(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022167804
(43)【公開日】2022-11-04
(54)【発明の名称】イメージセンサ
(51)【国際特許分類】
H01L 27/146 20060101AFI20221027BHJP
H04N 5/374 20110101ALI20221027BHJP
【FI】
H01L27/146 A
H01L27/146 D
H04N5/374
【審査請求】未請求
【請求項の数】20
【出願形態】OL
(21)【出願番号】P 2022059835
(22)【出願日】2022-03-31
(31)【優先権主張番号】10-2021-0052989
(32)【優先日】2021-04-23
(33)【優先権主張国・地域又は機関】KR
(71)【出願人】
【識別番号】390019839
【氏名又は名称】三星電子株式会社
【氏名又は名称原語表記】Samsung Electronics Co.,Ltd.
【住所又は居所原語表記】129,Samsung-ro,Yeongtong-gu,Suwon-si,Gyeonggi-do,Republic of Korea
(74)【代理人】
【識別番号】110000051
【氏名又は名称】弁理士法人共生国際特許事務所
(72)【発明者】
【氏名】鄭 閔 至
(72)【発明者】
【氏名】薛 斗 植
(72)【発明者】
【氏名】安 成 ミン
(72)【発明者】
【氏名】李 卿 徳
(72)【発明者】
【氏名】李 景 鎬
(72)【発明者】
【氏名】鄭 勝 基
(72)【発明者】
【氏名】鄭 有 珍
(72)【発明者】
【氏名】鄭 泰 燮
(72)【発明者】
【氏名】趙 鼎 鎭
(72)【発明者】
【氏名】藤田 雅人
【テーマコード(参考)】
4M118
5C024
【Fターム(参考)】
4M118AA05
4M118AB01
4M118AB03
4M118BA14
4M118BA19
4M118CA04
4M118CA18
4M118CA20
4M118CA24
4M118CA32
4M118CA34
4M118CB01
4M118DD04
4M118DD12
4M118FA06
4M118FA27
4M118FA28
4M118FA33
4M118GA02
4M118GB02
4M118GB07
4M118GB09
4M118GB11
4M118GB12
4M118GB15
4M118GB16
4M118GB17
4M118GC01
4M118GC08
4M118GC14
4M118GD04
4M118HA22
4M118HA24
4M118HA25
4M118HA33
5C024AX01
5C024CY17
5C024DX01
5C024EX12
5C024EX43
5C024EX52
5C024GY31
(57)【要約】
【課題】性能を向上させたイメージセンサを提供する。
【解決手段】本発明のイメージセンサは、光が入射する第1面及び第1面に対向する第2面を含む基板と、基板内に互いに隣接する第1単位ピクセル及び第2単位ピクセルを定義するピクセル隔離パターンと、第1単位ピクセル内に第1方向に沿って配列された第1光電変換部及び第2光電変換部と、第1光電変換部と第2光電変換部との間の基板内に第1方向に交差する第2方向に延びる第1分離パターンと、第2単位ピクセル内に第2方向に沿って配列された第3光電変換部及び第4光電変換部と、第3光電変換部と第4光電変換部との間の基板内に第1方向に延びる第2分離パターンと、を備え、ピクセル隔離パターンの幅、第1の分離パターンの幅、及び第2分離パターンの幅は、それぞれ基板の第2面から基板の第1面に向向かうにつれて減少する。
【選択図】
図3
【特許請求の範囲】
【請求項1】
光が入射する第1面及び前記第1面に対向する第2面を含む基板と、
前記基板内に互いに隣接する第1単位ピクセル及び第2単位ピクセルを定義するピクセル隔離パターンと、
前記第1単位ピクセル内に第1方向に沿って配列された第1光電変換部及び第2光電変換部と、
前記第1光電変換部と前記第2光電変換部との間の前記基板内に前記第1方向に交差する第2方向に延びる第1分離パターンと、
前記第2単位ピクセル内に前記第2方向に沿って配列された第3光電変換部及び第4光電変換部と、
前記第3光電変換部と前記第4光電変換部との間の前記基板内に前記第1方向に延びる第2分離パターンと、を備え、
前記ピクセル隔離パターンの幅、前記第1分離パターンの幅、及び前記第2分離パターンの幅は、それぞれ前記基板の前記第2面から前記基板の前記第1面に向かうにつれて減少することを特徴とするイメージセンサ。
【請求項2】
前記基板は、第1導電型の不純物を含み、
それぞれの前記第1~第4光電変換部は、前記第1導電型とは異なる第2導電型の不純物を含む光電変換領域を含むことを特徴とする請求項1に記載のイメージセンサ。
【請求項3】
前記ピクセル隔離パターン、前記第1分離パターン、及び前記第2分離パターンは、それぞれ前記基板の前記第2面から前記基板の前記第1面まで延びることを特徴とする請求項1に記載のイメージセンサ。
【請求項4】
前記ピクセル隔離パターン、前記第1分離パターン、及び前記第2分離パターンは、それぞれ同じレベルで形成されることを特徴とする請求項1に記載のイメージセンサ。
【請求項5】
前記ピクセル隔離パターン、前記第1分離パターン、及び前記第2分離パターンのそれぞれは、
導電物質を含むフィリングパターンと、
前記フィリングパターンの側面に沿って延びて前記基板から前記フィリングパターンを分離する絶縁スペーサと、を含むことを特徴とする請求項1に記載のイメージセンサ。
【請求項6】
前記第1分離パターン及び前記第2分離パターンは、それぞれ前記ピクセル隔離パターンの側面から突出することを特徴とする請求項1に記載のイメージセンサ。
【請求項7】
前記第1分離パターンは、前記第2方向で互いに離隔される第1サブ分離パターン及び第2サブ分離パターンを含み、
前記第2分離パターンは、前記第1方向で互いに離隔される第3サブ分離パターン及び第4サブ分離パターンを含み、
前記第1~第4サブ分離パターンは、それぞれ前記ピクセル隔離パターンの側面から突出することを特徴とする請求項1に記載のイメージセンサ。
【請求項8】
前記第1分離パターン及び前記第2分離パターンは、前記ピクセル隔離パターンから離隔されることを特徴とする請求項1に記載のイメージセンサ。
【請求項9】
前記基板の前記第1面上のマイクロレンズと、
前記基板の前記第2面上の電子素子と、
前記基板の前記第2面上に、前記電子素子に電気的に接続される配線構造体を含むことを特徴とする請求項1に記載のイメージセンサ。
【請求項10】
基板内に第1カラーの光を感知する第1単位ピクセルと、
前記基板内に前記第1単位ピクセルに隣接して前記第1カラーの光を感知する第2単位ピクセルと、を備え、
前記第1単位ピクセルは、第1方向に沿って配列された第1光電変換部及び第2光電変換部を含み、
前記第2単位ピクセルは、前記第1方向に交差する第2方向に沿って配列された第3光電変換部及び第4光電変換部を含むことを特徴とするイメージセンサ。
【請求項11】
前記第1単位ピクセル及び前記第2単位ピクセルのそれぞれを囲むピクセル隔離パターンと、
前記第1光電変換部と前記第2光電変換部との間の前記基板内に前記第2方向に延びる第1分離パターンと、
前記第3光電変換部と前記第4光電変換部との間の前記基板内に前記第1方向に延びる第2分離パターンと、を更に含むことを特徴とする請求項10に記載のイメージセンサ。
【請求項12】
前記基板は、光が入射する第1面及び前記第1面に対向する第2面を含み、
前記ピクセル隔離パターンの幅、前記第1分離パターンの幅、及び前記第2分離パターンの幅は、それぞれ前記基板の前記第2面から前記基板の前記第1面に向かうにつれて減少することを特徴とする請求項11に記載のイメージセンサ。
【請求項13】
前記ピクセル隔離パターン及び前記第1分離パターンは、平面的観点で「H」形状の前記第1単位ピクセルを定義し、
前記ピクセル隔離パターン及び前記第2分離パターンは、平面的観点で「I」形状の前記第2単位ピクセルを定義することを特徴とする請求項11に記載のイメージセンサ。
【請求項14】
前記基板内に前記第1カラーとは異なる第2カラーの光を感知する第3単位ピクセルと、
前記基板内に前記第3単位ピクセルに隣接して前記第2カラーの光を感知する第4単位ピクセルと、を更に含み、
前記第3単位ピクセルは、前記第1方向に沿って配列された第5光電変換部及び第6光電変換部を含み、
前記第4単位ピクセルは、前記第2方向に沿って配列された第7光電変換部及び第8光電変換部を含むことを特徴とする請求項10に記載のイメージセンサ。
【請求項15】
前記第1単位ピクセル及び前記第2単位ピクセルは、第1ピクセルグループを形成し、
前記第3単位ピクセル及び前記第4単位ピクセルは、第2ピクセルグループを形成し、
前記第1ピクセルグループ及び前記第2ピクセルグループは、互いに隣接することを特徴とする請求項14に記載のイメージセンサ。
【請求項16】
基板内に互いに隣接する複数の第1単位ピクセルを含んで第1カラーの光を感知する第1ピクセルグループと、
前記基板内に互いに隣接する複数の第2単位ピクセルを含んで前記第1カラーとは異なる第2カラーの光を感知し、前記第1ピクセルグループに隣接する第2ピクセルグループと、を備え、
前記複数の第1単位ピクセルの各々は、第1方向に沿って配列された第1光電変換部及び第2光電変換部を含み、
前記複数の第2単位ピクセルの各々は、前記第1方向に交差する第2方向に沿って配列された第3光電変換部及び第4光電変換部を含むことを特徴とするイメージセンサ。
【請求項17】
前記第1単位ピクセル及び前記第2単位ピクセルのそれぞれを囲むピクセル隔離パターンと、
前記第1光電変換部と前記第2光電変換部との間の前記基板内に前記第2方向に延びる第1分離パターンと、
前記第3光電変換部と前記第4光電変換部との間の前記基板内に前記第1方向に延びる第2分離パターンと、を更に含むことを特徴とする請求項16に記載のイメージセンサ。
【請求項18】
前記基板は、光が入射する第1面及び前記第1面に対向する第2面を含み、
前記ピクセル隔離パターンの幅、前記第1分離パターンの幅、及び前記第2分離パターンの幅は、それぞれ前記基板の前記第2面から前記基板の前記第1面に向かうにつれて減少することを特徴とする請求項17に記載のイメージセンサ。
【請求項19】
前記第1単位ピクセルは、前記第1光電変換部と前記第2光電変換部とを連結する第1連結部を更に含み、
前記第1連結部の長さは、前記第2方向で前記第1光電変換部の長さ及び前記第2光電変換部の長さよりも小さく、
前記第2単位ピクセルは、前記第3光電変換部と前記第4光電変換部とを連結する第2連結部を更に含み、
前記第2連結部の長さは、前記第1方向で前記第3光電変換部の長さ及び前記第4光電変換部の長さよりも小さいことを特徴とする請求項16に記載のイメージセンサ。
【請求項20】
前記基板は、第1導電型の不純物を含み、
前記第1~第4光電変換部のそれぞれは、前記第1導電型とは異なる第2導電型の不純物を含む光電変換領域を含み、
前記第1連結部及び前記第2連結部は、前記光電変換領域を含まないことを特徴とする請求項19に記載のイメージセンサ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、イメージセンサに関し、より詳細には、シーモス型イメージセンサに関する。
【背景技術】
【0002】
イメージセンサは光学映像を電気信号に変換させる素子である。コンピュータ産業や通信産業の発達につれ、スマートフォン(smartphone)、ウェアラブル機器(wearable device)、デジタルカメラ(digital camera)、PCS(Personal Communication System)、ゲーム機器、警備用カメラ、医療用マイクロカメラなどの多様な分野で性能が向上したイメージセンサが求められている。
