(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022168563
(43)【公開日】2022-11-08
(54)【発明の名称】電子銃、電子線適用装置および照射位置移動方法
(51)【国際特許分類】
H01J 37/06 20060101AFI20221031BHJP
【FI】
H01J37/06
【審査請求】有
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2021074108
(22)【出願日】2021-04-26
(11)【特許番号】
(45)【特許公報発行日】2021-08-25
(71)【出願人】
【識別番号】516040121
【氏名又は名称】株式会社Photo electron Soul
(74)【代理人】
【識別番号】100167689
【弁理士】
【氏名又は名称】松本 征二
(72)【発明者】
【氏名】西谷 智博
【テーマコード(参考)】
5C101
【Fターム(参考)】
5C101DD05
5C101DD12
5C101DD16
(57)【要約】 (修正有)
【課題】フォトカソードを長寿命化できる電子銃、当該電子銃を搭載した電子線適用装置、および照射位置移動方法を提供する。
【解決手段】電子銃は、フォトカソード3に照射される励起光Lを移動させる移動装置と制御部を含み、制御部はフォトカソード3上の位置Rn(nは自然数)から位置Rnにおける励起光照射劣化範囲以外の位置Rn+1に励起光3の照射位置を移動させるように移動装置を制御し、励起光照射劣化範囲は励起光3の照射によってフォトカソード3が劣化する範囲であり、位置Rnにおける励起光Lのスポットの中心と位置Rn+1における励起光Lのスポットの中心との距離はフォトカソード3上における励起光Lのスポット径の少なくとも3倍以上である。
【選択図】
図2
【特許請求の範囲】
【請求項1】
電子銃であって、
電子銃は、
光源と、
前記光源からの受光に応じて、電子ビームを射出するフォトカソードと、
アノードと、
前記フォトカソードに照射される励起光を移動させる移動装置と、
制御部と、
を含み、
前記制御部は、前記フォトカソード上の位置Rn(nは、自然数)から前記位置Rnにおける励起光照射劣化範囲以外の位置Rn+1に前記励起光の照射位置を移動させるように前記移動装置を制御し、
前記励起光照射劣化範囲は、前記励起光の照射によって前記フォトカソードが劣化する範囲であり、
前記位置Rnにおける前記励起光のスポットの中心と前記位置Rn+1における前記励起光のスポットの中心との距離は、前記フォトカソード上における前記励起光のスポット径の少なくとも3倍以上である、
電子銃。
【請求項2】
前記励起光の照射位置における前記フォトカソードの量子効率を算出する算出部を含み、
前記制御部は、前記算出部の算出結果に基づいて前記移動装置を制御する、
請求項1に記載の電子銃。
【請求項3】
前記位置Rn+1は、前記位置Rnよりも前に前記励起光が照射された位置における前記励起光照射劣化範囲以外の位置である、
請求項1または2に記載の電子銃。
【請求項4】
前記位置Rn+1は、前記位置Rnよりも前に前記励起光が照射された位置における前記励起光照射劣化範囲内の位置である、
請求項1または2に記載の電子銃。
【請求項5】
フォトカソードホルダを含み、
前記フォトカソードホルダは、
前記フォトカソードを保持し、
前記フォトカソードに対して離間して配置され、前記光源からの光を前記フォトカソードに集光するレンズ
を含む、
請求項1~4のいずれか一項に記載の電子銃。
【請求項6】
請求項1~5の何れか一項に記載の電子銃を含む電子線適用装置であって、
前記電子線適用装置が、
自由電子レーザー加速器、
電子顕微鏡、
電子線ホログラフィー装置、
電子線描画装置、
電子線回折装置、
電子線検査装置、
電子線金属積層造形装置、
電子線リソグラフィー装置、
電子線加工装置、
電子線硬化装置、
電子線滅菌装置、
電子線殺菌装置、
プラズマ発生装置、
原子状元素発生装置、
スピン偏極電子線発生装置、
カソードルミネッセンス装置、または、
逆光電子分光装置
である、
電子線適用装置。
【請求項7】
光源とフォトカソードを含む電子銃において、前記フォトカソードに照射される励起光の照射位置を移動させる照射位置移動方法であって、
前記フォトカソード上の位置Rn(nは、自然数)に前記励起光を照射する照射工程と、
前記位置Rnから前記位置Rnにおける励起光照射劣化範囲以外の位置Rn+1に前記励起光の照射位置を移動させる移動工程と、
を含み、
前記励起光照射劣化範囲は、前記励起光の照射によって前記フォトカソードが劣化する範囲であり、
前記位置Rnにおける前記励起光のスポットの中心と前記位置Rn+1における前記励起光のスポットの中心との距離は、前記フォトカソード上における前記励起光のスポット径の少なくとも3倍以上である、
照射位置移動方法。
【請求項8】
前記照射工程と前記移動工程の間に、前記励起光の照射位置における前記フォトカソードの量子効率を算出する算出工程を含み、
前記算出工程による算出結果に基づいて、前記移動工程を実行する、
請求項7に記載の照射位置移動方法。
【請求項9】
前記移動工程において、前記位置Rn+1は、前記位置Rnよりも前に前記励起光が照射された位置における前記励起光照射劣化範囲以外の位置である、
請求項7または8に記載の照射位置移動方法。
【請求項10】
前記移動工程において、前記位置Rn+1は、前記位置Rnよりも前に前記励起光が照射された位置における前記励起光照射劣化範囲内の位置である、
請求項7または8に記載の照射位置移動方法。
【発明の詳細な説明】
【技術分野】
【0001】
本出願における開示は、電子銃、電子線適用装置および照射位置移動方法に関する。
【背景技術】
【0002】
フォトカソードを搭載した電子銃、当該電子銃を含む電子顕微鏡、自由電子レーザー加速器、検査装置等の電子線適用装置(以下、電子線適用装置から電子銃を除いた装置を「相手側装置」と記載することがある。)が知られている。例えば、特許文献1には、光源から励起光を照射して電子ビームを射出するフォトカソードを用いた電子顕微鏡装置が開示されている。
【0003】
電子顕微鏡装置等の電子線適用装置では、電子ビームの射出を安定的に維持することが必要である。しかしながら、フォトカソードは、励起光の照射を継続することにより電子射出特性が劣化し、射出される電子量が減少するため、フォトカソードを用いた電子ビーム源は、使用時間とともに電子ビームの強度が減少する。そのため、特許文献1では、励起光強度を増大させることや、Csの蒸着を行い、電子ビームの強度を回復することが開示されている。また、特許文献2には、フォトカソードを真空チャンバー内で移動させる手段を設け、フォトカソードを移動させることで励起光の照射による電子ビーム源の劣化を防ぐことが開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2002-313273号公報
