセンシング対応織機201の間では、製織時又は緯入れ時の波形データ、緯糸データ等のデータ(iii)、及び毛羽検知データ(iv)を送受信し、所望により表示装置9により送受信データを表示し、そしてデータサーバ678と毛羽検査機500の間では、毛羽検査データ(v)を送受信する。
【0068】
表層検査機400は、例えばMT法を用いて、糸又はボビンの表層を検査して、糸径、糸欠陥などのデータ(ii)を採取・収集してデータサーバ679へ送達し、他方では、アプリケーション基盤6から糸の合否に関する信号を受信し、使用糸の係属又は変更を決定することができる。
【0069】
センシング対応織機201は、例えば圧力センサ、到達(飛走)センサなどを備えて、それらにより製織時又は緯入れ時の波形データ、緯糸データ等のデータ(iii)を採取・収集してデータサーバ679へ送達する。他方では、データサーバに記憶された予測モデルに基づく前処理と、それに続く推論処理を施された毛羽検知データ(iv)をセンシング対応織機201が受信して、織機の運転又は停止を決定することができる。
【0070】
毛羽検査機500は、得られた織物又はクロスの毛羽の有無又は詳細を実測して、毛羽検査データ(v)をデータサーバへ送達し、他方では、アプリケーション基盤6から織物又はクロスの合否に関する信号を受信し、さらに例えば拡張音声サービス(EVS)等により情報をオペレータ又は周囲環境に伝達することができる。
【0071】
分析基盤7は、分析サイクルを高速化し、検知性能を向上させたり、検査機又は織機の状態変化又は環境変化に適応したりする。分析基板は、コンピュータ、演算処理装置、記憶媒体などを含む分析手段10を備えており、データサーバ678から各種データ(ii~v)を受信し、分析して、予測モデル(i)を構築してデータサーバ678に送達する。分析基盤7は、データサーバ678と分析手段の間でのデータ送受信、及びそれに伴う機械学習や深層学習により、分析サイクルの高速化と検知性能の向上に寄与し得る。
【0072】
上記で説明された検知プロセスによれば、欠陥の可能性がある糸を使用前に変更したり、低品質な中間体又は製品を作り続けてしまう状況を検知して織機を停止したり、得られた織物又はクロスの合否を瞬時に判定したりすることができるので、生産性及び経済性を向上させ、かつ資源の観点から環境に配慮することができる。
【符号の説明】
【0073】
100 検知システム
1 入力装置
11 メインノズルセンサ
12 サブノズルセンサ
13 到達センサ
14 織機設置環境センサ
2 データ処理装置
21 特徴量変換手段
22 異常度計算手段
23 緯糸異常判定手段
24 異常度算出式事前変更手段
25 異常度算出式逐次変更手段
3 記憶装置
31 特徴量変換式記憶部
32 異常度算出式記憶部
33 緯糸異常判定式記憶部
34 緯糸事前物性情報記憶部
35 織機特性情報記憶部
4 出力装置
41 織機異常警報装置
42 織機異常停止装置
5 緯糸変更検知手段
図1
図2
図3
図4
図5