【0003】
このようなイメージセンサは電荷結合型(CCD:Charge Coupled Device)イメージセンサやシーモス型(CMOS:Complementary Metal-Oxide Semiconductor)イメージセンサを含む。その中で、シーモス型イメージセンサは駆動方式が簡便で且つ信号処理回路を単一チップに集積できるため製品の小型化が容易である。また、シーモス型イメージセンサは電力消耗が非常に低くバッテリ容量が制限的な製品への適用が容易である。
【0004】
最近ではイメージセンサに形成されるピクセルが向上した受光効率及び光感度(sensitivity)を有するように半導体基板の裏面を介して入射光が照射される裏面照射型(BSI:backside illumination)イメージセンサが研究されている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、上記従来技術に鑑みてなされたものであって、本発明の目的は、性能を向上させたイメージセンサを提供することにある。
【課題を解決するための手段】
【0007】
上記目的を達成するためになされた本発明の一態様によるイメージセンサは、光が入射する第1面及び前記第1面に対向する第2面を含む基板と、前記基板内に互いに隣接する第1単位ピクセル及び第2単位ピクセルを定義するピクセル隔離パターンと、前記第1単位ピクセル内に第1方向に沿って配列された第1光電変換部及び第2光電変換部と、前記第1光電変換部と前記第2光電変換部との間の前記基板内に前記第1方向に交差する第2方向に延びる第1分離パターンと、前記第2単位ピクセル内に前記第2方向に沿って配列された第3光電変換部及び第4光電変換部と、前記第3光電変換部と前記第4光電変換部との間の前記基板内に前記第1方向に延びる第2分離パターンと、を備え、前記ピクセル隔離パターンの幅、前記第1分離パターンの幅、及び前記第2分離パターンの幅は、それぞれ前記基板の前記第2面から前記基板の前記第1面に向かうにつれて減少する。
【0008】
上記目的を達成するためになされた本発明の他の態様によるイメージセンサは、基板内に第1カラーの光を感知する第1単位ピクセルと、前記基板内に前記第1単位ピクセルに隣接して前記第1カラーの光を感知する第2単位ピクセルと、を備え、前記第1単位ピクセルは、第1方向に沿って配列された第1光電変換部及び第2光電変換部を含み、前記第2単位ピクセルは、前記第1方向に交差する第2方向に沿って配列された第3光電変換部及び第4光電変換部を含む。
【0009】
上記目的を達成するためになされた本発明の更に他の態様によるイメージセンサは、基板内に互いに隣接する複数の第1単位ピクセルを含んで第1カラーの光を感知する第1ピクセルグループと、前記基板内に互いに隣接する複数の第2単位ピクセルを含んで前記第1カラーとは異なる第2カラーの光を感知し、前記第1ピクセルグループに隣接する第2ピクセルグループと、を備え、前記複数の第1単位ピクセルの各々は、第1方向に沿って配列された第1光電変換部及び第2光電変換部を含み、前記複数の第2単位ピクセルの各々は、前記第1方向に交差する第2方向に沿って配列された第3光電変換部及び第4光電変換部を含む。
【0010】
本発明のイメージセンサによれば、それぞれ異なる方向に分割された単位ピクセルを有するため、水平方向及び垂直方向の両方に対する自動焦点(AF)機能を遂行することができる。
【図面の簡単な説明】
【0011】
【
図1】一実施形態によるイメージセンサを説明するための例示的なブロック図である。
【
図2】一実施形態によるイメージセンサの単位ピクセルを説明するための例示的な回路図である。
【
図3】一実施形態によるイメージセンサの単位ピクセルを説明するためのレイアウト図である。
【
図4】
図3のA-Aに沿って切断した概略的な断面図である。
【
図5】
図3のB-Bに沿って切断した概略的な断面図である。
【
図6】
図3の第1単位ピクセル及び第2単位ピクセルを説明するためのレイアウト図である。
【
図7】
図3のA-Aに沿って切断した他の概略的な断面図である。
【
図8】
図3のB-Bに沿って切断した他の概略的な断面図である。
【
図9a】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図9b】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図9c】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図9d】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図9e】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図9f】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図10】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図11】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図12】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図13】一実施形態によるイメージセンサの単位ピクセルを説明するためのレイアウト図である。
【
図14a】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図14b】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図14c】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図14d】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図14e】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図14f】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図15】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図16】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図17】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図18】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図19】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図20】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図21】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図22】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図23】一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
【
図24】一実施形態によるイメージセンサを説明するための概略的なレイアウト図である。
【
図25】一実施形態によるイメージセンサを説明するための概略的な断面図である。
【発明を実施するための形態】
【0012】
本明細書で、第1、第2などが多様な素子や構成要素を記述するために使われるが、これらの素子や構成要素はこれらの用語によって制限されないのは勿論である。これらの用語は単に一つの素子や構成要素を他の素子や構成要素から区別するために使用する。従って、以下で言及する第1素子や構成要素は本発明の技術的思想内で第2素子や構成要素であり得るのは勿論である。
【0013】
以下、
図1~
図26を参照して例示的な実施形態による多様なイメージセンサについて説明する。
【0014】
図1は、一実施形態によるイメージセンサを説明するための例示的なブロック図である。
【0015】
図1を参照すると、本実施形態によるイメージセンサは、アクティブピクセルセンサアレイ(APS:active pixel sensor array)10、行デコーダ(Row Decoder)20、行ドライバ(Row Driver)30、列デコーダ(Column Decoder)40、タイミング発生器(Timing Generator)50、相関二重サンプラ(CDS:correlated double sampler)60、アナログデジタルコンバータ(ADC:analog to digital converter)70、及び入出力バッファ(I/O Buffer)80を含む。
【0016】
アクティブピクセルセンサアレイ10は、2次元的に配列された複数の単位ピクセルを含み、光信号を電気的信号に変換する。アクティブピクセルセンサアレイ10は、行ドライバ30からのピクセル選択信号、リセット信号、及び電荷転送信号のような複数の駆動信号によって駆動される。また、アクティブピクセルセンサアレイ10により変換された電気的信号は相関二重サンプラ60に提供される。
【0017】
行ドライバ30は行デコーダ20でデコーディングされた結果によって複数の単位ピクセルを駆動するための多数の駆動信号をアクティブピクセルセンサアレイ10に提供する。単位ピクセルが行列(matrix)形態で配列された場合には各行別に駆動信号が提供される。
【0018】
タイミング発生器50は行デコーダ20及び列デコーダ40にタイミング(timing)信号及び制御信号を提供する。
【0019】
相関二重サンプラ(CDS)60はアクティブピクセルセンサアレイ10で生成された電気的信号を受信して維持(hold)及びサンプリング(sampling)する。相関二重サンプラ60は、特定の雑音レベル(noise level)及び電気的信号による信号レベルを二重にサンプリングし、雑音レベルと信号レベルとの差に該当する差レベルを出力する。
【0020】
アナログデジタルコンバータ(ADC)70は相関二重サンプラ60で出力された差レベルに該当するアナログ信号をデジタル信号に変換して出力する。
【0021】
入出力バッファ80はデジタル信号をラッチ(latch)し、ラッチされた信号は列デコーダ40におけるデコーディング結果によって順次に映像信号処理部(図示せず)にデジタル信号を出力する。
【0022】
図2は、一実施形態によるイメージセンサの単位ピクセルを説明するための例示的な回路図である。
【0023】
図2を参照すると、本実施形態によるイメージセンサは複数の単位ピクセルUPを含む。
【0024】
単位ピクセルUPは行方向及び列方向に沿って行列(matrix)形態で配列される。それぞれの単位ピクセルUPは、光電変換素子(PD1、PD2)、浮遊拡散領域FD、及び制御トランジスタ(TX1、TX2、RX、SX、AX)を含む。
【0025】
本実施形態で、制御トランジスタ(TX1、TX2、RX、SX、AX)は、第1転送トランジスタTX1、第2転送トランジスタTX2、リセットトランジスタRX、選択トランジスタSX、及び増幅トランジスタAXを含む。第1転送トランジスタTX1、第2転送トランジスタTX2、リセットトランジスタRX、及び選択トランジスタSXのゲート電極は駆動信号ライン(TG1、TG2、RG、SG)にそれぞれ連結される。
【0026】
