IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社デンソーの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022173466
(43)【公開日】2022-11-18
(54)【発明の名称】圧電素子、圧電装置
(51)【国際特許分類】
   H01L 41/113 20060101AFI20221111BHJP
   H01L 41/047 20060101ALI20221111BHJP
   H01L 41/053 20060101ALI20221111BHJP
   H01L 41/09 20060101ALI20221111BHJP
   H01L 41/083 20060101ALI20221111BHJP
   H01L 41/187 20060101ALI20221111BHJP
【FI】
H01L41/113
H01L41/047
H01L41/053
H01L41/09
H01L41/083
H01L41/187
【審査請求】有
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2022156782
(22)【出願日】2022-09-29
(62)【分割の表示】P 2021567112の分割
【原出願日】2020-12-01
(31)【優先権主張番号】PCT/JP2020/040471
(32)【優先日】2020-10-28
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2019235224
(32)【優先日】2019-12-25
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2020125990
(32)【優先日】2020-07-24
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2020177170
(32)【優先日】2020-10-22
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(74)【代理人】
【識別番号】110001128
【氏名又は名称】弁理士法人ゆうあい特許事務所
(72)【発明者】
【氏名】馬渡 和明
(72)【発明者】
【氏名】酒井 峰一
(72)【発明者】
【氏名】小山 友二
(57)【要約】
【課題】検出精度の向上を図ることができる圧電素子を提供する。
【解決手段】支持体と、支持体上に配置され、圧電膜と、圧電膜と接続されて圧電膜が変形することによって発生する電荷を取り出す電極膜とを含む構成とされ、支持体に支持される支持領域21aと、支持領域21aと繋がっており、支持体から浮遊している複数の振動領域22とを有し、電荷に基づいた圧力検出信号を出力する振動部20と、を備える。電極膜は、第1領域R1に形成されるようにする。そして、圧力検出信号の検出精度を向上させる向上部C2を形成する。
【選択図】図4
【特許請求の範囲】
【請求項1】
圧力に応じた圧力検出信号を出力する振動部(20)を有する圧電素子であって、
支持体(10)と、
前記支持体上に配置され、圧電膜(50)と、前記圧電膜と接続されて前記圧電膜が変形することによって発生する電荷を取り出す電極膜(60)とを含む構成とされ、前記支持体に支持される支持領域(21a)と、前記支持領域と繋がっており、前記支持体から浮遊している1つ以上の振動領域(22)とを有し、前記電荷に基づいた前記圧力検出信号を出力する前記振動部と、を備え、
前記1つ以上の振動領域は、前記支持領域との境界となる一端部(22a)が固定端とされると共に他端部(22b)が自由端とされ、前記一端部側の領域が第1領域(R1)とされると共に、前記他端部側の領域が第2領域(R2)とされており、前記電極膜は、前記第1領域に形成されており、
前記圧力検出信号の検出精度を向上させる向上部(C2)を備えており、
前記1つ以上の振動領域は、前記向上部として、前記第1領域の変形を促進させる変形促進構造(C2)が形成されており、
前記変形促進構造は、前記第1領域の一端部が角部(C2)を有する形状とされることで構成されている圧電素子。
【請求項2】
圧力に応じた圧力検出信号を出力する振動部(20)を有する圧電素子であって、
支持体(10)と、
前記支持体上に配置され、圧電膜(50)と、前記圧電膜と接続されて前記圧電膜が変形することによって発生する電荷を取り出す電極膜(60)とを含む構成とされ、前記支持体に支持される支持領域(21a)と、前記支持領域と繋がっており、前記支持体から浮遊している1つ以上の振動領域(22)とを有し、前記電荷に基づいた前記圧力検出信号を出力する前記振動部と、を備え、
前記1つ以上の振動領域は、前記支持領域との境界となる一端部(22a)が固定端とされると共に他端部(22b)が自由端とされ、前記一端部側の領域が第1領域(R1)とされると共に、前記他端部側の領域が第2領域(R2)とされており、前記電極膜は、前記第1領域に形成されており、
前記圧力検出信号の検出精度を向上させる向上部(C1)を備えており、
前記1つ以上の振動領域は、前記向上部として、前記第1領域の変形を促進させる変形促進構造(C1)が形成されており、
前記変形促進構造は、前記第1領域のうちの前記支持体から浮遊している部分に形成された角部(C1)であり、
前記振動領域のうちの浮遊している領域の外形線における前記支持領域側の2つの端部は、前記一端部に達しており、
前記振動領域は、前記変形促進構造として、前記2つの端部同士の間を結ぶ仮想線(K1)に対し、前記一端部が前記他端部と反対側に膨らんだ部分を有する形状とされている圧電素子。
【請求項3】
圧力に応じた圧力検出信号を出力する振動部(20)を有する圧電素子であって、
支持体(10)と、
前記支持体上に配置され、圧電膜(50)と、前記圧電膜と接続されて前記圧電膜が変形することによって発生する電荷を取り出す電極膜(60)とを含む構成とされ、前記支持体に支持される支持領域(21a)と、前記支持領域と繋がっており、前記支持体から浮遊している1つ以上の振動領域(22)とを有し、前記電荷に基づいた前記圧力検出信号を出力する前記振動部と、を備え、
前記1つ以上の振動領域は、それぞれ前記支持領域との境界となる一端部(22a)が固定端とされると共に他端部(22b)が自由端とされ、前記一端部側の領域が第1領域(R1)とされると共に、前記他端部側の領域が第2領域(R2)とされており、前記電極膜は、前記第1領域に形成されており、
前記圧力検出信号の検出精度を向上させる向上部(22)を備えており、
前記1つ以上の振動領域は、前記向上部として、前記第1領域の変形を促進させる変形促進構造(22)が形成されており、
前記振動領域のうちの浮遊している領域の外形線における前記支持領域側の2つの端部は、それぞれ前記浮遊している領域で終端しており、
前記振動領域は、前記変形促進構造として、前記2つの端部同士の間を結ぶ仮想線(K2)に対し、前記一端部が前記他端部と反対側に膨らんだ部分を有する圧電素子。
【請求項4】
圧力に応じた圧力検出信号を出力する振動部(20)を有する圧電素子であって、
支持体(10)と、
前記支持体上に配置され、圧電膜(50)と、前記圧電膜と接続されて前記圧電膜が変形することによって発生する電荷を取り出す電極膜(60)とを含む構成とされ、前記支持体に支持される支持領域(21a)と、前記支持領域と繋がっており、前記支持体から浮遊している1つ以上の振動領域(22)とを有し、前記電荷に基づいた前記圧力検出信号を出力する前記振動部と、を備え、
前記1つ以上の振動領域は、それぞれ前記支持領域との境界となる一端部(22a)が固定端とされると共に他端部(22b)が自由端とされ、前記一端部側の領域が第1領域(R1)とされると共に、前記他端部側の領域が第2領域(R2)とされており、前記電極膜は、前記第1領域に形成されており、
前記圧力検出信号の検出精度を向上させる向上部(82)を備えており、
前記1つ以上の振動領域は、前記向上部として、前記第1領域の変形を促進させる変形促進構造(82)が形成されており、
前記第2領域には、孔部(81)が形成されていると共に、前記孔部に前記圧電膜よりヤング率が高い前記変形促進構造としての硬膜(82)が配置されている圧電素子。
【請求項5】
圧力に応じた圧力検出信号を出力する振動部(20)を有する圧電素子であって、
支持体(10)と、
前記支持体上に配置され、圧電膜(50)と、前記圧電膜と接続されて前記圧電膜が変形することによって発生する電荷を取り出す電極膜(60)とを含む構成とされ、前記支持体に支持される支持領域(21a)と、前記支持領域と繋がっており、前記支持体から浮遊している1つ以上の振動領域(22)とを有し、前記電荷に基づいた前記圧力検出信号を出力する前記振動部と、を備え、
前記1つ以上の振動領域は、それぞれ前記支持領域との境界となる一端部(22a)が固定端とされると共に他端部(22b)が自由端とされ、前記一端部側の領域が第1領域(R1)とされると共に、前記他端部側の領域が第2領域(R2)とされており、前記電極膜は、前記第1領域に形成されており、
前記圧力検出信号の検出精度を向上させる向上部(91、92)を備えており、
前記振動領域には、前記向上部として、温度に応じた温度検出信号を出力する温度検出素子(91)と、通電されることで発熱する発熱素子(92)とが形成されている圧電素子。
【請求項6】
圧力に応じた圧力検出信号を出力する振動部(20)を有する圧電素子であって、
支持体(10)と、
前記支持体上に配置され、圧電膜(50)と、前記圧電膜と接続されて前記圧電膜が変形することによって発生する電荷を取り出す電極膜(60)とを含む構成とされ、前記支持体に支持される支持領域(21a)と、前記支持領域と繋がっており、前記支持体から浮遊している1つ以上の振動領域(22)とを有し、前記電荷に基づいた前記圧力検出信号を出力する前記振動部と、を備え、
前記1つ以上の振動領域は、それぞれ前記支持領域との境界となる一端部(22a)が固定端とされると共に他端部(22b)が自由端とされ、前記一端部側の領域が第1領域(R1)とされると共に、前記他端部側の領域が第2領域(R2)とされており、
前記電極膜は、前記第1領域に形成されており、
前記圧力検出信号の検出精度を向上させる向上部(11c)を備えており、
前記支持体は、支持基板(11)と、前記支持基板上に配置され、前記振動部が配置される絶縁膜(12)とを有し、前記振動領域を浮遊させる凹部(10a)が前記支持基板および前記絶縁膜に形成されており、
前記支持基板に形成された凹部における前記絶縁膜側と反対側の開口部を第1開口部(11d)とすると共に前記絶縁膜側の開口部を第2開口部(11e)とすると、前記第1開口部と前記第2開口部とを結ぶ仮想線(K3)が前記圧電膜の面方向に対する法線方向に沿って延びており、前記第1開口部と前記第2開口部とを繋ぐ側面(11c)は、前記向上部として、前記第1開口部と前記第2開口部とを結ぶ仮想線(K3)に対して窪んだ窪み構造とされている圧電素子。
【請求項7】
圧力に応じた圧力検出信号を出力する振動部(20)を有する圧電素子を備えた圧電装置であって、
請求項1ないし6のいずれか1つに記載の圧電素子と、
前記圧電素子を搭載する被実装部材(131)と、前記圧電素子を収容する状態で前記被実装部材に固定される蓋部(132)と、を有し、外部と連通して前記圧力が導入される貫通孔(131b、132a)が形成されたケーシング(130)と、を備える圧電装置。
【請求項8】
所定の処理を行う制御部(120a)を備え、
前記圧電素子は、前記制御部に対して前記振動領域が接続されており、
前記制御部は、所定電圧を印加して前記振動領域を振動させることで前記圧電素子の自己診断を行う請求項7に記載の圧電装置。
【請求項9】
前記制御部は、前記自己診断として、前記圧電素子に印加され得る圧力に基づいた通常振動となるように前記振動領域を振動させ、前記振動領域の電圧に基づいて前記圧電素子の異常判定を行う請求項8に記載の圧電装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、振動領域が片持ち支持された圧電素子、圧電装置に関するものである。
【背景技術】
【0002】
従来より、振動領域が片持ち支持された圧電素子が提案されている(例えば、特許文献1参照)。具体的には、振動領域は、圧電膜と、圧電膜と接続された電極膜とを有する構成とされている。そして、このような圧電素子は、音響圧力(以下では、単に音圧ともいう)等によって振動領域が振動することにより、圧電膜が変形して圧電膜に電荷が発生する。このため、電極膜を介して圧電膜に発生した電荷を取り出すことにより、振動領域に印加された音圧が検出される。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特許5936154号公報
【発明の概要】
【0004】
