(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022172147
(43)【公開日】2022-11-15
(54)【発明の名称】流体を分析するためのフローセルおよび光学システム
(51)【国際特許分類】
G01N 21/05 20060101AFI20221108BHJP
G01N 21/59 20060101ALI20221108BHJP
【FI】
G01N21/05
G01N21/59 Z
【審査請求】有
【請求項の数】32
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2022128980
(22)【出願日】2022-08-12
(62)【分割の表示】P 2019568399の分割
【原出願日】2018-03-29
(31)【優先権主張番号】62/522,124
(32)【優先日】2017-06-20
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】519437467
【氏名又は名称】シーアイ システムズ(イスラエル)エルティーディー.
(74)【代理人】
【識別番号】100082072
【弁理士】
【氏名又は名称】清原 義博
(72)【発明者】
【氏名】ナオル,ヨラム
(57)【要約】 (修正有)
【課題】溶質の濃度を決定するために、フローセルのチャンバ内の流体サンプル、例えば溶媒や溶質の化学的溶液を分析するためのフローセルを含む、フローセルおよび光学的分析システム。
【解決手段】流体サンプルを分析するフローセル30は基準物質を含み、流体サンプルを含むために少なくとも1つの中空チャンバを含んでいる。フローセル本体の対向表面は各々少なくとも1つの透明の部分を有している。フローセルボディーを通って横断する光のための光学的経路56は、透明の部分によって一部定義される。切り替え機構46は、基準測定状態と流体サンプル測定状態との間のフローセルの切り替えを達成するために光学的経路内の基準物質の量を調節する。基準測定状態は第1の光強度測定に対応し、流体サンプル測定状態は第2の光強度測定に対応する。
【選択図】
図2
【特許請求の範囲】
【請求項1】
流体サンプルを分析するためのフローセルであって、前記フローセルは、
基準物質を含み、かつ流体サンプルを含むための少なくとも1つの中空チャンバを含むフローセル本体であって、当該フローセル本体は対向する表面を含み、当該対向する表面は各々少なくとも1つの透明の部分を有し、当該フローセル本体を通って横断する光のための光学的経路が、前記透明の部分によって一部定義される、フローセル本体と、
前記光学的経路内に配置された基準物質の量を調節するように動作可能であり、第1の光強度測定に対応する基準測定状態と、第2の光強度測定に対応する流体サンプル測定状態との間のフローセルの切り替えを達成する、切り替え機構と、
を含んでなる流体サンプルを分析するためのフローセル。
【請求項2】
前記基準物質は、流体サンプルと接触する少なくとも1つの部分を有する少なくとも1つの移動可能な要素を含んでなる請求項1に記載のフローセル。
【請求項3】
前記切り替え機構は、少なくとも1つの回転アームを有する回転機構を含んでなる請求項1に記載のフローセル。
【請求項4】
前記切り替え機構は前記回転機構を回転させるように動作可能であり、2つの状態間の切り替えを達成するために透明な桿状体を光学的経路の内外に交互に位置づける、請求項3に記載のフローセル。
【請求項5】
前記回転機構は複数のアームを含み、および各々のアームが透明な桿状体に結合されてなる、請求項3に記載のフローセル。
【請求項6】
隣接したアームの透明な桿状体は異なる長さを持っている、請求項5に記載のフローセル。
【請求項7】
基準物質は透明な桿状体を含んでいる、請求項1に記載のフローセル。
【請求項8】
透明な桿状体はフローセル本体の中心軸の周りを回転可能である、請求項7に記載のフローセル。
【請求項9】
基準物質はさらに第2の透明な桿状体を含み、2つの透明な桿状体が異なる長さをもつ、請求項7に記載のフローセル。
【請求項10】
前記2つの透明な桿状体は共同して移動可能である、請求項9に記載のフローセル。
【請求項11】
前記切り替え機構は、前記透明な桿状体を光学的経路の内外に並進移動させるように動作可能である、請求項7に記載のフローセル。
【請求項12】
前記切り替え機構は、前記光学的経路に実質的に垂直な回転軸の周りを透明な桿状体を回転させるように動作可能である、請求項7に記載のフローセル。
【請求項13】
基準物質は光学的経路内の流体サンプルの量を置き換えるように移動可能である、請求項1に記載のフローセル。
【請求項14】
前記切り替え機構はピストン構成を含んでいる、請求項1に記載のフローセル。
【請求項15】
前記中空チャンバは、流体が当該中空チャンバを通って流れる流路を提供する、入口ポート及び出口ポートを含んでいる、請求項1に記載のフローセル。
【請求項16】
前記切り替え機構は、前記中空チャンバを通る流体の流れによって起動される、請求項15に記載のフローセル。
【請求項17】
前記切り替え機構は、光検知器と同期して動作するモータによって起動される、請求項1に記載のフローセル。
【請求項18】
前記基準測定状態は第1の光学的経路長に対応し、流体サンプル測定状態は第2の光学的経路長に対応する、請求項1に記載のフローセル。
【請求項19】
第1の光学的経路長は、光学的経路内の流体サンプルの第1の量に対応し、第2の光学的経路長は、光学的経路内の流体サンプルの第2の量に対応する、請求項18に記載のフローセル。
【請求項20】
前記中空チャンバは、光学的経路に固定して位置づけられる、請求項1に記載のフローセル。
【請求項21】
前記透明の部分は、前記中空チャンバの対向する表面上に配置される前記一対の透明の窓として実施される、請求項1に記載のフローセル。
【請求項22】
基準物質は流体サンプルとともに中空チャンバ内に配置される、請求項1に記載のフローセル。
【請求項23】
光学的経路は、第1のレンズと第2のレンズを含むスタティックレンズ構成によって一部定義され、透明の部分は前記スタティックレンズ構成の個々のレンズの間に位置づけることができる、請求項1に記載のフローセル。
【請求項24】
基準物質は流体サンプルと異なる第2の流体である、請求項1に記載のフローセル。
【請求項25】
前記フローセル本体は、第2の流体を含む第2の中空チャンバを含んでいる、請求項24に記載のフローセル。
【請求項26】
透明の部分は、中空チャンバの対向表面上に配置される第1の対の透明の窓として実施され、前記フローセルはさらに、前記第2の中空チャンバの対向表面上に配置される第2の対の透明の窓を含んでなる、請求項25に記載のフローセル。
【請求項27】
流体サンプル測定状態にあるとき、前記一対の透明の窓がスタティックレンズ構成の個々のレンズと一列に並んで、中空チャンバを通る光学的経路を提供し、基準測定状態にあるとき、第2の一対の透明の窓は、第2の中空チャンバを通る光学的経路を提供するためのスタティックレンズ構成の個々のレンズと一列に並ぶ、請求項26に記載のフローセル。
【請求項28】
流体サンプルを分析するためのシステムであって、前記システムは、
フローセル本体を含むフローセルであって、当該フローセル本体は基準物質を含み、当該フローセル本体は流体サンプルを含むための少なくとも1つの中空チャンバを含んでなるフローセルと、
光源からフローセル本体を通って光検知器まで光を向けるために少なくとも第1及び第2のレンズを含むスタティック光学構成と、
前記フローセル本体の対向表面上に配置された少なくとも第1および第2の透明表面であって、前記フローセル本体は第1の透明表面と第1のレンズと、そして第2の透明表面と第2のレンズと、を一列に並ぶように位置決めでき、フローセル本体を通る光学的経路が、前記第1及び第2の透明表面とスタティック光学構成によって一部が定義されてなる第1及び第2の透明表面と、
第1の光強度測定に対応する基準測定状態と、第2の光強度測定に対応する流体サンプル測定状態との間のフローセルの切り替えを達成するために、光学的経路内に配置された基準物質の量を調節するために動作可能な切り替え機構と、
を含んでなる流体サンプルを分析するためのシステム。
【請求項29】
さらに、フローセルを通り抜けるように光をフローセル内に導くための第1の光ファイバーと、フローセルを通り抜けた光を導くための第2の光ファイバーと、を含む光ファイバーを更に含んでなる、請求項28に記載のシステム。
【請求項30】
さらに、第1の光ファイバーに結合された光源を含む、請求項29に記載のシステム。
【請求項31】
さらに、フローセル本体を通り抜ける光強度の測定のために第2の光ファイバーに結合された前記光検知器を含む、請求項29に記載のシステム。
【請求項32】
前記検知器及び切り替え機構は同期して動作するように構成される、請求項31に記載のシステム。
【請求項33】
さらに、前記光検知器に結合された少なくとも1つのプロセッサーを含む処理ユニットであって、前記処理ユニットは、フローセルが基準測定状態であるときに、フローセル本体を通り抜ける光強度を示す第1の信号を受け取り、フローセルが流体サンプル測定状態であるときに、フローセル本体を通り抜ける光強度を示す第2の信号を受け取り、そして、受信信号の一部に基づいて流体サンプルの濃度あるいは透過率の少なくとも1つを決定する、ように構成されてなる、処理ユニットを含む、請求項31に記載のシステム。
【請求項34】
流体サンプルを分析するためのフローセルであって、前記フローセルは、
流体サンプルを含むための少なくとも1つの中空チャンバと、
中空チャンバの対向表面上に配置された一対の透明の窓であって、透明の窓の各々は中空チャンバを通る光学的経路を定義するために、スタティックレンズ構成の個々のレンズと一列に並んでなる一対の透明の窓と、
流体サンプルと接触する少なくとも1つの部分を有する少なくとも1つの移動可能な要素を含む切り替え機構であって、前記切り替え機構は、少なくとも第1の光学的経路長と第2の光学的経路長との間の中空チャンバを通る光学的経路長を変更するために少なくとも1つの要素を移動させるように動作可能である、切り替え機構と、を含んでなる、
ことを特徴とする流体サンプルを分析するためのフローセル。
【発明の詳細な説明】
【技術分野】
【0001】
<関連出願の相互基準参照>
この出願は、2017年6月20日に出願された米国仮特許出願No.62/522,124からの優先権を主張し、その開示全体が参照によって本明細書に組込まれる。
【0002】
本発明は流体を分析するためのフローセルおよび関連するシステムに関する。
【背景技術】
【0003】
溶質濃度測定は周知のビール・ランベルトの法則を使用し、この法則は、溶液の特定の経路長を通って伝達される光強度によって溶質分子密度と分子吸収断面係数を関連づける。一様な溶質濃度の場合は、関係は以下のように表現することができる。