それぞれの単位ピクセルUPは分割された一対の光電変換素子(以下、第1光電変換素子PD1及び第2光電変換素子PD2)を含む。第1光電変換素子PD1及び第2光電変換素子PD2はそれぞれ外部から入射する光の量に比例して電荷を生成する。第1光電変換素子PD1は第1転送トランジスタTX1にカップリングされ、第2光電変換素子PD2は第2転送トランジスタTX2にカップリングされる。
【0027】
浮遊拡散領域FDは、電荷を電圧に切り替える領域であり、寄生キャパシタンスを有して、電荷が累積的に保存される。第1転送トランジスタTX1は、所定のバイアスを印加する第1伝送ラインTG1により駆動され、第1光電変換素子PD1から生成された電荷を浮遊拡散領域FDに伝送する。また、第2転送トランジスタTX2は、所定のバイアスを印加する第2伝送ラインTG2により駆動され、第2光電変換素子PD2から生成された電荷を浮遊拡散領域FDに伝送する。
【0028】
本実施形態で、第1転送トランジスタTX1及び第2転送トランジスタTX2は浮遊拡散領域FDを共有する。例えば、第1転送トランジスタTX1の一端は第1光電変換素子PD1に連結され、第1転送トランジスタTX1の他端は浮遊拡散領域FDに連結される。また、第2転送トランジスタTX2の一端は第2光電変換素子PD2に連結され、第2転送トランジスタTX2の他端は浮遊拡散領域FDに連結される。
【0029】
リセットトランジスタRXは浮遊拡散領域FDを周期的にリセットする。リセットトランジスタRXは所定のバイアスを印加するリセットラインRGにより駆動される。リセットトランジスタRXがターンオン(turn-on)すると、リセットトランジスタRXのドレインに提供される所定の電気的ポテンシャル、例えば電源電圧VDDが浮遊拡散領域FDに伝達される。
【0030】
増幅トランジスタAXは第1光電変換素子PD1及び第2光電変換素子PD2から電荷の伝達を受けた浮遊拡散領域FDの電位変化を増幅してこれを出力電圧VOUTとして出力する。増幅トランジスタAXは浮遊拡散領域FDの電荷量に比例してソース-ドレイン電流を発生させるソースフォロワバッファアンプ(source follower buffer amplifier)である。例えば、増幅トランジスタAXのゲート電極は浮遊拡散領域FDに連結される。これにより、増幅トランジスタAXのドレインに提供される所定の電気的ポテンシャル、例えば電源電圧VDDが選択トランジスタSXのドレイン領域に伝達される。
【0031】
選択トランジスタSXは行単位で読み取る単位ピクセルUPを選択する。選択トランジスタSXは所定のバイアスを印加する選択線SGにより駆動される。これにより、選択トランジスタSXにより選択された単位ピクセルUPの出力電圧VOUTが出力される。
【0032】
図3は、一実施形態によるイメージセンサの単位ピクセルを説明するためのレイアウト図である。
図4は、
図3のA-Aに沿って切断した概略的な断面図である。
図5は、
図3のB-Bに沿って切断した概略的な断面図である。
図6は、
図3の第1単位ピクセル及び第2単位ピクセルを説明するためのレイアウト図である。
【0033】
図3~
図6を参照すると、本実施形態によるイメージセンサは、第1基板110、単位ピクセル(UP1~UP4)、ピクセル隔離パターン120、第1分離パターン(122a、122b)、第2分離パターン(124a、124b)、第1配線構造体IS1、表面絶縁膜140、カラーフィルタ(170a、170b)、及びマイクロレンズ180を含む。
【0034】
第1基板110は半導体基板である。例えば、第1基板110はバルクシリコン又はSOI(silicon-on-insulator)である。第1基板110はシリコン基板であるか、又は他の物質、例えば、シリコンゲルマニウム、アンチモン化インジウム、鉛テルル化合物、インジウム砒素、インジウムリン化物、ガリウム砒素、又はアンチモン化ガリウムを含む。また、第1基板110はベース基板上にエピ層が形成されたものである。
【0035】
第1基板110は互いに対向する第1面110a及び第2面110bを含む。後述する実施形態で、第1面110aは第1基板110の後面(back side)と称され、第2面110bは第1基板110の前面(front side)と称される。第1基板110の第1面110aは光が入射する受光面である。即ち、本実施形態によるイメージセンサは裏面照射型(BSI)イメージセンサである。
【0036】
一実施形態で、第1基板110は第1導電型の不純物を含む。後述する実施形態で、第1導電型はp型であるもので説明されるが、これは例示的なものであり、第1導電型はn型であり得ることは勿論である。
【0037】
一実施形態で、第1基板110の厚さは約5000nm~約6000nmである。ここで、第1基板110の厚さとは、第1面110a及び第2面110bに交差する第3方向Zでの厚さを意味する。例えば、第1面110aと第2面110bとが離隔される距離H1は約5000nm~約6000nmである。
【0038】
第1基板110内には複数の単位ピクセル(UP1~UP4)が形成される。単位ピクセル(UP1~UP4)は第3方向Zに交差する第1方向X及び第2方向Yを含む平面で2次元的に(例えば、行列形態で)配列される。
【0039】
単位ピクセル(UP1~UP4)は互いに隣接する第1~第4単位ピクセル(UP1~UP4)を含む。例示的に、第1単位ピクセルUP1及び第2単位ピクセルUP2は第1方向Xに沿って配列される。第1単位ピクセルUP1及び第3単位ピクセルUP3は第2方向Yに沿って配列される。第4単位ピクセルUP4は、第2単位ピクセルUP2と第2方向Yに沿って配列され、第3単位ピクセルUP3と第1方向Xに沿って配列される。即ち、第1単位ピクセルUP1及び第4単位ピクセルUP4は対角線方向に沿って配列される。
【0040】
それぞれの単位ピクセル(UP1~UP4)は分割された一対の光電変換部を含む。例えば、第1単位ピクセルUP1は第1光電変換部PD1L及び第2光電変換部PD1Rを含み、第2単位ピクセルUP2は第3光電変換部PD2U及び第4光電変換部PD2Dを含み、第3単位ピクセルUP3は第5光電変換部PD3L及び第6光電変換部PD3Rを含み、第4単位ピクセルUP4は第7光電変換部PD4L及び第8光電変換部PD4Rを含む。
【0041】
これにより、それぞれの単位ピクセル(UP1~UP4)は自動焦点(AF:auto-focus)機能を遂行することができる。具体的に、それぞれの単位ピクセル(UP1~UP4)は分割された一対の光電変換部を用いて位相検出AF(PDAF:phase detection AF)機能を遂行することができる。
【0042】
単位ピクセルのうちの少なくとも一部(例えば、第2単位ピクセルUP2)は、他の単位ピクセル(例えば、第1、第3、及び第4単位ピクセル(UP1、UP3、UP4))とは異なる方向に分割される。一例として、第1単位ピクセルUP1は第1方向Xに沿って配列された第1光電変換部PD1L及び第2光電変換部PD1Rを含み、第2単位ピクセルUP2は第2方向Yに沿って配列された第3光電変換部PD2U及び第4光電変換部PD2Dを含む。これにより、本実施形態によるイメージセンサは第1方向X及び第2方向Yの両方に対する自動焦点機能を遂行することができる。
【0043】
第3単位ピクセルUP3及び第4単位ピクセルUP4は第1単位ピクセルUP1と同じ方向に分割されたもののみを示しているが、これは例示的なものである。他の例として、第3単位ピクセルUP3及び第4単位ピクセルUP4の少なくとも一つは第1単位ピクセルUP1と同じ方向に分割することができることは勿論である。
【0044】
本実施形態で、それぞれの単位ピクセル(UP1~UP4)は、一対の光電変換部を連結する連結部(IR1~IR4)を含む。例えば、第1単位ピクセルUP1は第1光電変換部PD1L及び第2光電変換部PD1Rを連結する第1連結部IR1を含み、第2単位ピクセルUP2は第3光電変換部PD2U及び第4光電変換部PD2Dを連結する第2連結部IR2を含み、第3単位ピクセルUP3は第5光電変換部PD3L及び第6光電変換部PD3Rを連結する第3連結部IR3を含み、第4単位ピクセルUP4は第7光電変換部PD4L及び第8光電変換部PD4Rを連結する第4連結部IR4を含む。
【0045】
それぞれの光電変換部(PD1L、PD1R、PD2U、PD2D、PD3L、PD3R、PD4L、PD4R)は光電変換領域112を含む。光電変換領域112は第1導電型とは異なる第2導電型の不純物を含む。後述する実施形態で、第2導電型はn型であるもので説明されるがこれは例示的なものであり、第2導電型はp型であり得ることは勿論である。光電変換領域112は、例えばp型の第1基板110内にn型不純物(例えば、リン(P)又はヒ素(As))がイオン注入されて形成される。
【0046】
それぞれの連結部(IR1~IR4)は光電変換領域112を含まない。即ち、光電変換領域112はそれぞれの光電変換部(PD1L、PD1R、PD2U、PD2D、PD3L、PD3R、PD4L、PD4R)内に孤立する。
【0047】
本実施形態で、光電変換領域112は第1基板110の第1面110aよりも第1基板110の第2面110bに隣接する。一実施形態で、光電変換領域112は第3方向Zでポテンシャル傾きを有する。例えば、光電変換領域112の不純物濃度は第2面110bから第1面110aに向かうにつれて減少する。
【0048】
それぞれの単位ピクセル(UP1~UP4)は第1電子素子TR1にカップリングされる。第1電子素子TR1は第1基板110の第2面110b上に形成される。第1電子素子TR1は光電変換部(PD1L、PD1R、PD2U、PD2D、PD3L、PD3R、PD4L、PD4R)に連結されて電気的信号を処理するための多様なトランジスタを構成する。例えば、第1電子素子TR1は
図2による説明で上述した制御トランジスタ(TX1、TX2、RX、SX、AX)を含む。
【0049】
一実施形態で、第1電子素子TR1は垂直型(vertical)転送トランジスタを含む。例えば、上述した第1転送トランジスタTX1及び第2転送トランジスタTX2を含む第1電子素子TR1の少なくとも一部は第1基板110内に埋め込まれる。このような形態の第1電子素子TR1は単位ピクセルの面積を縮小させることができ、イメージセンサの高集積化に有利である。
【0050】
ピクセル隔離パターン120は第1基板110内に形成される。ピクセル隔離パターン120は平面的観点で格子状に形成されて第1基板110内の単位ピクセル(UP1~UP4)を定義する。例えば、
図6に示すように、ピクセル隔離パターン120は第1隔離部120a及び第2隔離部120bを含む。第1隔離部120aは第1方向Xに延びてそれぞれの単位ピクセル(UP1~UP4)の一側面を定義する。第2隔離部120bは第2方向Yに延びてそれぞれの単位ピクセル(UP1~UP4)の他の側面を定義する。そのため、ピクセル隔離パターン120はそれぞれの単位ピクセル(UP1~UP4)を囲む。
【0051】
ピクセル隔離パターン120は第1基板110内に形成された深いトレンチ(deep trench)内に絶縁物質が埋め込まれて形成される。ピクセル隔離パターン120は、例えば、シリコン酸化物、シリコン窒化物、シリコン酸窒化物、アルミニウム酸化物、ハフニウム酸化物、及びこれらの組み合わせのうちの少なくとも一つを含むが、これらに制限されるものではない。
【0052】
ピクセル隔離パターン120により定義されるそれぞれの単位ピクセル(UP1~UP4)の大きさ(
図6のL11、L12)は例えば、約0.3μm~約3.0μmである。好ましくは、それぞれの単位ピクセル(UP1~UP4)の大きさ(L11、L12)は約0.9μm~約1.5μmである。それぞれの単位ピクセル(UP1~UP4)で、第1方向Xの長さL11及び第2方向Yの長さL12は互いに同一である場合のみを示しているが、これは例示的なものであり、これらが互いに異なってもよいことは勿論である。