ところで、現状では、このような片持ち支持された振動領域を有する圧電素子において、検出精度を向上させることが望まれている。
【0005】
本開示は、検出精度の向上を図ることができる圧電素子、圧電装置を提供することを目的とする。
【0006】
本開示の1つの観点によれば、圧電素子は、支持体と、支持体上に配置され、圧電膜と、圧電膜と接続されて圧電膜が変形することによって発生する電荷を取り出す電極膜とを含む構成とされ、支持体に支持される支持領域と、支持領域と繋がっており、支持体から浮遊している1つ以上の振動領域とを有し、電荷に基づいた圧力検出信号を出力する振動部と、を備え、1つ以上の振動領域は、それぞれ支持領域との境界となる一端部が固定端とされると共に他端部が自由端とされ、一端部側の領域が第1領域とされると共に、他端部側の領域が第2領域とされており、電極膜は、第1領域に形成されており、圧力検出信号の検出精度を向上させる向上部が形成されている。
【0007】
これによれば、圧力検出信号の精度を向上させる向上部が形成されているため、検出精度の向上を図ることができる。
【0008】
この場合、本開示の1つの観点によれば、1つ以上の振動領域は、向上部として、第1領域の変形を促進させる変形促進構造が形成されており、変形促進構造は、第1領域の一端部が角部を有する形状とされることで構成されている。
また、本開示の別の観点によれば、1つ以上の振動領域は、向上部として、第1領域の変形を促進させる変形促進構造が形成されており、変形促進構造は、第1領域のうちの支持体から浮遊している部分に形成された角部であり、振動領域のうちの浮遊している領域の外形線における支持領域側の2つの端部は、一端部に達しており、振動領域は、変形促進構造として、2つの端部同士の間を結ぶ仮想線に対し、一端部が他端部と反対側に膨らんだ部分を有する形状とされている。
また、本開示の別の観点によれば、1つ以上の振動領域は、向上部として、第1領域の変形を促進させる変形促進構造が形成されており、振動領域のうちの浮遊している領域の外形線における支持領域側の2つの端部は、それぞれ浮遊している領域で終端しており、振動領域は、変形促進構造として、2つの端部同士の間を結ぶ仮想線に対し、一端部が他端部と反対側に膨らんだ部分を有する。
【0009】
また、本開示の別の観点によれば、1つ以上の振動領域は、向上部として、第1領域の変形を促進させる変形促進構造が形成されており、第2領域には、孔部が形成されていると共に、孔部に圧電膜よりヤング率が高い変形促進構造としての硬膜が配置されている。
また、本開示の別の観点によれば、振動領域には、圧力検出信号の検出精度を向上させる向上部として、温度に応じた温度検出信号を出力する温度検出素子と、通電されることで発熱する発熱素子とが形成されている。
【0010】
また、本開示の別の観点によれば、支持体は、支持基板と、支持基板上に配置され、振動部が配置される絶縁膜とを有し、振動領域を浮遊させる凹部が支持基板および絶縁膜に形成されており、支持基板に形成された凹部における絶縁膜側と反対側の開口部を第1開口部とすると共に絶縁膜側の開口部を第2開口部とすると、第1開口部と第2開口部とを結ぶ仮想線が圧電膜の面方向に対する法線方向に沿って延びており、第1開口部と第2開口部とを繋ぐ側面は、向上部として、第1開口部と第2開口部とを結ぶ仮想線に対して窪んだ窪み構造とされている。
【0011】
また、本開示の別の観点によれば、圧電装置は、上記観点のいずれか1つに記載の圧電素子と、圧電素子を搭載する被実装部材と、圧電素子を収容する状態で被実装部材に固定される蓋部と、を有し、外部と連通して圧力が導入される貫通孔が形成されたケーシングと、を備える。
【0012】
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
【図面の簡単な説明】
【0013】
図1】第1実施形態における圧電素子の断面図である。
図2図1に示す圧電素子の平面図である。
図3】第1実施形態の変形例における圧電素子の平面図である。
図4】第2実施形態における圧電素子の平面図である。
図5】第3実施形態における圧電素子の平面図である。
図6】第4実施形態における圧電素子の平面図である。
図7】第5実施形態における圧電素子の断面図である。
図8】第6実施形態における圧電素子の平面図である。
図9】第7実施形態における圧電素子の平面図である。
図10】各センシング部の周波数と感度との関係を説明するための図である。
図11】第8実施形態における圧電素子の断面図である。
図12】第9実施形態における圧電素子の断面図である。
図13A図12に示す圧電素子の製造工程を示す断面図である。
図13B図13Aに続く圧電素子の製造工程を示す断面図である。
図14】第9実施形態における圧電装置の断面図である。
図15】Cb/Cmと感度比との関係を示す図である。
図16】第10実施形態における圧電素子の平面図である。
図17】第10実施形態における圧電装置の断面図である。
図18】センシング部、寄生容量、および回路基板の接続関係を示す回路図である。
図19】第11実施形態における中間電極膜の形状を示す平面図である。
図20】第11実施形態の変形例における中間電極膜の形状を示す平面図である。
図21】第12実施形態における圧電素子の応力分布を示す図である。
図22】第12実施形態における圧電素子の平面図である。
図23】振動領域における静電エネルギーの考え方を説明するための図である。
図24図23に基づいて振動領域を第1領域と第2領域とに区画した模式図である。
図25】第12実施形態の変形例における振動領域を第1領域と第2領域とに区画した模式図である。
図26】第13実施形態の振動領域における静電エネルギーの考え方を説明するための図である。
図27図26に基づいて振動領域を第1領域と第2領域とに区画した模式図である。
図28】第14実施形態における圧電素子の断面図である。
図29】圧電装置を構成した場合の回路図である。
図30A】振動領域に音圧が印加された場合の模式図である。
図30B】振動領域に音圧が印加された場合の模式図である。
図31】第14実施形態の変形例における圧電装置を構成した場合の回路図である。
図32】第15実施形態における圧電素子の断面図である。
図33】圧電素子の製造工程を示す断面図である。
図34】圧電素子の製造工程を示す断面図である。
図35】第16実施形態における圧電装置の断面図である。
図36】第16実施形態における圧電素子の平面図である。
図37】第16実施形態における圧電装置の回路図である。
図38】振動領域における周波数と共振倍率との関係を示す図である。
図39】第17実施形態における圧電素子の断面図である。
図40】振動領域に荷重が印加された際の模式図である。
図41図40に対応する側面における応力を示す模式図である。
図42図40中のXXXXII-XXXXII線に沿った断面における応力を示す模式図である。
図43A】第18実施形態における振動領域の長さが440μmである場合の、電極領域の数と感度との関係を示す図である。
図43B】第18実施形態における振動領域の長さが490μmである場合の、電極領域の数と感度との関係を示す図である。
図43C】第18実施形態における振動領域の長さが540μmである場合の、電極領域の数と感度との関係を示す図である。
図44】第19実施形態における圧電装置の断面図である。
図45】周波数と感度との関係を示す図である。
図46】バック空間の音響コンプライアンスと、必要な音響抵抗との関係を示す図である。
図47】音響抵抗と分離用スリットの幅との関係を示す図である。
図48】受圧面空間の音響コンプライアンスに対するバック空間の音響コンプライアンスの比と、信号強度比との関係を示す図である。
【発明を実施するための形態】
【0014】
以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
【0015】
(第1実施形態)
第1実施形態の圧電素子1について、図1および図2を参照しつつ説明する。なお、本実施形態の圧電素子1は、例えば、マイクロフォンとして利用されると好適である。また、図1は、図2中のI-I線に沿った断面図に相当している。なお、図2では、後述する第1電極部71および第2電極部72等を省略して示している。また、図2に対応する各図においても、第1電極部71および第2電極部72等を適宜省略して示している。
【0016】
本実施形態の圧電素子1は、支持体10と、振動部20とを備えている。支持体10は、支持基板11と、支持基板11上に形成された絶縁膜12とを有している。なお、支持基板11は、例えば、シリコン基板等で構成され、絶縁膜12は、酸化膜等で構成されている。
【0017】
振動部20は、音圧等の圧力に応じた圧力検出信号を出力するセンシング部30を構成するものであり、支持体10上に配置されている。そして、支持体10には、振動部20における内縁側を浮遊させるための凹部10aが形成されている。このため、振動部20は、支持体10上に配置された支持領域21aと、支持領域21aと繋がっていると共に凹部10a上で浮遊する浮遊領域21bとを有する構成となっている。なお、凹部10aは、振動部20側の開口端(以下では、単に凹部10aの開口端ともいう)の形状が平面矩形状とされている。したがって、浮遊領域21bは、平面略矩形状とされている。
【0018】
そして、本実施形態の浮遊領域21bは、4つの振動領域22が構成されるように、分離用スリット41と、応力増加用スリット42とによって分割されている。本実施形態では、分離用スリット41は、浮遊領域21bの略中心を通り、浮遊領域21bの相対する角部に向かって延設されるように、2本形成されている。但し、本実施形態の分離用スリット41は、浮遊領域21b内で終端している。そして、浮遊領域21bは、具体的には後述するが、応力増加用スリット42が分離用スリット41と連結されると共に浮遊領域における支持領域21a側の端部まで延設されることにより、4つの振動領域22に分割されている。なお、特に限定されるものではないが、本実施形態では、各振動領域22同士の間隔(すなわち、分離用スリット41の幅)は、1μm程度とされている。
【0019】
そして、各振動領域22は、上記のように浮遊領域21bが分割されて構成されるため、それぞれ一端部22aが支持体10(すなわち、支持領域21a)に支持された固定端とされ、他端部22b側が自由端とされている。つまり、各振動領域22は、支持領域21aと繋がった状態となっていると共に、片持ち支持された状態となっている。なお、各振動領域22における一端部22aとは、振動部20の面方向に対する法線方向(以下では、単に法線方向ともいう)において、凹部10aの開口端と一致する部分のことであり、支持領域21aとの境界となる部分のことである。このため、各振動領域22における一端部22aの形状は、凹部10aの開口端に依存した形状となる。
【0020】
振動部20は、圧電膜50、および圧電膜50と接続される電極膜60を有する構成とされている。具体的には、圧電膜50は、下層圧電膜51と、下層圧電膜51上に積層される上層圧電膜52とを有している。また、電極膜60は、下層圧電膜51の下方に配置された下層電極膜61、下層圧電膜51と上層圧電膜52との間に配置された中間電極膜62、および上層圧電膜52上に配置された上層電極膜63を有している。つまり、振動部20は、下層圧電膜51が下層電極膜61と中間電極膜62とで挟み込まれており、上層圧電膜52が中間電極膜62と上層電極膜63とで挟み込まれた状態となっている。なお、圧電膜50は、スパッタ法等によって形成される。
【0021】
また、各振動領域22は、固定端側が第1領域R1とされ、自由端側が第2領域R2とされている。そして、下層電極膜61、中間電極膜62、上層電極膜63は、それぞれ第1領域R1および第2領域R2に形成されている。但し、第1領域R1に形成された下層電極膜61、中間電極膜62、上層電極膜63と、第2領域R2に形成された下層電極膜61、中間電極膜62、上層電極膜63とは、分離しており、絶縁された状態となっている。また、第1領域R1に形成された下層電極膜61、中間電極膜62、上層電極膜63は、支持領域21aまで適宜延設されている。
【0022】
振動部20の支持領域21aには、第1領域R1に形成された下層電極膜61および上層電極膜63と電気的に接続される第1電極部71と、第1領域R1に形成された中間電極膜62と電気的に接続される第2電極部72とが形成されている。なお、図1は、図2中のI-I線に沿った断面図であり、紙面左側の振動領域22と紙面右側の振動領域22とは異なる断面を示している。そして、支持領域21aには、第1領域R1に形成された下層電極膜61および上層電極膜63と電気的に接続される第1電極部71、および第1領域R1に形成された中間電極膜62と電気的に接続される第2電極部72がそれぞれ形成されている。
【0023】