【0004】
【0005】
ここに、I0はサンプリングされた溶液に入る光強度であり、I1はサンプリングされた溶液を出る光強度であり、αは分子吸収断面係数であり、cは、測定されたサンプル中の溶質分子の分子密度である。(「数密度」または「濃度」とも言う)、また、lは、測定されたサンプル中の光線によって横断された光学的経路の長さである。
【0006】
I1が測定され、I0、αおよびlが既知である場合、濃度cは方程式(1)を使用して計算することができる。単純性のために、溶媒は透明であると仮定される。また、溶媒によって引き起こされた光および/または溶質分子の如何なる散乱影響も存在しないか或いは無視できると仮定される。
【0007】
実験用機器では、流体の中で既知の溶質の未知の濃度を測定するために使用される慣例は、最初に光透過率を測定することである。光透過率は、光検知器を使用して、2つの測定状態を介して方程式(1)から、比I1/I0と定義される。状態Aと呼ばれる第1の測定状態でH、光は、光検知器の信号出力によって光学的経路中にサンプルがない状態で測定され、(「基準測定信号」と呼ばれ)I0に比例する。そして、状態Bと呼ばれる第2の測定状態では、光は、光検知器の信号出力によって光学的経路中のサンプルと共に測定され、(「サンプル測定信号」と呼ばれ)I1に比例する。濃度を測定するこの方法論を用いる場合、正確に進入光強度I0を知る必要はない、なぜなら進入光強度が光透過率(I1/I0)で相殺するからである。
【0008】
一列に(in-line)流動液体サンプルを測定する場合、上記状態BおよびAのような光学的経路から流体サンプルを導入し除去することは通常厄介であり、非実用的である。より広く使用される代替の方法は光スイッチング方法に依存し、この方法はまず光線を、流体サンプルを通って移動させ、ついで流体サンプルを含まない第2の光学的経路を通って移動させる。この光切り替え方法は実施するのがより簡単である、なぜなら、サンプル有りとサンプル無しの測定の間の切り替えが、流体の流れの外側の光学要素を制御することにより、光学的に行われるからである。上記状態Aの通路は、空気または真空を通す通路、溶質の無い同じ溶媒、或いは同じ溶媒と、正確に知られた濃度の同じ溶質材料又は知られた透過率の如何なる他の物質とから製造された溶液を通す通路であり得る。このように、状態A及びBにおける光検知器の信号出力は得られ、またI1/I0に等しい基準サンプルの既知の透過率に訂正された信号出力の比は、上記の方程式(1)から濃度cを得るために使用することができるか、あるいはαおよび経路の長さlについての知識を使用することにより、類似の方程式を使用することができる。
【0009】
図1Aおよび1Bは、そのような光学的な切替方法を実施する典型的な概略図を例証する。光源12は光線を生成する。当該光線は第1のレンズ24aによって向けられ、基準流体(
図1A-状態 A)あるいは流体サンプル(
図1B-状態B)のいずれかを通過する。基準流体又は流体サンプルを出る光線は、光検知器14に当たる前に第2のレンズ24bを通される。状態A(
図1A)において、1対の切り替えミラー90aおよび90bは移動され、その結果、第1のレンズ24aによって向けられた光源12からの光線は、第1の切り替えミラー90aから反射され、第1の固定ミラー92aから離れて基準流体を通り抜け、ついで、光線は第2の固定ミラー92bから反射され、第2のレンズ24bを経て第2の切り替えミラー90bから離れ、光検知器14に至る。状態B(
図1B)において、一対の切り替えミラー90aおよび90bは移動され、その結果、光源12からの光線は第1のレンズ24aによって向けられ、流体サンプルを通り抜け、ついで、光線は第2のレンズ24bを通り抜け光検知器14に至る。破線94は、状態AおよびBの光線によって横断される光学的経路を表わす。光源12が光の指向性光線を生成する場合、
図1Aおよび1Bで例証された実施例では、第1のレンズ24aが省略され得ることに注意すること。
【0010】
そのような光学的切り替え方法および他の概念的に同様の方法の1つの欠点は、切り替え機構が2つの異なる光学的経路で異なる外部光学要素を使用することである。
図1Aおよび1Bのスキームでは、基準信号(
図1A)を測定する場合、ミラー90a、90b、92aおよび92bは、サンプルから光学的経路を逸らすために使用される。その結果、2つの経路を出る光は、一般的にサンプルの存在或いは不存在のみならず、光学列で使用される光学要素の反射率および/または透過率によって影響を受ける。その結果、基準信号およびサンプル測定信号の比率は、望まれるようなサンプル透過率と単に等しくない。実際、比率はさらに他のファクター、例えばi)状態、AおよびBにおいて使用されるミラーの反射率、およびii)二つの光線の異なる形状又は状態AおよびBで光線が移動する異なる距離による、状態AおよびBの信号出力中の幾何学的な光学効果を含み得る。
【0011】
光検知器14によって生成されたサンプル測定信号は以下のように表現することができる。
【0012】
【0013】
また、光検知器14によって生成された基準測定信号は以下のように表現することができる。
【0014】
【0015】
ここに、ILSは光源12の光強度出力、τ1はサンプル測定状態(すなわち、状態A)で使用される光学要素の光学的スループット、τ0は基準測定状態(つまり状態B)で使用される光学要素の光学的スループット、τSは流体サンプルの光学的スループット、τRは基準物質の光学スループットRは光検知器14の応答である。上記の方程式(2)および(3)において量ρmを信号の比として定義すること、すなわち、1/S0、比ρmは以下のように表現することができる。
【0016】
【0017】
比τ1/τ0が知られている場合、および基準物質透過率τRが知られている場合、所望の希望の未知数、τsは、濃度cの情報を含み、方程式(4)を転置することにより得られる。原則として、量τ1とτ0はこの目的を達成するために測定され得る。しかしながら、そのような測定が追加の光学切り替え要素の要求により高価であると同時に厄介で非実用的であるという事実に加えて、他の光学的経路ではなく1つの光学的経路で使用される光学要素に時間とともに生じるあらゆる変更(例えば、状態Bではなく状態Aで使用される切り替えミラー)は、濃度測定に誤差を引き起こすだろう。そのような変化の一例は、ミラー90a、90b、92aおよび92bの1つ以上の反射率の変化であり得、反射するミラー面上のダストあるいは他の粒子状物質の経年変化あるいは蓄積による。そのような光学切り替え機構を実施する場合、現在のプラクティスは、容易に光学要素のそのような一時的な変更を補うことができない。測定システム変更に対する補償は測定システム自体を特徴づけるために専門の個別の較正手順を使用してのみ行うことができる。そのような較正手順は、典型的には較正を行なうために生産ラインから測定システムのシャットダウン或いは一時的除去を要求し、濃度測定の効率を下げる。単純性のために上記処理は、移動距離におけるfナンバーにおける変形あるいは違いを考慮にいれないが、fナンバーにおける変形あるいは違いは存在するかもしれず、否定的に目標達成に影響するかもしれない。
【発明の概要】
【0018】
本発明は、溶質の濃度を決定するために、フローセルのチャンバ内の流体サンプル、例えば溶媒や溶質の化学的溶液を分析するためのフローセルを含む、フローセルおよび光学的分析システムに向けられている。当該分析は、フローセルを通り抜ける光、すなわち2つの測定状態での流体サンプルを通り抜ける光を測定することにより行なわれる。フローセルおよび/または光学的分析システムは切り替え機構を含み、当該切り替え機構は、フローセルのチャンバの外の光学的分析システムの光学要素のいずれも移動させないで、2つの測定状態の間でフローセルを切り替える、これによって、測定誤差を低減する。2つの状態の間の切り替えはフローセル内に含まれたので、基準物質の量の調節によって影響され、フローセルを通る光学的経路内に配置される。
【0019】
特定の実施形態で、基準物質は化学的に安定な材料、例えばサファイアまたは石英から構成された透明な桿状体で実施され、光学的分析システムおよびフローセルの操作上の特性が、長期間に亘って維持されることを可能にする。2つの状態の間でフローセルを切り替えることによる特定の実施形態で、フローセルを通る光によって横断される光学的経路の長さは、(幾何学的な経路の長さは同じままかもしれないが)2つの光学的経路長の間で切り替えられる。2つの経路長の間での切り替えを引き起こす要素はフローセル自体内に含まれ、これによって、そのような要素を外部汚染にさらす可能性を減少させる。
【0020】
本発明の実施形態の教示によれば、流体サンプルを分析するためのフローセルが提供される。フローセルは次のものを含む。基準物質を含み、流体サンプルを含むための少なくとも1つの中空チャンバを含むフローセル本体であって、該フローセル本体は対向表面を含み、該対向表面は各々少なくとも1つの透明部分を有し、前記フローセル本体を通って横断する光の光学的経路は、一部透明部分によって定義されてなるフローセル本体と、第1の光強度測定に対応する基準測定状態と第2の光強度測定に対応する流体サンプル測定状態との間のフローセルの切り替えを達成するために光学的経路内に配置された基準物質の量を調節するために操作可能な切り替え機構と、を含む。
【0021】
随意に、基準物質は、流体サンプルと接触する少なくとも一部分を有する少なくとも1つの移動自在の要素を含む。
【0022】
随意に、切り替え機構は、少なくとも1つの回転アームを有する回転機構を含む。
【0023】
随意に、切り替え機構は、2つの状態の間で切り替えを達成するために、光学的経路の内と外で交互に透明な桿状体を位置づけるための回転機構を回転するように動作可能である。
【0024】
随意に、回転機構は複数のアームを含み、各々のアームが、当該アームに結合された透明な桿状体を有する。
【0025】
随意に、隣接したアームの透明な桿状体は、異なる長さを持っている。
【0026】
随意に、基準物質は透明な桿状体を含んでいる。
【0027】
随意に、透明な桿状体はフローセル本体の中心軸の周りを回転可能である。
【0028】
随意に、基準物質はさらに第2の透明な桿状体を含み、2つの透明な桿状体は異なる長さである。
【0029】
随意に、2つの透明な桿状体は共同で移動可能である。
【0030】
随意に、切り替え機構は、光学的経路の内と外で桿状体を併進移動させるために動作可能である。
【0031】
随意に、切り替え機構は光学的経路に実質的に垂直な回転軸の周りに透明な桿状体を回転させるために動作可能である。
【0032】
随意に、基準物質は光学的経路中の一定量の流体サンプルを置き換えるように移動可能である。