【0053】
ピクセル隔離パターン120の幅(
図6のW11、W12)は例えば、約10nm~約500nmである。好ましくは、ピクセル隔離パターン120の幅(W11、W12)は約100nm~約400nmである。第1隔離部120aの幅W12及び第2隔離部120bの幅W11は互いに同一であるもののみを示しているが、これは例示的なものであり、これらが互いに異なってもよいことは勿論である。
【0054】
本実施形態で、ピクセル隔離パターン120の幅(W11、W12)は第1基板110の第2面110bから第1基板110の第1面110aに向かうにつれて減少する。例えば、
図4及び
図5に示すように、ピクセル隔離パターン120の側面は、第1基板110の第2面110bと鋭角をなし、第1基板110の第1面110aと鈍角をなす。これは、ピクセル隔離パターン120のために深いトレンチを形成するエッチング工程が第1基板110の第2面110bに対して行われることに起因する。即ち、ピクセル隔離パターン120は第1基板110の前面(front side)に対するDTI工程によって形成されるFDTI(frontside deep trench isolation)である。
【0055】
本実施形態で、ピクセル隔離パターン120は第1基板110の第2面110bから第1基板110の第1面110aまで連続的に延びる。例えば、第3方向Zで、ピクセル隔離パターン120の深さは約5000nm~約6000nmである。
【0056】
第1分離パターン(122a、122b)は第1基板110内に形成される。第1分離パターン(122a、122b)は第1方向Xに分割された単位ピクセル(例えば、第1、第3、及び第4単位ピクセル(UP1、UP3、UP4))を定義する。例えば、第1分離パターン(122a、122b)は第1光電変換部PD1Lと第2光電変換部PD1Rとの間に介在する。第1分離パターン(122a、122b)は第2方向Yに延びて第1光電変換部PD1Lと第2光電変換部PD1Rとを分離する。
【0057】
本実施形態で、第1分離パターン(122a、122b)はピクセル隔離パターン120の側面から突出する。例えば、
図6に示すように、第1分離パターン(122a、122b)はピクセル隔離パターン120の第1隔離部120aの側面から第2方向Yに突出する。
【0058】
本実施形態で、第1分離パターン(122a、122b)は第2方向Yに互いに離隔される第1サブ分離パターン122a及び第2サブ分離パターン122bを含む。例えば、第1サブ分離パターン122aはピクセル隔離パターン120の一側面から突出し、第2サブ分離パターン122bはピクセル隔離パターン120の一側面に対向する他の側面から突出する。第1分離パターン(122a、122b)及び第2分離パターン(124a、124b)は互いに対向する。このような場合、第1光電変換部PD1Lと第2光電変換部PD1Rとを連結する第1連結部IR1は第1サブ分離パターン122aと第2サブ分離パターン122bとの間に定義される。即ち、第1分離パターン(122a、122b)は「H」形状の単位ピクセル(例えば、第1、第3、及び第4単位ピクセル(UP1、UP3、UP4))を定義する。
【0059】
第1分離パターン(122a、122b)の幅(
図6のW21)は、例えば約10nm~約500nmである。好ましくは、第1分離パターン(122a、122b)の幅W21は約100nm~約400nmである。第1サブ分離パターン122aの幅及び第2サブ分離パターン122bの幅は互いに同一であるもののみを示しているが、これは例示的なものであり、これらが互いに異なってもよいことは勿論である。また、第1分離パターン(122a、122b)の幅W21はピクセル隔離パターン120の幅(W11、W12)と同一である場合のみを示しているが、これもまた例示的なものである。
【0060】
第1サブ分離パターン122a及び第2サブ分離パターン122bがピクセル隔離パターン120からそれぞれ突出する長さL21は第1単位ピクセルUP1の第2方向Yの長さL12よりも小さい。第1サブ分離パターン122a及び第2サブ分離パターン122bがピクセル隔離パターン120からそれぞれ突出する長さL21は、例えば約100nm~約1,000nmである。好ましくは、第1サブ分離パターン122a及び第2サブ分離パターン122bがそれぞれ突出する長さL21は約200nm~約500nmである。
【0061】
第1サブ分離パターン122a及び第2サブ分離パターン122bが離隔される距離D11は、例えば約100nm~約1,000nmである。好ましくは、第1サブ分離パターン122a及び第2サブ分離パターン122bが離隔される距離D11は約200nm~約500nmである。
【0062】
第2分離パターン(124a、124b)は第1基板110内に形成される。第2分離パターン(124a、124b)は第2方向Yに分割された単位ピクセル(例えば、第2単位ピクセルUP2)を定義する。例えば、第2分離パターン(124a、124b)は第3光電変換部PD2Uと第4光電変換部PD2Dとの間に介在する。第2分離パターン(124a、124b)は第1方向Xに延びて第3光電変換部PD2Uと第4光電変換部PD2Dとを分離する。
【0063】
本実施形態で、第2分離パターン(124a、124b)はピクセル隔離パターン120の側面から突出する。例えば、
図6に示すように、第2分離パターン(124a、124b)はピクセル隔離パターン120の第2隔離部120bの側面から第1方向Xに突出する。
【0064】
本実施形態で、第2分離パターン(124a、124b)は第1方向Xに互いに離隔される第3サブ分離パターン124a及び第4サブ分離パターン124bを含む。例えば、第3サブ分離パターン124aはピクセル隔離パターン120の一側面から突出し、第4サブ分離パターン124bはピクセル隔離パターン120の一側面に対向する他の側面から突出する。第3サブ分離パターン124a及び第4サブ分離パターン124bは互いに対向する。このような場合、第3光電変換部PD2Uと第4光電変換部PD2Dとを連結する第2連結部IR2は第3サブ分離パターン124aと第4サブ分離パターン124bとの間に定義される。即ち、第2分離パターン(124a、124b)は「I」形状の単位ピクセル(例えば、第2単位ピクセルUP2)を定義する。
【0065】
第2分離パターン(124a、124b)の幅(
図6のW22)は、例えば約10nm~約500nmである。好ましくは、第2分離パターン(124a、124b)の幅W22は約100nm~約400nmである。第3サブ分離パターン124aの幅及び第4サブ分離パターン124bの幅は互いに同一であるもののみを示しているが、これは例示的なものであり、これらが互いに異なってもよいことは勿論である。また、第2分離パターン(124a、124b)の幅W22は第1分離パターン(122a、122b)の幅W21と同一である場合のみを示しているが、これは例示的なものであり、これらが互いに異なってもよいことは勿論である。
【0066】
第3サブ分離パターン124a及び第4サブ分離パターン124bがピクセル隔離パターン120からそれぞれ突出する長さL22は第2単位ピクセルUP2の第1方向Xの長さL11よりも小さい。第3サブ分離パターン124a及び第4サブ分離パターン124bがピクセル隔離パターン120からそれぞれ突出する長さL22は、例えば約100nm~約1,000nmである。好ましくは、第3サブ分離パターン124a及び第4サブ分離パターン124bがそれぞれ突出する長さL22は約200nm~約500nmである。第3サブ分離パターン124a及び第4サブ分離パターン124bがそれぞれ突出する長さL22は第1サブ分離パターン122a及び第2サブ分離パターン122bがそれぞれ突出する長さL21と同一である場合のみを示しているが、これは例示的なものであり、これらが互いに異なってもよいことは勿論である。
【0067】
第3サブ分離パターン124a及び第4サブ分離パターン124bが離隔される距離D12は、例えば約100nm~約1,000nmである。好ましくは、第3サブ分離パターン124a及び第4サブ分離パターン124bが離隔される距離D12は約200nm~約500nmである。第3サブ分離パターン124a及び第4サブ分離パターン124bが離隔される距離D12は第1サブ分離パターン122a及び第2サブ分離パターン122bが離隔される距離D11と同一である場合のみを示しているが、これは例示的なものであり、これらが互いに異なってもよいことは勿論である。
【0068】
第1分離パターン(122a、122b)及び第2分離パターン(124a、124b)はそれぞれ第1基板110内に形成された深いトレンチ(deep trench)内に絶縁物質が埋め込まれて形成される。第1分離パターン(122a、122b)及び第2分離パターン(124a、124b)は、例えば、シリコン酸化物、シリコン窒化物、シリコン酸窒化物、アルミニウム酸化物、ハフニウム酸化物、及びこれらの組み合わせのうちの少なくとも一つを含むが、これらに制限されるものではない。
【0069】
本実施形態で、第1分離パターン(122a、122b)の幅W21及び第2分離パターン(124a、124b)の幅W22は第1基板110の第2面110bから第1基板110の第1面110aに向かうにつれて減少する。例えば、
図4に示すように、第1サブ分離パターン122aの側面は第1基板110の第2面110bと鋭角をなし、第1基板110の第1面110aと鈍角をなす。これは、第1分離パターン(122a、122b)及び第2分離パターン(124a、124b)のために深いトレンチを形成するエッチング工程が第1基板110の第2面110bに対して行われることに起因する。即ち、第1分離パターン(122a、122b)及び第2分離パターン(124a、124b)はそれぞれ第1基板110の前面(front side)に対するDTI工程によって形成されるFDTIである。
【0070】
本実施形態で、第1分離パターン(122a、122b)及び第2分離パターン(124a、124b)は第1基板110の第2面110bから第1基板110の第1面110aまで連続的に延びる。例えば、第3方向Zで、第1分離パターン(122a、122b)の深さ及び第2分離パターン(124a、124b)の深さは約5000nm~約6000nmである。
【0071】
一実施形態で、第1分離パターン(122a、122b)及び第2分離パターン(124a、124b)はピクセル隔離パターン120と同一レベルで形成される。本明細書で、「同一レベルで形成」とは同じ製造工程によって形成されることを意味する。例えば、第1分離パターン(122a、122b)及び第2分離パターン(124a、124b)の物質構成はピクセル隔離パターン120の物質構成と同じである。
【0072】
第1配線構造体IS1は第1基板110の第2面110b上に形成される。第1配線構造体IS1は第1基板110の第2面110bに沿って延びる。第1配線構造体IS1は一つ又は複数の配線で構成される。例えば、第1配線構造体IS1は第1配線間絶縁膜130及び第1配線間絶縁膜130内の複数の第1配線132を含む。
図4及び
図5で、第1配線構造体IS1を構成する配線の層数及びその配置などは例示的なものであり、本発明の技術的思想はこれに制限されるものではない。
【0073】
一実施形態で、第1配線132は単位ピクセル(UP1~UP4)に電気的に接続される。例えば、第1配線132は第1電子素子TR1に接続される。
【0074】
表面絶縁膜140は第1基板110の第1面110a上に形成される。表面絶縁膜140は第1基板110の第1面110aに沿って延びる。表面絶縁膜140は絶縁物質を含む。例えば、表面絶縁膜140は、シリコン酸化物、シリコン窒化物、シリコン酸窒化物、アルミニウム酸化物、ハフニウム酸化物、及びこれらの組み合わせのうちの少なくとも一つを含むが、これらに制限されるものではない。