第1電極部71は、上層電極膜63、上層圧電膜52、下層圧電膜51を貫通して下層電極膜61を露出させる孔部71aに形成され、下層電極膜61および上層電極膜63と電気的に接続される貫通電極71bを有している。また、第1電極部71は、貫通電極71b上に形成されて貫通電極71bと電気的に接続されるパッド部71cを有している。第2電極部72は、上層圧電膜52を貫通して中間電極膜62を露出させる孔部72aに形成され、中間電極膜62と電気的に接続される貫通電極72bを有している。また、第2電極部72は、貫通電極72b上に形成されて貫通電極72bと電気的に接続されるパッド部72cを有している。
【0024】
なお、本実施形態のセンシング部30は、4つの振動領域22における電荷の変化を1つの圧力検出信号として出力するように構成されている。つまり、4つの振動領域22は、電気的に直列に接続されている。より詳しくは、各振動領域22はバイモルフ構造とされており、各振動領域22に形成される各下層電極膜61、各中間電極膜62、各上層電極膜63がそれぞれ並列に接続されつつ、各振動領域22間が直列に接続されている。
【0025】
また、第2領域R2に形成された下層電極膜61、中間電極膜62、および上層電極膜63は、各電極部71、72と電気的に接続されておらず、フローティング状態となっている。このため、第2領域R2に形成される下層電極膜61、中間電極膜62、および上層電極膜63は、必ずしも必要ではないが、本実施形態では、下層圧電膜51および上層圧電膜52のうちの第2領域R2に位置する部分を保護するために設けてある。
【0026】
そして、本実施形態では、下層圧電膜51および上層圧電膜52は、窒化スカンジウムアルミニウム(ScAlN)や、窒化アルミニウム(AlN)等の鉛フリーの圧電セラミックス等を用いて構成されている。下層電極膜61、中間電極膜62、上層電極膜63、第1電極部71および第2電極部72等は、モリブデン、銅、プラチナ、白金、チタン等を用いて構成されている。
【0027】
以上が本実施形態における圧電素子1の基本的な構成である。このような圧電素子1は、各振動領域22(すなわち、センシング部30)に音圧が印加されると、各振動領域22が振動する。この場合、例えば、振動領域22の他端部22b側(すなわち、自由端側)が上方に変位した場合、下層圧電膜51には引張応力が発生し、上層圧電膜52には圧縮応力が発生する。したがって、第1電極部71および第2電極部72から当該電荷を取り出すことにより、音圧が検出される。
【0028】
この際、振動領域22(すなわち、圧電膜50)に発生する応力は、自由端側(すなわち、他端部側)では応力が解放されるため、固定端側の方が自由端側より大きくなる。つまり、自由端側は、電荷の発生が少なくなり、信号とノイズの比であるSN比が小さくなり易い。このため、本実施形態の圧電素子1では、上記のように、各振動領域22は、応力が大きくなり易い第1領域R1と、応力が小さくなり易い第2領域R2とに分けられている。そして、圧電素子1では、第1領域R1に配置されている下層電極膜61、上層電極膜63、中間電極膜62が第1、第2電極部71、72と接続され、第1領域R1に位置する下層圧電膜51および上層圧電膜52に発生する電荷が取り出されるようにしている。これにより、ノイズの影響が大きくなることを抑制できる。
【0029】
そして、本実施形態では、各振動領域22には、音圧が印加された際に、第1領域R1に位置する圧電膜50の変形を促進させる変形促進構造が形成されている。なお、本実施形態では、変形促進構造が向上部に相当している。
【0030】
本実施形態では、各振動領域22には、音圧が印加された際に第1領域R1に発生する応力を大きくするための応力増加用スリット42が形成されている。具体的には、応力増加用スリット42は、第1領域R1で分離用スリット41と連結されると共に、分離用スリット41との連結部に角部C1が構成されるように、形成されている。このため、振動領域22は、第1領域R1のうちの支持体10から浮遊している部分に角部C1が形成された状態となり、角部C1に応力が集中し易くなると共に応力が増加し易くなる。これにより、振動領域22は、一端部22a側に発生し得る応力も大きくなり、全体の変形が大きくなる。したがって、圧電膜50の変形が大きくなることで圧力検出信号の増加を図ることができ、検出感度の向上を図ることができる。なお、分離用スリット41と応力増加用スリット42との連結部分に構成される角部C1は、分離用スリット41と応力増加用スリット42との間の成す角度が鋭角とされていてもよいし、鈍角とされていてもよいし、直角とされていてもよい。
【0031】
以上説明した本実施形態では、振動領域22は、第1領域R1のうちの支持体10から浮遊している部分に角部C1が形成されている。そして、当該角部C1では、応力が集中し易くなると共に応力が増加し易くなる。このため、振動領域22における第1領域R1の変形を促進でき、圧力検出信号の増加を図ることができる。したがって、検出感度の向上を図ることができ、検出精度の向上を図ることができる。
【0032】
ところで、上記のように片持ち支持されている振動領域22では、支持体10に支持される一端部22aは、当該支持体10に支持されて拘束される。このため、振動領域22に発生する応力は、一端部22aよりも少し内縁側にずれた部分の領域が最も大きくなり易い。しかしながら、上記のように振動領域22に角部C1を形成することにより、応力が最大となる部分を一端部22a側にずらすこともできる。したがって、この点においても、本実施形態では、振動領域22の全体の変形を大きくでき、検出感度の向上を図ることができる。
【0033】
(第1実施形態の変形例)
上記第1実施形態の変形例について説明する。上記第1実施形態において、応力増加用スリット42は、図3に示されるように、分離用スリット41の延設方向に沿って延設されつつ、応力増加用スリット42のみで角部C1が構成されるように折り曲げられた形状とされていてもよい。つまり、応力増加用スリット42は、いわゆる波形状とされていてもよい。
【0034】
また、応力増加用スリット42は、当該応力増加用スリット42によって構成される角部C1に発生する応力が大きくなり過ぎることで振動部20が破壊される可能性がある場合には、角部C1が曲率を有する湾曲形状とされていてもよい。
【0035】
(第2実施形態)
第2実施形態について説明する。本実施形態は、第1実施形態に対し、変形促進構造の構成を変更したものである。その他に関しては、第1実施形態と同様であるため、ここでは説明を省略する。
【0036】
本実施形態では、図4に示されるように、振動領域22には、応力増加用スリット42が形成されておらず、分離用スリット41が浮遊領域21bの角部に達するように形成されている。つまり、本実施形態の浮遊領域21bは、分離用スリット41のみによって4つの振動領域22に分割されている。そして、各振動領域22には、一端部22aに角部C2が形成されている。なお、本実施形態では、角部C2が変形促進構造に相当している。
【0037】
具体的には、本実施形態では、支持体10における凹部10aの開口端は、振動領域22の一端部22aのうちの両端部の間に位置する部分に、当該開口端を支持体10の外縁側に凹ませる窪み部10bが形成されている。なお、振動領域22の一端部22aにおける両端部とは、言い換えると、一端部22aのうちの分離用スリット41が達する部分のことである。
【0038】
そして、凹部10aの開口端は、当該開口端に沿った方向に、窪み部10bによって凹凸構造が形成された状態となっている。これにより、振動領域22の一端部22aは、凹部10aの開口端の形状に依存する凹凸構造が構成された状態となるため、角部C2が形成された状態となっている。
【0039】
以上説明した本実施形態では、振動領域22は、一端部22aに角部C2が構成されているため、当該一端部22aの応力が大きくなる。このため、振動領域22における一端部22aの角部C2近傍の変形を促進でき、圧力検出信号の増加を図ることができる。したがって、感度の向上を図ることができる。
【0040】
(第2実施形態の変形例)
上記第2実施形態の変形例について説明する。上記第2実施形態において、角部C2は、凹部10aの開口端において、当該開口端を支持体10の内縁側に突出させる凸部が形成されることで構成されていてもよい。つまり、上記第2実施形態は、振動領域22のうちの第1領域R1である一端部22aに角部C2が形成されるのであれば、凹部10aの開口端側の形状は適宜変更可能である。
【0041】
また、第2実施形態においても、上記第1実施形態の変形例のように、角部C2に発生する応力が大きくなり過ぎることで振動部20が破壊される可能性がある場合には、角部C2が曲率を有する湾曲形状となるようにしてもよい。
【0042】
(第3実施形態)
第3実施形態について説明する。本実施形態は、第1実施形態に対し、変形促進構造の構成を変更したものである。その他に関しては、第1実施形態と同様であるため、ここでは説明を省略する。
【0043】
本実施形態では、図5に示されるように、支持体10に形成される凹部10aの開口端は、2つの分離用スリット41の交差点を中心とする平面円形状とされている。また、凹部10aの開口端は、法線方向において、応力増加用スリット42の延設方向における両端部と交差するように形成されている。
【0044】
このため、振動領域22のうちの浮遊している領域の外形線における支持領域21a側の2つの端部は、一端部22aに達した状態となっている。そして、振動領域22は、2つの端部同士の間を結ぶ仮想線K1に対し、一端部22aが他端部22bと反対側に膨らんだ部分を有する形状となっている。本実施形態では、凹部10aの開口端が平面円形状とされているため、振動領域22の一端部22aは、円弧状とされている。このため、本実施形態の各振動領域22は、上記第1実施形態のように凹部10aの開口端が矩形状とされており、一端部22aが仮想線K1と一致する場合と比較すると、第1領域R1が大きくなっている。
【0045】
なお、振動領域22の外形線とは、振動領域22の外形を形作る端部の線のことである。そして、振動領域22のうちの浮遊している領域の外形線とは、振動領域22の外形線のうちの支持体10に支持される一端部22aを除いた部分の線のことである。また本実施形態では、一端部22aの形状が変形促進構造に相当している。
【0046】
以上説明した本実施形態では、振動領域22は、一端部22aが仮想線K1よりも他端部22bと反対側に膨らんだ部分を有する形状とされているため、凹部10aの開口端を矩形状とする場合と比較して、第1領域R1を大きくできる。そして、上記のように振動領域22は、一端部22aよりも少し内側の部分の変形が大きくなり易いため、仮想線K1近傍の変形も大きくできる。つまり、凹部10aの開口端が矩形状とされている場合の一端部22aとなる部分の変形も大きくできる。このため、圧力検出信号の増加を図ることができ、感度の向上を図ることができる。
【0047】
(第4実施形態)
第4実施形態について説明する。本実施形態は、第3実施形態に対し、変形促進構造の構成を変更したものである。その他に関しては、第3実施形態と同様であるため、ここでは説明を省略する。
【0048】
本実施形態では、図6に示されるように、振動部20には、応力増加用スリット42が形成されていない。そして、支持体10に形成される凹部10aの開口端は、2つの分離用スリット41の交差点を中心とする平面円形状とされている。但し、本実施形態では、凹部10aの開口端は、分離用スリット41と交差しないように形成されている。
【0049】
つまり、振動領域22のうちの浮遊している領域の外形線における支持領域21a側の2つの端部は、それぞれ浮遊している領域で終端した状態となっている。このため、本実施形態では、各振動領域22は、一端部22a側の部分が互いに繋がった状態となっている。
【0050】
そして、振動領域22は、2つの端部同士の間を結ぶ仮想線K2に対し、一端部22a側が他端部22bと反対側に膨らんだ部分を有する形状となっている。このため、本実施形態の各振動領域22は、上記第1実施形態のように凹部10aの開口端が矩形状とされており、一端部が仮想線K2と一致する場合と比較すると、第1領域R1が大きくなっている。なお、本実施形態では、一端部22aの形状が変形促進構造に相当している。
【0051】
以上説明した本実施形態では、振動領域22は、一端部22aが仮想線K2よりも他端部22bと反対側に膨らんだ部分を有する形状とされているため、凹部10aの開口端を矩形状とする場合と比較して、第1領域R1を大きくできる。このため、上記第3実施形態と同様の効果を得ることができる。
【0052】
(第5実施形態)
第5実施形態について説明する。本実施形態は、第1実施形態に対し、変形促進構造の構成を変更したものである。その他に関しては、第1実施形態と同様であるため、ここでは説明を省略する。
【0053】
本実施形態では、図7に示されるように、第2領域R2には、上層電極膜63、上層圧電膜52、中間電極膜62、および下層圧電膜51を貫通して下層電極膜61に達する孔部81が形成されている。そして、孔部81には、圧電膜50よりもヤング率の高い硬膜82が埋め込まれている。