【0033】
随意に、切り替え機構はピストン構成を含んでいる。
【0034】
随意に、中空チャンバは流体が中空チャンバを通って流れるための流路を提供する入口ポートおよび出口ポートを含んでいる。
【0035】
随意に、切り替え機構は、中空チャンバを通る流体の流れによって起動される。
【0036】
随意に、切り替え機構は、光検知器と同期して作動するモータによって起動される。
【0037】
随意に、基準測定状態は第1の光学的経路長に対応し、流体サンプル測定状態は第2の光学的経路長に対応する。
【0038】
随意に、第1の光学的経路長は、光学的経路中の第1の量の流体サンプルに対応し、第2の光学的経路長は、光学的経路中の第2の量の流体サンプルに対応する。
【0039】
随意に、中空チャンバは、光学的経路の中で固定して位置づけられる。
【0040】
随意に、透明の部分は中空チャンバの対向表面に配置された1対の透明の窓として実施される。
【0041】
随意に、基準物質は流体サンプルと一緒に中空チャンバ中に配置される。
【0042】
随意に、光学的経路は、第1レンズおよび第2レンズを含むスタティックレンズ構成によってさらに一部が定義され、透明の部分はスタティックレンズ構成のそれぞれのレンズ間で位置決めされる。
【0043】
随意に、基準物質は流体サンプルと異なる第2の流体である。
【0044】
随意に、フローセル本体は、第2の液体を含む第2の中空チャンバを含んでいる。
【0045】
随意に、透明の部分は第1の一対の透明の窓として実施され、当該透明な窓は中空チャンバの対向表面に配置され、前記フローセルは、第2の中空チャンバの対向表面上に随意に配置される第2の一対の透明の窓をさらに含む。
【0046】
随意に、流体サンプル測定状態にあるとき、前記一対の透明の窓は、中空チャンバを通る光学的経路を提供するためにスタティックレンズ構成のそれぞれのレンズと一列に並び、基準測定状態にあるとき、第2の一対の透明の窓は、第2の中空チャンバを通る光学的経路を提供するためにスタティックレンズ構成のそれぞれのレンズと一列に並ぶ。
【0047】
本発明の教示の実施形態に従って、流体サンプルを分析するためのシステムが提供される。前記システムは、フローセル本体を含むフローセルであって、該フローセルは基準物質を含み、流体サンプルを含むために少なくとも1つの中空チャンバを含んでなる、フローセルと、光源からフローセル本体を通って光検知器まで光を向けるために少なくとも第1及び第2のレンズを含むスタティック光学構成と、前記フローセル本体の対向表面上に配置された少なくとも第1および第2の透明表面であって、前記フローセル本体は第1の透明表面と第1のレンズと、そして第2の透明表面と第2のレンズと、を一列に並ぶように位置決めでき、フローセル本体を通る光学的経路が、前記第1及び第2の透明表面とスタティック光学構成によって一部が定義されてなる第1及び第2の透明表面と、基準物質の量を調節するために動作可能な切り替え機構であって、当該基準物質は、第1の光強度測定に対応する基準測定状態と第2の光強度測定に対応する流体サンプル測定状態との間でフローセルの切り替えを達成する光学的経路内に配置されてなる切り替え機構と、を含む。
【0048】
随意に、前記システムはさらに、フローセルを通り抜けるようにフローセルへ光を導くための第1の光ファイバーと、フローセルを通り抜けた光を導くための第2の光ファイバーとを含む光ファイバー構成を含む。
【0049】
随意に、前記システムはさらに、第1の光ファイバーに結合された光源を含む。
【0050】
随意に、前記システムはさらに、フローセル本体を通り抜ける光強度の測定のために第2の光ファイバーに結合された光検知器を含む。
【0051】
随意に、検知器と切り替え機構は同期して作動するように構成される。
【0052】
随意に、前記システムはさらに、前記光検知器に結合された少なくとも1つの処理装置を含む処理ユニットであって、前記処理ユニットは、フローセルが基準測定状態であるときに、フローセル本体を通り抜ける光強度を示す第1の信号を受け取り、フローセルが流体サンプル測定状態であるときに、フローセル本体を通り抜ける光強度を示す第2の信号を受け取り、そして、受信信号の一部に基づいて流体サンプルの濃度あるいは透過率の少なくとも1つを決定する、ように構成される処理ユニットを含む。
【0053】
本発明の教示の実施形態によれば、流体サンプルを分析するためのフローセルが提供される。フローセルは、流体サンプルを含むための少なくとも1つの中空チャンバと、中空チャンバの対向表面上に配置された一対の透明の窓であって、透明の窓の各々は中空チャンバを通る光学的経路を定義するために、スタティックレンズ構成のそれぞれのレンズと一列に並んでなる透明の窓と、流体サンプルと接触する少なくとも1つの部分を有する少なくとも1つの移動可能な要素を含む切り替え機構であって、前記切り替え機構は、少なくとも第1の光学的経路長と第2の光学的経路長との間の中空チャンバを通る光学的経路長を変更するために少なくとも1つの要素を移動させるように動作可能である、切り替え機構を含む。
【0054】
もし本明細書に別段定義されなかったならば、本明細書で使用される技術的および/または科学的な用語は、すべて本発明が関係する技術における当業者によって一般に理解されるものと同じ意味を有する。本明細書に記述されたものに類似しているか、或いは等価である方法および材料は本発明の実施形態の実施又は試験で使用され得るが、典型的な方法および/または材料は以下に記載される。紛争の場合には、定義を含む特許明細書が調整するであろう。加えて、材料、方法および実施例はあくまでも例証であり、また必ずしも制限することは意図されない。
【図面の簡単な説明】
【0055】
本発明のいくつかの実施形態は、添付図面を参照して、一例として本明細書に記載される。図面を詳細に特別に参照して、示された詳細な点が一例として本発明の実施形態の例証となる説明の目的のためにあることが強調される。この点において、図面で得られた記載は、本発明の実施形態が如何にして実行されるかについて当業者に明らかにする。ここで注意が図面に向けられ、同じような参照数字又は符号は、対応する要素又は同じような要素を示す。
【
図1A】
図1Aは溶質の濃度の測定のための先行技術の光学的切り替えスキームの概略図である。
【
図1B】
図1Bは溶質の濃度の測定のための先行技術の光学的切り替えスキームの概略図である。
【
図2】
図2は、本発明の実施形態にしたがって、溶質の濃度を決定するために溶媒と溶質から形成された流体サンプルを分析するためのフローセルを含むシステムの概略図である。
【
図3】
図3は、切り替え機構を有するフローセルを含むフローセル組立体の等角図であり、回転切り替え機構として実施され、当該回転切り替え機構は、溶媒及び溶質から形成された流体溶液サンプルを分析するために2つの測定状態の間で切り替え、本発明の実施形態にしたがって、溶質の濃度を決定する。
【
図4】
図4は、本発明の実施形態にしたがって、フローセル組立体のモータを示す
図3に類似した等角図である。
【
図5】
図5は、本発明の実施形態にしたがって、フローセルの正面から取られた
図3のフローセルの等角図である。
【
図6】
図6は、本発明の実施形態にしたがって、フローセルの正面カバーが除去されて切り替え機構の要素を明らかにしている、
図5に類似した等角図である。
【
図7】
図7は、本発明の実施形態による、
図6に類似したフローセルの他の等角図である。
【
図8】
図8は、本発明の実施形態にしたがってフローセルの背後から取られた
図3のフローセルの等角図である。
【
図9】
図9は、本発明の実施形態による、
図3の切り替え機構と
図4のフローセル組立体のモータの相互接続の等角図である。
【
図10】
図10は、本発明の実施形態による、
図3の切り替え機構と
図4のフローセル組立体のモータの相互接続の等角図である。
【
図11】
図11は、本発明の実施形態による、
図6、7、9および10の切り替え機構の透明桿状体の等角図である。
【
図12A】
図12Aは、本発明の実施形態による流体サンプル測定状態で示される
図2のフローセルの概略図である。
【
図12B】
図12Bは、本発明の実施形態による基準測定状態で示される
図2のフローセルの概略図である。
【
図13A】
図13Aは、本発明の実施形態による流体サンプル測定状態で示される回転可能な透明な桿状体として切り替え機構を実施するフローセルの概略図である。
【
図13B】
図13Bは、本発明の実施形態による基準測定状態で示される回転可能な透明な桿状体として切り替え機構を実施するフローセルの概略図である。
【
図14A】
図14Aは、本発明の実施形態による流体サンプル測定状態で示される、摺動桿状体として切り替え機構を実施するフローセルの概略図である。
【
図14B】
図14Bは、本発明の実施形態による基準測定状態で示される、摺動桿状体として切り替え機構を実施するフローセルの略図である。
【
図15A】
図15Aは、本発明の実施形態による流体サンプル測定状態で示される回転可能なアームとして切り替え機構を実施するフローセルの概略図である。
【
図15B】
図15Bは、本発明の実施形態による基準測定状態で示される回転可能なアームとして切り替え機構を実施するフローセルの概略図である。
【
図16A】
図16Aは、本発明の実施形態による流体サンプル測定状態で示される、2重の滑る桿状体構成として切り替え機構を実施するフローセルの概略図である。
【
図16B】
図16Bは、本発明の実施形態による、基準測定状態で示される、2重の滑る桿状体構成として切り替え機構を実施するフローセルの概略図である。
【
図17A】
図17Aは、本発明の実施形態による流体サンプル測定状態で示されるピストン構成として切り替え機構を実施するフローセルの概略図である。
【
図17B】
図17Bは、本発明の実施形態による、基準測定状態で示されるピストン構成として切り替え機構を実施するフローセルの概略図である。
【
図18A】
図18Aは、本発明の実施形態による流体サンプル測定状態で示される流体サンプルを含む一方のチャンバと共に、2つの共同で移動可能なチャンバにフローセル本体を細分化されたフローセルの概略図である。
【
図18B】
図18Bは、本発明の実施形態による基準測定状態で示される基準流体を含む他方のチャンバと共に、2つの共同で移動可能なチャンバにフローセル本体を細分化されたフローセルの概略図である。
【発明を実施するための形態】
【0056】
本発明はフローセルおよび光学的分析システムに向けられ、それらは、フローセルのチャンバの流体サンプルを分析するためのフローセルを含み、流体の物理的特性、例えば流体の透過性を測定することにより、流体中の成分の濃度を決定する。
【0057】
本発明によるフローセルおよび光学的分析システムの原理および動作は、明細書に添付の図面を参照してさらによく理解され得る。
