IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社北海光電子の特許一覧

<>
  • 特開-光電子顕微鏡 図1
  • 特開-光電子顕微鏡 図2
  • 特開-光電子顕微鏡 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022170848
(43)【公開日】2022-11-11
(54)【発明の名称】光電子顕微鏡
(51)【国際特許分類】
   H01J 37/143 20060101AFI20221104BHJP
   H01J 37/21 20060101ALI20221104BHJP
   G01N 23/227 20180101ALI20221104BHJP
【FI】
H01J37/143
H01J37/21 Z
G01N23/227
【審査請求】有
【請求項の数】2
【出願形態】OL
(21)【出願番号】P 2021077090
(22)【出願日】2021-04-30
(11)【特許番号】
(45)【特許公報発行日】2021-10-27
(71)【出願人】
【識別番号】518433374
【氏名又は名称】株式会社北海光電子
(74)【代理人】
【識別番号】110001841
【氏名又は名称】弁理士法人ATEN
(72)【発明者】
【氏名】武藤 正雄
(72)【発明者】
【氏名】津野 勝重
【テーマコード(参考)】
2G001
5C101
【Fターム(参考)】
2G001AA07
2G001BA08
2G001CA03
2G001DA09
2G001JA06
5C101EE15
5C101EE46
5C101EE64
(57)【要約】
【課題】永久磁石のレンズを用いつつ、焦点位置及び倍率を適切に調整可能である。
【解決手段】光源部5からの光がサンプルSに照射されると、サンプルSから光電子が放出される。かかる光電子は、電圧印加部30が印加する加速電圧によって加速され、電子レンズ系10を通じ、MCP41を介して蛍光スクリーン42を蛍光させる。これによってサンプルSの拡大像が形成される。電子レンズ系10は、結像系のレンズに対応する電子レンズユニット11及び12と、対物レンズに対応する電子レンズユニット13とを有している。これらのレンズユニットはラックピニオン部20の操作によって上下に移動可能である。像の倍率は、電子レンズユニット11及び12間の距離を変更することで調整される。焦点合わせは、電圧印加部30による加速電圧の調整によって調整される。
【選択図】図1
【特許請求の範囲】
【請求項1】
物体に光を照射する光照射手段と、
前記物体と対向するスクリーンと、
前記光照射手段によって光が照射された前記物体から発生する電子を加速させる電圧を発生させる電子加速手段と、
前記電子加速手段が加速させた電子によって前記スクリーン上に前記物体の拡大像を形成するように電子を移動させる磁場の発生源をそれぞれ有し、当該発生源が全て永久磁石である複数のレンズユニットと、
前記複数のレンズユニット間の距離を変更することによって、前記スクリーン上に形成される拡大像の倍率を変更するレンズ駆動機構と、
前記物体と前記スクリーンの間の距離を変更すること、及び、前記電子加速手段が発生させる電圧の大きさを変更することの少なくともいずれかによって、前記拡大像の焦点合わせを行う焦点合わせ手段と、を備えていることを特徴とする光電子顕微鏡。
【請求項2】
前記複数のレンズユニットのそれぞれが、
2個の永久磁石と、前記2個の永久磁石を支持したヨークとを有しており、前記2個の永久磁石同士のN極及びS極が、前記ヨークに発生する磁場が小さくなるように互いに逆に配置されていることを特徴とする請求項1に記載の光電子顕微鏡。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光電子顕微鏡に関する。
【背景技術】
【0002】
従来、電子顕微鏡における像を拡大するレンズの作用を実現する手段として電磁石が主に用いられている。これに対し、永久磁石を電磁石の代わりに用いる電子顕微鏡に係る文献として特許文献1~7がある。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開昭50-011759