【特許文献2】特開2000-223052号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1および特許文献2は、電子ビームの射出を安定的に維持することを意図としているが、その方法は異なるものである。特許文献1には、フォトカソードが劣化した際、Csの再蒸着を行うことで、電子ビームの強度を回復することが開示されている。特許文献2には、フォトカソードを励起光の光軸に対して直角方向に移動させて、励起光に曝されていない箇所に励起光を照射するため、フォトカソードを回転/直線運動する手段(以下、「フォトカソード位置調整手段」と記載することがある。)を真空チャンバー内に設けることが開示されている。
【0006】
特許文献2は、上記したようにフォトカソードの励起光が照射される位置を励起光に曝されていない位置とするので、電子ビームの射出を安定的に維持するのみでなく、フォトカソードの長寿命化を図ることができる。そのため、Csを再蒸着する頻度を少なくでき、電子銃を搭載した電子線適用装置の稼働率を向上できる。
【0007】
しかしながら、特許文献2に開示された電子銃は、フォトカソード位置調整手段を備えるため、装置が大型化してしまうという問題がある。さらに、フォトカソード位置調整手段を真空チャンバー内に配置させている。そのため、フォトカソード位置調整手段が故障した場合、真空チャンバー内を大気圧に戻して修理する必要があり、再度電子銃を使用するには真空チャンバー内を真空にする等の煩雑な作業が必要となる。
【0008】
本発明者は、鋭意研究の結果、フォトカソード位置調整手段を用いずに、フォトカソードの寿命を長くできることを新たに見出した。
【0009】
そこで、本出願の開示の目的は、フォトカソードを長寿命化できる電子銃、当該電子銃を搭載した電子線適用装置、および照射位置移動方法を提供することにある。本出願における開示のその他の任意付加的な効果は、発明を実施するための形態において明らかにされる。
【課題を解決するための手段】
【0010】
[1]電子銃であって、
電子銃は、
光源と、
前記光源からの受光に応じて、電子ビームを射出するフォトカソードと、
アノードと、
前記フォトカソードに照射される励起光を移動させる移動装置と、
制御部と、
を含み、
前記制御部は、前記フォトカソード上の位置Rn(nは、自然数)から前記位置Rnにおける励起光照射劣化範囲以外の位置Rn+1に前記励起光の照射位置を移動させるように前記移動装置を制御し、
前記励起光照射劣化範囲は、前記励起光の照射によって前記フォトカソードが劣化する範囲であり、
前記位置Rnにおける前記励起光のスポットの中心と前記位置Rn+1における前記励起光のスポットの中心との距離は、前記フォトカソード上における前記励起光のスポット径の少なくとも3倍以上である、
電子銃。
[2]前記励起光の照射位置における前記フォトカソードの量子効率を算出する算出部を含み、
前記制御部は、前記算出部の算出結果に基づいて前記移動装置を制御する、
上記[1]に記載の電子銃。
[3]前記位置Rn+1は、前記位置Rnよりも前に前記励起光が照射された位置における前記励起光照射劣化範囲以外の位置である、
上記[1]または[2]に記載の電子銃。
[4]前記位置Rn+1は、前記位置Rnよりも前に前記励起光が照射された位置における前記励起光照射劣化範囲内の位置である、
上記[1]または[2]に記載の電子銃。
[5]フォトカソードホルダを含み、
前記フォトカソードホルダは、
前記フォトカソードを保持し、
前記フォトカソードに対して離間して配置され、前記光源からの光を前記フォトカソードに集光するレンズ
を含む、
上記[1]~[4]のいずれか一つに記載の電子銃。
[6]上記[1]~[5]の何れか一つに記載の電子銃を含む電子線適用装置であって、
前記電子線適用装置が、
自由電子レーザー加速器、
電子顕微鏡、
電子線ホログラフィー装置、
電子線描画装置、
電子線回折装置、
電子線検査装置、
電子線金属積層造形装置、
電子線リソグラフィー装置、
電子線加工装置、
電子線硬化装置、
電子線滅菌装置、
電子線殺菌装置、
プラズマ発生装置、
原子状元素発生装置、
スピン偏極電子線発生装置、
カソードルミネッセンス装置、または、
逆光電子分光装置
である、
電子線適用装置。
[7]光源とフォトカソードを含む電子銃において、前記フォトカソードに照射される励起光の照射位置を移動させる照射位置移動方法であって、
前記フォトカソード上の位置Rn(nは、自然数)に前記励起光を照射する照射工程と、
前記位置Rnから前記位置Rnにおける励起光照射劣化範囲以外の位置Rn+1に前記励起光の照射位置を移動させる移動工程と、
を含み、
前記励起光照射劣化範囲は、前記励起光の照射によって前記フォトカソードが劣化する範囲であり、
前記位置Rnにおける前記励起光のスポットの中心と前記位置Rn+1における前記励起光のスポットの中心との距離は、前記フォトカソード上における前記励起光のスポット径の少なくとも3倍以上である、
照射位置移動方法。
[8]前記照射工程と前記移動工程の間に、前記励起光の照射位置における前記フォトカソードの量子効率を算出する算出工程を含み、
前記算出工程による算出結果に基づいて、前記移動工程を実行する、
上記[7]に記載の照射位置移動方法。
[9]前記移動工程において、前記位置Rn+1は、前記位置Rnよりも前に前記励起光が照射された位置における前記励起光照射劣化範囲以外の位置である、
上記[7]または[8]に記載の照射位置移動方法。
[10]前記移動工程において、前記位置Rn+1は、前記位置Rnよりも前に前記励起光が照射された位置における前記励起光照射劣化範囲内の位置である、
上記[7]または[8]に記載の照射位置移動方法。
【発明の効果】
【0011】
本出願で開示する電子銃は、フォトカソード位置調整手段を用いずにフォトカソードを長寿命化できる。また、真空チャンバー内にフォトカソード位置調整手段を配置していないことから電子銃を小型化できると共に、フォトカソード位置調整手段に起因する故障のリスクが無くなる。
【図面の簡単な説明】
【0012】
【
図1】Y方向からみた第1の実施形態に係る電子銃1Aの一例を模式的に示す図。
【
図2】
図2Aは、励起光Lが位置Rに照射されたフォトカソード3を模式的に示す図。
図2Bは、フォトカソード3における励起光Lの照射位置の移動する過程を模式的に示す図。
【
図3】Y方向からみた第2の実施形態に係る電子銃1Bの一例を模式的に示す図。
【
図4】Y方向からみた第3の実施形態に係る電子銃1Cの一例を模式的に示す図。
【