【0058】
本発明は、ガスや種々のタイプの液体を含む種々のタイプの流体、例えば、溶媒と溶質から構成される化学的溶液)の多種類に適用可能であり、フローセル及び光学的分析システムは溶質の濃度を決定するために使用される。
【0059】
本発明の少なくとも1つの実施形態について詳細に説明する前に、本発明が、構造及び構成要素の配置および/または以下の説明への詳細な説明で述べられた方法および/または図面及び/又は実施例において例証された詳細な点に必ずしも限定されないことは理解されるべきである。本発明は他の実施形態で実施可能又は他の種々の方法で実施或いは実行されることができる。最初に、この明細書の全体にわたって方向について、例えば正面と背面、時計方向及び反時計方向などについて言及されている。これらの方向の言及は、本発明及びその実施形態を例証するための一例である。
【0060】
ここで、図面を参照して、
図2は、システムの概略図を示し、当該システムは、一般に参照符号10が指定され、本開示の実施形態にしたがって構築され、実施され、流体サンプル、例えば、溶媒及び溶質の化学的溶液を分析するためのシステムで、溶質の濃度を決定する。概して言えば、システム10は、流体サンプルおよび少なくとも基準物質を含むフローセル30を含み、前記システム10は、光源12、例えば光でフローセル30を照射するためのハロゲン・ランプを含み、前記システム10は、フローセル30を通り抜ける光を検知するための光検知器14を含み、また前記システム10は、光源12からの光をフローセル30に導くために、そしてフローセル30を通り抜けた光を前記光検知器14に導くための光伝達組立体を含む。
図2で例証された概略図は、システム10の様々な可能な概略図のうちの1つである。
【0061】
特定の実施形態では、フローセル30は、化学的送達配管構成(図示せず)に直接組み込まれる。例えば、フローセル30は回転経路で提供され得るものであり、該回転経路は化学溶液タンクに接続されたそのような配管構成によって形成される。
【0062】
光伝達組立体17は、第1の光ファイバー18a、第2の光ファイバー18b、およびスタティック光学組立体22を含んでいる。当該スタティック光学組立体22は第1のスタティックレンズ24aと第2のスタティックレンズ24bを含んでいる。この明細書の文脈で、「スタティック」という用語は、システム10とフローセル30の構成要素に関して言及されるが、一般的に決められた位置に固定され、移動しない要素を言う。
図2にはひとつのレンズとして表わされているが、レンズ24aおよび24bの各々は、実際には2以上のレンズのセットであり得る。第1の光ファイバー18aは光源12に接続され、光源12からの光を第1のレンズ24aを通ってフローセル30内に導く。第1のレンズ24aは光源12からの光を平行にするために作用し、光はフローセル30内を進む。第2の光ファイバー18bは光検知器14に接続され、フローセル30を通り抜けて、第2のレンズ24bに集光された光を光検知器14に導く。
【0063】
光学組立体22のレンズ24aおよび24bは、それフローセル30の透明の部分40aおよび40bと一列に並び得、透明部分40aおよび40bは、フローセル30を通り抜ける光に、入口表面と出口表面を提供する。レンズ24aおよび24bは、フローセル30の透明部分と共に、フローセル30を通り抜ける光源12からの光のための光学的経路56(即ち、光学的経路)を定義する。
【0064】
本開示のその後の部分に更に詳細に述べられるように、フローセル30の透明部分40aおよび40bは、透明の窓の形で実施され得、当該透明の窓は、フローセル30の、対向して配置される表面の部分を占める。代替的に、そのような対向して配置される表面の全体或いは略全体は透明であり得る。単純性のために、本明細書の残りの全体にわたって、透明部分40aおよび40bは透明の窓40aおよび40bと相互に交換可能に呼ばれる。しかしながら、そのような窓は、フローセル30の、それぞれ対向して配置される表面の小さな部分に厳格に制限されず、フローセル30の、それぞれ対向して配置される表面の全体或いは略全体を含み得ることは明らかである。
【0065】
フローセル30は第1の測定状態と第2の測定状態との間で、フローセル30の切り替えるための切り替え機構46と、システム10を含んでいる。この明細書の文脈内で、第1の測定状態は、相互に交換可能に「流体サンプル測定状態」、「サンプル測定状態」と言い、第2の測定状態は相互に交換可能に「基準測定状態」あるいは「較正状態」と言う。特定の実施形態では、2つの状態の間の切り替えは、基準物質の量を調節する切り替え機構46によって影響され、基準物質は光学的経路56に配置され、それはアナロジーによってフローセル30を通る光によって横断される光学的経路の長さを調節し、更なるアナロジーによって流体サンプルの量、あるいは流体サンプルの厚さを調節し、流体サンプルは光学的経路内に存在する。特定の実施形態では、基準物質は透明な桿状体であり、特定の実施例において、桿状体は化学的に安定した材料、例えばサファイア、石英から構成され得る。サファイアからの、そのような透明桿状体の構成は、分析下の流動サンプルは、活動的な化学的溶液であるという状況でフローセル30に安定性を提供し得る。他の実施形態において、基準物質は、溶質のない流体、同じ溶媒と、正確に知られた濃度の同じ溶質材料とから製造された同じ溶媒、或いは知られた透過率の流体(例えば、空気または脱イオン水)であり得る。
【0066】
一般に、システム10の構成要素のすべては、切り替え機構46及び切り替え機構46を駆動する構成要素を除いて、スタティックな構成要素である。フローセル30に入る平行にされた光線は、フローセル30によって発散も収斂もしない、それは光線がシステム10の光学表面のすべてと平行か或いは直角であることを意味し、本開示のその後の部分に更に詳細に述べられるように、システム10は、レンズ24a及び24b、部分40a及び40b、および切り替え機構46の様々な表面を含んでいる。しかしながら、フローセル30に入る光は、必ずしも平行にされず、光線は斜角でシステム10の光学表面に当たる他の実施例が可能であることに注意されたい。
【0067】
システム10は、2つの測定状態における光検知器14によって生成された信号に基づいて流体サンプルの透過率および濃度を計算するアルゴリズムを実行するために光検知器14に結合された処理ユニット16をさらに含む。処理ユニット16は、記憶媒体、例えば、メモリなどに結合された少なくとも1つの処理装置を含んでいる。処理装置は、マイクロプロセッサー、ASIC、DSP、FPGA、ステート・マシン(state machine)およびマイクロコントローラを含むが、これらに限定されない任意の数のコンピュータ処理装置であり得る。そのような処理装置はコンピュータ可読可能な媒体を含むか、或いは通信され得、当該コンピュータ可読媒体は、処理装置によって実行される時、処理装置に動作を実行させるプログラムコードあるいは命令セットを格納する。コンピュータ可読媒体の種類は、電子式、光学式、磁気式或いはコンピュータ可読命令を処理装置に提供し得る他の記憶装置又は伝送装置を含むが、限定されない。処理ユニット16によって実行されるアルゴリズムと計算は、本開示のその後の部分に更に詳細に述べられる。
【0068】
光学組立体22、光源12および光検知器14はフローセル組立体の一部としてフローセル30と共に埋め込まれ得、放射源12および光検知器14のそれぞれのレンズ24aおよび24bとの直接の結合を提供し、これによって光ファイバー18aおよび18bの必要性を回避することに注意されたい。
【0069】
継続して
図2を参照しつつ、ここで
図3-10、即ち、本開示の実施形態にしたがってフローセル30及びその対応する構成要素の実施例に言及する。
図3および4に示されるように、フローセル30はフローセル組立体20の一部として実施され、フローセル組立体は、光学組立体22、切り替え機構46を起動するためのモータ26を保持するモータハウジング27、およびフローセル30、光学組立体22およびモータハウジング27を適所に保持するためのホルダー28を含み、フローセル組立体20全体が光源12および光検知器14に従って一列に設置されることを可能にする。限定しない特定の実施例によれば、モータ26はステッパー電動機として実施され、切り替え機構46に階段状の切り替え能力を提供する。
【0070】
光学組立体22は、さらに入力構成23aおよび出力構成23bを含んでいる。入力構成23aはレンズ24aおよび光入力ポート25aを含み、光入力ポート25aは、入力導光要素(例えば、光ファイバー)を通って光源12からの光を受け入れ、レンズ24aを介してフローセル30に光を導く。出力構成23bはレンズ24bおよび光出力ポート25bを含み、光出力ポート25bは、フローセル30およびレンズ24bを通過した後に光を受け取り、出力導光要素(例えば、光ファイバー)を介して光を光検知器14に導く。レンズ24aは代替的に入力構成23aから分離してもよく、例えば、レンズ24aは、光源12と入力導光要素の間に配置され得る、ことに注意されたい。同様に、レンズ24bは出力構成23bから分離していてもよく、例えば、レンズは、光検知器14と出力導光要素の間に配置され得る。
【0071】
フローセル30は、対向して配置される表面、すなわち正面側表面38a及び背面側表面38bが設けられたフローセル本体32を含んでいる。フローセル30は、正面側表面38aがレンズ24aに近接して位置づけられ、背面側表面38bがレンズ24bに近接して位置づけられるように配置される。正面側表面38aは、フローセル本体32の正面カバー36の一部として形成される。
【0072】
より良くフローセル30の構成要素を説明するために、
図5および8は、フローセル組立体20から分離されたフローセル30の等角図を例証しており、当該等角図は、それぞれフローセル30の正面及び背面から取られ、
図6及び
図7は、削除された正面カバー36と共にフローセル30を例証している。流体サンプルと基準物質を含むために、中空チャンバ34はフローセル本体32の内部に提供される。特定の実施形態では、中空チャンバ34は、光学的経路56に固定して位置づけられる。
【0073】
図5および8を参照すると、透明の窓40aおよび40bは、略円形の形状であり得、それぞれ表面38aおよび38bに配置される。具体的には、透明の窓40aは正面側の表面38aに配置され、レンズ24aと一列に並び透明の窓40bは背面側表面38bに配置され、レンズ24bと一列に並ぶ。透明の窓40aおよび40bは、光源12によって放射された光のスペクトルにおいて透明な材料から構成される。
【0074】
