(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022168616
(43)【公開日】2022-11-08
(54)【発明の名称】廃リチウムイオン電池の処理方法
(51)【国際特許分類】
C22B 26/12 20060101AFI20221031BHJP
C22B 7/00 20060101ALI20221031BHJP
C22B 3/04 20060101ALI20221031BHJP
C22B 3/44 20060101ALI20221031BHJP
H01M 10/54 20060101ALI20221031BHJP
【FI】
C22B26/12
C22B7/00 C
C22B3/04
C22B3/44 101Z
H01M10/54
【審査請求】未請求
【請求項の数】1
【出願形態】OL
(21)【出願番号】P 2021074205
(22)【出願日】2021-04-26
(71)【出願人】
【識別番号】391023415
【氏名又は名称】株式会社アサカ理研
(74)【代理人】
【識別番号】110000800
【氏名又は名称】特許業務法人創成国際特許事務所
(72)【発明者】
【氏名】山田 慶太
(72)【発明者】
【氏名】佐久間 幸雄
(72)【発明者】
【氏名】平岡 太郎
(72)【発明者】
【氏名】中澤 順
【テーマコード(参考)】
4K001
5H031
【Fターム(参考)】
4K001AA34
4K001BA22
4K001CA01
4K001CA02
4K001CA11
4K001DB02
5H031RR02
(57)【要約】 (修正有)
【課題】廃LiB(リチウムイオン電池)、およびLiB製造廃材からの有価金属の回収において、廃LiB及びLiB製造廃材を前処理(放電、熱処理、粉砕、分級)して得られた活物質粉からの有価金属の回収および二酸化炭素の回収と循環に関する課題を解決することを目的とする。
【解決手段】廃リチウムイオン電池の処理方法は、前記廃リチウムイオン電池を、放電、熱処理、粉砕、分級などの操作により処理して活物質粉を得る工程と、前記活物質粉中の炭素分を燃焼して二酸化炭素に変換する燃焼工程と、前記燃焼工程において活物質の燃焼時に発生する二酸化炭素を吸収し炭酸化する二酸化炭素回収工程と、前記燃焼工程により燃焼した活物質粉を湿式溶解し、活物質中の有価金属を溶液化する湿式処理工程と、前記二酸化炭素回収工程により吸収した二酸化炭素を、リチウム溶液に添加し炭酸リチウムを得るリチウム炭酸化工程とを備えることを特徴とする。
【選択図】
図1
【特許請求の範囲】
【請求項1】
廃リチウムイオン電池の処理方法において
前記廃リチウムイオン電池を放電、熱処理、粉砕、分級など操作により活物質粉を得る工程と、
前記活物質粉中の炭素分を燃焼して二酸化炭素に変換する燃焼工程と、
前記燃焼工程において活物質の燃焼時に発生する二酸化炭素を吸収し炭酸化する二酸化炭素回収工程と、
前記燃焼工程においてにより燃焼した活物質粉を湿式溶解し、活物質中の有価金属を溶液化する湿式処理工程と、
前記二酸化炭素回収工程により吸収した二酸化炭素を、リチウム溶液に添加し炭酸リチウムを得るリチウム炭酸化工程と
を備えることを特徴とする廃リチウムイオン電池の処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、廃リチウムイオン電池の処理方法に関する。
【背景技術】
【0002】
従来、マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウム等のリチウムを含む複合酸化物を正極活物質とするリチウムイオン電池が知られている。近年、リチウムイオン電池の普及に伴い、廃リチウムイオン電池からリチウム、マンガン、ニッケル、コバルト等の有価金属を回収し、前記正極活物質として再利用する方法が種々提案されている(例えば、特許文献1参照)。
【0003】