図5】Y方向からみた第4の実施形態に係る電子銃1Dの一例を模式的に示す図。
【
図6】実施例1および実施例2における励起光Lの照射位置と量子効率の関係を示す図。
【発明を実施するための形態】
【0013】
以下、図面を参照しつつ、電子銃、電子線適用装置および照射位置移動方法について詳しく説明する。なお、本明細書において、同種の機能を有する部材には、同一または類似の符号が付されている。そして、同一または類似の符号の付された部材について、繰り返しとなる説明が省略される場合がある。
【0014】
また、図面において示す各構成の位置、大きさ、範囲などは、理解を容易とするため、実際の位置、大きさ、範囲などを表していない場合がある。このため、本出願における開示は、必ずしも、図面に開示された位置、大きさ、範囲などに制限されない。
【0015】
(方向の定義)
本明細書において、X軸、Y軸、Z軸の3次元直交座標系において、フォトカソードから射出された電子ビームが進行する方向をZ方向と定義する。なお、Z方向は、例えば、鉛直下向き方向であるが、Z方向は、鉛直下向き方向に制限されない。
【0016】
(電子銃の第1の実施形態)
図1、2を参照して、第1の実施形態に係る電子銃1Aについて説明する。
図1は、Y方向からみた第1の実施形態に係る電子銃1Aの一例を模式的に示す図である。
図2Aは、励起光Lが位置Rに照射されたフォトカソード3を模式的に示す図である。
図2Bは、励起光Lの照射位置の移動によって励起光Lが照射された位置を模式的に示す図である。
【0017】
第1の実施形態に係る電子銃1Aは、光源2と、フォトカソード3と、アノード4と、移動装置5と、制御部6とを少なくとも具備している。
【0018】
光源2は、フォトカソード3に励起光Lを照射することで、電子ビームBを射出できれば特に制限はない。光源2は、例えば、高出力(ワット級)、高周波数(数百MHz)、超短パルスレーザー光源、比較的安価なレーザーダイオード、LED等が挙げられる。照射する励起光Lは、パルス光、連続光の何れでもよく、目的に応じて適宜調整すればよい。
図1に示す例では、光源2は、真空チャンバーCB外に配置されている。代替的に、光源2を真空チャンバーCB内に配置してもよい。
【0019】
フォトカソード3は、光源2から照射される励起光Lの受光に応じて、電子ビームBを射出する。より具体的には、フォトカソード3中の電子は励起光Lによって励起され、励起された電子がフォトカソード3から射出される。射出した電子は、アノード4と(フォトカソード3を含む)カソードとによって生成される電界によって加速され、電子ビームBを形成する。
図1に示す例では、励起光Lが、フォトカソード3の背面側から照射されているが、代替的に、励起光Lが、フォトカソード3の正面側から照射されるようにしてもよい。
【0020】
フォトカソード3は、石英ガラスやサファイアガラス等の基板と、基板の第1面(アノード4側の面)に接着したフォトカソード膜で形成されている。フォトカソード膜を形成するためのフォトカソード材料は、励起光を照射することで電子ビームBを射出できれば特に制限はなく、EA表面処理が必要な材料、EA表面処理が不要な材料等が挙げられる。EA表面処理が必要な材料としては、例えば、III-V族半導体材料、II-VI族半導体材料が挙げられる。具体的には、AlN、Ce2Te、GaN、1種類以上のアルカリ金属とSbの化合物、AlAs、GaP、GaAs、GaSb、InAs等およびそれらの混晶等が挙げられる。その他の例としては金属が挙げられ、具体的には、Mg、Cu、Nb、LaB6、SeB6、Ag等が挙げられる。上記したフォトカソード材料をEA表面処理することでフォトカソード3を作製することができ、当該フォトカソード3は、半導体のギャップエネルギーに応じた近紫外-赤外波長領域で励起光の選択が可能となるのみでなく、電子ビームBの用途に応じた電子ビーム源性能(量子収量、耐久性、単色性、時間応答性、スピン偏極度)が半導体の材料や構造の選択により可能となる。
【0021】
また、EA表面処理が不要な材料としては、例えば、Cu、Mg、Sm、Tb、Y等の金属単体、或いは合金、金属化合物またはダイヤモンド、WBaO、Cs2Te等が挙げられる。EA表面処理が不要であるフォトカソードは、公知の方法(例えば、特許第3537779号等を参照)で作製すればよい。特許第3537779号に記載の内容は参照によりその全体が本明細書に含まれる。
【0022】
アノード4は、カソード3と電界を形成できるものであれば特に制限はなく、電子銃の分野において一般的に用いられているアノードを使用することができる。
【0023】
図1に示す例では、フォトカソード3、アノード4は、真空チャンバーCB内に配置されている。なお、本明細書中における「フォトカソード」と「カソード」との記載に関し、電子ビームBを射出するという意味で記載する場合には「フォトカソード」と記載し、「アノード」の対極との意味で記載する場合には「カソード」と記載することがあるが、符号に関しては、「フォトカソード」および「カソード」のいずれの場合でも「3」を用いる。
【0024】
カソード3からアノード4に向けて電子ビームBが射出できれば、電源の配置は、特に制限はない。
図1に示す例では、カソード3とアノード4との間に電位差が生じるように電源を配置することで、電界を形成できる。
【0025】
移動装置5は、フォトカソード3に照射される励起光Lを移動させる。フォトカソード3は、励起光Lによる照射が継続されることで、電子射出特性が劣化し、射出される電子量が減少する。第1の実施形態に係る電子銃1Aでは、移動装置5によりフォトカソード3に照射される励起光Lを移動させて、励起光Lの照射位置を新たな場所とする。当該新たな場所は、励起光Lにより劣化していないため、フォトカソード3を長寿命化できる。移動装置5は、フォトカソード3に照射される励起光Lの照射位置を移動できれば、特に制限はない。
【0026】
図1に示す例では、移動装置5は、ミラー51および図示していないミラー51の向きを変える駆動機構を具備する。ミラー51は、光源2から出射された励起光Lを反射してフォトカソード3へ照射させる。ミラー51は、光源2から出射された励起光Lを反射できればよく、一般的なミラーの他に、ガルバノミラー、DMD(デジタルミラーデバイス)等を用いることもできる。駆動機構をミラー51の向きを変えるように駆動して、励起光Lを反射させる向きを変えることで、フォトカソード3への励起光Lの照射位置を移動させる。ミラー51の向きを変える駆動機構は、自動であっても手動であってもよい。駆動機構を自動とする場合、例えば、ピエゾ素子、電磁コイル、DCまたはACモータ、ステッピングモータ、サーボモータ等の動力源を用いて発生させた動力を直接ミラー51に伝えてミラー51の向きを変えてもよい。また、上記した動力源からの動力をシャフト、ギア機構、ネジ機構、リンク機構、クランク機構またはユニバーサルジョイント等のジョイント機構等の伝達機構を介してミラー51に伝えてミラー51の向きを変えてもよい。駆動機構を手動とする場合には、例えば、手回しハンドルを用いたものが挙げられる。なお、