【特許文献2】特開昭52-089456
【特許文献3】特開2003-346697
【特許文献4】特開昭52-23255
【特許文献5】特公昭63-29783
【特許文献6】特開昭51-107759
【特許文献7】特開2006-196195
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1~7のいずれにも、永久磁石のレンズを用いた場合における焦点位置の調整に関する具体的な記載がない。また、特許文献1~3の文献では、永久磁石のレンズ作用による像の拡大を電磁石のレンズ作用による像の拡大の補助として使用するものであり、いずれの文献も倍率の変更は電磁石に発生させる電流の調整等によって行っている。特許文献4は、永久磁石によるレンズの数を2個と3個の間で変更することで倍率を変更するものであり、2つの倍率を切り替えるものに過ぎない。特許文献5~7には倍率の変更についての記載がない。
【0005】
本発明の目的は、永久磁石のレンズを用いつつ、焦点位置及び倍率を適切に調整可能な光電子顕微鏡を提供することにある。
【課題を解決するための手段】
【0006】
本発明の光電子顕微鏡は、物体に光を照射する光照射手段と、前記物体と対向するスクリーンと、前記光照射手段によって光が照射された前記物体から発生する電子を加速させる電圧を発生させる電子加速手段と、前記電子加速手段が加速させた電子によって前記スクリーン上に前記物体の拡大像を形成するように電子を移動させる磁場の発生源をそれぞれ有し、当該発生源が全て永久磁石である複数のレンズユニットと、前記複数のレンズユニット間の距離を変更することによって、前記スクリーン上に形成される拡大像の倍率を変更するレンズ駆動機構と、前記物体と前記スクリーンの間の距離を変更すること、及び、前記電子加速手段が発生させる電圧の大きさを変更することの少なくともいずれかによって、前記拡大像の焦点合わせを行う焦点合わせ手段と、を備えている。
【0007】
本発明の光電子顕微鏡によると、レンズユニット間の距離を変更するためのレンズ駆動機構が設けられている。これにより、レンズユニット間の距離を変更して拡大像における倍率を変更することが可能である。また、物体とスクリーン間の距離を変更すること、及び、電子を加速させる電圧を変更することの少なくともいずれかにより、拡大像の焦点合わせを行うことが可能である。
【0008】
また、本発明においては、前記複数のレンズユニットのそれぞれが、2個の永久磁石と、前記2個の永久磁石を支持したヨークとを有しており、前記2個の永久磁石同士のN極及びS極が、前記ヨークに発生する磁場が小さくなるように互いに逆に配置されていることが好ましい。これによると、2個の永久磁石のN極及びS極が反転しており、もって、ヨークに発生する磁場が小さくなっている。したがって、レンズユニット同士の距離を変更する際に、レンズユニット同士で発生する磁力による吸引力や反発力が小さくなる。よって、レンズユニット同士の距離の変更がかかる磁力によって影響されにくい。
【図面の簡単な説明】
【0009】
図1】本発明の一実施形態に係る光電子顕微鏡の構造を示す概略構成図である。
図2図1の光電子顕微鏡に用いられている永久磁石レンズの対称軸に沿った切断面における概略的な端面図及びこの永久磁石が発生させる磁場による磁力線密度の分布図である。
図3図2の永久磁石レンズとは異なる永久磁石レンズの対称軸に沿った切断面における概略的な端面図及びこの永久磁石が発生させる磁場による磁力線密度の分布図である。
【発明を実施するための形態】
【0010】