フローセル本体32には、入口ポート42および出口ポート44がさらに設けられ、フローセル30のチャンバ34を通って流れる流体サンプル用の流路を提供する。流体サンプルは入口ポート42経由でフローセル30に導入され、出口ポート44経由でフローセルから出される。化学溶液タンクに接続された化学溶液配管構成によって形成された回転経路でフローセル30が提供される実施形態で、ポート42および44は、回転経路を通る流体サンプルの流れを促進する。そのような実施形態では、入口ポート42は化学溶液配管構成の入力部分を経て化学溶液タンクから流体サンプルを受け入れ得、化学溶液配管構成は、反対側の端部で化学溶液タンクおよび入口ポート42に相互接続され、出口ポート44は、化学溶液配管構成の出力部分を経てフローセル30から放出された流体をサンプタンクに供給し得(あるいは化学溶液タンクに再回転され得)、化学溶液配管構成は、サンプタンク(あるいは化学溶液タンク)と、その反対の端部で出口ポート44に相互接続される。
【0075】
ポート42および44には、一方向弁構成がそれぞれ取り付けられ得、ポート42および44を通るバックフローを防ぎ、フローセル30を通る流体サンプルの一方向の流れを保証する。
【0076】
図3-10に例証されたフローセル30の実施例では、切り替え機構46は中空チャンバ34の内部に配置されて、回転機構48として実施される。とくに
図6および7を参照すると、回転機構48は、外方に伸びるアーム部50を備えた回転自在の基部49を含み、アーム部は流体サンプルと接している。回転可能なアーム部50は、それぞれ例えば、基準物質として作用するサファイアまたは石英から構成された透明桿状体52を有し、アーム部に取り付けられている。
【0077】
図9および10に示されるように、正面側表面55および背面側表面57を含んでいる。アーム部50の各々は、基部49の正面側表面55から基部49の背面側表面57まで伸びる隙間(図示せず)を含み得、それぞれのアーム部50への桿状体52の取り付けを有効にする。それぞれの隙間と桿状体の52の対は、対応した寸法にされ、桿状体52がそれぞれの隙間に摺動自在に位置づけられるか或いは挿入されることを可能にする。桿状体52は、光学的セメントなどを介して、それぞれの隙間の適所に保持され得る。
【0078】
基部49の正面側表面の重心は、(
図7に見られるように)フローセル本体32の中空チャンバ34の中心軸54と一列に並び、モータ26によって起動された時、基部49が中心軸54の周りを回転することを可能にしている。その結果、回転機構48のアーム部50、したがって桿状体52は、基部49が回転すると中心軸54の周りを回転する。
【0079】
ここで
図9および10、モータ26及び基部49の相互接続に言及する。第1の端部領域53aおよび第2の端部領域53bを有する駆動軸51は、モータ26を基部49と接続し、フローセル本体32の中空チャンバ34の中心軸54に沿って伸びる。第1の端部53aは、基部49の中央部分(例えば図示されない隙間)を通って外方に伸び、第2の端部53bは、フローセル本体32の背部表面38bから外方に伸びる。モータ26は、駆動軸51を回転させることにより回転させる回転機構48を起動させ、駆動軸51は基部49を回転させ、それによって中心軸54周りのアーム部50および桿状体52の回転(例えば、階段状の回転(stepped rotation))を引き起こす。桿状体52の誘起された回転によって透明桿状体52の端部を断続的に透明の窓と一列に並ばせ、桿状体52の光学経路56の内と外への切り替え可能な位置づけを生ぜしめる。特定の実施形態によれば、光検知器14およびモータ26、したがって回転機構48は同期され、その結果、光検知器14が適切な時に光強度の測定を実行する。しかしながら、特定の実施形態において、光検知器14とモータ26との間の同期は必要ではなく、例えば実施において同期信号の獲得および処理は必要でないことに注意すること。
【0080】
基部49の回転が時計方向あるいは反時計方向のいずれかの回転であり得、部分的及び/又は非連続回転であり得ることに注意されたい。モータ26がステッパー電動機として実施される非限定的な実施例において、ステッパー電動機は、階段状の回転を時計方向及び反時計方向で可能にするように制御することができる。他の非限定的な実施例において、モータ26は、回転の方向を逆転するリミットスイッチに達し得る。
【0081】
図9および10は駆動軸51の形態で機械的リンクを介して基部49とのモータ26のインターフェースを例証するが、他の機械的リンクが可能であることは当業者に明らかであり、該機械的リンクは、例えば、ギヤ、クランクおよび/または当該技術で公知の他の機械的リンク構成を含むリンクを含む。
【0082】
桿状体52の一例の構成は
図11に例証され、
図11は、長さLと円形のベースの直径Dを有する略円筒状の構造として桿状体52の1つを表している。桿状体52の円形のベース部は、透明の窓40aおよび40bと略同じ寸法である。桿状体52の各々は、長さLの桿状体52の各々が、フローセル本体32の正面側表面38aから背面側表面38bに向かって伸びるように配向される。回転機構48の回転は、桿状体52の円形のベース部が透明の窓40aおよび40bと断続的に一列に並ぶようにされる。透明の窓40bと桿状体52の1つと一列に並ぶことは、例証の明瞭さのために
図7に示される。図面は3つの回転自在のアーム部50を有する回転機構48を示し、アーム部50に付けられた桿状体52は等しい長さを有しているが、回転機構48が、付けられた単一の桿状体を有する1つの回転可能なアーム部を含む他の実施例も可能であることに注意されたい。代替的に、回転機構48は2つの回転可能なアーム部を含み得、アーム部に取り付けられた桿状体は、中心軸54の寸法と異なる長さである。例えば、アーム部の1つには15ミリメートル(mm)の桿状体が取り付けられ得、別のアーム部には5mmの桿状体が取り付けられ得る。さらに、回転機構48は同一か異なる長さの桿状体を有する隣接するアームについて、3を超える回転可能なアーム、例えば6つのアームを含み得る。例えば、第1のアーム部には15mmの桿状体が取り付けられ得、第1のアーム部に隣接する第2のアーム部には5mmの桿状体が取り付けられ得、第2のアーム部に隣接する第3のアーム部には15mmの桿状体が取り付けられ得る。このように、流体サンプルを通る光学経路の長さは、光学経路に位置づけられた桿状体の長さにしたがって切り替えられる。
【0083】
ここまで記載した実施形態は、モータ26によって回転するように起動された回転機構48として実施される切り替え機構46に関係するものであるが、電動モータによらない力で少なくとも一部回転させるために回転機構48を起動する他の実施形態も可能である。そのような実施形態では、フローセル30の中空チャンバ34を通す流体サンプルの流れによって回転させるために回転機構48が起動され得る。例えば、回転機構48はタービンのような機構として設計され得、その場合、アーム部50は、流れに誘起される回転に適応するためにどれに輪郭が形成され表面を含むか、あるいは、アーム50に加えて、輪郭が形成されたブレードが基部49に接続されて、流れに誘起される回転に適応する。モータ、例えばモータ26は、回転機構48の回転速度を安定させ、かつ光検知器14との同期を支持するために利用され得る。
【0084】
流体サンプル測定状態は、桿状体52が光学通路56に位置づけられていない(すなわち、窓40aおよび40bと一列に並ばない)状況に対応する。この状況で、流体サンプルだけが光学的経路56に位置づけられ、それによってフローセル30を通り抜けると、光源12からの光線は流体サンプルを通り抜け、第1の光学的経路長を通って流体サンプルを横断する光線に帰着する。
【0085】
基準測定状態は、桿状体52のうちの1つが光学的経路56に位置づけられたとき(すなわち、窓40aおよび40bと一列に並んだとき)に対応し、いくつかの流体サンプルと桿状体52の両方が光学的経路56に位置づけられることに帰着する。この状況で、流体サンプルおよび桿状体52の一部の両方は、光学的経路56に位置づけられ、光線がフローセル30を通り抜けると光源12からの光線によって横断され、光線が第1の経路長より短い、第2の光学的経路長を介して流体サンプルを横断することに帰着する。これは、光線が桿状体52の断面より狭いという事実により、したがって、光線の全体が桿状体52を通り抜ける前にフローセル30内の少量の流体サンプルを通り抜け、ついで、フローセル30を出る前に少量の流体サンプルを再び通り抜ける。
【0086】
類似性によって、光学的経路56内の桿状体52の1つの位置決めは、光学的経路56外の流体サンプルのうちのいくつかと置き換え、それによって、流体サンプル測定状態の光学的経路56内の流体サンプルの量に対して基準測定状態の光学的経路56内の流体サンプルの量を減らす。そのため、基準測定状態および流体サンプル測定状態は、光学的経路56内の流体サンプルの異なる厚さに対応する。
【0087】
フローセル30が流体サンプル測定状態であるとき、第1の光強度測定が行なわれ、フローセル30が基準測定状態であるとき、第2の光強度測定が行なわれる。異なる光学的経路長に対して行なわれた2つの測定に基づいて、流体サンプルの溶質の透過率および濃度は、処理ユニット16によって計算される。
【0088】
引き続き
図2-10を参照しながら、ここで
図12Aおよび12B、即ち2つの測定状態の間で切り替えられたときのフローセル30の概略図を参照すると、2つの測定状態のフローセル30を通り抜ける光によって横断された光学的経路の長さの変化が結果として生ずる。
図12Aおよび12Bの流体サンプルはクロスハッチングされた領域によって表わされる。
【0089】
図12Aは流体サンプル測定状態に対応し、桿状体52のいずれもが光学的経路56内に位置づけられないように、切り替え機構46が切り替えられ、光学的経路56内の流体サンプルの厚さT
1に帰着する。
【0090】
流体サンプル測定状態の光学的経路56内の流体サンプルの厚さT1は、ほぼ窓40aおよび40bの間の距離として類似的に理解され得る。
【0091】
図12Bは基準測定状態に対応し、切り替え機構46は光学的経路56内の桿状体52の1つの位置を決めるために切り替えられ、光学的経路56中の流体サンプルの厚さT
2(厚さT
1未満)に帰着する。
【0092】
次のパラグラフは処理ユニット16によって実行されるアルゴリズムによって行なわれる、2つの測定状態において光検知器14によって生成された信号に基づく流体サンプルの透過率および濃度の計算について述べる。S1とS2は、それぞれフローセル30が流体サンプル測定状態および基準測定状態である時、光検知器14によって測定された光強度の信号出力である。S1は以下のように表現することができる。
【0093】
【0094】
ここでI0は光学システムを入力する光線の強度である。更に、S2は以下のように表現することができる。
【0095】
【0096】