図1に示す例では、励起光Lを、ミラー51の向きによりX方向へ移動させているが、励起光LをさらにY方向にも移動できるようにミラー51の向きを変えてもよい。そうすることで、励起光Lの照射位置をX-Y平面内で移動できる。
【0027】
制御部6は、移動装置5によって移動する励起光Lの照射位置を制御する。フォトカソード3は、励起光Lの照射によって劣化してしまう。そのため、移動装置5によりフォトカソード3における励起光Lの照射位置を移動させて、新たな位置で励起光Lを照射させる。ところで、後述する実施例においても記載するが、本発明者は励起光Lが照射された照射位置以外においても、フォトカソード3が劣化していることを見出した。そして、フォトカソード3の劣化は、励起光Lの照射位置の近傍であるほどその度合いは高く、当該照射位置から離れるにしたがって低くなり、励起光Lの照射位置からの距離に依存していた。そのため、励起光Lの照射位置は、励起光Lの照射位置および当該照射位置近傍の劣化度合いが大きい範囲(以下において、「励起光照射劣化範囲」と記載することがある。)以外に移動させることが好ましい。励起光照射劣化範囲は、励起光Lの照射位置での照射時間により変化するが、スポット径の5倍程の範囲である。したがって、励起光照射劣化範囲は、
図2Aに示すように励起光Lの照射位置Rにおけるスポット径dの5倍の直径の円の範囲、すなわち破線内の範囲となる。よって、制御部6は、励起光Lの照射位置における励起光照射劣化範囲以外、すなわち励起光Lの照射による劣化の影響が少ない位置に、励起光Lの照射位置を移動させるように移動装置5を制御し、フォトカソード3を長寿命化させる。なお、
図2に示す例では、励起光Lの照射位置におけるスポットは円形状である。代替的に、当該スポットは、楕円形状、卵形や長円等のオーバル形状(以下、円形状以外の形状を「非円形状」と記載することがある。)であってもよい。本明細書において「励起光のスポット径」と記載した場合、励起光Lの照射位置におけるスポットが円形状の場合は円の直径、非円形状の場合は非円形状に外接する円の直径を意味する。
【0028】
制御部6による移動装置5の制御は、励起光照射劣化範囲以外の位置に、励起光Lの照射位置を移動させるのであれば、特に制限はない。
図2Aに示す例では、位置Rにおける励起光照射劣化範囲は励起光Lのスポット径dの5倍の径を有する破線の円の範囲である。そのため、励起光Lを移動させる位置は、励起光Lの照射位置におけるスポット径dの5倍の径を有する破線の円の外であればよい。換言すると、
図2Bに示すように、移動後の励起光Lの照射位置におけるスポットの中心は、移動前の照射位置におけるスポットの中心から少なくともスポット径の3倍以上離れた位置であればよい。移動後の励起光Lの照射位置におけるスポットの中心は、例えば、励起光Lの照射位置である位置Rにおけるスッポトの中心から、スポット径dの3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍、11倍、12倍、13倍、14倍、15倍、16倍、17倍、18倍、19倍または20倍離れた位置としてもよい。また、励起光Lの照射位置におけるスポット径は小さいため、励起光Lの照射位置を移動させる距離も小さくなる。そのため、励起光Lを移動させても、フォトカソード3から射出される電子ビームBの光軸のずれも小さくなる。したがって、第1の実施形態に係る電子銃1Aは、励起光Lの照射位置が移動しても、電子ビームBの光軸を調整する必要がない。
【0029】
励起光Lの照射位置の移動は、フォトカソード3から電子ビームBを射出でき、かつ実施形態に係る電子銃1Aが設置される相手側装置Eにおいて、所望の出力が得られる範囲内で行われる。所望の出力が得られる範囲とは、相手側装置Eが例えば電子顕微鏡である場合、試料の撮像が得られる範囲である。相手側装置Eにおいて所望の出力が得られる範囲は、電子銃1Aや相手側装置Eの仕様、例えば、レンズの有無、アパーチャの径等の構成によって変化する。したがって、励起光Lの照射位置の移動する範囲は、電子銃1Aおよび相手側装置Eの仕様に応じて相手側装置Eにおいて所望の出力が得られる範囲内で適宜調整すればよい。所望の出力が得られる範囲は、相手側装置Eの光軸を基準としフォトカソード3上の相手側装置Eの光軸と重なる位置をフォトカソード3の励起光照射中心と規定した場合、制限されるものではないが、例えば励起光照射中心から70μmの半径を有する円内としてもよい。また、フォトカソード3に照射される励起光Lの一般的なスポット径は、数μmである。そのため、例えば、フォトカソード3に照射される励起光Lのスポット径が2μmである場合、スポット径で換算すると所望の出力が得られる範囲は、励起光照射中心から35倍以内となる。したがって、励起光Lの照射位置の移動する範囲は、励起光照射中心からスポット径dの35倍以内、34倍以内、33倍以内、32倍以内、31倍以内、30倍以内、29倍以内、28倍以内、27倍以内、26倍以内、25倍以内、24倍以内、23倍以内、22倍以内、21倍以内または20倍以内としてもよい。上記の励起光Lの照射位置の移動する範囲の例示は、励起光照射中心からの範囲である。したがって、励起光の照射位置が励起光照射中心から約35倍の位置、換言すると、所望の出力が得られる範囲の最も外側の場合、励起光は励起光照射中心を対称の中心として所望の出力が得られる範囲の反対側まで移動が可能である。
【0030】
制御部6の移動装置5の制御は、励起光Lの照射位置を複数回移動させてもよい。励起光Lの照射位置の移動を複数回行うことで、移動させた回数分、フォトカソード3を長寿命化できる。複数回の励起光Lの移動は、例えば、
図2Bに示すように行われる。
図2Bに示す例では、フォトカソード3の位置R
n(nは、自然数)に励起光Lを照射させている。励起光Lを位置R
nに照射させた後、位置R
nにおける励起光照射劣化範囲以外に移動させる。具体的には、位置R
nにおけるスポットの中心から励起光Lのスポット径dの3倍である3d離れた位置R
n+1にスポットの中心がくるように励起光Lを移動させる。その後、位置R
n+1におけるスポットの中心から3d離れた位置R
n+2へスポットの中心がくるように励起光Lを移動させる。なお、位置R
nの前は、位置R
n-1が励起光Lの照射位置である。
【0031】
また、励起光Lの移動、例えば、
図2Bにおける位置R
nから位置R
n+1への移動は、どのタイミングで行ってもよい。位置R
nでの励起光Lの照射によるフォトカソード3の劣化により位置R