【0054】
本実施形態では、硬膜82は、第1、第2電極部71、72や電極膜60と同じ材料で構成されている。なお、第2領域R2に形成される下層電極膜61、中間電極膜62、上層電極膜63は、第1、第2電極部71、72とは電気的に接続されていないため、これらが互いに接続されたとしても問題はない。そして、本実施形態では、硬膜82が変形促進構造に相当している。
【0055】
また、本実施形態では、孔部81および硬膜82は、第2領域R2において、第1領域R1側よりも他端部22b側の方が密となるように形成されている。より詳しくは、本実施形態では、硬膜82は、第2領域R2において、第1領域R1側から他端部22b側に向かって次第に密となるように形成されている。
【0056】
以上説明したように、本実施形態では、第2領域R2に硬膜82が配置されている。このため、第2領域R2に硬膜82が配置されていない場合と比較して、音圧が印加された際、第2領域R2が硬くされていることで第2領域R2が変形し難くなる。したがって、本実施形態では、応力が第1領域R1に集中し易くなって第1領域R1が変形し易くなる。これにより、圧力検出信号の増加を図ることができ、感度の向上を図ることができる。
【0057】
また、本実施形態では、硬膜82は、第2領域R2側のうちの第1領域R1側よりも他端部22b側の方が密となるように形成されている。このため、例えば、硬膜82が第2領域R2側のうちの第1領域R1側よりも他端部22b側の方が疎となるように形成されている場合と比較して、硬膜82によって第1領域R1の変形が阻害されることを抑制できる。したがって、硬膜82を配置したことによる効果を得易くできる。
【0058】
さらに、硬膜82は、第1、第2電極部71、72や電極膜60と同じ材料で構成されている。このため、例えば、第1、第2貫通電極71b、72bを形成する際に同時に硬膜82を形成することができ、製造工程の簡略化を図ることができる。
【0059】
(第6実施形態)
第6実施形態について説明する。本実施形態は、第1実施形態に対し、各振動領域22に温度検出素子および発熱素子を備えたものである。その他に関しては、第1実施形態と同様であるため、ここでは説明を省略する。
【0060】
まず、上記のような圧電素子1は、外気に晒される状態や、所定のオイルに晒される状態で用いられることがある。この場合、使用環境が低温である場合には、外気に晒されることで振動領域22が凍結したり、振動領域22と接触するオイルの粘性が低下する等により、振動領域22の振動が阻害される可能性がある。つまり、上記のような圧電素子1は、使用環境が低温である場合には、検出感度が低下する可能性がある。
【0061】
このため、本実施形態では、図8に示されるように、各振動領域22には、温度に応じた温度検出信号を出力する温度検出素子91、および通電されることで発熱する発熱素子92が形成されている。本実施形態では、各振動領域22には、第2領域R2に温度検出素子91および発熱素子92が形成されている。より詳しくは、本実施形態では、第2領域R2には、中間電極膜62が形成されていない。そして、温度検出素子91および発熱素子92は、下層圧電膜51と上層圧電膜52との間に位置する部分に形成されている。つまり、温度検出素子91および発熱素子92は、上記第1実施形態における中間電極膜62が形成されていた部分に形成されている。
【0062】
また、特に図示しないが、第1領域R1および支持領域21aには、温度検出素子91および発熱素子92と電気的に接続される引出配線が形成されている。そして、支持領域21aには、当該引出配線と電気的に接続される電極部が形成されている。これにより、温度検出素子91および発熱素子92と、外部回路との接続が図られる。
【0063】
なお、第2領域R2では、下層電極膜61および上層電極膜63は、上記第1実施形態と同様に、圧電膜50を挟むように形成されている。また、温度検出素子91は、温度に応じて抵抗値が変化する感温抵抗体を用いて構成され、発熱素子92は、通電されることで発熱する発熱抵抗体を用いて構成される。本実施形態では、温度検出素子91および発熱素子92は、例えば、白金で構成される。また、本実施形態では、温度検出素子91おおび発熱素子92が向上部に相当している。
【0064】
以上説明した本実施形態では、温度検出素子91および発熱素子92が形成されている。このため、温度検出素子91で検出される温度に基づいて発熱素子92への通電量が調整されるようにすることにより、振動領域22の温度を所定温度に維持することができる。したがって、振動領域22が凍結したり、振動領域22と接触するオイルの粘性が低下すること等を抑制でき、検出感度が低下することを抑制できる。つまり、検出精度が低下することを抑制できる。
【0065】
また、温度検出素子91および発熱素子92は、第2領域R2に形成されている。このため、温度検出素子91および発熱素子92を第1領域R1に形成する場合と比較して、電荷を取り出すための中間電極膜62を配置する部分が減少することを抑制できると共に、第2領域R2を有効に利用できる。
【0066】
さらに、温度検出素子91および発熱素子92は、下層圧電膜51と上層圧電膜52との間に形成されており、外気に晒されない。このため、温度検出素子91および発熱素子92の耐環境性の向上を図ることができる。
【0067】
そして、温度検出素子91および発熱素子92は、下層圧電膜51と上層圧電膜52との間に形成され、下層電極膜61および上層電極膜63は、第1実施形態と同様に、圧電膜50を挟むように形成されている。このため、圧電膜50に対する耐環境性が低下することも抑制できる。
【0068】
(第7実施形態)
第7実施形態について説明する。本実施形態は、第1実施形態に対し、複数のセンシング部30が形成されるようにしたものである。その他に関しては、第1実施形態と同様であるため、ここでは説明を省略する。
【0069】
まず、上記のような圧電素子1は、各振動領域22を区画するための部分(すなわち、分離用スリット41や応力増加用スリット42)を介して音圧が漏れる可能性があり、音響インピーダンスと並列に入る分離用スリット41の音響抵抗が小さくなり易い。そして、音響抵抗が小さくなることにより、低周波ロールオフ周波数が増大するため、低周波での感度が小さくなり易い。
【0070】
このため、本実施形態では、図9に示されるように、圧電素子1は、複数のセンシング部30(すなわち、浮遊領域21b)が一体化されて構成されている。具体的には、本実施形態の支持体10には、振動部20における内縁側を浮遊させるための凹部10aが4つ形成されている。つまり、本実施形態の振動部20には、4つの浮遊領域21bが形成されている。そして、各浮遊領域21bは、それぞれ分離用スリット41がそれぞれ形成されることで4つの振動領域22に分離されている。
【0071】
なお、本実施形態では、応力増加用スリット42は形成されていない。つまり、本実施形態では、分離用スリット41が浮遊領域21bの角部に達するように形成されている。
【0072】
そして、本実施形態では、各センシング部30におけるそれぞれの振動領域22は、共振周波数が異なるように構成されている。本実施形態では、各センシング部30におけるそれぞれの振動領域22は、一端部22aと他端部22bとの間の長さ、つまり梁の長さが異なるように形成されている。このため、図10に示されるように、各センシング部30の周波数と感度との関係は、センシング部30毎に異なる波形となる。なお、本実施形態では、共振周波数の異なる振動領域22の構成が向上部に相当する。
【0073】
以上説明した本実施形態では、圧電素子1は、センシング部30が複数形成されて構成されている。そして、各センシング部30は、共振周波数が異なる値とされているため、周波数と感度との関係がそれぞれ異なる波形となる。このため、本実施形態の圧電素子1によれば、音圧の検出に用いる振動領域22を適宜切り替えることにより、感度が高くなる周波数を広帯域にでき、例えば、ロードノイズ等の低周波ノイズの検出感度も高くできる。
【0074】
また、本実施形態の圧電素子1は、センシング部30が複数形成されており、複数のセンシング部30が共通の支持体10に支持されて構成されている。このため、例えば、1つのセンシング部30が形成された圧電素子1を複数配置する場合と比較して、隣合うセンシング部30の間隔を狭くし易くなる。ここで、例えば、20kHzの音波では、波長が約17mmとなる。このため、本実施形態のように複数のセンシング部30が共通の支持体10に支持された状態とすることにより、各センシング部30を波長よりも十分に狭い間隔でも配置し易くなる。したがって、各センシング部30の間で音圧が減衰することを抑制でき、減衰し易い高周波領域の音圧の検出感度が低下することも抑制できる。
【0075】
さらに、各振動領域22は、一端部22aと他端部22bとの間の長さが異なるものとされることによって共振周波数が異なる値とされている。ここで、各振動領域22は、浮遊領域21bがエッチング等されることで構成される。この場合、一端部22aと他端部22bとの間の長さは、エッチング等のマスクを変更することによって容易に変更可能である。このため、本実施形態によれば、製造工程が複雑化することを抑制しつつ、異なる共振周波数を有する複数の振動領域22を容易に形成できる。
【0076】
(第8実施形態)
第8実施形態について説明する。本実施形態は、第1実施形態に対し、支持体10の凹部10aに保護膜を配置したものである。その他に関しては、第1実施形態と同様であるため、ここでは説明を省略する。
【0077】
まず、上記のような圧電素子1は、支持体10に形成される凹部10aがエッチングによって形成される。例えば、凹部10aは、支持体10にウェットエッチングを行う工程、ウェットエッチングした壁面を保護する保護膜を形成する工程、ウェットエッチングした壁面をさらに掘り下げるドライエッチングを行う工程等を繰り返すことによって形成される。この場合、凹部10aは、側面に微細な凹凸が形成された状態となり易い。したがって、上記のような圧電素子1では、凹部10aの側面に形成されている微細な凹凸により、乱流が発生することで検出感度が低下する可能性がある。
【0078】
このため、本実施形態では、図11に示されるように、支持体10には、凹部10aの側面10cとなる部分に、微細な凹凸を埋め込むと共に、凹部10aと反対側の露出面100aが凹部10aの側面10cよりも平坦化された保護膜100が形成されている。また、本実施形態では、保護膜100は、各振動領域22における支持体10側の部分、および各振動領域22における隣合う振動領域22と対向する部分にも形成されている。
【0079】
保護膜100は、本実施形態では、水滴や油滴等の異物が付着し難くなるように、撥水性および撥油性を有する材料を用いて構成され、例えば、フッ素系ポリマー等で構成されている。そして、保護膜100は、塗布法、浸漬法、蒸着法等によって凹部10aの側面10cを含む部分に配置される。これにより、保護膜100は、露出面100aが凹部10aの側面10cよりも平坦化された状態で配置される。
【0080】
また、保護膜100は、振動領域22の振動を阻害し難い材料を用いて構成されることが好ましい。例えば、圧電膜50を窒化スカンジウムアルミニウムで構成する場合にはヤング率が250GPa程度となる。このため、保護膜100は、約1/500以下のヤング率であるものを用いることが好ましく、0.1~0.5GPa程度のヤング率であるものを用いることが好ましい。
【0081】
以上説明した本実施形態では、支持体10には、凹部10aの側面10cに、露出面100aが凹部10aの側面10cよりも平坦化された保護膜100が配置されている。このため、凹部10a内で乱流が発生することを抑制でき、検出精度が低下することを抑制できる。
【0082】
また、保護膜100は、振動領域22にも形成されており、撥水性および撥油性を有する材料で構成されている。このため、保護膜100に水等の異物が付着することを抑制でき、当該異物によって乱流が発生することも抑制できる。
【0083】
さらに、保護膜100は、振動領域22の振動を阻害し難い材料で構成されている。このため、保護膜100を配置することによって振動領域22が振動し難くなることを抑制でき、検出感度が低下することを抑制できる。
【0084】
(第9実施形態)
第9実施形態について説明する。本実施形態は、第1実施形態に対し、支持体10の形状を変更したものである。その他に関しては、第1実施形態と同様であるため、ここでは説明を省略する。
【0085】
本実施形態では、支持基板11は、上記のようにシリコン基板で構成されており、絶縁膜12側の一面11aおよび一面11aと反対側の他面11bを有している。そして、支持基板11は、図12に示されるように、凹部10aを構成する側面11cが窪み構造とされている。なお、本実施形態では、側面11cの窪み構造が向上部に相当する。