方程式(5)および(6)において、k1およびk2は比例定数であり、それぞれの切り替え状態における光学系のスループットおよび光検知器14の応答を説明する。方程式(2)-(4)に関して記載された例に反して方程式(5)および(6)の右辺をそれぞれ乗じる定数τ1とτ2の差は、3つの主な理由でかなり減少され得る。第1に、2つの状態における光線によって横断された幾何学的な光学的経路は、基準状態における透明な桿状体の存在に起因する無視できる違いはあるものの、一般に同一である。光学的経路の比較的一定の幾何学的形状は、両方の測定状態で使用される光学組立体22の同じ光学的特性による。第2に、桿状体52は、桿状体52の表面に被覆される抗反射材料からなる1つ以上の層で製造することができ、それらは、光線(すなわち、中心軸54に垂直)によって横断され、桿状体52をその光学スループットの減少にほとんど効果をなくす。第3に、光学要素の劣化によるスループットの時間変化は、両方の測定状態で同一の効果を有する。
【0097】
方程式(5)および(6)を用い、単純性のためにk1とk2の間の差は無視できることを仮定し、変数cは、例えば、比率S1/S2の自然対数をとることにより解ける。従って、濃度cは以下のように表現することができる。
【0098】
【0099】
基準測定状態で、基準物質(すなわち桿状体52)が光学的経路56に位置づけられ得、その結果、光学的経路56に存在した流体サンプルのほほすべてが桿状体52によって置き換えられ、光学的経路56の中に液体を本質的に残さない(すなわちT2≒0)ことに注意すること。代替的に、基準物質(すなわち桿状体52)は光学的経路56に位置づけられ得、桿状体52の端部とフローセル30の最も近い対応する透明な表面との間に残余の量の流体を残す。流体の任意のそのような残余量は対応する光学スループットを持ち、等しく上記信号の方程式を乗じるであろう、したがって、信号の比率計算で相殺するであろう。
【0100】
モータで回転させるために起動されるか、フローセル30の中空チャンバ34を通る流体サンプルの流れによって引き起こされる回転機構として実施される切り替え機構に関係する実施形態についてここまで記述したが、切り替え機構が様々な他の機構として実施される他の実施例も可能である。次のセクションは、切り替え機構46の様々な実施に向けられたいくつかの実施形態について述べる。明瞭さと簡明さのために、レンズ24aおよび24bが切り替え機構46の様々な実施に向けられた実施形態を例証する図で示されないことは注目される。しかしながら、レンズ24aおよび24b(あるいは均等な光学要素)が、そのような実施形態に同様に存在することは当業者によって理解されるに違いない。特定の実施形態によれば、例えば、光源12が方向性をもつ光線(例えばレーザー)を生成する光源である実施形態においてレンズ24aが存在しないことはさらに注目される。さらにそのような実施形態では、レンズ24bがさらに存在しないか、或いは光検知器14に光を集光させるために存在し得ることに注意すること。
【0101】
ここで
図13Aおよび13B、切り替え機構46の他の実施形態に言及する。
図13Aおよび13Bの切り替え機構46は透明な桿状体60を含んでおり、それは、中空チャンバ34に配置され、基準物質として作用する。桿状体60は、一次元で比較的厚く、二次元で比較的薄く、前記厚い次元と薄い次元に垂直な三次元に沿って軸芯の周りを回転可能である。更に、桿状体60の回転軸は光学的経路56に垂直で、当該紙面に垂直か、或いは平行である。桿状体60は、例えばサファイアか石英、あるいは他の透明かつ不活性な材料から構成される。桿状体60は、一般に平行六面体として形成され、その結果、両方の切り替え状態において、光学的経路に存在する桿状体60の表面が互いに平行である。特定の限定しない実施例において、桿状体60は形状において立方形である(すなわち長方形の直平行六面体)。桿状体60は
図11で示された桿状体52に類似し得、長さLは、円形のベースの直径Dより著しく大きい(即ち、L>>D)。結果として、切り替え機構46は桿状体60を回転させ、その結果、第1の位置では、長さLが、透明の窓40bに向かって透明の窓40aから伸び、そして、第2の位置では、長さLは、第1の位置にあるときの長さLが伸びる方向に垂直な方角に伸びる。
【0102】
図で示されなかったが、桿状体60は、
図9および10に例証されたモータ26に類似したモータに駆動軸或いは連接棒を介して接続され得、当該駆動軸或いは連接棒は、桿状体60の回転を引き起こす。桿状体60の回転は、流体サンプルを通る光線によって横断された光学的経路の長さを変化させる。
【0103】
最初に
図13Aを参照すると、フローセル30は流体サンプル測定状態で示され、切り替え機構46は桿状体60を回転させるために切り替えられ、その結果、桿状体60のより薄い方の次元は、窓40aおよび40bの間に位置づけられる。
図12Aで概略的に示されるのに類似して、これは、光学的経路56内の流体サンプルの厚さT
1に帰着する。
【0104】
ここで
図13Bを参照すると、フローセル30は基準測定状態で示され、切り替え機構46は桿状体60を回転させるために切り替えられ、その結果、桿状体60のより厚い方の次元が窓40aおよび40bの間に位置づけられ、言いかえれば、長さLが透明の窓40aおよび40bの間に伸びる。
図12Bで概略的に示さるのに類似して、これは、光学的経路56内の流体サンプルの厚さT2に帰着する。
【0105】
ここで
図14Aおよび14B、切り替え機構46の他の実施形態に言及する。
図14Aおよび14Bの切り替え機構46は、切り替え機構が、例えばサファイアあるいは石英から構成された透明な桿状体62を含み、それは中空チャンバ34に配置され、基準物質として作用する点において、
図13Aおよび13Bを参照して記載された切り替え機構の構成に似ている。桿状体62は円筒形であり得、あるいは他の形状のベース面を持ち得窓40aおよび40bの形状に対応する。桿状体60の回転運動を使用する先の実施形態の切り替え機構と異なり、本実施形態の切り替え機構は、窓40aおよび40bと一列に並ぶこと、及び一列に並ばないことに切り替え可能に桿状体62を摺動するように構成され、これにより、桿状体62の線形並進運動によって光学的経路56内に、および光学的経路56外に桿状体62を移動させる。線形の並進運動は、モータ26に類似し得るモータ(図示せず)に桿状体62を接続する駆動軸64によって引き起こされる。駆動軸64は、例えば、フローセル30の外への流体サンプルの漏出を防ぐために液体シールによって密閉されるフローセル本体32の側部の1つに形成された隙間を介して中空チャンバ34の内外に、摺動させるのに動さ可能である。
【0106】
図14Aおよび14Bは、
図3-8に例証されたフローセル30に比して、フローセル30をより概略的な図を例証していることに注意すること。
図14Aおよび14Bの中で例証されたフローセルは、本実施形態に特有の切り替え機構を除いて、
図3-8に例証されたフローセルの同じ一般的な特徴を有すると理解されるに違いない。加えて、
図14Aおよび14Bのフローセルは、より明確に本実施形態の切り替え機構の構成要素を説明するために、カバーが除去されて示される。そのため、窓40bだけが
図14Aおよび
図14Bで示される。
【0107】
最初に
図14Aを参照すると、フローセル30は流体サンプル測定状態で示され、切り替え機構46は窓40aおよび40bと一列に並ばないように桿状体62を位置づけるために切り替えられ、したがって、光学的経路から外れる。
図12Aで概略的に示されるのに類似して、これは、光学的経路56内の流体サンプルの厚さT
1に帰着する。
【0108】
ここで
図14Bを参照すると、フローセル30は基準測定状態で示され、切り替え機構46は窓40aおよび40bと一列に並んで桿状体62を位置決めするために切り替えられ、したがって光学的経路に入る。
図12Bで概略的に示されるのに類似して、これは、光学的経路内の流体サンプルの厚さT
2に帰着する。
【0109】
図14Aおよび14Bの直線的に移動可能な駆動軸64が回転可能なアーム67と取り替えられ得、当該アーム67は
図15Aおよび15Bの中で例証されるように、光学的経路の内外で桿状体62の移動を引き起こすようにフローセル本体32の内部で部分的に回転する。
【0110】
ここで
図16Aおよび16、切り替え機構46の他の実施形態に言及する。
図16Aおよび16Bの切り替え機構46は、
図14Aおよび14Bを参照して記載された切り替え機構の構成に似ている。
図16Aおよび16Bの切り替え機構46は特に駆動軸65を利用し、
図14Aおよび14Bの実施形態に類似して、基準物質の線形の並進運動を有効にする。しかしながら、本実施形態は二重の摺動桿状体構成を利用しており、それは、
図14Aおよび14Bの実施形態に述べられているような単一の透明な桿状体の代わりに、(長さR
1の)第1の透明な桿状体66と、(長さR
2>R
1の)第2の透明な桿状体68を含んでいる。桿状体66および68は、駆動軸65に共同で接続され、その結果桿状体66および68が一致して移動する。切り替え機構46は、光学的経路の内外に、桿状体66および68を交互に位置づけるように横に駆動軸65を移動させ、2つの異なる経路長の間の光学的経路の長さを切り替える。先に記載された実施形態のように、駆動軸65は、モータ26に類似し得るモータ(図示せず)に接続される。
【0111】
最初に
図16Aを参照すると、フローセル30は流体サンプル測定状態で示され、切り替え機構46は、第1の方向に駆動軸65を横に、したがって光学的経路内に移動させることによって窓40aおよび40bと一列に並んで第1の桿状体66を位置決めするように切り替えられる。同時に、第2の桿状体68は40aと40bと一列に並ばないで移動される。
図12Aで概略的に示されるのに類似して、これは、光学的経路内の流体サンプルの厚さT
1に帰着する。
【0112】
ここで
図16Bを参照すると、フローセル30は基準測定状態で示され、第1の方向とは反対の第2の方向に駆動軸65を横に、したがって光学的経路内に移動させることにより、窓40aおよび40bと一列に並んで第2の桿状体68を位置決めするために、切り替え機構46が切り替えられる。同時に、第1の桿状体66は40aと40bと一列に並ばないで移動される。
図12Bの中で概略的に示されるのに類似して、これは、光学的経路内の流体サンプルの厚さT
1未満の厚さT
2に帰着する。
【0113】
二重の桿状体構成を使用するとき、定数k1およびk2がよりよく均等になり得ることに注意すること。これは、流体サンプル、即ち2つの切り替え状態における桿状体の界面から与えられている光損失の同一の量による。
【0114】