nでのフォトカソード3の量子効率が規定の閾値以下となったタイミングで励起光Lの照射位置を位置R
n+1に移動させてもよいし、量子効率が規定の閾値よりも大きいタイミングで励起光Lの照射位置を位置R
n+1に移動させてもよい。なお、量子効率の閾値は、所望の電子ビームBが射出されるように適宜設定すればよい。量子効率が規定の閾値以下となったタイミングで励起光Lを移動させる場合には、フォトカソード3の位置R
nよりも前に励起光Lが照射された位置および当該照射位置近傍は、励起光Lの照射により劣化している(励起光照射劣化範囲)。そのため、励起光Lを移動させる位置R
n+1は、位置R
nよりも前に励起光Lが照射された位置における励起光照射劣化範囲以外の位置が好ましい。また、量子効率が規定の閾値よりも大きいタイミングで励起光Lを移動させる場合は、位置R
nよりも前に励起光Lが照射された位置の劣化は進んでいない。そのため、励起光Lを移動させる位置R
n+1は、位置R
nよりも前に励起光Lが照射された位置および当該照射位置近傍としてもよいし、位置R
nよりも前に励起光Lが照射された位置および当該照射位置近傍から外れた位置としてもよい。なお、励起光Lの移動のタイミングによらず励起光Lの照射による劣化の影響を少なくするためには、常に位置R
nにおけるスポットの中心から励起光Lのスポット径dの3倍である3d離れた位置R
n+1にスポットの中心がくるように励起光Lを移動させてもよい。
【0032】
また、上記したように「励起光照射劣化範囲」は、励起光Lの照射による劣化度合いが大きい範囲としているが、本明細書において励起光Lの照射による劣化が進んでいない場合に「励起光照射劣化範囲」との記載を使用することもある。その場合、「励起光照射劣化範囲」は、励起光Lの照射位置における劣化度合いが大きい範囲と同じである。換言すると、励起光Lのフォトカソード3におけるスポット径の5倍程度、すなわち、例えば、
図2における破線内の範囲である。
【0033】
(電子銃の第2の実施形態)
図3を参照して、第2の実施形態に係る電子銃1Bについて説明する。
図3は、Y方向からみた第2の実施形態に係る電子銃1Bの一例を模式的に示す図である。
【0034】
第2の実施形態に係る電子銃1Bは、光源2から直接励起光Lをフォトカソード3へ照射するようにし、光源2を移動装置5’で移動させる点で第1の実施形態に係る電子銃1Aと異なり、その他の点は電子銃1Aと同じである。したがって、第2の実施形態に係る電子銃1Bでは、第1の実施形態と異なる点を中心に説明し、第1の実施形態において説明済みの事項についての繰り返しとなる説明は省略する。よって、第2の実施形態において明示的に説明されなかったとしても、第1の実施形態で説明済みの事項を採用可能であることは言うまでもない。
【0035】
図3に示すように、第2の実施形態に係る電子銃1Bは、光源2から出射される励起光Lを直接フォトカソード3に照射する。そして、第2の実施形態に係る電子銃1Bは、光源2を移動させる移動装置5’を具備する。
【0036】
移動装置5’は、光源2を移動させることができれば、特に制限はない。
図3に示す例では、移動装置5’は、ステージ52と、動力伝達機構53と、駆動源54とを具備する。
【0037】
ステージ52には、光源2が載置される。ステージ52は、光源2が載置でき、光源2から出射される励起光Lのフォトカソード3への照射を妨げないものであれば、特に制限はなく、公知のステージを用いればよい。
【0038】
動力伝達機構53は、駆動源54で発生した動力をステージ52に伝達する。動力伝達機構53は、動力をステージ52に伝達できれば、特に制限はない。動力伝達機構53としては、例えば、シャフト、ギア機構、ネジ機構、リンク機構、クランク機構、または、ユニバーサルジョイント等のジョイント機構が挙げられる。
【0039】
駆動源54は、ステージ52を移動させる動力を発生する。動力は、動力伝達機構53を介してステージ52を移動させることができれば、特に制限はない。駆動源54から発生させる動力は、自動で発生させてもよく、手動で発生させてもよい。動力を自動で発生させる駆動源としては、上記した第1の実施形態に係る電子銃1Aにおける移動装置5が具備する駆動源と同様なものを用いればよい。また、動力を手動で発生させる駆動源としては、例えば、ネジ機構を用いたものが挙げられる。
【0040】
なお、
図3に示す例では、光源2をX方向へ移動させているが、光源2をY方向へ移動させるための移動装置をさらに具備してもよい。光源2をY方向へ移動させる移動装置を具備することで、光源2をX-Y平面内で移動させることができる。また、代替的に移動装置5’は、1つの移動装置5’で光源2をX-Y平面内で移動させてもよい。例えば、動力伝達機構にギア等を具備し、ステージをX方向またはY方向に切り替えて移動させるものが挙げられる。
【0041】
(照射位置移動方法の第1の実施形態)
電子銃1Aまたは電子銃1Bを用いたフォトカソード3に照射される励起光Lの照射位置を移動させる照射位置移動方法の第1の実施形態について説明する。
【0042】
第1の実施形態に係る照射位置移動方法は、フォトカソード3上の位置Rn(nは、自然数)に励起光Lを照射する照射工程と、位置Rnから位置Rn+1に励起光Lの照射位置を移動させる移動工程と、を含む。
【0043】
照射工程は、フォトカソード3の任意の位置Rnに励起光Lを照射する。光源2からの励起光Lがフォトカソード3の位置Rnに照射されることで、電子ビームBがフォトカソード3から射出される。
【0044】
移動工程は、フォトカソード3の位置Rnに照射された励起光Lの照射位置を位置Rn+1へ移動させる。その際、位置Rn+1は、上記したように位置Rnにおける励起光Lの照射による励起光照射劣化範囲以外の位置であればよい。位置Rn+1としては、例えば、励起光Lの位置Rnにおけるスポットの中心からスポット径dの3倍以上離れた位置に移動後の励起光Lのスポットの中心がくる位置であり、スポット径dの3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍、11倍、12倍、13倍、14倍、15倍、16倍、17倍、18倍、19倍または20倍離れた位置としてもよい。
【0045】
また、移動工程における励起光Lの位置Rn+1への移動は、上記したようにフォトカソード3から電子ビームBを射出でき、かつ電子銃1Aが設置される相手側装置Eにおいて、所望の出力が得られる範囲内で行われる。
【0046】