【0086】
具体的には、支持基板11の側面11cは、以下の構成とされている。まず、絶縁膜12と反対側の開口部を第1開口部11dとし、絶縁膜12側の開口部を第2開口部11eとする。この場合、側面11cは、第1開口部11dから第2開口部11e側に向かって側面が削られた第1テーパ部11fと、第2開口部11eから第1開口部11d側に向かって側面が削られた第2テーパ部11gとが繋がった構成とされている。つまり、支持基板11の側面11cは、第1開口部11dと第2開口部11eとを結ぶ仮想線K3に対し、第1開口部11dと第2開口部11eとの間の部分が窪んだ窪み構造とされている。
【0087】
本実施形態では、支持基板11は、一面11aおよび他面11bが(100)面とされ、第1開口部11dおよび第2開口部11eが矩形状とされている。そして、第1テーパ部11fおよび第2テーパ部11gは、それぞれ(111)面とされている。
【0088】
なお、本実施形態の圧電素子1は、上記第7実施形態のように、応力増加用スリット42が形成されていない。つまり、本実施形態では、分離用スリット41が浮遊領域21bの角部に達するように形成されている。また、後述する各実施形態では、応力増加用スリット42が形成されていない例を説明する。但し、本実施形態および後述する各実施形態においても、応力増加用スリット42が適宜形成されていてもよい。
【0089】
以上が本実施形態における圧電素子1の構成である。次に、上記圧電素子1の製造方法について、図13Aおよび図13Bを参照しつつ説明する。
【0090】
まず、図13Aに示されるように、支持基板11上に絶縁膜12が配置され、絶縁膜12上に圧電膜50、電極膜60、第1電極部71、第2電極部72等が形成されたものを用意する。なお、支持基板11は、シリコン基板で構成されており、一面11aおよび他面11bが(100)面とされている。また、圧電膜50、電極膜60、第1電極部71、第2電極部72等は、一般的なスパッタ法やエッチング法等を適宜行うことによって構成される。
【0091】
そして、図示しないマスクを用い、支持基板11の他面11bから絶縁膜12を貫通するように異方性ドライエッチングを行う。なお、この工程が終了した後では、支持基板11の側面11cは、第1開口部11dと第2開口部11eとを結ぶ仮想線K3と一致している。
【0092】
続いて、図13Bに示されるように、図示しないマスクを用い、支持基板11の側面11cに対して異方性ウェットエッチングを行うことにより、支持基板11の側面11cに窪み構造を形成する。詳しくは、支持基板11は、シリコン基板で構成されており、一面11aおよび他面11bが(100)面とされている。このため、異方性ウェットエッチングを行うことにより、シリコンの面方位の中で最もエッチングレートの遅い(110)面にて構成される第1テーパ部11fおよび第2テーパ部11gが形成される。
【0093】
その後は、特に図示しないが、適宜分離用スリット41を形成することにより、図12に示す圧電素子1が製造される。
【0094】
ところで、上記のような圧電素子1は、図14に示されるように、ケーシング130に収容されて圧電装置を構成する。具体的には、ケーシング130は、圧電素子1および所定の信号処理等を行う回路基板120が搭載されるプリント基板131と、圧電素子1および回路基板120を収容するようにプリント基板131に固定される蓋部132とを有している。なお、本実施形態では、プリント基板131が被実装部材に相当する。
【0095】
プリント基板131は、特に図示しないが、配線部やスルーホール電極等が適宜形成された構成とされており、必要に応じて図示しないコンデンサ等の電子部品等も搭載されている。圧電素子1は、支持基板11の他面11bが接着剤等の接合部材2を介してプリント基板131の一面131aに搭載されている。回路基板120は、導電性部材で構成される接合部材121を介してプリント基板131の一面131aに搭載されている。そして、圧電素子1のパッド部72cと回路基板120とは、ボンディングワイヤ133を介して電気的に接続されている。なお、圧電素子1のパッド部71cは、図14とは別断面において、ボンディングワイヤ133を介して回路基板120と電気的に接続されている。蓋部132は、金属、プラスチック、樹脂等で構成されており、圧電素子1および回路基板120を収容するように、図示しない接着剤等の接合部材を介してプリント基板131に固定されている。そして、本実施形態では、蓋部132のうちのセンシング部30と対向する部分に貫通孔132aが形成されている。
【0096】
このような圧電装置では、貫通孔132aからセンシング部30と蓋部132との間の空間を通じてセンシング部30に音圧(すなわち、圧力)が印加されることで音圧が検出される。
【0097】
以上説明した本実施形態によれば、支持基板11は、窪み構造とされている。このため、図14に示されるような圧電装置を構成した場合には、検出精度の向上を図ることができる。
【0098】
すなわち、ケーシング130において、音圧を導入する貫通孔132aが形成される部分とセンシング部30との間の空間を受圧面空間S1とする。また、センシング部30を挟んで受圧面空間S1と反対側に位置する空間を含み、当該空間と分離用スリット41を介さずに連続した空間をバック空間S2とする。なお、バック空間S2は、ケーシング130内の空間において、受圧面空間S1と異なる空間であるともいうことができ、受圧面空間S1を除いた空間ということもできる。さらに言い換えると、受圧面空間S1は、振動領域22におけるケーシング130に形成された貫通孔132a側の面を押圧するのに影響する空間ともいえる。バック空間S2は、振動領域22におけるケーシング130に形成された貫通孔132a側と反対側の面を押圧するのに影響する空間ともいえる。
【0099】
この場合、このような圧電装置における低周波ロールオフ周波数は、分離用スリット41による音響抵抗(すなわち、空気抵抗)をRgとし、バック空間S2の音響コンプライアンスをCbとすると、1/(2π×Rg×Cb)で示される。このため、低周波ロールオフ周波数を小さくするためには、音響抵抗Rgまたはバック空間S2の音響コンプライアンスCbを大きくすればよい。
【0100】
そして、本実施形態では、支持基板11に窪み構造が形成されているため、バック空間S2の空間を大きくすることで音響コンプライアンスを大きくできる。したがって、本実施形態の圧電装置では、低周波ロールオフ周波数を小さくすることで低周波帯域での検出感度の向上を図ることができ、検出精度の向上を図ることができる。
【0101】
また、このような圧電装置における感度は、圧電素子1の音響コンプライアンスをCmとし、バック空間S2の音響コンプライアンスをCbとすると、1/{(1/Cm)+(1/Cb)}で示される。このため、感度を大きくするためには音響コンプライアンスCbを大きくすればよく、音響コンプライアンスCbは、バック空間S2の空間の大きさに比例する。
【0102】
そして、本実施形態では、支持基板11に窪み構造を形成しているため、バック空間S2の空間を大きくすることで容量を大きくできる。したがって、本実施形態の圧電装置では、感度を大きくすることで検出精度の向上を図ることができる。
【0103】
具体的には、図15に示されるように、バック空間S2の音響コンプライアンスCbを大きくすることで感度比が低下することを抑制できる。この場合、感度比は、Cb/Cmが2以下であると急峻に低下するが、窪み構造が形成されることによって感度比の低下を緩やかにできる。つまり、このように支持基板11に窪み構造を形成することは、Cb/Cmが2以下となるような圧電装置に特に有効である。なお、図15は、Cb/Cmが極めて大きい場合を基準としている。
【0104】
また、支持基板11は、側面11cが第1テーパ部11fと第2テーパ部11gとを有する構成とされている。このため、例えば、側面11cが第2テーパ部11gのみで構成されている場合と比較して、支持基板11の他面11bとプリント基板131との接着面積を向上できる。つまり、本実施形態によれば、プリント基板131に対する接着性が低下することを抑制しつつ、検出精度の向上を図ることができる。なお、側面11cが第2テーパ部11gのみで構成されるとは、言い換えると、第2テーパ部11gが第1開口部11dまで形成された構成のことである。
【0105】
また、支持基板11の側面11cは、異方性ウェットエッチングで構成されて(111)面とされており、形状がばらつくことが抑制される。このため、振動領域22に発生する応力がばらつくことを抑制でき、検出精度がばらつくことを抑制できる。
【0106】
なお、本実施形態では、第1開口部11dおよび第2開口部11eが矩形状であるものを説明したが、第1開口部11dおよび第2開口部11eの形状は適宜変更可能である。例えば、支持基板11の一面11aおよび他面11bを(110)面とし、第1開口部11dおよび第2開口部11eを八角形状とするようにしてもよい。
【0107】
(第10実施形態)
第10実施形態について説明する。本実施形態は、第9実施形態に対し、圧電装置における圧電素子1の配置の仕方を変更したものである。その他に関しては、第9実施形態と同様であるため、ここでは説明を省略する。
【0108】
本実施形態では、圧電素子1は、図16に示されるように、上層圧電膜52上に、8個のパッド部701~708が形成されて構成されている。具体的には、2個のパッド部は、センシング部30と電気的に接続される接続パッド部701、702とされている。なお、接続パッド部701、702は、上記第1実施形態におけるパッド部71c、72cに相当するものである。残りの6個のパッド部は、センシング部30と電気的に接続されないダミーパッド部703~708とされている。
【0109】
そして、8個のパッド部701~708は、法線方向から視たとき、圧電素子1の中心に対して対称となるように配置されている。すなわち、8個のパッド部701~708は、支持基板11の一面11aの面方向と平行な面の中心を基準として、対称に配置されている。言い換えると、8個のパッド部701~708は、圧電素子1がプリント基板131に搭載された際、圧電素子1におけるプリント基板131の面方向と平行な面の中心を基準として、対称に配置されている。また、接続パッド部701、702は、互いに近接するように配置されている。
【0110】
以上が本実施形態における圧電素子1の構成である。そして、圧電装置は、図17に示されるように、圧電素子1がプリント基板131にフリップチップ実装されて構成されている。具体的には、圧電素子1は、各パッド部701~708がプリント基板131とはんだ等の導電性部材で構成される接合部材3を介して接続されている。また、圧電素子1は、接続パッド部701、702が回路基板120側に位置するように、プリント基板131に配置されている。そして、圧電素子1は、接続パッド部701、702がプリント基板131に形成された配線部131cを介して回路基板120と電気的に接続されている。
【0111】
なお、本実施形態の配線部131cは、パッド部701、702と回路基板120とを最短で結ぶように形成されている。また、本実施形態では、各パッド部701~708は、全てプリント基板131と電気的に接続されている。つまり、各パッド部701~708は、全てフローティング状態とならないようになっている。
【0112】
また、本実施形態では、プリント基板131に貫通孔131bが形成されている。このため、本実施形態では、貫通孔131bを通じてセンシング部30に音圧が印加されることで音圧が検出される。したがって、本実施形態では、ケーシング130内において、貫通孔131bが形成される部分とセンシング部30との間の空間が受圧面空間S1となり、センシング部30を挟んで受圧面空間S1と反対側に位置する空間がバック空間S2となる。
【0113】
なお、バック空間S2は、上記のように、センシング部30を挟んで受圧面空間S1と反対側に位置する空間を含み、当該空間と分離用スリット41を介さずに連続した空間ともいえる。このため、図17のような圧電装置では、センシング部30を挟んで受圧面空間S1と反対側に位置する空間、および当該空間と分離用スリット41を介さずに連続する圧電素子1の周囲の空間を含んだ空間となる。
【0114】
以上説明した本実施形態によれば、寄生容量の低減を図ることで検出精度が低下することを抑制できる。
【0115】
すなわち、図18に示されるように、圧電装置は、センシング部30の全体の容量をCoとし、圧電素子1と回路基板120との間に構成される寄生容量をCpとすると、容量Coと回路基板120との間に寄生容量Cpが配置された構成となる。そして、寄生容量Cpが大きい場合には、センシング部30から寄生容量Cpに流れる電荷の比率が大きくなり、検出精度が低下する。なお、寄生容量Cpは、圧電素子1(すなわち、センシング部30)と回路基板120とを接続する部分の容量や、回路基板120の内部に発生する容量等の和である。