切り替え機構46が中空チャンバ34の内部に配置される実施形態における基準物質として透明な桿状体或いは桿状体を使用することは特に有利であり得ることは、注目される。中空チャンバ34を通る流体サンプルの流れは、入口ポート42および出口ポート44経由で、如何なる粒子又は物質を除去するために桿状体(即ち、円形ベース部)の端面を洗い流し、掃除するために作用し得、当該粒子又物質は、経時的に横断面上に付着し得る。
【0115】
切り替え機構46の上述の実施例のすべてにおいて、関係のある透明な桿状体(例えば、桿状体52、桿状体60、桿状体62など)は、既知の透過率を有する透明な桿状体によって、あるいは代替的にチャンバに置き換えられ得る。当該チャンバは、溶質のない流体サンプル、同じ溶媒と正確に知られた濃度の同じ溶質材料とから製造された溶液、あるいは既知の透過率を持つ流体(例えば、空気または脱イオン水)を含むことは注目される。そのようなチャンバは、光源12によって放射された光のスペクトルにおいて透明な材料から構成された表面を有する。
【0116】
ここで、
図17Aおよび17B、切り替え機構46の他の実施例に言及する。
図17Aおよび17Bの切り替え機構46はピストン構成70を含み、ピストン構成70は固定された透明の窓72および移動可能な透明の窓74を含んでいる。透明の窓72および74は互いに平行で、例えば、サファイアまたは石英などの光源12によって放射された光のスペクトルにおいて透明である材料から構成される。固定された透明の窓72は、フローセル本体32の正面表面又は背部表面のいずれか1つに近位して位置づけられ、透明の窓40aおよび40bと一列に並ばされる。移動可能な透明の窓74は、固定された透明の窓72に向かって、或いは固定された透明の窓72から遠ざかって、直線状に制御可能に移動自在であり、透明の窓40aおよび40bと一列に並ぶ。移動自在の透明の窓74の制御された移動は、光学的経路中の流体サンプルの量を有効に調節し、2つの異なる経路長間の光学的経路の長さを有効に切り替える。移動可能な透明の窓74の移動は、モータ26に類似し得るモータ(図示せず)によって制御され得る。
【0117】
最初に
図17Aを参照すると、フローセル30は、流体サンプル測定状態で示され、最大の距離D
1で固定された透明の窓72から遠ざかって移動可能な透明の窓74を位置付けるために、切り替え機構46が切り替えられる。
図12Aで概略的に示されるのに類似して、これは、光学的経路内の流体サンプルの厚さT
1に帰着する。
【0118】
ここで
図17Bを参照すると、フローセル30は基準測定状態で示され、最小の距離D
2で固定された透明の窓72に近づくように移動自在の透明の窓74を位置づけるために、切り替え機構46は切り替えられる。
図12Bで概略的に示されるのに類似して、これは、光学的経路内の流体サンプルの厚さT
2に帰着する。
【0119】
ここまで記載した実施形態は、基準物質とともに流体サンプルを含む単一の中空チャンバを有するフローセルに関し、切り替え機構は、光学的経路内の基準物質の量あるいは光学的経路内の流体サンプルの量を調節するのであるが、基準物質と流体サンプルが個別のチャンバに配置される他の実施形態も可能である。
【0120】
ここで、
図18Aおよび18B、フローセル本体32が2つの個別のチャンバ、第1の中空チャンバ34および第2の中空チャンバ35に細分化されるフローセル30の実施形態に言及する。
図2乃至16Bを参照して上述したものに類似して、流体サンプルは入口ポートと出口ポートを介して第1の中空チャンバ34を通って流れる。溶質のない流体サンプル、同じ溶媒と正確に知られた濃度の同じ溶質材料から製造された溶液、あるいは既知の透過率をもつ流体(例えば、空気または脱イオン水)と同一の溶媒として実施され得る基準物質は、第2の中空チャンバ35に含まれている。先の実施形態に記載されたのに類似して、透明の窓40aおよび40bの対は、第1の中空チャンバ34の対向する表面に配置される。第2の中空チャンバ35は、第2の中空チャンバ35の対向面上に配置される一対の透明の窓41aおよび41bを含む。切り替え機構46は、中空チャンバ34および35を相互に連結させる駆動軸80を含んでおり、その結果、中空チャンバ34および35は横に一体的に移動する。切り替え機構46は横に駆動軸80を移動させ、交互に中空チャンバ34および35を位置決めし、それによって、光学的経路の内外に流体サンプルと基準物質とを交互に位置決めする。先に記載された実施形態のように、駆動軸80は、モータ26に類似し得るモータ(図示せず)に接続され得る。
【0121】
最初に
図18Aを参照すると、フローセル30は流体サンプル測定状態で示され、光学的経路内の第1の中空チャンバ34の位置を決めし、同時に第2の中空チャンバ35を光学的経路の外に移動させるために、切り替え機構46が切り替えられる。
【0122】
ここで
図18Bを参照すると、フローセル30は基準測定状態で示され、光学的経路内の第2の中空チャンバ35の位置を決めるために、切り替え機構46が切り替えられる、同時に第1の中空チャンバ34を光学的経路の外に移動させる。
【0123】
ここまで記載した殆どの実施形態は、例えば駆動軸に接続されたステッパーモータなどのモータによって少なくとも一部起動される様々な切り替え機構に少なくとも一部分関係しているが、代替のアクチュエータおよび駆動装置が、開示された切り替え機構、例えば空気式アクチュエータ(例えば、空気で動作するピストン構成)或いは磁気アクチュエータ、油圧アクチュエータを起動させるために使用される他の実施形態も可能である。そのようなアクチュエータは、また、光学的経路の内外での基準物質の部分的および/または非連続的回転或いは移動を実行し得る。
【0124】
本発明の実施形態のシステムおよび/または装置の実施例は、選択されたタスクを手動で、自動で、或いはそれらの組み合わせで、実行すること、或いは完結すること、を含むことができる。本発明のシステムおよび/または装置の実施形態の実際の装置化および装備によれば、いくつかの選択されたタスクは、ハードウェアによって、又はソフトウェアによって、又はファームウェアによって、若しくはそれらの組み合わせによって、オペレーティング・システムを使用して実施することができた。
【0125】
本明細書に使用されているように、単数形、「a」、「an」および「the」は、文脈が明確に他の方法で規定していない限り、複数の引用を含んでいる。
【0126】
「典型的」という用語は本明細書において「一例、事例あるいは例証としての役割を果たす」ことを意味するために使用される。「典型的」と記載された実施形態はいずれも、他の実施形態よりも好適である、或いは有利であると必ずしも解釈されない、および/または他の実施形態からの特徴の組み込みを排除しない。
【0127】
別々の実施形態の文脈で明確性のために記載された本発明の特定の特徴は、単一の実施形態において組み合わせて提供され得ることは、認識される。逆に、簡潔さのために、単一の実施形態の文脈で記載された本発明の様々な特徴は、別々にあるいは任意の適切なサブコンビネーションで提供されるかもしれない、あるいは、本発明の他の如何なる記載された実施形態において適切なものとして提供されるかもしれない。様々な実施形態の文脈で記載された特定の特徴は、実施形態がそれらの構成要素なしには無効であるということがない限り、それらの実施形態の必須の特徴と考えることはできない。
【0128】
本発明はその特定の実施形態と共に記載したが、多くの代替、変更および変形が当業者には明白になるであろうことは明白である。従って、添付の特許請求の範囲の精神および広い範囲に属するそのような代替、変更および変形をすべて包含することが意図される。
【手続補正書】
【提出日】2022-09-02
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
流体サンプルを分析するためのフローセルであって、該フローセルは、
少なくとも1つの透明な桿状体を含む、基準物質を含むためのフローセル本体であって、前記フローセル本体は、
流体サンプルを含むための少なくとも1つの中空チャンバ、および
各々が少なくとも1つの透明の部分を有する対向する表面
を含み、前記フローセル本体を通って横断する光のための光学的経路が、一部前記透明の部分によって特徴づけられる、フローセル本体と、
第1の光強度測定に対応する基準測定状態と、第2の光強度測定に対応する流体サンプル測定状態との間のフローセルの切り替えを達成するために、前記少なくとも1つの桿状体を前記光学的経路の内外で併進移動させることにより、前記光学的経路内に配置された基準物質の量を調節するように動作可能である切り替え機構と
を含んでなる、フローセル。
【請求項2】
前記基準物質はさらに第2の透明な桿状体を含み、2つの透明な桿状体は異なる長さをもつ、請求項1に記載のフローセル。
【請求項3】
前記2つの透明な桿状体は共同して移動可能である、請求項2に記載のフローセル。
【請求項4】
前記基準物質は前記光学的経路内の流体サンプルの量を置き換えるように移動可能である、請求項1に記載のフローセル。
【請求項5】
前記切り替え機構はピストン構成を含んでなる、請求項1に記載のフローセル。
【請求項6】
前記中空チャンバは、流体が前記中空チャンバを通って流れる流路を提供する、入口ポートおよび出口ポートを含んでなる、請求項1に記載のフローセル。
【請求項7】
前記中空チャンバを通る流体の流れは、前記少なくとも1つの透明な桿状体の少なくとも1つの表面から粒子を除去するように作用する、請求項6に記載のフローセル。
【請求項8】
前記切り替え機構は、モータによって起動され、光検知器と同期して動作する、請求項1に記載のフローセル。
【請求項9】
前記基準測定状態は第1の光学的経路長に対応し、前記流体サンプル測定状態は第2の光学的経路長に対応する、請求項1に記載のフローセル。
【請求項10】
前記第1の光学的経路長は、前記光学的経路内の流体サンプルの第1の量に対応し、前記第2の光学的経路長は、前記光学的経路内の流体サンプルの第2の量に対応する、請求項9に記載のフローセル。
【請求項11】
前記中空チャンバは、前記光学的経路に固定して位置づけられる、請求項1に記載のフローセル。
【請求項12】
前記透明の部分は、前記中空チャンバの対向する表面上に配置される一対の透明の窓として実施される、請求項1に記載のフローセル。
【請求項13】
前記少なくとも1つの桿状体は、前記流体サンプルとともに前記中空チャンバ内に配置される、請求項1に記載のフローセル。
【請求項14】
前記光学的経路はさらに、一部第1のレンズと第2のレンズとを含むスタティックレンズ構成によって特徴づけられ、前記透明の部分は前記スタティックレンズ構成の個々のレンズの間に位置づけることができる、請求項1に記載のフローセル。
【請求項15】
流体サンプルを分析するためのシステムであって、該システムは、
フローセルであって、