【0075】
一実施形態で、表面絶縁膜140は多重膜で形成される。例えば、図示したものとは異なり、表面絶縁膜140は、第1基板110の第1面110a上に順に積層されるアルミニウム酸化膜、ハフニウム酸化膜、シリコン酸化膜、シリコン窒化膜、及びハフニウム酸化膜を含む。
【0076】
表面絶縁膜140は反射防止膜として機能して第1基板110に入射する光の反射を防止する。これにより、光電変換領域112の受光率が向上する。また、表面絶縁膜140は、平坦化膜として機能し、後述するカラーフィルタ(170a、170b)及びマイクロレンズ180が均一な高さに形成されることに寄与する。
【0077】
カラーフィルタ(170a、170b)は表面絶縁膜140上に形成される。カラーフィルタ(170a、170b)は単位ピクセル(UP1~UP4)に対応するように配列される。即ち、複数のカラーフィルタ(170a、170b)は第1方向X及び第2方向Yを含む平面で2次元的に(例えば、行列形態で)配列される。一例として、フィルタ(170a、170b)は第1単位ピクセルUP1に対応する第1カラーフィルタ170a及び第2単位ピクセルUP2に対応する第2カラーフィルタ170bを含む。
【0078】
カラーフィルタ(170a、170b)は単位ピクセル(UP1~UP4)によって多様なカラーを有する。例えば、カラーフィルタ(170a、170b)は、赤色(red)カラーフィルタ、緑色(green)カラーフィルタ、青色(blue)カラーフィルタ、イエローフィルタ(yellow filter)、マゼンタフィルタ(magenta filter)、及びシアンフィルタ(cyan filter)を含み、ホワイトフィルタ(white filter)を更に含み得る。
【0079】
一実施形態で、互いに隣接する単位ピクセル(例えば、第1単位ピクセルUP1及び第2単位ピクセルUP2)は互いに同じカラーの光(即ち、互いに同じ波長帯域の光)を感知する。例えば、第1カラーフィルタ170a及び第2カラーフィルタ170bは互いに同じカラーのカラーフィルタを含む。一例として、第1カラーフィルタ170a及び第2カラーフィルタ170bの両方は緑色カラーフィルタである。このような場合、第1単位ピクセルUP1及び第2単位ピクセルUP2の両方は緑色波長帯域の光を感知する。
【0080】
本実施形態で、表面絶縁膜140上にグリッドパターン(150、160)が形成される。グリッドパターン(150、160)は平面的観点で格子状に形成されてカラーフィルタ(170a、170b)の間に介在する。本実施形態で、グリッドパターン(150、160)は第3方向Zでピクセル隔離パターン120に重なるように配置される。
【0081】
本実施形態で、グリッドパターン(150、160)は金属パターン150及び低屈折率パターン160を含む。金属パターン150及び低屈折率パターン160は、例えば表面絶縁膜140上に順に積層される。
【0082】
金属パターン150は、例えば、チタン(Ti)、チタン窒化物(TiN)、タンタル(Ta)、タンタル窒化物(TaN)、タングステン(W)、アルミニウム(Al)、銅(Cu)、及びこれらの組み合わせのうちの少なくとも一つを含むが、これらに制限されるものではない。金属パターン150は、ESD(electrostatic discharge)などによって発生した電荷が第1基板110の表面(例えば、第1面110a)に蓄積されることを防止し、ESDアザ(bruise)不良を効果的に防止する。ESDアザ不良とは、ESDなどによって発生した電荷が第1基板110の表面(例えば、第1面110a)に蓄積されることによって生成されるイメージにアザのようなむらを発生させる現象を意味する。
【0083】
低屈折率パターン160はシリコン(Si)よりも屈折率が低い低屈折率(low refractive index)物質を含む。例えば、低屈折率パターン160は、シリコン酸化物、アルミニウム酸化物、タンタル酸化物、及びこれらの組み合わせのうちの少なくとも一つを含むが、これらに制限されるものではない。低屈折率パターン160は斜めに入射する光を屈折又は反射させることで集光効率を向上させてイメージセンサの品質を向上させる。
【0084】
本実施形態で、表面絶縁膜140及びグリッドパターン(150、160)上に第1保護膜165が更に形成される。例えば、第1保護膜165は、表面絶縁膜140の上面と、グリッドパターン(150、160)の側面及び上面のプロファイルに沿ってコンフォーマルに延びる。
【0085】
第1保護膜165は、例えばアルミニウム酸化物を含むが、これに制限されるものではない。第1保護膜165は表面絶縁膜140及びグリッドパターン(150、160)の損傷を防止する。
【0086】
マイクロレンズ180はカラーフィルタ(170a、170b)上に形成される。マイクロレンズ180は単位ピクセル(UP1~UP4)に対応するように配列される。例えば、複数のマイクロレンズ180は第1方向X及び第2方向Yを含む平面で2次元的に(例えば、行列形態で)配列される。
【0087】
マイクロレンズ180は、膨らんだ形状を有し、所定の曲率半径を有する。これにより、マイクロレンズ180は光電変換領域112に入射する光を集光させる。マイクロレンズ180は、例えば光透過性樹脂を含むが、これに制限されるものではない。
【0088】
本実施形態で、マイクロレンズ180上に第2保護膜185が更に形成される。第2保護膜185はマイクロレンズ180の表面に沿って延びる。第2保護膜185は、例えば無機物酸化膜を含む。例えば、第2保護膜185は、シリコン酸化物、チタン酸化物、ジルコニウム酸化物、ハフニウム酸化物、及びこれらの組み合わせのうちの少なくとも一つを含むが、これらに制限されるものではない。一実施形態で、第2保護膜185は低温酸化物(LTO:low temperature oxide)を含む。
【0089】
第2保護膜185は外部からマイクロレンズ180を保護する。例えば、第2保護膜185は無機物酸化膜を含むことによって有機物質を含むマイクロレンズ180を保護する。また、第2保護膜185はマイクロレンズ180の集光効率を向上させることによってイメージセンサの品質を向上させる。例えば、第2保護膜185は、マイクロレンズ180の間の空間を埋めることによって、マイクロレンズ180の間の空間に到達する入射光の反射、屈折、散乱などを減少させることができる。
【0090】
本実施形態によるイメージセンサはそれぞれ異なる方向に分割された単位ピクセルを含むことによって向上した自動焦点機能を有することができる。一例として、上述したように、第1単位ピクセルUP1は第1方向Xに沿って配列された第1光電変換部PD1L及び第2光電変換部PD1Rを含み、第2単位ピクセルUP2は第2方向Yに沿って配列された第3光電変換部PD2U及び第4光電変換部PD2Dを含む。そのため、本実施形態によるイメージセンサは水平方向(例えば、第1方向X)及び垂直方向(例えば、第2方向Y)の両方に対する自動焦点機能を遂行することができる。
【0091】
また、それぞれ異なる方向に分割された単位ピクセルを含むイメージセンサは第1分離パターン(122a、122b)及び第2分離パターン(124a、124b)により具現される。上述したように、第1分離パターン(122a、122b)及び第2分離パターン(124a、124b)は第1基板110の前面(front side)に対するDTI工程によって形成されるFDTIである。裏面照射型イメージセンサで、FDTIは工程段階の追加なしに簡潔に具現することができるため、簡潔な構造及び工程により向上した自動焦点機能を有するイメージセンサを提供することができる。
【0092】
図7は、
図3のA-Aに沿って切断した他の概略的な断面図である。
図8は、
図3のB-Bに沿って切断した他の概略的な断面図である。説明の便宜上、
図1~
図6を用いて上述した内容に重複する部分は簡略に説明するか又は省略する。
【0093】
図3、
図7、及び
図8を参照すると、本実施形態によるイメージセンサにおいて、ピクセル隔離パターン120、第1分離パターン(122a、122b)、及び第2分離パターン(124a、124b)はそれぞれフィリングパターン125及び絶縁スペーサ127を含む。
【0094】
例えば、第1基板110内に、ピクセル隔離パターン120、第1分離パターン(122a、122b)、及び第2分離パターン(124a、124b)を埋め込むためのトレンチが形成される。絶縁スペーサ127はトレンチの側面に沿ってコンフォーマルに延びる。フィリングパターン125は絶縁スペーサ127上に形成されてトレンチの少なくとも一部を埋める。絶縁スペーサ127はフィリングパターン125の側面に沿って延びて第1基板110からフィリングパターン125を分離する。
【0095】
本実施形態で、フィリングパターン125は導電物質を含む。フィリングパターン125は、例えばポリシリコン(poly Si)を含むが、これに制限されるものではない。一実施形態で、導電物質を含むフィリングパターン125にグラウンド電圧又はマイナス電圧が印加される。このような場合、本実施形態によるイメージセンサのESDアザ不良が効果的に防止することができる。
【0096】
絶縁スペーサ127は第1基板110からフィリングパターン125を電気的に絶縁する。絶縁スペーサ127は、例えば、シリコン酸化物、アルミニウム酸化物、タンタル酸化物、及びこれらの組み合わせのうちの少なくとも一つを含むが、これらに制限されるものではない。
【0097】
一実施形態で、絶縁スペーサ127は第1基板110よりも屈折率が低い酸化物を含む。第1基板110よりも屈折率が低い絶縁スペーサ127は光電変換領域112に斜めに入射する光を屈折又は反射させる。また、絶縁スペーサ127は入射光によって特定の単位ピクセル(例えば、第1単位ピクセルUP1)で生成された光電荷がランダムドリフト(random drift)により隣接する他の単位ピクセル(例えば、第2単位ピクセルUP2)に移動することを防止する。即ち、絶縁スペーサ127は光電変換領域112の受光率を向上させることによってイメージセンサの品質を向上させる。
【0098】
図9a~
図9fは、一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
図9a~
図9fでは、それぞれ異なる方向に分割された単位ピクセルを含む多様なイメージセンサを示す。説明の便宜上、
図1~
図6を用いて上述した内容に重複する部分は簡略に説明するか又は省略する。
【0099】
具体的に、
図9aを参照すると、本実施形態によるイメージセンサは第1方向Xに分割された第1、第2、及び第4単位ピクセル(UP1、UP2、UP4)及び第2方向Yに分割された第3単位ピクセルUP3を含む。
【0100】
例えば、
図3のイメージセンサとは異なり、第2単位ピクセルUP2は第1方向Xに沿って配列された第3光電変換部PD2L及び第4光電変換部PD2Rを含む。このような第2単位ピクセルUP2は第1分離パターン(122a、122b)により定義される。
【0101】
また、
図3のイメージセンサとは異なり、第3単位ピクセルUP3は第2方向Yに沿って配列された第5光電変換部PD3U及び第6光電変換部PD3Dを含む。このような第3単位ピクセルUP3は第2分離パターン(124a、124b)により定義される。
【0102】
図9bを参照すると、本実施形態によるイメージセンサは第1方向Xに分割された第1及び第4単位ピクセル(UP1、UP4)及び第2方向Yに分割された第2及び第3単位ピクセル(UP2、UP3)を含む。
【0103】
例えば、