【0116】
このため、本実施形態の圧電素子1は、プリント基板131にフリップチップ実装され、プリント基板131に形成された配線部131cを介して回路基板120と接続されている。そして、圧電素子1は、接続パッド部701、702が回路基板120側となるようにプリント基板131に配置されている。このため、圧電素子1と回路基板120とをボンディングワイヤ133で接続する場合と比較して、圧電素子1と回路基板120とを接続する配線部131cを短くし易くなる。このため、寄生容量Cpの低減を図ることで検出精度が低下することを抑制できる。
【0117】
また、本実施形態では、圧電素子1をプリント基板131にフリップチップ実装し、プリント基板131に貫通孔131bを形成している。このため、上記第9実施形態のように蓋部132に貫通孔132aを形成する場合と比較して、受圧面空間S1を小さくでき、受圧面空間S1における空気バネを大きくできる。したがって、貫通孔132aから誘導された音圧が分散することを抑制でき、検出感度の向上を図ることで検出精度の向上を図ることができる。なお、本実施形態において、上記第9実施形態のように蓋部132に貫通孔132aを形成するようにしてもよい。このような圧電装置としても、受圧面空間S1を小さくし難くなるが、寄生容量Cpの低減を図ることができる。
【0118】
さらに、本実施形態では、パッド部701~708は、圧電素子1の中心に対して対称に配置されている。このため、圧電素子1をフリップチップ実装した際、圧電素子1がプリント基板131に対して傾くことを抑制できる。
【0119】
なお、ダミーパッド部703~708は、センシング部30と接続されないため、接着剤等でプリント基板131と接合されていてもよい。但し、ダミーパッド部703~708をプリント基板131にはんだ等の接合部材3で接続することにより、ダミーパッド部703~708も所定電位に維持できる。このため、タミーパッド部703~708がフローティング状態とされている場合と比較して、不要なノイズが発生することを抑制できる。また、各パッド部701~708とプリント基板131との間に同じ材料を配置することにより、圧電素子1が傾き難くなるようにできる。このため、ダミーパッド部703~708とプリント基板131との間には、同じ接合部材3を配置することが好ましい。また、ダミーパッド部703~708を配置する代わりにアンダーフィル材等を配置することにより、圧電素子1が傾くことを抑制するようにしてもよい。
【0120】
また、本実施形態では、圧電素子1が傾くことも抑制できるようにしているが、例えば、ダミーパッド部703~708等は配置されていなくてもよい。このような圧電装置としても、圧電素子1が傾き易くなるが、寄生容量Rpを低減できる。
【0121】
(第11実施形態)
第11実施形態について説明する。本実施形態は、第1実施形態に対し、中間電極膜62の形状を変更したものである。その他に関しては、第1実施形態と同様であるため、ここでは説明を省略する。
【0122】
本実施形態では、図19に示されるように、中間電極膜62は、第1領域R1に形成される第1中間電極膜62aと、第2領域R2に形成される第2中間電極膜62bとに分割されている。そして、第1中間電極膜62aは、さらに、複数の電荷領域620と、ダミー領域624、625とに分割されている。本実施形態では、複数の電荷領域620は、3つの電荷領域621~623とされている。このため、圧電素子1は、各振動領域22において、複数の電荷領域620と、当該電荷領域620と対向する下層電極膜61および上層電極膜63との間にそれぞれ容量が構成された状態となる。
【0123】
なお、図19では、振動領域22に位置する中間電極膜62の形状を示しているが、支持領域21aにも中間電極膜62が適宜延設されている。また、本実施形態では、複数の電荷領域621~623に分割された中間電極膜62が向上部に相当する。
【0124】
複数の電荷領域621~623は、それぞれ同じ面積とされている。つまり、ダミー領域624、625は、各電荷領域621~623が同じ面積となるように構成されている。そして、複数の電荷領域621~623は、特に図示しないが、支持領域21a上に位置する部分において、図示しない配線等を介して互いに直列に接続されている。このため、各振動領域22では、複数の容量が直列に接続された状態となっている。これに対し、ダミー領域624、625は、電荷領域621~623とは接続されておらず、フローティング状態とされている。
【0125】
また、特に図示しないが、下層電極膜61および上層電極膜63は、第1中間電極膜62aおよび第2中間電極膜62bと対向するようにそれぞれ形成されている。
【0126】
以上説明した本実施形態によれば、第1中間電極膜62aは、複数の電荷領域621~623に分割されている。そして、複数の電荷領域621~623は、直列に接続されている。このため、1つの第1領域R1では、複数の容量が直列に接続された状態となり、容量の増加を図ることで検出感度の向上を図ることができる。また、複数の電荷領域621~623は、同じ面積とされている。このため、1つの第1領域R1に構成される複数の容量は、互いに等しくなる。したがって、各容量間でノイズが発生することを抑制でき、検出精度が低下することを抑制できる。
【0127】
なお、本実施形態では、第1中間電極膜62aを3つの電荷領域621~623に分割する例について説明したが、電荷領域621~623は、2つであってもよいし、4つ以上の複数備えられていてもよい。
【0128】
さらに、本実施形態では、第1中間電極膜62aを複数の電荷領域621~623に分割する例について説明したが、下層電極膜61および上層電極膜63を複数の電荷領域とダミー領域とに分割するようにしてもよい。なお、下層電極膜61および上層電極膜63を複数の電荷領域とダミー領域とに分割するようにしても同様の効果を得られる。但し、上記のように中間電極膜62が下層電極膜61と上層電極膜63との間に配置されており、中間電極膜62を分割する場合には、中間電極膜62のみを分割すればよいため、構成の簡略化を図ることができる。
【0129】
(第11実施形態の変形例)
第11実施形態の変形例について説明する。上記第11実施形態において、図20に示されるように、電荷領域621、623は、矩形状とされていなくてもよい。つまり、ダミー領域624、625は、3つの電荷領域621~623が等しくなるのであれば、形成される位置や形状は適宜変更可能である。さらに、3つの電荷領域621~623の面積が等しくなるのであれば、ダミー領域624、625は形成されていなくてもよい。
【0130】
(第12実施形態)
第12実施形態について説明する。本実施形態は、第1実施形態に対し、第1領域R1と第2領域R2との区画の仕方を規定したものである。その他に関しては、第1実施形態と同様であるため、ここでは説明を省略する。
【0131】
まず、上記のような圧電素子1では、センシング部30に音圧が印加された際、図21に示されるような応力分布となる。具体的には、応力は、一端部22a側の中心部近傍が最も高くなり易く、他端部22b側に向かって次第に小さくなる。このため、本実施形態では、図22に示されるように、第1領域R1と第2領域R2とは、応力分布に基づいて区画されている。
【0132】
以下、本実施形態における第1領域R1と第2領域R2との区画の仕方について説明する。なお、本実施形態における区画の仕方は、特に、感度出力を電圧で表記する場合に有効である。まず、圧電素子1における感度を向上させるためには、第1領域R1に発生する静電エネルギーEが増加するようにすればよい。ここで、図23に示されるように、振動領域22における一端部22aに沿った方向をY方向とし、Y方向と直交する方向をX方向とする。そして、振動領域22をX方向に沿って複数に分割した微小の仮想領域Mにおいて、仮想領域Mの容量をCとし、仮想領域Mに発生する応力の平均値をσとする。また、静電エネルギーEは、仮想領域Mに発生する電圧をVとすると、1/2×C×Vで示される。なお、発生電圧Vは、発生応力σに比例する。
【0133】
このため、本実施形態では、図23および図24に示されるように、各仮想領域MのC×σが最大となる領域を算出し、各仮想領域Mの最大となる領域を繋ぐ境界線で第1領域R1と第2領域R2とを区画する。この場合、図24に示されるように、算出値を繋いだ算出線を境界線として第1領域と第2領域R2とを区画するようにしてもよいし、算出線に基づく近似線を境界線として第1領域R1と第2領域R2とを区画するようにしてもよい。
【0134】
なお、本実施形態では、第1領域R1と第2領域R2との区画の仕方が向上部に相当する。また、図24では、振動領域22における一端部22aのY方向に沿った長さを850μmとし、一端部22aから他端部22bまでの長さを425μmとした例を示している。この場合、近似式は、下記数式1で示される。
【0135】
(数1)Y=-0.0011X+1.0387X-41.657
以上説明した本実施形態によれば、第1領域R1と第2領域R2とは、第1領域R1の静電エネルギーEが高くなるように区画されている。このため、検出感度の向上を図ることができ、検出精度の向上を図ることができる。
【0136】
(第12実施形態の変形例)
上記第12実施形態の変形例について説明する。第1領域R1および第2領域R2は、図25に示されるように分割されていてもよい。すなわち、振動領域22が平面三角形状とされているため、一端部22aを3等分するように三角形を分割し、3つの三角形の各重心位置Cと、一端部22aの両端部とを繋ぐ境界線によって第1領域R1と第2領域R2とを分割するようにしてもよい。このように第1領域R1と第2領域R2とを区画するようにしても、上記第12実施形態の近似線に近い領域で第1領域R1と第2領域R2とが区画されて静電エネルギーEが高くなる領域が含まれる。このため、検出感度の向上を図ることができ、検出精度の向上を図ることができる。
【0137】
また、上記第12実施形態では、振動領域22が平面三角形状である例について説明したが、振動領域22の形状は適宜変更可能である。例えば、振動領域22は、平面矩形状とされていてもよいし、平面扇状とされていてもよい。これらのような振動領域22としても、上記第12実施形態と同様の方法で第1領域R1と第2領域R2とを区画することにより、上記第12実施形態と同様の効果を得ることができる。
【0138】
(第13実施形態)
第13実施形態について説明する。本実施形態は、第12実施形態に対し、第1領域R1と第2領域R2との区画の仕方を規定したものである。その他に関しては、第12実施形態と同様であるため、ここでは説明を省略する。
【0139】
以下、本実施形態における第1領域R1と第2領域R2との区画の仕方について説明する。なお、本実施形態の区画の仕方は、特に、感度出力を電荷で表記する場合に有効である。本実施形態は、上記第12実施形態に対し、仮想領域Mの面積をSとし、仮想領域Mに発生する応力の和をσsumとする。そして、1/2×C×Vは、S×(σsum/S)に比例する。つまり、1/2×C×Vは、単位面積当たりの発生応力に比例する。このため、本実施形態では、図26および図27に示されるように、各仮想領域Mの(σsum)/Sが最大となる領域を算出し、各仮想領域Mの最大となる領域を繋ぐ境界線で第1領域R1と第2領域R2とを区画する。この場合、図27に示されるように、算出値を繋いだ算出線を境界線として第1領域と第2領域R2とを区画するようにしてもよいし、算出線に基づく近似線を境界線として第1領域R1と第2領域R2とを区画するようにしてもよい。なお、図27では、振動領域22における一端部22aのY方向に沿った長さを850μmとし、一端部22aから他端部22bまでの長さを425μmとした例を示している。この場合、近似式は、下記数式2で示される。
【0140】
(数2)Y=241.11
このように、単位面積当たりの発生応力に基づいて第1領域R1と第2領域R2とを区画するようにしても、上記第12実施形態と同様の効果を得ることができる。
【0141】
(第14実施形態)
第14実施形態について説明する。本実施形態は、第1実施形態に対し、各振動領域22を反らせつつ、並列に接続したものである。その他に関しては、第1実施形態と同様であるため、ここでは説明を省略する。
【0142】
本実施形態では、図28に示されるように、圧電素子1は、各振動領域22における他端部22b(すなわち、自由端)が反った状態とされている。本実施形態では、各振動領域22における他端部22bは、支持基板11側と反対側に沿った状態とされている。なお、各振動領域22における反り量は、同じとされており、例えば、圧電膜50の厚み以上に反るように構成されている。
【0143】