少なくとも1つの透明な桿状体を含む、基準物質を含むためのフローセル本体、および
流体サンプルを含むための少なくとも1つの中空チャンバ
を含んでなる、フローセルと、
光源から前記フローセル本体を通って光検知器まで光を向けるために少なくとも第1および第2のレンズを含むスタティック光学構成と、
前記フローセル本体の対向する表面上に配置された少なくとも第1および第2の透明の表面であって、前記フローセル本体は前記第1の透明の表面と前記第1のレンズとを、および前記第2の透明の表面と前記第2のレンズとを一列に並ぶように位置決めでき、前記フローセル本体を通る光学的経路は、一部が前記第1および第2の透明の表面ならびにスタティック光学構成によって特徴づけられる、第1および第2の透明の表面と、
第1の光強度測定に対応する基準測定状態と、第2の光強度測定に対応する流体サンプル測定状態との間のフローセルの切り替えを達成するために、前記少なくとも1つの透明な桿状体を前記光学的経路の内外で併進移動させることにより、前記光学的経路内に配置された基準物質の量を調節するために動作可能な切り替え機構と
を含んでなる、システム。
【請求項16】
さらに、前記フローセルを通り抜けるように光を前記フローセル内に導くための第1の光ファイバーと、前記フローセルを通り抜けた光を導くための第2の光ファイバーと、を含む光ファイバー構成を含んでなる、請求項15に記載のシステム。
【請求項17】
さらに、前記第1の光ファイバーに結合された光源を含む、請求項16に記載のシステム。
【請求項18】
さらに、前記第2の光ファイバーに結合された、前記フローセル本体を通り抜ける光強度の測定のための光検知器を含む、請求項16に記載のシステム。
【請求項19】
前記光検知器と前記切り替え機構は同期して動作するように構成される、請求項18に記載のシステム。
【請求項20】
さらに、前記光検知器に結合された少なくとも1つのプロセッサーを含む処理ユニットであって、前記フローセルが前記基準測定状態であるときに、前記フローセル本体を通り抜ける光強度を示す第1の信号を受け取り、前記フローセルが前記流体サンプル測定状態であるときに、前記フローセル本体を通り抜ける光強度を示す第2の信号を受け取り、および受信信号の一部に基づいて流体サンプルの濃度あるいは透過率の少なくとも1つを決定するように構成されてなる、処理ユニットを含む、請求項18に記載のシステム。
【請求項21】
流体サンプルを分析するためのフローセルであって、該フローセルは、
流体サンプルを含むための少なくとも1つの中空チャンバと、
前記中空チャンバの対向する表面上に配置された一対の透明の窓であって、前記透明の窓の各々は、前記中空チャンバを通る光学的経路を特徴づけるために、スタティックレンズ構成の個々のレンズと一列に並んでなる、一対の透明の窓と、
前記少なくとも1つの中空チャンバ内に配置されるとともに前記流体サンプルと接触する少なくとも1つの透明な桿状体を含む切り替え機構であって、前記切り替え機構は、少なくとも第1の光学的経路長と第2の光学的経路長との間の前記中空チャンバを通る光学的経路長を変更するように前記少なくとも1つの透明な桿状体を前記光学的経路の内外で併進移動させるように動作可能である、切り替え機構と
を含んでなる、フローセル。
【請求項22】
流体サンプルを分析するためのフローセルであって、該フローセルは、
少なくとも1つの透明な桿状体を含む、基準物質を含むためのフローセル本体であって、前記フローセル本体は、
流体サンプルを含むための少なくとも1つの中空チャンバ、および
各々が少なくとも1つの透明の部分を有する対向する表面
を含み、前記フローセル本体を通って横断する光のための光学的経路が、一部前記透明の部分によって特徴づけられる、フローセル本体と、
前記少なくとも1つの透明な桿状体が取り付けられた少なくとも1つの回転アームを有する回転機構を含んでなる切り替え機構であって、第1の光強度測定に対応する基準測定状態と、第2の光強度測定に対応する流体サンプル測定状態との間のフローセルの切り替えを達成するように、前記切り替え機構を回転させて、前記光学的経路の内外で前記少なくとも1つの透明な桿状体を交互に位置づけることにより、前記光学的経路内に配置された基準物質の量を調節するように動作可能である、切り替え機構と
を含んでなる、フローセル。
【請求項23】
前記回転機構は複数のアームを含み、および各々のアームが透明な桿状体に結合されてなる、請求項22に記載のフローセル。
【請求項24】
隣接したアームの透明な桿状体は異なる長さを持っている、請求項22に記載のフローセル。
【請求項25】
前記中空チャンバは、流体が前記中空チャンバを通って流れる流路を提供する、入口ポートおよび出口ポートを含んでなり、前記切り替え機構は、前記中空チャンバを通る流体の流れによって起動される、請求項22に記載のフローセル。
【請求項26】
前記中空チャンバは、流体が前記中空チャンバを通って流れる流路を提供する、入口ポートおよび出口ポートを含んでなり、前記中空チャンバを通る流体の流れは、前記少なくとも1つの透明な桿状体の少なくとも1つの表面から粒子を除去するように作用する、請求項22に記載のフローセル。
【請求項27】
流体サンプルを分析するためのシステムであって、該システムは、
フローセルであって、
少なくとも1つの透明な桿状体を含む、基準物質を含むためのフローセル本体、および
流体サンプルを含むための少なくとも1つの中空チャンバ
を含んでなる、フローセルと、
光源から前記フローセル本体を通って光検知器まで光を向けるために少なくとも第1および第2のレンズを含むスタティック光学構成と、
前記フローセル本体の対向する表面上に配置された少なくとも第1および第2の透明の表面であって、前記フローセル本体は前記第1の透明の表面と前記第1のレンズとを、および前記第2の透明の表面と前記第2のレンズとを一列に並ぶように位置決めでき、前記フローセル本体を通る光学的経路は、一部が前記第1および第2の透明の表面ならびに前記スタティック光学構成によって特徴づけられる、第1および第2の透明の表面と、
前記少なくとも1つの透明な桿状体が取り付けられた少なくとも1つの回転アームを含む回転機構を含んでなる切り替え機構であって、第1の光強度測定に対応する基準測定状態と、第2の光強度測定に対応する流体サンプル測定状態との間のフローセルの切り替えを達成するように、前記切り替え機構を回転させて、前記光学的経路の内外で前記少なくとも1つの透明な桿状体を交互に位置づけることにより、前記光学的経路内に配置された基準物質の量を調節するように動作可能である、切り替え機構と
を含んでなる、システム。
【請求項28】
流体サンプルを分析するためのフローセルであって、該フローセルは、
流体サンプルを含むための少なくとも1つの中空チャンバと、
前記中空チャンバの対向する表面上に配置された一対の透明の窓であって、前記透明の窓の各々は、前記中空チャンバを通る光学的経路を特徴づけるために、スタティックレンズ構成の個々のレンズと一列に並んでなる、一対の透明の窓と、
少なくとも1つの透明な桿状体が取り付けられた少なくとも1つの回転アームを含む回転機構を含んでなる切り替え機構であって、前記少なくとも1つの透明な桿状体は、前記少なくとも1つの中空チャンバ内に配置されるとともに前記流体サンプルと接触し、前記切り替え機構は、少なくとも第1の光学的経路長と第2の光学的経路長との間の前記中空チャンバを通る光学的経路長を変更するように、前記切り替え機構を回転させて、前記光学的経路の内外で前記少なくとも1つの透明な桿状体を交互に位置づけるように動作可能である、切り替え機構と
を含んでなる、フローセル。
【請求項29】
流体サンプルを分析するためのフローセルであって、該フローセルは、
透明な桿状体を含む、基準物質を含むためのフローセル本体であって、前記フローセル本体は、
流体サンプルを含むための少なくとも1つの中空チャンバ、および
各々が少なくとも1つの透明の部分を有する対向する表面
を含み、前記フローセル本体を通って横断する光のための光学的経路が、一部前記透明の部分によって特徴づけられる、フローセル本体と、
第1の光強度測定に対応する基準測定状態と、第2の光強度測定に対応する流体サンプル測定状態との間のフローセルの切り替えを達成するように、前記光学的経路に実質的に垂直な回転軸の周りに前記透明な桿状体を回転させることにより、前記光学的経路内に配置された基準物質の量を調節するように動作可能である切り替え機構と
を含んでなる、フローセル。
【請求項30】
前記中空チャンバは、流体が前記中空チャンバを通って流れる流路を提供する、入口ポートおよび出口ポートを含んでなり、前記中空チャンバを通る流体の流れは、前記少なくとも1つの透明な桿状体の少なくとも1つの表面から粒子を除去するように作用する、請求項29に記載のフローセル。
【請求項31】
流体サンプルを分析するためのシステムであって、該システムは、
フローセルであって、
透明な桿状体を含む、基準物質を含むためのフローセル本体、および
流体サンプルを含むための少なくとも1つの中空チャンバ
を含んでなる、フローセルと、
光源から前記フローセル本体を通って光検知器まで光を向けるために少なくとも第1および第2のレンズを含むスタティック光学構成と、
前記フローセル本体の対向する表面上に配置された少なくとも第1および第2の透明の表面であって、前記フローセル本体は前記第1の透明の表面と前記第1のレンズとを、および前記第2の透明の表面と前記第2のレンズとを一列に並ぶように位置決めでき、前記フローセル本体を通る光学的経路は、一部が前記第1および第2の透明の表面ならびに前記スタティック光学構成によって特徴づけられる、第1および第2の透明の表面と、
第1の光強度測定に対応する基準測定状態と、第2の光強度測定に対応する流体サンプル測定状態との間のフローセルの切り替えを達成するように、前記光学的経路に実質的に垂直な回転軸の周りに前記透明な桿状体を回転させることにより、前記光学的経路内に配置された基準物質の量を調節するように動作可能である切り替え機構と
を含んでなる、システム。
【請求項32】
流体サンプルを分析するためのフローセルであって、該フローセルは、
流体サンプルを含むための少なくとも1つの中空チャンバと、
前記中空チャンバの対向する表面上に配置された一対の透明の窓であって、前記透明の窓の各々は、前記中空チャンバを通る光学的経路を特徴づけるために、スタティックレンズ構成の個々のレンズと一列に並んでなる、一対の透明の窓と、
前記少なくとも1つの中空チャンバ内に配置されるとともに前記流体サンプルと接触する透明な桿状体を含む切り替え機構であって、少なくとも第1の光学的経路長と第2の光学的経路長との間の前記中空チャンバを通る光学的経路長を変更するように、前記光学的経路に実質的に垂直な回転軸の周りに前記透明な桿状体を回転させるように動作可能である、切り替え機構と
を含んでなる、フローセル。
【外国語明細書】