図9aのイメージセンサとは異なり、第2単位ピクセルUP2は第2方向Yに沿って配列された第3光電変換部PD2U及び第4光電変換部PD2Dを含む。このような第2単位ピクセルUP2は第2分離パターン(124a、124b)により定義される。
【0104】
図9cを参照すると、本実施形態によるイメージセンサは、第1方向Xに分割された第1、第2、及び第3単位ピクセル(UP1、UP2、UP3)及び第2方向Yに分割された第4単位ピクセルUP4を含む。
【0105】
例えば、
図3のイメージセンサとは異なり、第2単位ピクセルUP2は第1方向Xに沿って配列された第3光電変換部PD2L及び第4光電変換部PD2Rを含む。このような第2単位ピクセルUP2は第1分離パターン(122a、122b)により定義される。
【0106】
また、
図3のイメージセンサとは異なり、第4単位ピクセルUP4は第2方向Yに沿って配列された第7光電変換部PD4U及び第8光電変換部PD4Dを含む。このような第4単位ピクセルUP4は第2分離パターン(124a、124b)により定義される。
【0107】
図9dを参照すると、本実施形態によるイメージセンサは、第1方向Xに分割された第1及び第3単位ピクセル(UP1、UP3)及び第2方向Yに分割された第2及び第4単位ピクセル(UP2、UP4)を含む。
【0108】
例えば、
図9cのイメージセンサとは異なり、第2単位ピクセルUP2は第2方向Yに沿って配列された第3光電変換部PD2U及び第4光電変換部PD2Dを含む。このような第2単位ピクセルUP2は第2分離パターン(124a、124b)により定義される。
【0109】
図9eを参照すると、本実施形態によるイメージセンサは、第1方向Xに分割された第1及び第2単位ピクセル(UP1、UP2)及び第2方向Yに分割された第3及び第4単位ピクセル(UP3、UP4)を含む。
【0110】
例えば、
図9cのイメージセンサとは異なり、第3単位ピクセルUP3は第2方向Yに沿って配列された第5光電変換部PD3U及び第6光電変換部PD3Dを含む。このような第3単位ピクセルUP3は第2分離パターン(124a、124b)により定義される。
【0111】
図9fを参照すると、本実施形態によるイメージセンサは、第1方向Xに分割された第1単位ピクセルUP1及び第2方向Yに分割された第2、第3、及び第4単位ピクセル(UP2、UP3、UP4)を含む。
【0112】
例えば、
図9eのイメージセンサとは異なり、第2単位ピクセルUP2は第2方向Yに沿って配列された第3光電変換部PD2U及び第4光電変換部PD2Dを含む。このような第2単位ピクセルUP2は第2分離パターン(124a、124b)により定義される。
【0113】
図10~
図12は、一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。説明の便宜上、
図1~
図9fを用いて上述した内容に重複する部分は簡略に説明するか又は省略する。
【0114】
図10を参照すると、本実施形態によるイメージセンサにおいて、第1分離パターン(122a、122b)及び第2分離パターン(124a、124b)はそれぞれピクセル隔離パターン120と所定の角(θ1、θ2)を形成する。
【0115】
例えば、ピクセル隔離パターン120は第1方向Xに延びる第1側面S11及び第2方向Yに延びる第2側面S21を含む。第1サブ分離パターン122aは第1側面S11から延びる第3側面S12を含み、第3サブ分離パターン124aは第2側面S21から延びる第4側面S22を含む。
【0116】
この場合、ピクセル隔離パターン120の第1側面S11は第1サブ分離パターン122aの第2側面S21と第1角θ1を形成し、ピクセル隔離パターン120の第2側面S21は第3サブ分離パターン124aの第4側面S22と第2角θ2を形成する。第1角θ1及び第2角θ2はそれぞれ、例えば約45°~約135°である。好ましくは、第1角θ1及び第2角θ2はそれぞれ約85°~約95°である。第1角θ1及び第2角θ2は互いに同一であるもののみを示しているが、これは例示的なものであり、これらが互いに異なってもよいことは勿論である。
【0117】
一実施形態で、第1角θ1及び/又は第2角θ2は鈍角である。このような場合、第1分離パターン(122a、122b)の幅及び第2分離パターン(124a、124b)の幅はピクセル隔離パターン120から遠くなるにつれて減少する。
【0118】
図11を参照すると、本実施形態によるイメージセンサは、ピクセル隔離パターン120から離隔された第1分離パターン122及び第2分離パターン124を含む。
【0119】
例えば、第1分離パターン122は、第1光電変換部PD1Lと第2光電変換部PD1Rとの間に介在し、第1方向Xに延びるピクセル隔離パターン120の側面から離隔する。このような場合、第1光電変換部PD1Lと第2光電変換部PD1Rとを連結する第1連結部IR1は第1分離パターン122の両端に定義される。
【0120】
また、第2分離パターン124は第3光電変換部PD2Uと第4光電変換部PD2Dとの間に介在し、第2方向Yに延びるピクセル隔離パターン120の側面から離隔する。このような場合、第3光電変換部PD2Uと第4光電変換部PD2Dとを連結する第2連結部IR2は第2分離パターン124の両端に定義される。
【0121】
第1分離パターン122の幅W31及び第2分離パターン124の幅W32はそれぞれ、例えば約10nm~約500nmである。好ましくは、第1分離パターン122の幅W31及び第2分離パターン124の幅W32はそれぞれ約100nm~約400nmである。第1分離パターン122の幅W31及び第2分離パターン124の幅W32は互いに同一であるもののみを示しているが、これは例示的なものであり、これらが互いに異なってもよいことは勿論である。
【0122】
第1分離パターン122が第2方向Yに延びる長さL31及び第2分離パターン124が第1方向Xに延びる長さL32はそれぞれの単位ピクセル(UP1~UP4)の大きさ(例えば、
図6のL11、L12)の半分以上である。例えば、第1分離パターン122の長さL31及び第2分離パターン124の長さL32はそれぞれ約200nm~約2,000nmである。好ましくは、第1分離パターン122の長さL31及び第2分離パターン124の長さL32はそれぞれ約400nm~約1,000nmである。第1分離パターン122の長さL31及び第2分離パターン124の長さL32は互いに同一であるもののみを示しているが、これは例示的なものであり、これらが互いに異なってもよいことは勿論である。
【0123】
図12を参照すると、本実施形態によるイメージセンサは、ピクセル隔離パターン120の一側面から突出した第1分離パターン122及び第2分離パターン124を含む。
【0124】
例えば、第1分離パターン122は第1光電変換部PD1Lと第2光電変換部PD1Rとの間に介在し、第1方向Xに延びるピクセル隔離パターン120の一側面から突出する。このような場合、第1光電変換部PD1Lと第2光電変換部PD1Rとを連結する第1連結部IR1は第1分離パターン122の一端に定義される。
【0125】
また、第2分離パターン124は第3光電変換部PD2Uと第4光電変換部PD2Dとの間に介在し、第2方向Yに延びるピクセル隔離パターン120の一側面から突出する。このような場合、第3光電変換部PD2Uと第4光電変換部PD2Dとを連結する第2連結部IR2は第2分離パターン124の一端に定義される。
【0126】
第1分離パターン122の幅W41及び第2分離パターン124の幅W42はそれぞれ、例えば約10nm~約500nmである。好ましくは、第1分離パターン122の幅W41及び第2分離パターン124の幅W42はそれぞれ約100nm~約400nmである。第1分離パターン122の幅W41及び第2分離パターン124の幅W42は互いに同一であるもののみを示しているが、これは例示的なものであり、これらが互いに異なってもよいことは勿論である。
【0127】
第1分離パターン122が第2方向Yに突出する長さL41及び第2分離パターン124が第1方向Xに突出する長さL42はそれぞれの単位ピクセル(UP1~UP4)の大きさ(例えば、
図6のL11、L12)の半分以上である。例えば、第1分離パターン122の長さL41及び第2分離パターン124の長さL42はそれぞれ約200nm~約2,000nmである。好ましくは、第1分離パターン122の長さL41及び第2分離パターン124の長さL42はそれぞれ約400nm~約1,000nmである。第1分離パターン122の長さL41及び第2分離パターン124の長さL42は互いに同一であるもののみを示しているが、これは例示的なものであり、これらが互いに異なってもよいことは勿論である。
【0128】
図13は、一実施形態によるイメージセンサの単位ピクセルを説明するためのレイアウト図である。説明の便宜上、
図1~
図12を用いて上述した内容に重複する部分は簡略に説明するか又は省略する。
【0129】
図13を参照すると、本実施形態によるイメージセンサにおいて、第1単位ピクセルUP1及び第2単位ピクセルUP2はそれぞれ異なるカラーの光(即ち、それぞれ異なる波長帯域の光)を感知する。
【0130】
例えば、第1カラーフィルタ(
図4及び
図5の170a)及び第2カラーフィルタ(
図4及び
図5の170b)はそれぞれ異なるカラーのカラーフィルタを含む。一例として、第1カラーフィルタ170aは青色カラーフィルタであり、第2カラーフィルタ170bは緑色カラーフィルタである。このような場合、第1単位ピクセルUP1は青色波長帯域の光Bを感知し、第2単位ピクセルUP2は緑色波長帯域の光Gを感知する。
【0131】
本実施形態で、互いに隣接する第1~第4単位ピクセル(UP1~UP4)はベイヤーパターン(bayer pattern)形態で配列される。例えば、第1単位ピクセルUP1は青色波長帯域の光Bを感知し、第2及び第3単位ピクセル(UP2、UP3)は緑色波長帯域の光Gを感知し、第4単位ピクセルUP4は赤色波長帯域の光Rを感知する。
【0132】
図14a~
図14fは、一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。
図14a~
図14fでは、それぞれ異なる方向に分割された単位ピクセルを含む多様なイメージセンサを示す。
図13について上述したことを除いては、
図14a~
図14fによるイメージセンサは
図9a~
図9fによるイメージセンサと同一であるため、以下では詳しい説明を省略する。
【0133】
図15~
図20は、一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。説明の便宜上、
図1~
図14を用いて上述した内容に重複する部分は簡略に説明するか又は省略する。
【0134】
図15~
図20を参照すると、本実施形態によるイメージセンサは複数のピクセルグループ(PG1~PG4)を含む。
【0135】
それぞれのピクセルグループ(PG1~PG4)は互いに隣接する複数の単位ピクセルを含む。また、ピクセルグループ(PG1~PG4)は第3方向Zに交差する第1方向X及び第2方向Yを含む平面で2次元的に(例えば、行列形態で)配列される。
【0136】
ピクセルグループ(PG1~PG4)は互いに隣接する第1~第4ピクセルグループ(PG1~PG4)を含む。例示的に、第1ピクセルグループPG1及び第2ピクセルグループPG2は第1方向Xに沿って配列される。第1ピクセルグループPG1及び第3ピクセルグループPG3は第2方向Yに沿って配列される。第4ピクセルグループPG4は、第2ピクセルグループPG2と第2方向Yに沿って配列され、第3ピクセルグループPG3と第1方向Xに沿って配列される。即ち、第1ピクセルグループPG1及び第4ピクセルグループPG4は対角線方向に沿って配列される。
【0137】