また、各振動領域22は、上記のように、下層圧電膜51と上層圧電膜52とが積層されたバイモルフ構造とされており、図29に示される回路構成と捉えることができる。そして、圧電装置を構成する場合、各振動領域22における各電極膜60は、回路基板120に並列に接続される。つまり、本実施形態では、各振動領域22からそれぞれ圧力検出信号が回路基板120に出力される。なお、本実施形態では、振動領域22が反った形状であり、各振動領域22から圧力検出信号が回路基板120に出力されることが向上部に相当する。
【0144】
以上が本実施形態における圧電素子1の構成である。なお、このような圧電素子1は、次のように製造される。すなわち、絶縁膜12上に圧電膜50をスパッタ法等で成膜する際、支持基板11を通じて圧電膜50に所定の電圧が印加されるようにし、成膜した圧電膜50に所定の残留応力が発生するようにする。その後、分離用スリット41を形成して各振動領域22を分離し、残留応力によって各振動領域22の他端部22bを反らせることで図28に示す圧電素子1が製造される。
【0145】
このような圧電素子1は、上記のように各振動領域22から圧力検出信号を出力する。この際、例えば、図30Aに示されるように、各振動領域22に音圧が法線方向と一致する方向から印加された場合には、各振動領域22の変形の仕方は等しくなり、各振動領域22から出力される圧力検出信号も等しくなる。一方、例えば、図30Bに示されるように、各振動領域22に音圧が法線方向と交差する方向から印加される場合には、各振動領域22で変形の仕方が異なり、各振動領域22から出力される圧力検出信号が異なる。つまり、各振動領域22から音圧が印加される方向に応じた圧力検出信号が出力される。このため、本実施形態の圧電素子1では、音圧が印加される方向も検出できる。つまり、本実施形態の圧電素子1は、指向性を有する構成とされている。
【0146】
この際、本実施形態では、振動領域22が反った状態とされている。このため、各振動領域22では、音圧が印加される方向に応じた変形の差が大きくなり易い。したがって、指向性に関する感度の向上を図ることもできる。
【0147】
以上説明した本実施形態によれば、圧電素子1は、各振動領域22が反った状態で配置されている。そして、回路基板120と接続される場合には、各振動領域22が回路基板120と並列に接続される。このため、指向性を備えつつ、さらに指向性に関する感度の向上を図ることができる。
【0148】
(第14実施形態の変形例)
第14実施形態に変形例について説明する。上記第14実施形態において、図31に示されるように、各振動領域22は、回路基板120に対して並列に接続されつつ、互いに直列にも接続されていてもよい。
【0149】
(第15実施形態)
第15実施形態について説明する。本実施形態は、第1実施形態に対し、振動領域22に反射膜を形成したものである。その他に関しては、第1実施形態と同様であるため、ここでは説明を省略する。
【0150】
本実施形態では、図32に示されるように、各振動領域22には、圧電膜50や電極膜60、パッド部71c、72cよりも反射率の高い反射膜140が最表層に形成されている。本実施形態では、反射膜140は、上層電極膜63上に形成されている。なお、反射率が高いとは、言い換えると、吸収率が低いともいえる。また、本実施形態では、反射膜140は、圧電膜50よりヤング率が小さい材料で構成され、例えば、アルミニウムの単層膜、または多層膜で構成される。そして、反射膜140は、第2領域R2に形成されている。なお、本実施形態では、反射膜140が向上部に相当する。
【0151】
以上が本実施形態における圧電素子1の構成である。次に、本実施形態における圧電素子1の製造方法について説明する。
【0152】
圧電素子1を製造する際には、支持基板11上に、絶縁膜12、圧電膜50、電極膜60、反射膜140等を順に成膜して適宜パターニングする。そして、凹部10aを形成した後、分離用スリット41を形成する。
【0153】
その後、本実施形態では、良否判定を行う。具体的には、図33に示されるように、レーザビームLを照射するレーザ光源151と、受信したレーザビームLの強度を検出する検出器152と、を備える検出装置150を用意する。検出器152は、閾値に基づいた判定を行う図示しない制御部を有しており、制御部は、CPUや、ROM、RAM、フラッシュメモリ、HDD等の非遷移的実体的記憶媒体で構成される記憶部等を備えたマイクロコンピュータ等で構成されている。CPUは、Central Processing Unitの略であり、ROMは、Read Only Memoryの略であり、RAMは、Random Access Memoryの略であり、HDDはHard Disk Driveの略である。ROM等の記憶媒体は、非遷移的実体的記憶媒体である。
【0154】
記憶部には、振動領域22に反りが発生していない場合にレーザビームLを受信した際の強度が閾値として記憶されている。そして、制御部は、検出器152で受信したレーザビームLの強度と閾値とを比較して良否判定を行う。
【0155】
具体的には、振動領域22に配置された反射膜140に対する法線方向に沿った面を基準面Tとし、基準面Tに対して傾いた方向からレーザビームLを反射膜140に照射する。そして、検出器152で反射したレーザビームLを検出する。その後、検出器152は、検出したレーザビームLの強度と、閾値とを比較して良否判定を行う。例えば、検出器152は、検出したレーザビームLの強度が閾値の50%未満である場合、振動領域22の状態が異常であると判定する良否判定を行う。この場合、例えば、図34に示されるように、振動領域22の反りが大きくて検出器152でレーザビームLが検出されない場合も、振動領域22の状態が異常であると判定する。なお、レーザビームLは、反射率が最も大きくなるものを選定することが好ましく、例えば、反射膜140をアルミニウムで構成した場合には、1μm以下である可視光領域の波長を用いることが好ましい。また、反射膜140を他の金属膜で構成した場合には、赤外領域の波長を用いる方が好ましい場合もある。
【0156】
以上説明した本実施形態によれば、振動領域22に反射膜140が配置されているため、振動領域22の良否判定を行うことができる。このため、検出精度が低下することを抑制できる圧電素子1を製造できる。また、本実施形態では、反射膜140にレーザビームLを照射することで良否判定を行っているため、非接触での良否判定とできる。
【0157】
また、反射膜140は、圧電膜50よりヤング率が小さい材料で構成されている。このため、反射膜140が圧電膜50の変形を阻害することを抑制でき、検出精度が低下することを抑制できる。
【0158】
さらに、反射膜140は、第2領域R2に配置されている。このため、振動領域22のうちの応力が大きくなり易い第1領域R1に反射膜140が影響することを抑制できる。
【0159】
なお、本実施形態を第14実施形態に適用することもできる。この場合、判定に用いられる閾値は、振動領域22の反り量が所望の値となる場合の強度に設定されればよい。
【0160】
(第16実施形態)
第16実施形態について説明する。本実施形態は、第9実施形態のように圧電装置を構成した際に自己診断を行うようにしたものである。その他に関しては、第9実施形態と同様であるため、ここでは説明を省略する。
【0161】
本実施形態の圧電装置では、図35に示されるように、圧電素子1は、支持基板11の他面11bが接合部材2を介してプリント基板131の一面131aに搭載されている。そして、本実施形態では、上記第10実施形態の図17を参照して説明した圧電装置と同様に、プリント基板131に貫通孔131bが形成されている。このため、本実施形態では、貫通孔131bを通じてセンシング部30に音圧が印加されることで音圧が検出される。そして、本実施形態では、ケーシング130内において、貫通孔131bが形成される部分とセンシング部30との間の空間が受圧面空間S1となる。また、センシング部30を挟んで受圧面空間S1と反対側に位置する空間を含み、当該空間と分離用スリット41を介さずに連続した空間がバック空間S2となる。
【0162】
なお、本実施形態では、図35のように構成された圧電装置を例に挙げて説明するが、第9実施形態や第10実施形態のように構成された圧電装置についても下記の構成を適用できる。
【0163】
本実施形態の圧電素子1は、図36および図37に示されるように、各振動領域22と電気的に接続される第1~第5パッド部701~705を有している。なお、第1~第5パッド部701~705は、上記第1実施形態におけるパッド部71c、72cに相当するものである。そして、圧電素子1は、上記第14実施形態の変形例で説明した図31と同様に、各振動領域22が回路基板120に対して第1~第5パッド部701~705を介して並列に接続されつつ、互いに直列に接続された構成とされている。
【0164】
回路基板120は、所定の信号処理を行うものであり、本実施形態では、制御部120aが配置されている。なお、制御部120aは、回路基板120とは別に配置されていてもよい。
【0165】
制御部120aは、上記第15実施形態の制御部と同様に、CPUや、ROM、RAM、フラッシュメモリ、HDD等の非遷移的実体的記憶媒体で構成される記憶部等を備えたマイクロコンピュータ等で構成されている。そして、本実施形態の制御部120aは、圧電装置の自己診断を行う。
【0166】
具体的には、本実施形態の制御部120aは、圧電素子1の異常判定を行う。詳しくは、制御部120aは、異常判定信号を第1パッド部701と第5パッド部705の間に所定の電圧を印加して各振動領域22を振動させる。より詳しくは、制御部120aは、実際の音圧検出で振動領域22に印加され得る音圧の周波数で各振動領域22を通常振動させる。本実施形態では、図38に示されるように、共振周波数が13kHzとなるように振動領域22が形成されており、圧電素子1に印加され得る音圧の周波数として数kHzを想定している。
【0167】
したがって、制御部120aは、各振動領域22が数kHzで通常振動するように、第1パッド部701と第5パッド部705との間に所定電圧を印加する。なお、本実施形態では、共振周波数が13kHzとされていると共に圧電素子1に印加され得る音圧の周波数を数kHzと想定している。このため、制御部120aは、共振周波数より低い周波数で通常振動するように、第1パッド部701と第5パッド部705との間に所定電圧を印加するともいえる。
【0168】
これにより、各振動領域22が正常である場合には、第2~第4パッド部702~704から所定電圧に対応する分圧が印加される。これに対し、各振動領域22の間でショート等の異常が発生している場合には、第2~第4パッド部702~704から出力される電圧が変化する。また、各振動領域22の間で断線等の異常が発生している場合には、第2~第4パッド部702~704から電圧が出力されない。したがって、制御部120aは、第2~第4パッド部702~704の電圧を所定の閾値範囲と比較して異常判定を行う。
【0169】
また、本実施形態の制御部120aは、バック空間S2の圧力を推定する自己診断を行う。そして、制御部120aは、推定した圧力に基づいて圧電素子1から出力される圧力検出信号に対して補正を行う。
【0170】
すなわち、上記のような圧電装置では、バック空間S2の圧力が変動することにより、振動領域22の振動の仕方が変化する。具体的には、バック空間S2の圧力は、周囲の温度、湿度、および使用される高度(すなわち、場所)等に応じて変化する。そして、振動領域22は、バック空間S2の圧力が高くほど振動し難くなり、バック空間S2の圧力が低いほど振動し易くなる。つまり、上記のような圧電装置では、使用環境によって検出感度が変化する可能性がある。このため、本実施形態では、バック空間S2の圧力を推定し、推定した圧力に基づいて圧電素子1から出力される圧力検出信号に対して補正を行う。
【0171】
具体的には、制御部120aは、バック空間S2の圧力を推定するため、圧電素子1に圧力推定信号を印加して各振動領域22を推定振動させる。この場合、制御部120aは、各振動領域22の振動が大きくなるように、各振動領域22を共振周波数で最大振動させる。そして、制御部120aは、圧力推定信号を印加した際の第2~第4パッド部702~704の電圧と、異常判定信号を印加した際の第2~第4パッド部702~704の電圧との差に基づき、次の作動を行う。すなわち、制御部120aは、共振倍率としてのQ値を算出すると共にQ値からバック空間S2の圧力を推定する自己診断を行う。
【0172】
なお、Q値を算出する場合、具体的な算出方法は適宜変更可能である。例えば、圧力推定信号を印加した際の第2~第4パッド部702~704の電圧と、異常判定信号を印加した際の第2~第4パッド部702~704の電圧とのいずれか1つの差に基づいてQ値を算出するようにしてもよい。また、圧力推定信号を印加した際の第2~第4パッド部702~704の電圧と、異常判定信号を印加した際の第2~第4パッド部702~704の電圧との差の平均値に基づいてQ値を算出するようにしてもよい。
【0173】