移動工程における励起光Lの照射位置を位置Rnから位置Rn+1に移動するタイミングとしては、特に制限はない。位置Rnでの励起光Lの照射によるフォトカソード3の劣化により位置Rnでのフォトカソード3の量子効率が規定の閾値以下となったタイミングで励起光Lの照射位置を位置Rn+1に移動させてもよいし、量子効率が規定の閾値よりも大きいタイミングで励起光Lの照射位置を位置Rn+1に移動させてもよい。量子効率が規定の閾値以下となったタイミングで励起光Lの照射位置を位置Rn+1に移動させる場合は、上記したように励起光Lを移動させる位置Rn+1は、位置Rnよりも前に励起光Lが照射された位置における励起光照射劣化範囲以外の位置が好ましい。また、量子効率が規定の閾値よりも大きいタイミングで励起光Lを移動させる場合は、上記したように励起光Lを移動させる位置Rn+1は、位置Rnよりも前に励起光Lを照射された位置における励起光照射劣化範囲内としてもよいし、励起光照射劣化範囲以外の位置としてもよい。
【0047】
第1の実施形態に係る電子銃1A、第2の実施形態に係る電子銃1Bおよび第1の実施形態に係る照射位置移動方法は、以下の効果を奏する。
(1)真空チャンバーCB内に励起光Lの照射位置を移動させる装置を設ける必要がないので、電子銃を小型化でき、真空チャンバーCB内での故障のリスクを排除できる。また、真空チャンバーCB内に励起光Lの照射位置を移動させる装置を具備しないため、移動によるガスの発生がなく真空チャンバーCB内が汚染されない。
(2)励起光Lの照射によるフォトカソード3の劣化の影響が少ない位置へ励起光Lを移動させるので、位置Rnでのフォトカソード3の量子効率より、量子効率がより高いフォトカソード3の位置を利用できる。
(3)励起光Lの照射位置を移動させる距離が小さいため、フォトカソード3から射出される電子ビームBの光軸と相手側装置Eの光軸とを合わせる補正を行う補正装置を具備しなくてもよい。
【0048】
(電子銃の第3の実施形態)
図4を参照して、第3の実施形態に係る電子銃1Cについて説明する。
図4は、Y方向からみた第3の実施形態に係る電子銃1Cの一例を模式的に示す図である。
【0049】
第3の実施形態に係る電子銃1Cは、励起光Lの照射位置におけるフォトカソードの量子効率を算出する算出部7を具備し、算出部7の算出結果に基づいて制御部6による励起光Lの照射位置の移動を制御する点で第1の実施形態に係る電子銃1Aと異なり、その他の点は電子銃1Aと同じである。したがって、第3の実施形態に係る電子銃1Cでは、第1の実施形態と異なる点を中心に説明し、第1の実施形態において説明済みの事項についての繰り返しとなる説明は省略する。よって、第3の実施形態において明示的に説明されなかったとしても、第1の実施形態で説明済みの事項を採用可能であることは言うまでもない。
【0050】
第3の実施形態に係る電子銃1Cは、算出部7を具備する。算出部7は、励起光Lの照射位置におけるフォトカソードの量子効率を算出する。ここで、量子効率は以下の式(1)で求めることができる。
【0051】
【0052】
式(1)中、Qは量子効率、neは単位時間当たりの放出電子数、npは単位時間当たりの入射光子数を表す。また、neおよびnpは、それぞれ以下の式(2)に変形することができる。
【0053】
【0054】
式(2)中、Iは電流値、eは電子の素電荷、Pは光強度、fは光の透過率、λは入射光波長、hはプランク定数、cは光速を表す。
【0055】
したがって、量子効率は電流値Iと光強度Pを測定すれば算出できる。
図4に示す例では、算出部7はカソード3とアノード4間の電流値と光源2からの光強度の値を取得し、励起光Lの照射位置におけるフォトカソードの量子効率を算出する。
【0056】
なお、
図4に示す例では、電流値は、カソード3とアノード4間に配置された電流計により測定されている。代替的に、真空チャンバーCB内のアノード4と相手側装置Eとの間に電子ビームBのビーム径よりも小さい径の孔を有した電子ビーム遮蔽部材を配置し、電子ビーム遮蔽部材によって遮蔽された電子ビームBによって電流値を測定してもよい。電子ビーム遮蔽部材を用いた電流値の測定は、特許6578529号公報により詳しく記載されており、特許第6578529号公報に記載事項は、本明細書に含まれる。
【0057】
制御部6は、算出部7で算出された算出結果、すなわち励起光Lの照射位置におけるフォトカソードの量子効率に基づいて移動装置5を制御する。例えば、制御部6は算出部7で算出された量子効率の値が規定の閾値以下となったタイミングで、励起光Lの照射位置を位置Rnから位置Rn+1に移動させるように移動装置5を制御してもよい。また、制御部6は、量子効率の値が規定の閾値よりも大きいタイミングで、励起光Lの照射位置を位置Rnから位置Rn+1に移動させるように移動装置5を制御してもよい。量子効率が規定の閾値以下となったタイミングで移動装置5によって励起光Lの照射位置を位置Rnから位置Rn+1に移動させる制御を行う場合、フォトカソード3の位置Rnよりも前に励起光Lが照射された位置における励起光照射劣化範囲は、励起光Lの照射により劣化している。そのため、励起光Lを移動させる位置Rn+1は、位置Rnよりも前に励起光Lが照射された位置における励起光照射劣化範囲以外の位置が好ましい。また、量子効率が規定の閾値よりも大きいタイミングで移動装置5によって励起光Lの照射位置を位置Rnから位置Rn+1に移動させる制御を行う場合、位置Rnよりも前に励起光Lが照射された位置の劣化は進んでいない。そのため、励起光Lを移動させる位置Rn+1は、位置Rnよりも前に励起光Lが照射された位置における励起光照射劣化範囲内としてもよいし、励起光照射劣化範囲以外の位置としてもよい。
【0058】
(照射位置移動方法の第2の実施形態)
電子銃1Cを用いたフォトカソード3に照射される励起光Lの照射位置を移動させる照射位置移動方法の第2の実施形態について説明する。
【0059】
第2の実施形態に係る照射位置移動方法は、照射工程と移動工程の間に、励起光Lの照射位置におけるフォトカソードの量子効率を算出する算出工程を含み、算出工程による算出結果に基づいて、移動工程を実行する点で、第1の実施形態に係る照射位置移動方法と異なり、その他の点は第1の実施形態に係る照射位置移動方法と同じである。したがって、第2の実施形態に係る照射位置移動方法では、第1の実施形態と異なる点を中心に説明し、第1の実施形態において説明済みの事項についての繰り返しとなる説明は省略する。よって、第2の実施形態において明示的に説明されなかったとしても、第2の実施形態で説明済みの事項を採用可能であることは言うまでもない。
【0060】
算出工程は、励起光Lの照射位置におけるフォトカソードの量子効率を算出する。第3の実施形態に係る電子銃1Cで説明したように、カソード3とアノード4間の電流値と光源2からの光強度によって量子効率が算出される。
【0061】