本実施形態で、互いに隣接する第1~第4ピクセルグループ(PG1~PG4)はベイヤーパターン(bayer pattern)形態で配列される。例えば、第1ピクセルグループPG1は青色波長帯域の光Bを感知し、第2及び第3ピクセルグループ(PG2、PG3)は緑色波長帯域の光Gを感知し、第4ピクセルグループPG4は赤色波長帯域の光Rを感知する。
【0138】
図15及び
図16を参照すると、それぞれのピクセルグループ(PG1~PG4)の複数の単位ピクセルはテトラパターン(tetra pattern)形態で配列される。例えば、第1ピクセルグループPG1の単位ピクセルは2×2形態で配列される。また、第1ピクセルグループPG1の単位ピクセルはそれぞれ同じカラーの光(例えば、青色波長帯域の光B)を感知する。
【0139】
図17及び
図18を参照すると、それぞれのピクセルグループ(PG1~PG4)の複数の単位ピクセルはノナパターン(nona pattern)形態で配列される。例えば、第1ピクセルグループPG1の単位ピクセルは3×3形態で配列される。また、第1ピクセルグループPG1の単位ピクセルはそれぞれ同じカラーの光(例えば、青色波長帯域の光B)を感知する。
【0140】
図19及び
図20を参照すると、それぞれのピクセルグループ(PG1~PG4)の複数の単位ピクセルはヘキサデカパターン(hexadeca pattern)形態で配列される。例えば、第1ピクセルグループPG1の単位ピクセルは4×4形態で配列される。また、第1ピクセルグループPG1の単位ピクセルはそれぞれ同じカラーの光(例えば、青色波長帯域の光B)を感知する。
【0141】
再び、
図15、
図17、及び
図19を参照すると、それぞれのピクセルグループ(PG1~PG4)はそれぞれ異なる方向に分割された単位ピクセルを含む。一例として、それぞれのピクセルグループ(PG1~PG4)は、第1方向Xに分割された第1単位ピクセルUP1及び第2方向Yに分割された第2単位ピクセルUP2を含む。
【0142】
再び、
図16、
図18、及び
図20を参照すると、ピクセルグループのうちの少なくとも一部(例えば、第2ピクセルグループPG2)は他のピクセルグループ(例えば、第1、第3、及び第4ピクセルグループ(PG1、PG3、PG4))とは異なる方向に分割された単位ピクセルを含む。一例として、第1ピクセルグループPG1はそれぞれ第1方向Xに分割された複数の第1単位ピクセルUP1を含み、第2ピクセルグループPG2はそれぞれ第2方向Yに分割された複数の第2単位ピクセルUP2を含む。
【0143】
図21~
図23は、一実施形態によるイメージセンサの単位ピクセルを説明するための多様なレイアウト図である。説明の便宜上、
図1~
図20を用いて上述した内容に重複する部分は簡略に説明するか又は省略する。
【0144】
図21を参照すると、本実施形態によるイメージセンサは第5ピクセルグループPG5及び第6ピクセルグループPG6を含む。
【0145】
第5ピクセルグループPG5は互いに隣接する複数の第5単位ピクセルUP5を含む。複数の第5単位ピクセルUP5はそれぞれ同じ方向に分割される。例えば、それぞれの第5単位ピクセルUP5は第1方向Xに沿って配列された第9光電変換部PD5L及び第10光電変換部PD5Rを含む。
【0146】
第6ピクセルグループPG6はそれぞれ異なる方向に分割された単位ピクセルを含む。一例として、第6ピクセルグループPG6は第1方向Xに分割された第1単位ピクセルUP1及び第2方向Yに分割された第2単位ピクセルUP2を含む。
【0147】
本実施形態で、第5ピクセルグループPG5及び第6ピクセルグループPG6の単位ピクセルはベイヤーパターン形態で配列される。
【0148】
図22を参照すると、本実施形態によるイメージセンサは第7ピクセルグループPG7及び第8ピクセルグループPG8を含む。
【0149】
第7ピクセルグループPG7は互いに隣接する複数の第7単位ピクセルUP7を含む。複数の第7単位ピクセルUP7はそれぞれ同じ方向に分割される。例えば、それぞれの第7単位ピクセルUP7は第1方向Xに沿って配列された第11光電変換部PD7L及び第12光電変換部PD7Rを含む。
【0150】
第8ピクセルグループPG8はそれぞれ異なる方向に分割された単位ピクセルを含む。一例として、第8ピクセルグループPG8は第1方向Xに分割された第1単位ピクセルUP1及び第2方向Yに分割された第2単位ピクセルUP2を含む。
【0151】
本実施形態で、第7ピクセルグループPG7及び第8ピクセルグループPG8の単位ピクセルはテトラパターン形態で配列される。
【0152】
本実施形態で、第7ピクセルグループPG7及び第8ピクセルグループPG8はそれぞれ異なるカラーの光(即ち、それぞれ異なる波長帯域の光)を感知する。一例として、第7ピクセルグループPG7は青色波長帯域の光Bを感知し、第8ピクセルグループPG8は緑色波長帯域の光Gを感知する。
【0153】
図23を参照すると、本実施形態によるイメージセンサは第7ピクセルグループPG7及び第9ピクセルグループPG9を含む。
【0154】
第7ピクセルグループPG7は
図22を用いて上述した内容と同様であるため、以下では詳しい説明を省略する。
【0155】
第9ピクセルグループPG9は互いに隣接する複数の第9単位ピクセルUP9を含む。複数の第9単位ピクセルUP9はそれぞれ同じ方向に分割される。第9ピクセルグループPG9の第9単位ピクセルUP9は第7ピクセルグループPG7の第7単位ピクセルUP7とは異なる方向に分割される。例えば、それぞれの第9単位ピクセルUP9は第2方向Yに沿って配列された第13光電変換部PD9U及び第14光電変換部PD9Dを含む。
【0156】
本実施形態で、第7ピクセルグループPG7及び第9ピクセルグループPG9の単位ピクセルはテトラパターン形態で配列される。
【0157】
本実施形態で、第7ピクセルグループPG7及び第9ピクセルグループPG9はそれぞれ異なるカラーの光(即ち、それぞれ異なる波長帯域の光)を感知する。一例として、第7ピクセルグループPG7は青色波長帯域の光Bを感知し、第9ピクセルグループPG9は緑色波長帯域の光Gを感知する。
【0158】
図24は、一実施形態によるイメージセンサを説明するための概略的なレイアウト図である。
図25は、一実施形態によるイメージセンサを説明するための概略的な断面図である。説明の便宜上、
図1~
図23を用いて上述した内容に重複する部分は簡略に説明するか又は省略する。
【0159】
図24及び
図25を参照すると、本実施形態によるイメージセンサは、センサアレイ領域SAR、連結領域CR、及びパッド領域PRを含む。
【0160】
センサアレイ領域SARは
図1のアクティブピクセルセンサアレイ10に対応する領域を含む。例えば、センサアレイ領域SAR内には2次元的に(例えば、行列形態で)配列される複数の単位ピクセル(例えば、
図3のUP1~UP4)が形成される。
【0161】
センサアレイ領域SARは受光領域APS及び遮光領域OBを含む。受光領域APSには光の提供を受けてアクティブ(active)信号を生成するアクティブピクセルが配列される。遮光領域OBには光が遮断されてオプティカルブラック(optical black)信号を生成するオプティカルブラックピクセルが配列される。遮光領域OBは、例えば受光領域APSの周辺に沿って形成されるが、これは例示的なものである。
【0162】
本実施形態で、遮光領域OBの一部内には光電変換領域112が形成されない。例えば、光電変換領域112は、受光領域APSに隣接する遮光領域OBの第1基板110内に形成されるが、受光領域APSから離隔される遮光領域OBの第1基板110内には形成されない。
【0163】
一実施形態で、遮光領域OBに隣接する受光領域APSにダミーピクセル(図示せず)が形成される。
【0164】
連結領域CRはセンサアレイ領域SARの周辺に形成される。連結領域CRはセンサアレイ領域SARの一側に形成されるが、これは例示的なものである。連結領域CRには、配線が形成され、センサアレイ領域SARの電気的信号を送受信するように構成される。
【0165】
パッド領域PRはセンサアレイ領域SARの周辺に形成される。パッド領域PRは本実施形態によるイメージセンサの縁に隣接して形成されるが、これは例示的なものである。パッド領域PRは外部装置などに接続され、本実施形態によるイメージセンサと外部装置との間の電気的信号を送受信するように構成される。
【0166】
連結領域CRは、センサアレイ領域SARとパッド領域PRとの間に介在するもので示したが、例示的なものである。センサアレイ領域SAR、連結領域CR、及びパッド領域PRの配置は必要に応じて多様に変更することができることは勿論である。
【0167】
本実施形態によるイメージセンサにおいて、第1基板110及び第1配線構造体IS1は第1基板構造体100を形成する。
【0168】
第1配線構造体IS1はセンサアレイ領域SAR内の第1配線132及び連結領域CR内の第2配線134を含む。第1配線132はセンサアレイ領域SARの単位ピクセル(例えば、
図3のUP1~UP4)に電気的に接続される。例えば、第1配線132は第1電子素子TR1に接続される。第2配線134のうちの少なくとも一部はセンサアレイ領域SARから延びる。例えば、第2配線134のうちの少なくとも一部は第1配線132のうちの少なくとも一部に電気的に接続される。これにより、第2配線134はセンサアレイ領域SARの単位ピクセル(例えば、
図3のUP1~UP4)に電気的に接続される。
【0169】
本実施形態によるイメージセンサは第2基板210及び第2配線構造体IS2を含む。
【0170】
第2基板210はバルクシリコン又はSOI(silicon-on-insulator)である。第2基板210はシリコン基板であるか、又は他の物質、例えば、シリコンゲルマニウム、アンチモン化インジウム、鉛テルル化合物、インジウム砒素、インジウムリン化物、ガリウム砒素、又はアンチモン化ガリウムを含む。また、第2基板210はベース基板上にエピ層が形成されたものである。
【0171】
第2基板210は互いに対向する第3面210a及び第4面210bを含む。第2基板210の第3面210aは第1基板110の第2面110bに対向する面である。
【0172】
第2基板210の第3面210a上には第2電子素子TR2が形成される。第2電子素子TR2は、センサアレイ領域SARに電気的に接続され、センサアレイ領域SARのそれぞれの単位ピクセル(例えば、
図3のUP1~UP4)に電気的信号を送受信する。例えば、第2電子素子TR2は、
図1の行デコーダ20、行ドライバ30、列デコーダ40、タイミング発生器50、相関二重サンプラ60、アナログデジタルコンバータ70、又は入出力バッファ80を構成する電子素子を含む。
【0173】
第2配線構造体IS2は第2基板210の第3面210a上に形成される。第2基板210及び第2配線構造体IS2は第2基板構造体200を形成する。
【0174】
第2配線構造体IS2は第1配線構造体IS1に付着される。例えば、
図25に示すように、第2配線構造体IS2の上面は第1配線構造体IS1の下面に付着される。
【0175】
第2配線構造体IS2は一つ又は複数の配線で構成される。例えば、第2配線構造体IS2は第2配線間絶縁膜230及び第2配線間絶縁膜230内の複数の配線(232、234、236)を含む。
図25で、第2配線構造体IS2を構成する配線の層数及びその配置などは例示的なものであり、これに制限されるものではない。
【0176】
第2配線構造体IS2の配線(232、234、236)のうちの少なくとも一部は第2電子素子TR2に接続される。本実施形態で、第2配線構造体IS2は、センサアレイ領域SAR内の第3配線232、連結領域CR内の第4配線234、及びパッド領域PR内の第5配線236を含む。本実施形態で、第4配線234は連結領域CR内の複数の配線のうちの最上部の配線であり、第5配線236はパッド領域PR内の複数の配線のうちの最上部の配線である。