本発明の一実施形態に係る光電子顕微鏡1について図1を参照しつつ説明する。光電子顕微鏡1は、光源部5(本発明における光照射手段)、サンプル保持部6、電子レンズ系10、電圧印加部30(本発明における電子加速手段)、MCP(Micro Channel Plate)41及び蛍光スクリーン42を備えている。光源部5は、サンプル保持部6に保持されたサンプルS(本発明における物体)に向けて励起光を照射する。励起光が照射されたサンプルSからは光電子が放出される。サンプルSから図1中の上方に離隔した位置にはMCP41が配置されている。電圧印加部30は、MCP41とサンプル保持部6の間に、サンプルSから放出された光電子を加速する加速電圧を印加する。電圧印加部30は、印加電圧の大きさを微細な変化量で変更可能な電子回路を有している。例えば、電圧印加部30には上記電子回路と接続されたダイヤル(不図示)が設けられている。このダイヤルを手動で操作すると印加電圧の大きさを調整可能となるように電子回路が構成されている。加速電圧によって加速された光電子は図1の飛翔領域P内を飛翔し、MCP41に到達する。飛翔領域Pは、図示しない管内に形成されている。管内は真空状態に保持されている。MCP41は、到達した光電子を増倍し、その背後の蛍光スクリーン42に向けて放出する。蛍光スクリーン42はサンプルSと対向している。MCP41から放出された電子が蛍光スクリーン42に到達すると、蛍光スクリーン42における電子の到達箇所に蛍光が発生する。この蛍光がサンプルSの拡大像を形成する。この拡大像は、図示しないイメージセンサ(CCDカメラ等)を用いて検出される。
【0011】
電子レンズ系10は、電子レンズユニット11~13と、電子レンズユニット11~13の位置を調整するためのラックピニオン部20とを有している。電子レンズユニット11~13は、永久磁石レンズ100a~100cを有している。永久磁石レンズ100a~100cは、光学顕微鏡における光に対するレンズの作用と同様の作用を、飛翔領域P中を飛翔する光電子に及ぼすような磁場を飛翔領域P中に発生させる。かかる磁場により、上記の通り蛍光スクリーン42にサンプルSの拡大像を形成させる。電子レンズユニット11及び12は結像系のレンズに対応する。電子レンズユニット13は対物レンズに対応する。本実施形態では、結像系のレンズが2つ設けられているが、3つ以上設けられていてもよい。永久磁石ユニット100a~100cの詳細については後述する。
【0012】
電子レンズユニット11~13は、永久磁石レンズ100a~100cを収容したケース11a~11cを有している。ケース11a~11cは金属製又は合成樹脂製の容器である。ケース11a~11cのそれぞれには、上下方向にこれらを貫通する貫通孔が形成されている。この貫通孔内に飛翔領域Pが位置している。ケース11a~11cは、図1中の上下方向に沿った往復移動が可能となるように光電子顕微鏡1の筐体に支持されていると共にラックピニオン部20に支持されている。ラックピニオン部20は、ピニオン部21とラック部22を有している。ラック部22はケース11a~11cのそれぞれの側面に固定されている。ピニオン部21の歯はラック部22の歯と噛み合っている。ピニオン部21は水平方向に沿った中心軸周りに回転可能となるように光電子顕微鏡1の筐体に支持されている。各ピニオン部21には手動操作用のダイヤル(不図示)が固定されている。ユーザは、このダイヤルを操作することで各ピニオン部21を回転させることができる。ピニオン部21が回転すると、これに連動してラック部22が上下方向に移動する。ラック部22はケース11a~11cに固定されているので、これによって電子レンズユニット11~13のそれぞれを上下方向に移動させることができる。
【0013】
以下、電子レンズユニット11~13に収容された永久磁石レンズ100a~100cについて図2を参照しつつ説明する。永久磁石レンズ100a~100cは基本構造が互いに共通している。このため、以下の説明に当たっては、これらを代表して永久磁石レンズ100aについて記載し、永久磁石レンズ100b及び100cについては説明を適宜省略する。図2の上下方向は図1の上下方向に対応する。また、上下方向と直交する方向を外内方向とし、外内方向に沿って軸C1に近づく方向を内側、軸C1から離れる方向を外側とする。軸C1は、光電子の飛翔領域P(図1参照)に沿った軸である。
【0014】