第2の実施形態に係る照射位置移動方法は、算出工程で算出された算出結果、すなわち励起光Lの照射位置におけるフォトカソードの量子効率に基づいて移動工程を実行する。移動工程における位置Rnから位置Rn+1への移動は、例えば、算出工程における量子効率の値が規定の閾値以下になったタイミングで行ってもよく、量子効率の値が規定の閾値よりも大きいタイミングで行ってもよい。量子効率が規定の閾値以下となったタイミングで移動工程を実行する場合は、上記したように励起光Lを移動させる位置Rn+1は、位置Rnよりも前に励起光Lが照射された位置における励起光照射劣化範囲以外の位置が好ましい。また、量子効率が規定の閾値よりも大きいタイミングで移動工程を実行する場合は、上記したように励起光Lを移動させる位置Rn+1は、位置Rnよりも前に励起光Lを照射された位置における励起光照射劣化範囲内としてもよいし、励起光照射劣化範囲以外の位置としてもよい。
【0062】
第3の実施形態に係る電子銃1Cおよび第2の実施形態に係る照射位置移動方法は、上記の実施形態に係る電子銃1A、1Bおよび照射位置移動方法が奏する効果に加え、以下の効果を相乗的に奏する。
(1)算出結果である量子効率に基づいて、励起光Lの照射位置を位置Rnから位置Rn+1に移動できる。したがって、照射位置の移動を効率的に行えるので、フォトカソード3を長寿命化できる。
(2)位置Rnから位置Rn+1への移動を量子効率が閾値以下となったタイミングで行う場合、量子効率が閾値以下になるまで励起光Lを照射できる。電子ビームBの射出中に頻繁に励起光Lの照射位置を移動させないので、当該照射位置の移動によって光軸のずれが生じてしまう頻度を下げられる。
【0063】
(電子銃の第4の実施形態)
図5を参照して、第4の実施形態に係る電子銃1Dについて説明する。
図5は、Y方向からみた第4の実施形態に係る電子銃1Dの一例を模式的に示す図である。
【0064】
第4の実施形態に係る電子銃1Dは、レンズ81を含むフォトカソードホルダ8を更に具備する点で第1の実施形態に係る電子銃1Aと異なり、その他の点は電子銃1Aと同じである。したがって、第4の実施形態に係る電子銃1Dでは、第1の実施形態と異なる点を中心に説明し、第1の実施形態において説明済みの事項についての繰り返しとなる説明は省略する。よって、第4の実施形態において明示的に説明されなかったとしても、第1の実施形態で説明済みの事項を採用可能であることは言うまでもない。
【0065】
電子銃1のフォトカソード3への励起光Lの照射は、レンズ81を介して行われることもある。レンズ81は、光源2からの励起光Lをフォトカソード3へ集光させるものである。集光された励起光Lは、フォトカソード3で焦点を結び、フォトカソード3から電子ビームBが射出される。そのため、フォトカソード3を電子銃1に設置する際には、通常、レンズ81との位置調整が必要となる。
【0066】
第4の実施形態に係る電子銃1Dは、レンズ81を含むフォトカソードホルダ8を具備する。レンズ81は、フォトカソード3に焦点が合う位置で、フォトカソードホルダ8に保持されている。
図5に示す例では、フォトカソード3とレンズ81との間にスペーサ82を設けた例を示している。また、上記したようにフォトカソード3は、基板とフォトカソード膜によって形成されている。そのため、本明細書において、フォトカソードホルダ8がフォトカソード3を保持すると記載した場合、フォトカソードホルダ8がフォトカソード3の基板およびフォトカソード膜も含めて保持すること、フォトカソードホルダ8がフォトカソード3の基板のみを保持することを含んでいる。なお、フォトカソードホルダ8の詳細は、特許第6679014号公報により詳しく記載されており、特許第6679014号公報に記載された事項は、本明細書に含まれる。
【0067】
したがって、フォトカソードホルダ8を励起光Lの光路上に配置することで、フォトカソード3とレンズ81の位置調整をすることなく、フォトカソード3にレンズ81の焦点を常に合わせられる。
【0068】
また、フォトカソードホルダ8によって、レンズ81の焦点は、フォトカソード3にあっている。そのため、励起光Lの照射位置が移動しても、励起光Lを移動させる距離が小さいので、移動によるずれの影響を無視でき、フォトカソード3から電子ビームBを射出できる。
【0069】
(照射位置移動方法の第3の実施形態)
電子銃1Dを用いたフォトカソード3に照射される励起光Lの照射位置を移動させる照射位置移動方法の第3の実施形態について説明する。
【0070】
第3の実施形態に係る照射位置移動方法は、照射工程において、励起光Lがフォトカソードホルダ8に含まれるレンズ81を介してフォトカソード3へ照射される点で、第1の実施形態に係る照射位置移動方法と異なり、その他の点は第1の実施形態に係る照射位置移動方法と同じである。したがって、第3の実施形態に係る照射位置移動方法では、第1の実施形態と異なる点を中心に説明し、第1の実施形態において説明済みの事項についての繰り返しとなる説明は省略する。よって、第3の実施形態において明示的に説明されなかったとしても、第3の実施形態で説明済みの事項を採用可能であることは言うまでもない。
【0071】
第3の実施形態に係る照射位置移動方法における照射工程は、励起光Lがフォトカソードホルダ8に含まれるレンズ81を介してフォトカソード3へ照射される。そのため、上記したようにフォトカソード3とレンズ81の位置調整をすることなく、フォトカソード3にレンズ81の焦点を常に合わせられる。そして、励起光Lの照射位置が移動しても、移動によるずれの影響を無視でき、フォトカソード3から電子ビームBを射出できる。
【0072】
第4の実施形態に係る電子銃1Dおよび第3の実施形態に係る照射位置移動方法は、上記した実施形態に係る電子銃1A~1Cおよび照射位置移動方法が奏する効果に加え、以下の効果を相乗的に奏する。
(1)レンズ81を含むフォトカソードホルダ8を具備しているため、励起光Lの照射位置を位置Rnから位置Rn+1に移動させても、ずれの影響を無視でき、電子ビームBを射出できる。
(2)レンズ81によって励起光Lがフォトカソード3において集光するので、フォトカソード3における励起光のスポット径を小さくできる。
(3)レンズ81によって励起光Lがフォトカソード3において集光するので、励起光Lのフォトカソード上での移動距離は、レンズ81通過前の励起光Lの移動距離よりも相対的に小さくなる。したがって、移動装置5による励起光Lの照射位置の移動を精緻に制御できる。
【0073】
(電子線適用装置の実施形態)
上記の実施形態に係る電子銃1A~1Dを搭載する相手側装置Eは、電子銃1A~1Dを搭載する公知の装置が挙げられる。例えば、自由電子レーザー加速器、電子顕微鏡、電子線ホログラフィー装置、電子線描画装置、電子線回折装置、電子線検査装置、電子線金属積層造形装置、電子線リソグラフィー装置、電子線加工装置、電子線硬化装置、電子線滅菌装置、電子線殺菌装置、プラズマ発生装置、原子状元素発生装置、スピン偏極電子線発生装置、カソードルミネッセンス装置、逆光電子分光装置等が挙げられる。