かかる従来技術のリチウムイオン電池の処理方法では、コバルトおよびニッケルを含むリチウムイオン電池を処理する方法であって、リチウムイオン電池を加熱し、リチウムイオン電池の温度を、1時間~4時間にわたって550℃~650℃に保持する加熱工程と、加熱工程後に得られる電池粉末を、該電池粉末に含まれる全金属成分を溶解するのに必要な0.9~1.5倍モル当量の硫酸を含む浸出液に添加し、該浸出液を60℃~80℃の温度として、前記電池粉末を浸出させる浸出工程とを含むことが記載されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、実際には、リチウムイオン電池を加熱して得られた活物質粉中には多量の炭素粉が存在する。湿式処理により有価金属(Co, Li, Mn, Ni等)を回収する際に、炭素粉が不溶解物として残存するため、ろ過等により分離する工程を要する。その際、炭素が多量の水分を保持して残渣(スラッジ)として分離されるため、この残渣の処理及び処分が必要となる。そのため、多量の廃棄物の処理が必須となってしまう。
【0006】
また、スラッジ中には水分が保持されるため、有価金属の回収率を向上させるためには、多量の水で残渣を洗浄するなどの追加の工程が必要となる。
【0007】
一方で、炭素を燃焼させることも考えられるが、それにより発生するCO2の取り扱いの課題が残る。すなわち、CO2持ち出し熱量による熱エネルギー回収の課題や、大気放出の場合のCO2による温室効果ガスの削減課題の解決が併せて必要となる。
【0008】
そこで、本発明は、廃LiB(リチウムイオン電池)、およびLiB製造廃材からの有価金属の回収において、廃LiB及びLiB製造廃材を前処理(放電、熱処理、粉砕、分級)して得られた活物質粉からの有価金属の回収および二酸化炭素の回収と循環に関する課題を解決することを目的とする。
【課題を解決するための手段】
【0009】
かかる目的を達成するために、本発明の廃リチウムイオン電池の処理方法は、
前記廃リチウムイオン電池(出発原料となる廃LiB及びLiB製造廃材)を放電、熱処理、粉砕、分級など操作により活物質粉を得る工程と、
前記活物質粉中の炭素分を燃焼して二酸化炭素に変換する燃焼工程と、
前記燃焼工程において活物質の燃焼時に発生する二酸化炭素を吸収し炭酸化する二酸化炭素回収工程と、
前記燃焼工程においてにより燃焼した活物質粉を湿式溶解し、活物質中の有価金属を溶液化する湿式処理工程と、
前記二酸化炭素回収工程により吸収した二酸化炭素を、リチウム溶液に添加し炭酸リチウムを得るリチウム炭酸化工程と
を備えることを特徴とする。
【0010】
かかる本発明の廃リチウムイオン電池の処理方法によれば、第1の効果として、活物質粉中の炭素を燃焼除去することにより、湿式工程で発生する不溶解残渣(スラッジ)の発生量を大幅に低減させることができ、工程廃棄物の削減ができる。
【0011】
第2の効果として炭素を燃焼除去した活物質は、次工程の湿式処理工程で酸(鉱酸)溶解の際、大幅に発泡が抑制され、溶解時の反応制御や反応容器の小型化が可能。(炭素が多量に残ったり、不活性ガス雰囲気化で熱処理した活物質粉は、酸溶解すると未分解の炭素粉が泡となる。
【0012】
また、多量の炭素粉が存在する還元雰囲気で熱処理した活物質粉は、炭酸塩(主に炭酸リチウムと考える)が生成・残留するため、酸溶解すると多量のCO2ガスが発生し反応時に発泡する。)
第3の効果として、活物質の熱処理時に発生する二酸化炭素を吸収し、本プロセスの後段にあるLi回収工程に使用することにより、炭素粉の燃焼により生じたCO2循環プロセスが構築され、本プロセスからのCO2排出量の大幅な低減となる。
【0013】
このように、本発明の廃リチウムイオン電池の処理方法によれば、廃LiB(リチウムイオン電池)、およびLiB製造廃材からの有価金属の回収において、廃LiB及びLiB製造廃材を前処理(放電、熱処理、粉砕、分級)して得られた活物質粉からの有価金属の回収および二酸化炭素の回収と循環に関する課題を解決することができる。
【図面の簡単な説明】
【0014】
【
図1】本実施形態の廃リチウムイオン電池の処理方法の処理内容を示すフローチャート。
【発明を実施するための形態】
【0015】
本実施形態の廃リチウムイオン電池の処理方法は、廃LiBおよびLiB製造廃材からの有価金属有価金属元素(Li,Mn,Co,Ni)の回収率向上(収率90%以上)、および活物質粉を燃焼時に発生する二酸化炭素を回収し炭酸リチウム(Li2CO3)を製造する炭酸源として活用する二酸化炭素のリサイクルプロセスを提供するものである。
【0016】
具体的には、本実施形態の廃リチウムイオン電池の処理方法は、
図1にフローチャートで示す処理工程により実行され、