永久磁石レンズ100aは軸C1に関して軸対称な形状を有している。永久磁石レンズ100aは、リング状の永久磁石111及び112(本発明における磁場の発生源)と、永久磁石111及び112を支持したヨーク部101とを有している。永久磁石111及び112に用いられる材料はどのようなものでもよいが、ネオジウム等、性能の高い希土類磁石が用いられていることが好ましい。永久磁石111及び112は互いに同じ形状且つ同じ大きさを有している。ヨーク部101には、純鉄又は炭素含有量が比較的低い鉄が用いられている。ヨーク部101は、外筒部105及び内筒部106並びに磁極102~104を有している。外筒部105は、内筒部106、磁極102~104並びに永久磁石111及び112を内部に収容した円筒状の部材である。磁極102は外筒部105の上端部に設けられている。磁極102は、外筒部105の内周面から内側に向かって外内方向に延びた桁部102aと、桁部102aの先端から内側に向かって斜め下方に延びた傾斜部102bとを有している。傾斜部102bの先端部は先細りになっている。なお、磁場による電子に対するレンズ作用が適切に確保されるのであれば、磁極102の形状は本実施形態に限らない。例えば、先細りに形成されていなくてもよい。桁部102aの先端部の直下には永久磁石111が配置されている。永久磁石111は、その上部がS極、その下部がN極となるように配置されている。永久磁石111は外筒部105の内周面から内側に離隔している。
【0015】
磁極103は外筒部105の下端部に設けられている。磁極103は、外筒部105の内周面から内側に向かって外内方向に延びた桁部103aと、桁部103aの先端から内側に向かって斜め上方に延びた傾斜部103bとを有している。傾斜部103bの先端部は先細りになっている。なお、磁場による電子に対するレンズ作用が適切に確保されるのであれば、磁極103の形状は本実施形態に限らない。例えば、先細りに形成されていなくてもよい。桁部103aの先端部の直上には永久磁石112が配置されている。永久磁石112は、永久磁石111と外内方向に同じ位置に、その上部がN極、その下部がS極となるように配置されている。つまり、永久磁石112は、上下方向に関してN極及びS極の位置が永久磁石111と反対になるように配置されている。永久磁石112は外筒部105の内周面から内側に離隔している。内筒部106は、永久磁石111と永久磁石112の間に上下に挟まれるように配置されている。内筒部106の外周面は外筒部105の内周面から内側に離隔している。上下方向に関して内筒部106の中央付近からは内側に向かって磁極104が突出している。
【0016】
永久磁石レンズ100aには、上記の通り、N極及びS極の位置が上下方向に関して互いに反対方向となる永久磁石111及び112が設けられている。これにより、磁極102~104からなる3つの磁極においては交互に極性が逆転する。それにより構成される2つのレンズから発生するヨーク部101への拡散磁場は正負で打ち消しあう。このことを確かめるために、永久磁石レンズ100aが発生させる電磁場を以下の通りに数値解析した。アプリケーションソフトウェア(Munro’s Electron Beam Software社)を用いて、図2に示す永久磁石レンズ100aを格子状に小領域に分割し、各小領域に発生する磁場をマクスウェルの方程式に基づいて演算した。図2の永久磁石100a内に記載した白黒の濃淡はかかる数値解析で得られた磁力線密度を概略的に示したものである。黒に近いほど磁力線密度が大きく、白に近いほど磁力線密度が小さい。図2に示す通り、ヨーク部101、特に、外筒部105に発生する磁場が抑えられている。
【0017】
これに対し、図3に示すように、1個の永久磁石211と2個の磁極202及び203を有する永久磁石レンズ200によると、ヨーク部201に発生する磁場を十分に抑えられない。永久磁石レンズ200は軸C2に関して軸対称な形状を有している。永久磁石211は永久磁石111と同じものである。ヨーク部201は、円筒状の外筒部205及び内筒部206並びに磁極202及び203を有している。外筒部205及び内筒部206は、外筒部105及び内筒部106と対応している。磁極202は外筒部205の上端部に設けられている。磁極202は、外筒部205の内周面から内側に向かって外内方向に延びた桁部202aと、桁部202aの先端から内側に向かって斜め下方に延びた傾斜部202bとを有している。傾斜部202bの先端部は先細りになっている。磁極203は外筒部205の下端部に設けられている。磁極203は、外筒部205の内周面から内側に向かって外内方向に延びた桁部203aと、桁部203aの先端から内側に向かって斜め上方に延びた傾斜部203bとを有している。傾斜部203bの先端部は先細りになっている。永久磁石211は、上下方向に関して内筒部206の中央部に挿入されている。図3には、永久磁石レンズ200における磁力線密度が白黒の濃淡によって示されている。黒に近いほど磁力線密度が大きく、白に近いほど磁力線密度が小さい。図3に示す通り、ヨーク部201全体に強い磁場が発生している。