【0074】
なお、本発明は、上述の実施形態に制限されない。本発明の範囲内において、上述の各実施形態の自由な組み合わせ、あるいは各実施形態の任意の構成要素の変形、または、任意の構成要素の省略が可能である。さらに、上述の各実施形態に任意の構成要素が追加されてもよい。例えば、電子銃1は光ファイバーを具備してもよい。光ファイバーは、光源2からの励起光Lをフォトカソード3に導く。その際、光ファイバーのフォトカソード3側端部の位置を移動させることで、フォトカソード3への励起光Lの照射位置を移動できる。
【実施例0075】
<実施例1>
[フォトカソードが劣化するまでレーザー光(励起光)を照射した時のフォトカソードの量子効率分布]
フォトカソード3が劣化するまでレーザー光を照射した時に、レーザー光の照射が照射位置近傍のフォトカソード3の量子効率へ及ぼす影響を調べた。
【0076】
光源2には、レーザー光源(Toptica製iBeamSmart)を用いた。フォトカソード3は、Daiki SATO et al.2016 Jpn.J.Appl.Phys.55 05FH05に記載された公知の方法で、InGaNフォトカソード3を作製した。フォトカソード3表面のNEA処理は、公知の方法により行った。また、フォトカソード3は、レンズ81を含むフォトカソードホルダ8に保持して、真空チャンバーCB内に配置した。
【0077】
以下に手順を示す。
[1]光源2からフォトカソード3にレーザー光(レーザースポット径2μm)を照射し、フォトカソード3とアノード4との間に25kVの加速電圧を印加することで、フォトカソード3から電子ビームBを射出させた。
[2]電子ビームBを射出している間、電流およびレーザー強度を継続して測定し、量子効率を算出した。
[3]上記[2]で算出した量子効率が10-6未満になった後、ミラー51を具備した移動装置5により、ミラー51の向きを変えてフォトカソード3におけるレーザー光の照射位置を移動した。
[4]移動後の照射位置において、電流およびレーザー強度を測定し、量子効率を算出した。
[5]上記[4]の量子効率を算出後、レーザー光の照射位置を速やかに次の位置に移動し量子効率を算出した。上記[3]と異なり、レーザー光の照射時間が短いことから、フォトカソード3は劣化していない。
[6]上記[5]の手順を繰り返すことで、フォトカソード3が劣化するまで励起光Lを照射した時に、当該照射位置近傍のフォトカソード3の量子効率へ及ぼす変化の分布を調べた。
【0078】
<実施例2>
[フォトカソードが劣化する前にレーザー光を移動した時のフォトカソードの量子効率分布]
実施例1の[3]において、量子効率が10-6未満となるまでレーザー光を照射したのに換えて、速やかにレーザー光の照射位置を移動させた以外は、実施例1と同様の手順で分布を調べた。
【0079】
図6に実施例1および実施例2の結果を示す。横軸はフォトカソード3におけるX軸方向の距離であり、0μmはレンズ81の中心を通過したレーザー光が照射された位置である。縦軸は量子効率である。
【0080】
実施例1は、0μmの位置での量子効率が極小となり、0μmから離れるにしたがって量子効率は増加し、+30μmおよび-30μmの位置で極大となった。極小である0μmが最も劣化していた。そして、0μmから離れるにしたがって量子効率は増加した。これは、レーザー光の照射による劣化の影響が距離に依存して(距離が離れるほど)小さくなることを示している。実施例1の結果から、0μmの位置から5μm以上離れた位置であれば、レーザー光の照射による劣化の影響が小さくなることが示された。また、測定時、フォトカソード3は、レンズ81を含んだフォトカソードホルダ8に保持され、レンズ81を介してレーザー光が照射される。レーザー光が移動してもレンズ81によりレーザー光の焦点はフォトカソード3に合っているものの、レンズ81の表面は曲面であるため、レンズ81の中心を離れると曲面による影響を受け、レーザー光の照射位置における強度および電流値が小さくなってしまう。したがって、+30μmまたは-30μmよりも離れるとレンズ81の曲面の影響が大きくなり量子効率が減少していると考えられる。しかしながら、+30μmまたは-30μmよりも離れた位置の量子効率は、極小値である0μmの量子効率と比べても大きく、相手側装置Eにおいても問題なく所望の出力が得られた。
【0081】
実施例1の結果から、レーザー光を照射した位置およびその近傍は、レーザー光の照射によりフォトカソード3の劣化の影響が大きいことが示された。したがって、少なくともレーザー光の照射位置を劣化の影響が少ない位置に移動させれば、量子効率が大きくなりフォトカソード3を継続して使用できることが示された。
【0082】
実施例2は、量子効率は0μmの位置が最も高かった。そして、距離が離れるにしたがって量子効率は低下した。これは、フォトカソード3は劣化していないものの上記したようにレンズ81の曲面の影響によると考えられる。なお、実施例2の量子効率は、測定範囲全体にわたり実施例1よりも大きかった。その理由として、実施例1はレーザー光の照射により照射位置における量子効率を10-6未満となるまでフォトカソード3を劣化させたため、その影響によりフォトカソード3全体が劣化してしまい、実施例1の方が測定範囲全体にわたり量子効率が小さくなったと考えられる。
【0083】
実施例2の結果から、フォトカソード3は劣化していないため、どの位置にレーザー光を移動させてもフォトカソード3は継続的に使用できることが示された。しかしながら、レーザー光を照射する時間が長くなるほどフォトカソード3は劣化する。そのため、レーザー光の照射による劣化を考慮すれば、閾値まで劣化していないフォトカソード3であっても、レーザー光の照射による劣化の影響が少ない位置に移動させて使用することが望ましい。
【0084】
以上の実施例より、レーザー光の照射によるフォトカソード3の劣化は、レーザー光の照射位置のみではなく、距離依存的に劣化することが示された。そのため、レーザー光の照射位置を移動することでフォトカソード3を長寿命化する場合、劣化の影響が少ない位置にレーザー光を移動するように制御することが望ましい。
本出願で開示する電子銃、電子線適用装置および照射位置移動方法を用いると、電子銃を大型化させることなく、真空チャンバー内における装置の故障リスクなしに、フォトカソードを長寿命化できる。したがって、電子銃を扱う業者にとって有用である。
1,1A~1D…電子銃、2…光源、3…フォトカソード、4…アノード、5,5’…移動装置、51…ミラー、52…ステージ、53…動力伝達機構、54…駆動源、6…制御部、7…算出部、8…フォトカソードホルダ、81…レンズ、82…スペーサ、B…電子ビーム、CB…真空チャンバー、d…スポット径、E…相手側装置、L…励起光、R,Rn-1,Rn,Rn+1,Rn+2…励起光の照射位置