廃リチウムイオン電池(出発原料となる廃LiB及びLiB製造廃材)を放電、熱処理、粉砕、分級など操作により活物質粉を得る工程と、
前記活物質粉中の炭素分を燃焼して二酸化炭素に変換する燃焼工程と、
前記燃焼工程において活物質の燃焼時に発生する二酸化炭素を吸収し炭酸化する二酸化炭素回収工程と、
前記燃焼工程においてにより燃焼した活物質粉を湿式溶解し、活物質中の有価金属を溶液化する湿式処理工程と、
前記二酸化炭素回収工程により吸収した二酸化炭素を、リチウム溶液に添加し炭酸リチウムを得るリチウム炭酸化工程と
が実行される。
【0017】
ここで、、廃リチウムイオン電池(出発原料となる廃LiB及びLiB製造廃材)に対する放電工程、熱処理工程、粉砕工程、分級工程は、活物質粉を得るための前処理プロセスであって、熱処理・破砕・分級の回数、順序は問わない。すなわち、活物質を含む粉が高収率で得られれば手法は問わない。
【0018】
次に、これらの前処理プロセスにより得られた活物質粉(正極、負極)に対する処理が本発明の廃リチウムイオン電池の処理方法に関するものである。
【0019】
具体的に、燃焼工程では、活物質粉に含まれる負極活物質である炭素粉および有機物を燃焼してCO2に変換する、および含有する有価金属を酸化して酸化物等として得る。
【0020】
かかる燃焼工程では、
燃焼時の雰囲気:大気、酸素富化空気、酸素
温度:500℃以上(好ましくは650~850℃)
燃焼方法:固定・流動いずれも可(問わない)
加熱方式:直接加熱、間接加熱は問わない
である。
【0021】
燃焼工程により得られる燃焼後の正極活物質粉は、燃焼後の活物質中の組成として、
炭素分≦10 wt%(好ましくは 1 wt%未満)であり
有価金属は、主に酸化物として得られているものと考えられる。
【0022】
また、燃焼工程における排ガスに関する、F(フッ素)吸収工程では、燃焼ガス中のフッ素成分の除害方法として、
(1)カルシウム溶液(塩化カルシウム)に排ガスを接触させて、フッ化カルシウムとして固定化し、無害化する。接触方法はスクラバーなど)
(2)燃焼物中にカルシウム塩(塩化カルシウム、消石灰など)を添加し、燃焼時にフッ素をカルシウム塩に固定化し、排ガスへのフッ素含有を抑制する。
【0023】
また、湿式処理の後、不溶解物分離処理により得られる不溶解残渣スラッジについて、
スラッジの組成は、
・燃焼残留の炭素+水分+湿式工程での未溶解物又は生成物など・金属水酸化物(中和等条件により異なる)
・含水率はおおむね60~70 wt%
であり、
湿式処理工程において、酸による有価金属の溶出工程後であれば、どの状態でろ過したスラッジでもよい。
【0024】
そして、得られる効果としては、燃焼時にCO2に変換した炭素分およびろ過時に残渣として存在する炭素に付着する水分が、スラッジとして減量する。
【0025】
次に、本実施形態の廃リチウムイオン電池の処理方法による実験結果を、表1に示す。
【0026】
【0027】
表1からも明らかなように、本実施形態の廃リチウムイオン電池の処理方法によれば、第1の効果として、活物質粉中の炭素を燃焼除去することにより、湿式工程で発生する不溶解残渣(スラッジ)の発生量を大幅に低減させることができ、工程廃棄物の削減ができる。
【0028】
第2の効果として炭素を燃焼除去した活物質は、次工程の湿式処理工程で酸(鉱酸)溶解の際、大幅に発泡が抑制され、溶解時の反応制御や反応容器の小型化が可能。(炭素が多量に残ったり、不活性ガス雰囲気化で熱処理した活物質粉は、酸溶解すると未分解の炭素粉が泡となる。
【0029】
また、多量の炭素粉が存在する還元雰囲気で熱処理した活物質粉は、炭酸塩(主に炭酸リチウムと考える)が生成・残留するため、酸溶解すると多量のCO2ガスが発生し反応時に発泡する。
【0030】
第3の効果として、活物質の熱処理時に発生する二酸化炭素を吸収し、本プロセスの後段にあるLi回収工程に使用することにより、炭素粉の燃焼により生じたCO2循環プロセスが構築され、本プロセスからのCO2排出量の大幅な低減となる。
【0031】
このように、本発明の廃リチウムイオン電池の処理方法によれば、廃LiB(リチウムイオン電池)、およびLiB製造廃材からの有価金属の回収において、廃LiB及びLiB製造廃材を前処理(放電、熱処理、粉砕、分級)して得られた活物質粉からの有価金属の回収および二酸化炭素の回収と循環に関する課題を解決することができる。