【0018】
以上の構成において、サンプルSの拡大像の取得に当たり、像の倍率及び焦点合わせの調整は以下のように実施される。第1に、倍率の調整は、ラックピニオン部20に設けられたダイヤルを手動操作し、結像系のレンズに対応する電子レンズユニット11と電子レンズユニット12の距離を調整することによって実施される。このとき、上記の通り、電子レンズユニット11~13に設けられた永久磁石ユニット100a~100cにおいて、ヨーク部101に発生する磁場が小さく抑えられている。したがって、永久磁石ユニット100a~100c同士で発生する磁力による吸引力や反発力が抑えられるので、電子レンズユニット11~13のそれぞれの移動が互いの間に発生する磁力に影響されにくい。
【0019】
第2に、焦点合わせの調整は、電圧印加部30によって印加される加速電圧の大きさを調整することによって実施される。電圧を上げると光電子の波長が短くなり、これによって永久磁石レンズ100a~100cのそれぞれにおいて、電圧の変化量に応じた大きさだけ焦点距離が短くなる。一方、電圧を下げると反対に、永久磁石レンズ100a~100cのそれぞれにおいて、電圧の変化量に応じた大きさだけ焦点距離が長くなる。電圧印加部30による印加電圧は、電子回路の制御により微細な変化量で調整可能である。このため、焦点距離を微細に変更することができ、もって、焦点合わせに求められる高精密な焦点距離の調整が可能となる。
【0020】
(本実施形態の応用上の特徴)
本実施形態に係る光電子顕微鏡1の応用上の特徴について説明する。なお、以下の説明は、上述の実施形態の構成や用途等を限定する意図でするものではない。本実施形態に係る光電子顕微鏡1は、上述の通り、倍率や焦点合わせの手動調整を簡易に実施できる。よって、電子顕微鏡の煩雑な操作に比べ、光学顕微鏡並みに容易に扱え、専門のオペレーターを必要としない。また、フィラメントなどの維持費も不要である。また、部品点数が走査電子顕微鏡に比べ半減し、原価が低減する。加えて、性能は走査電子顕微鏡と同等であり、走査方式を採用した走査電子顕微鏡に比べ、直接写像を採用しているため、リアルタイムでサンプルを観察できる。価格的には、光学顕微鏡と走査電子顕微鏡の中間での供給を可能にする。さらに、技術革新に伴い、光学顕微鏡では観察不能な高倍率領域での検査機器が要望されており、これらのニーズにも応じたものである。例えば、教育現場において、集積回路のパターンの観察やバイオ試料の直視が可能となる。顕微鏡としての原理が簡単なため、大学や高等専門学校等での電子顕微鏡製作の実習にも使用可能である。
【0021】
<変形例>
以上は、本発明の好適な実施形態についての説明であるが、本発明は上述の実施形態に限られるものではなく、課題を解決するための手段に記載された範囲の限りにおいて様々な変更が可能なものである。
【0022】
例えば、上述の実施形態では、ピニオン部21のダイヤルを手動操作することで電子レンズユニット11~13を移動させている。しかし、ピニオン部21を移動させる駆動力を発生させる駆動手段が設けられてもよい。この場合、例えば、かかる駆動手段を制御するコントローラが設けられてもよい。このコントローラにピニオン部21の移動方向と移動距離を入力すると、入力された内容に応じた方向及び距離でピニオン部21を移動させるような駆動力を駆動手段が発生させる。また、電子レンズユニット11~13を移動させる機構が、ラックピニオン部20とは異なる機構であってもよい。例えば、リニアアクチュエータ方式で電子レンズユニット11~13を移動させる機構であってもよい。
【0023】