【0177】
本実施形態によるイメージセンサは、第1連結構造体350、第2連結構造体450、及び第3連結構造体550を含む。
【0178】
第1連結構造体350は遮光領域OB内に形成される。第1連結構造体350は遮光領域OBの表面絶縁膜140上に形成される。第1連結構造体350はピクセル隔離パターン120に接触する。例えば、遮光領域OBの第1基板110及び表面絶縁膜140内に、ピクセル隔離パターン120を露出させる第1トレンチ355tが形成される。第1連結構造体350は第1トレンチ355t内に形成されて遮光領域OB内のピクセル隔離パターン120に接触する。本実施形態で、第1連結構造体350は第1トレンチ355tの側面及び下面のプロファイルに沿って延びる。
【0179】
第1連結構造体350は、例えば、チタン(Ti)、チタン窒化物(TiN)、タンタル(Ta)、タンタル窒化物(TaN)、タングステン(W)、アルミニウム(Al)、銅(Cu)、及びこれらの組み合わせのうちの少なくとも一つを含むが、これらに制限されるものではない。
【0180】
本実施形態で、第1連結構造体350はピクセル隔離パターン120に電気的に接続されてピクセル隔離パターン120にグラウンド電圧又はマイナス電圧を印加する。そのため、ESDなどによって発生した電荷はピクセル隔離パターン120を介して第1連結構造体350に排出される。これにより、ESDアザ不良が効果的に防止される。
【0181】
本実施形態で、第1連結構造体350上に、第1トレンチ355tを埋める第1パッド355が形成される。第1パッド355は、例えば、タングステン(W)、銅(Cu)、アルミニウム(Al)、金(Au)、銀(Ag)、及びこれらの合金のうちの少なくとも一つを含むが、これらに制限されるものではない。
【0182】
本実施形態で、第1保護膜165は第1連結構造体350及び第1パッド355を覆う。例えば、第1保護膜165は第1連結構造体350及び第1パッド355のプロファイルに沿って延びる。
【0183】
第2連結構造体450は連結領域CR内に形成される。第2連結構造体450は連結領域CRの表面絶縁膜140上に形成される。第2連結構造体450は第1基板構造体100と第2基板構造体200とを電気的に接続する。例えば、連結領域CRの第1基板構造体100及び第2基板構造体200内に、第2配線134及び第4配線234を露出させる第2トレンチ455tが形成される。第2連結構造体450は第2トレンチ455t内に形成されて第2配線134と第4配線234とを連結する。本実施形態で、第2連結構造体450は第2トレンチ455tの側面及び下面のプロファイルに沿って延びる。
【0184】
第2連結構造体450は、例えば、チタン(Ti)、チタン窒化物(TiN)、タンタル(Ta)、タンタル窒化物(TaN)、タングステン(W)、アルミニウム(Al)、銅(Cu)、及びこれらの組み合わせのうちの少なくとも一つを含むが、これらに制限されるものではない。本実施形態で、第2連結構造体450は第1連結構造体350と同一レベルで形成される。
【0185】
本実施形態で、第1保護膜165は第2連結構造体450を覆う。例えば、第1保護膜165は第2連結構造体450のプロファイルに沿って延びる。
【0186】
本実施形態で、第2連結構造体450上に、第2トレンチ455tを埋める第1フィリング絶縁膜460が形成される。第1フィリング絶縁膜460は、例えば、シリコン酸化物、アルミニウム酸化物、タンタル酸化物、及びこれらの組み合わせのうちの少なくとも一つを含むが、これらに制限されるものではない。
【0187】
第3連結構造体550はパッド領域PR内に形成される。第3連結構造体550はパッド領域PRの表面絶縁膜140上に形成される。第3連結構造体550は第2基板構造体200に外部装置などを電気的に接続する。例えば、パッド領域PRの第1基板構造体100及び第2基板構造体200内に、第5配線236を露出させる第3トレンチ550tが形成される。第3連結構造体550は第3トレンチ550t内に形成されて第5配線236に接触する。また、パッド領域PRの第1基板110内に第4トレンチ555tが形成される。第3連結構造体550は第4トレンチ555t内に形成されて露出する。本実施形態で、第3連結構造体550は第3トレンチ550t及び第4トレンチ555tの側面及び下面のプロファイルに沿って延びる。
【0188】
第3連結構造体550は、例えば、チタン(Ti)、チタン窒化物(TiN)、タンタル(Ta)、タンタル窒化物(TaN)、タングステン(W)、アルミニウム(Al)、銅(Cu)、及びこれらの組み合わせのうちの少なくとも一つを含むが、これらに制限されるものではない。本実施形態で、第3連結構造体550は第1連結構造体350及び第2連結構造体450と同一レベルで形成される。
【0189】
本実施形態で、第3連結構造体550上に、第3トレンチ550tを埋める第2フィリング絶縁膜560が形成される。第2フィリング絶縁膜560は、例えば、シリコン酸化物、アルミニウム酸化物、タンタル酸化物、及びこれらの組み合わせのうちの少なくとも一つを含むが、これらに制限されるものではない。本実施形態で、第2フィリング絶縁膜560は第1フィリング絶縁膜460と同一レベルで形成される。
【0190】
本実施形態で、第3連結構造体550上に、第4トレンチ555tを埋める第2パッド555が形成される。第2パッド555は、例えば、タングステン(W)、銅(Cu)、アルミニウム(Al)、金(Au)、銀(Ag)、及びこれらの合金のうちの少なくとも一つを含むが、これらに制限されるものではない。本実施形態で、第2パッド555は第1パッド355と同一レベルで形成される。
【0191】
本実施形態で、第1保護膜165は第3連結構造体550を覆う。例えば、第1保護膜165は第3連結構造体550のプロファイルに沿って延びる。本実施形態で、第1保護膜165は第2パッド555を露出させる。
【0192】
本実施形態で、第1基板110内に素子分離パターン115が形成される。例えば、第1基板110内に素子分離トレンチ115tが形成される。素子分離パターン115は素子分離トレンチ115t内に形成される。
【0193】
図25で、素子分離パターン115は連結領域CRの第2連結構造体450の周辺及びパッド領域PRの第3連結構造体550の周辺にのみ形成されるもので示したが、これは例示的なものである。例えば、素子分離パターン115は遮光領域OBの第1連結構造体350の周辺にも形成することができることは勿論である。
【0194】
素子分離パターン115は、例えば、シリコン酸化物、シリコン窒化物、シリコン酸窒化物、アルミニウム酸化物、ハフニウム酸化物、及びこれらの組み合わせのうちの少なくとも一つを含むが、これらに制限されるものではない。
【0195】
本実施形態で、素子分離パターン115の幅は第1基板110の第1面110aから第1基板110の第2面110bに向かうにつれて減少する。これは、素子分離トレンチ115tを形成するエッチング工程が第1基板110の第1面110aに対して行われることに起因する。即ち、素子分離パターン115は第1基板110の後面(back side)に対するDTI工程によって形成されるBDTI(backside deep trench isolation)である。本実施形態で、素子分離パターン115は第1基板110の第2面110bから離隔される。
【0196】
本実施形態で、第1連結構造体350及び第2連結構造体450上に遮光カラーフィルタ170Cが形成される。例えば、遮光カラーフィルタ170Cは遮光領域OB及び連結領域CR内の第1保護膜165の一部を覆うように形成される。遮光カラーフィルタ170Cは第1基板110に入射する光を遮断する。
【0197】
本実施形態で、遮光カラーフィルタ170C上に第3保護膜380が形成される。例えば、第3保護膜380は、遮光領域OB、連結領域CR、及びパッド領域PR内の第1保護膜165の一部を覆うように形成される。本実施形態で、第2保護膜185は第3保護膜380の表面に沿って延びる。第3保護膜380は、例えば光透過性樹脂を含むが、これに制限されるものではない。本実施形態で、第3保護膜380はマイクロレンズ180と同一レベルで形成される。
【0198】
本実施形態で、第2保護膜185及び第3保護膜380は第2パッド555を露出させる。例えば、第2保護膜185及び第3保護膜380内に、第2パッド555を露出させる露出開口ERが形成される。これにより、第2パッド555は外部装置などに接続され、本実施形態によるイメージセンサと外部装置との間の電気的信号を送受信するように構成される。即ち、第2パッド555は本実施形態によるイメージセンサの入出力パッドである。
【0199】
以上、図面を参照しながら本発明の実施形態について詳細に説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の技術的思想から逸脱しない範囲で多様に変更実施することが可能である。
【符号の説明】
【0200】
10 アクティブピクセルセンサアレイ(APS)
20 行デコーダ
30 行ドライバ
40 列デコーダ
50 タイミング発生器
60 相関二重サンプラ(CDS)
70 アナログデジタルコンバータ(ADC)
80 入出力(I/O)バッファ
100、200 第1、第2基板構造体
110、210 第1、第2基板
110a、110b、210a、210b 第1~第4面
112 光電変換領域
115 素子分離パターン
115t 素子分離トレンチ
120 ピクセル隔離パターン
120a、120b 第1、第2隔離部
122 第1分離パターン
122a、122b 第1分離パターン(第1、第2サブ分離パターン)
124 第2分離パターン
124a、124b 第2分離パターン(第3、第4サブ分離パターン)
125 フィリングパターン
127 絶縁スペーサ
130、230 第1、第2配線間絶縁膜
132、134、232、234、236 第1配線~第5配線
140 表面絶縁膜
150 金属パターン(グリッドパターン)
160 低屈折率パターン(グリッドパターン)
165、185、380 第1~第3保護膜
170a、170b カラーフィルタ
170C 遮光カラーフィルタ
180 マイクロレンズ
185 第2保護膜
350、450、550 第1~第3連結構造体
355、555 第1、第2パッド
355t、455t、550t、555t 第1~第4トレンチ
460、560 第1、第2フィリング絶縁膜
APS アクティブピクセルセンサアレイ
AX 増幅トランジスタ
CR 連結領域
ER 露出開口
FD 浮遊拡散領域
IR1~IR4 第1~第4連結部
IS1、IS2 第1、第2配線構造体
OB 遮光領域
PD1、PD2 第1、第2光電変換素子
PD1L~PD4L、PD5L、PD7L 第1、第3、第5、第7、第9、第11光電変換部、
PD1R~PD4R、PD5R、PD7R 第2、第4、第6、第8、第10、第12光電変換部
PD2D~PD4D、PD9D 第4、第6、第8、第14光電変換部
PD2U~PD4U、PD9U 第3、第5、第7、第13光電変換部
PG1~PG4、PG5~PG9 第1~第4、第5~第9ピクセルグループ
PR パッド領域
RG リセットライン(駆動信号ライン)
RX リセットトランジスタ
S11、S21、S12、S22 第1~第4側面
SAR センサアレイ領域
SG 選択線(駆動信号ライン)
SX 選択トランジスタ
TG1、TG2 第1、第2伝送ライン(駆動信号ライン)
TR1、TR2 第1、第2電子素子
TX1、TX2 第1、第2転送トランジスタ
UP 単位ピクセル
UP1~UP4、UP5、UP7、UP9 第1~第4、第5、第7、第9単位ピクセル
VDD 電源電圧
VOUT 出力電圧