また、上述の実施形態においては、電圧印加部30による印加電圧の変更によって蛍光スクリーン42に形成される拡大像の焦点合わせを行っている。しかし、かかる手段による焦点合わせに代えて、又は、加えて、ラックピニオン部20を用いて電子レンズユニット11~13を移動させ、これらのレンズユニットと蛍光スクリーン42の間の距離を変更することにより、焦点合わせを行ってもよい。
【符号の説明】
【0024】
1 光電子顕微鏡
10 電子レンズ系
11 電子レンズユニット
20 ラックピニオン部
30 電圧印加部
42 蛍光スクリーン
100a~100c 永久磁石レンズ
101 ヨーク部
102~104 磁極
111、112 永久磁石
図1
図2
図3
【手続補正書】
【提出日】2021-08-13
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
物体に光を照射する光照射手段と、
前記物体と対向するスクリーンと、
前記光照射手段によって光が照射された前記物体から発生する電子を加速させる電圧を発生させる電子加速手段と、
前記電子加速手段が加速させた電子によって前記スクリーン上に前記物体の拡大像を形成するように電子を移動させる磁場の発生源をそれぞれ有し、当該発生源が全て永久磁石である複数のレンズユニットと、
前記複数のレンズユニット間の距離を変更することによって、前記スクリーン上に形成される拡大像の倍率を変更するレンズ駆動機構と、
前記電子加速手段が発生させる電圧の大きさを変更することによって、前記拡大像の焦点合わせを行う焦点合わせ手段と、を備えていることを特徴とする光電子顕微鏡。
【請求項2】
前記複数のレンズユニットのそれぞれが、
2個の永久磁石と、前記2個の永久磁石を支持したヨークとを有しており、前記2個の永久磁石同士のN極及びS極が、前記ヨークに発生する磁場が小さくなるように互いに逆に配置されていることを特徴とする請求項1に記載の光電子顕微鏡。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0006
【補正方法】変更
【補正の内容】
【0006】
本発明の光電子顕微鏡は、物体に光を照射する光照射手段と、前記物体と対向するスクリーンと、前記光照射手段によって光が照射された前記物体から発生する電子を加速させる電圧を発生させる電子加速手段と、前記電子加速手段が加速させた電子によって前記スクリーン上に前記物体の拡大像を形成するように電子を移動させる磁場の発生源をそれぞれ有し、当該発生源が全て永久磁石である複数のレンズユニットと、前記複数のレンズユニット間の距離を変更することによって、前記スクリーン上に形成される拡大像の倍率を変更するレンズ駆動機構と、前記電子加速手段が発生させる電圧の大きさを変更することによって、前記拡大像の焦点合わせを行う焦点合わせ手段と、を備えている。
【手続補正3】
【補正対象書類名】明細書
【補正対象項目名】0007
【補正方法】変更
【補正の内容】
【0007】
本発明の光電子顕微鏡によると、レンズユニット間の距離を変更するためのレンズ駆動機構が設けられている。これにより、レンズユニット間の距離を変更して拡大像における倍率を変更することが可能である。また、電子を加速させる電圧を変更することにより、拡大像の焦点合わせを行うことが可能である。
【手続補正4】
【補正対象書類名】明細書
【補正対象項目名】0022
【補正方法】変更
【補正の内容】
【0022】
例えば、上述の実施形態では、ピニオン部21のダイヤルを手動操作することで電子レンズユニット11~13を移動させている。しかし、ピニオン部21を移動させる駆動力を発生させる駆動手段が設けられてもよい。この場合、例えば、かかる駆動手段を制御するコントローラが設けられてもよい。このコントローラにピニオン部21の移動方向と移動距離を入力すると、入力された内容に応じた方向及び距離でピニオン部21を移動させるような駆動力を駆動手段が発生させる。また、電子レンズユニット11~13を移動させる機構が、ラックピニオン部20とは異なる機構であってもよい。例えば、リニアアクチュエータ方式で電子レンズユニット11~13を移動させる機構であってもよい。なお、上述の実施形態に加えて、物体とスクリーンの間の距離を変更することにより焦点合わせを行う手段が採用されてもよい。