そして、制御部120aは、音圧を検出する場合、推定したバック空間S2の圧力に基づいて圧電素子1から出力される圧力検出信号に対して補正を行う。具体的には、制御部120aは、バック空間S2の圧力が大気圧である場合を基準とし、バック空間S2の圧力に応じた補正係数を圧力検出信号に対して乗算する。例えば、制御部120aは、バック空間S2の圧力が大気圧より大きい場合には振動領域22が振動し難くなるため、補正係数として1より大きい値を圧力検出信号に乗算して補正する。一方、制御部120aは、バック空間S2の圧力が大気圧より小さい場合には振動領域22が振動し易くなるため、補正係数として1より小さい値を圧力検出信号に乗算して補正する。これにより、圧力検出信号は、バック空間S2の圧力(すなわち、振動領域22の振動のし易さ)に応じた値となる。なお、補正係数は、例えば、予め実験等によって導出され、バック空間S2の圧力と対応づけて制御部120aに記憶される。
【0174】
以上説明した本実施形態によれば、自己診断を行っているため、検出精度の向上を図ることができる。具体的には、圧電素子1の異常判定を行っているため、異常がある場合には音圧の検出を停止等することにより、検出精度の向上を図ることができる。また、バック空間S2の圧力を推定しているため、推定した圧力に基づいた補正を行うことで検出精度の向上を向上することができる。
【0175】
(第16実施形態の変形例)
上記第16実施形態の変形例について説明する。上記第16実施形態において、制御部120aは、自己診断として、異常判定およびバック空間S2の圧力の推定の一方のみを行うようにしてもよい。また、上記第16実施形態において、制御部120aは、バック空間S2の圧力の推定を行う際、通常振動と異なる振動であるのであれば、各振動領域22を共振周波数で振動させなくてもよい。但し、各振動領域22を共振周波数で最大振動させることにより、通常振動との差を大きくでき、バック空間S2の圧力の推定精度を向上できる。
【0176】
(第17実施形態)
第17実施形態について説明する。本実施形態は、第1実施形態に対し、下層電極膜61、中間電極膜62、および上層電極膜63の膜厚を規定したものである。その他に関しては、第9実施形態と同様であるため、ここでは説明を省略する。
【0177】
本実施形態における圧電素子1は、図39に示されるように、上記第1実施形態と同様の構成とされている。但し、本実施形態では、圧電素子1に応力増加用スリット42は形成されていない。
【0178】
そして、本実施形態では、下層電極膜61の膜厚および上層電極膜63の膜厚が中間電極膜62の膜厚より薄くされている。例えば、本実施形態では、下層電極膜61および上層電極膜63の膜厚が25nmとされ、中間電極膜62の膜厚が100nmとされている。なお、下層圧電膜51における下層電極膜61と中間電極膜62との間の膜厚、および上層圧電膜52における中間電極膜62と上層電極膜63との間の膜厚は、上記第1実施形態と同様とされ、例えば、50μmとされる。
【0179】
また、下層電極膜61と上層電極膜63とは、剛性が等しくされている。本実施形態では、下層電極膜61と上層電極膜63とは、同じ材料で構成される共に、膜厚が等しくされることで剛性が等しくされている。
【0180】
なお、本実施形態では、第1領域R1および第2領域R2に配置されている下層電極膜61、中間電極膜62、および上層電極膜63のそれぞれが上記構成とされている。但し、下層電極膜61、中間電極膜62、および上層電極膜63は、少なくとも第1領域R1に形成されている部分が上記構成とされていればよい。また、本実施形態では、下層電極膜61、中間電極膜62、および上層電極膜63の構成が向上部に相当する。
【0181】
以上説明したように、本実施形態では、下層電極膜61の膜厚および上層電極膜63の膜厚が中間電極膜62の膜厚より薄くされ、下層電極膜61と上層電極膜63との剛性が等しくされている。このため、感度の向上を図ることで検出精度を向上できる。
【0182】
すなわち、各振動領域22は、上記のように一端部22aが固定端とされていると共に、他端部22bが自由端とされている。このため、図40に示されるように、例えば、各振動領域22において、上層電極膜63側から下層電極膜61側に荷重(すなわち、音圧)が印加された際、下層圧電膜51側に圧縮応力が印加され、上層圧電膜52側に引張応力が印加される。そして、各振動領域22は、厚さ方向における中心部が圧縮応力も引張応力も印加されない中立面Csとなる。
【0183】
この場合、図41および図42に示されるように、下層圧電膜51に印加される圧縮応力は、中立面Csから離れるほど大きくなる。同様に、上層圧電膜52に印加される引張応力は、中立面Csから離れるほど大きくなる。したがって、下層圧電膜51および上層圧電膜52は、中立面Csから離れた位置を含むように形成されることにより、応力が大きい部分を含める構成とできる。つまり、下層圧電膜51および上層圧電膜52は、中立面Csから離れた位置を含むように形成されることにより、電荷が発生し易い部分を含める構成とできる。但し、下層圧電膜51の膜厚を単純に厚くすることによって中立面Csから離れた位置を含むようにした場合、下層電極膜61と中間電極膜62との間隔が広くなるため、下層電極膜61と中間電極膜62との間の容量が低下する。同様に、上層圧電膜52の膜厚を単純に厚くすることによって中立面Csから離れた位置を含むようにした場合、中間電極膜62と上層電極膜63との間隔が広くなるため、中間電極膜62と上層電極膜63との間の容量が低下する。
【0184】
したがって、本実施形態のように、中間電極膜62を厚くしつつ、下層電極膜61を薄くすることにより、下層圧電膜51は、下層圧電膜51の膜厚を変更せずに中立面Csから離れた位置を含むようにできる。同様に、中間電極膜62を厚くしつつ、上層電極膜63を薄くすることにより、上層圧電膜52は、上層圧電膜52の膜厚を変更せずに、中立面Csから離れた位置を含むようにできる。したがって、下層圧電膜51および上層圧電膜52に発生する電荷を多くでき、感度を向上させることで検出精度を向上できる。
【0185】
また、下層電極膜61および上層電極膜63は、モリブデン、銅、プラチナ、白金、チタン等を用いて構成されており、下層圧電膜51および上層圧電膜52を構成する窒化スカンジウムアルミニウム等よりもヤング率が大きい。このため、下層電極膜61および上層電極膜63が厚いほど下層圧電膜51および上層圧電膜52の変形が阻害され易くなる。したがって、本実施形態のように、下層電極膜61および上層電極膜63の膜厚を中間電極膜62の膜厚より薄くすることにより、下層電極膜61および上層電極膜63の膜厚が中間電極膜62の膜厚と同じである場合と比較して、下層圧電膜51および上層圧電膜52の変形が阻害されることを抑制できる。したがって、感度が低下することを抑制でき、検出精度を向上できる。
【0186】
さらに、下層電極膜61および上層電極膜63は、剛性が等しくされている。このため、音圧が印加された際に下層圧電膜51と上層圧電膜52の変形の仕方が異なることを抑制でき、全体の変形が阻害されることを抑制できる。
【0187】
(第17実施形態の変形例)
上記第17実施形態の変形例について説明する。上記第17実施形態において、下層電極膜61と上層電極膜63とは、中間電極膜62より膜厚が薄くされると共に剛性が等しくされるのであれば次のように構成されていてもよい。すなわち、下層電極膜61と上層電極膜63とは、異なる材料で構成され、膜厚が調整されることによって剛性が等しくなるように構成されていてもよい。
【0188】
(第18実施形態)
第18実施形態について説明する。本実施形態は、第11実施形態に対し、寄生容量Cpに基づいて電荷領域620の数を規定したものである。その他に関しては、第11実施形態と同様であるため、ここでは説明を省略する。
【0189】
本実施形態の圧電素子1は、上記第11実施形態と同様に、第1中間電極膜62aが複数の電荷領域620に分割されると共に、各電荷領域620が直列に接続されている。また、各電荷領域620は、それぞれ同じ面積とされ、互いに直列に接続されている。
【0190】
ここで、圧電素子1における感度(すなわち、出力電圧)をΔVとし、センシング部30の全体の容量をCoとし、寄生容量をCpとし、音圧を電圧に変換する際の音響電気変換係数をΓとし、電荷領域620の数をnとすると、下記数式3が成立する。
【0191】
(数3)ΔV=Γ×{Co/(Co+Cp)}
なお、寄生容量Cpは、圧電素子1(すなわち、センシング部30)と回路基板120とを接続する部分の容量や、回路基板120の内部に発生する容量等の和である。また、センシング部30の容量Coは、各電荷領域620が直列に接続されるため、1/nに比例する。
【0192】
このため、図43A図43Cに示されるように、振動領域22における一端部22aから他端部22bまでの長さを長さdとすると、感度は、長さd、電荷領域620の数、および寄生容量Cpに応じて変化する。そして、現状では、感度を高くすることが望まれており、最大感度から90%程度までの範囲が実用的とされる。したがって、本実施形態では、最大感度の90%以上となるように、電荷領域620の数が設定されている。例えば、図43Bに示されるように、振動領域22における一端部22aから他端部22bまでの長さdが490μmであり、寄生容量Cpが2.0×10-12Fである場合、全体の電荷領域620の数が8~16となるように形成されることにより、感度の低下を図ることができる。つまり、各振動領域22における電荷領域620の数が2~4とされることにより、感度の低下を図ることができる。
【0193】
以上説明した本実施形態では、電荷領域620の数が最大感度の90%以上となるように規定される。このため、感度の向上を図ることで検出精度の向上を図ることができる。
【0194】
(第19実施形態)
第19実施形態について説明する。本実施形態は、第9実施形態のように圧電装置を構成した際の、受圧面空間S1の音響コンプライアンスCf、バック空間S2の音響コンプライアンスCb、分離用スリット41の音響抵抗Rg等を調整したものである。その他に関しては、第9実施形態と同様であるため、ここでは説明を省略する。
【0195】
本実施形態の圧電装置は、図44に示されるように、圧電素子1における支持基板11の他面11bが接合部材2を介してプリント基板131の一面131aに搭載されて構成されている。そして、本実施形態では、上記第10実施形態の図17を参照して説明した圧電装置と同様に、プリント基板131に貫通孔131bが形成されている。このため、本実施形態では、貫通孔131bを通じてセンシング部30に音圧が印加されることで音圧が検出される。また、本実施形態では、ケーシング130内において、貫通孔131bが形成される部分とセンシング部30との間の空間が受圧面空間S1となる。センシング部30を挟んで受圧面空間S1と反対側に位置する空間を含み、当該空間と分離用スリット41を介さずに連続した空間がバック空間S2となる。
【0196】
なお、本実施形態では、圧電素子1の支持基板11に窪み構造が形成されていないが、支持基板11に窪み構造が形成されていてもよい。また、本実施形態の圧電素子1には、上記第1実施形態のような応力増加用スリット42も形成されていないが、応力増加用スリット42等が形成されていてもよい。以下、図44のように構成された圧電装置を例に挙げて説明するが、上記各実施形態の圧電素子1を用いた圧電装置についても下記の構成を適用できる。
【0197】
まず、圧電装置の感度は、低周波ロールオフ周波数、圧電素子1の共振周波数、ヘルムホルツ周波数に依存する。具体的には、低周波ロールオフ周波数をfrとすると、低周波ロールオフ周波数frは、下記数式4で示される。圧電素子1の共振周波数をfmbとすると、共振周波数fmbは、下記数式5で示される。ヘルムホルツ周波数をfhとすると、ヘルムホルツ周波数fhは、下記数式6で示される。
【0198】
【数4】
【0199】
【数5】
【0200】
【数6】
なお、数式5におけるLmは、圧電素子1の各振動領域22における全体の質量に比例する定数である。数式6におけるLfは、貫通孔132aのイナータンスである。
【0201】
そして、貫通孔132aのイナータンスLfは、下記数式7で示される。また、受圧面空間S1の音響コンプライアンスCfは、下記数式8で示される。バック空間S2の音響コンプライアンスCbは、下記数式9で示される。分離用スリット41の音響抵抗Rgは、下記数式10で示される。
【0202】
【数7】
【0203】
【数8】
【0204】
【数9】
【0205】
【数10】
なお、数式7~10において、ρ0は空気密度であり、aは貫通孔132aの半径であり、L1はプリント基板131の厚さ(すなわち、貫通孔132aの長さ)である。また、Vfは、受圧面空間S1の容積であり、Vbはバック空間S2の容積であり、cは音速である。μは、空気の摩擦抵抗であり、hは振動領域22の厚さであり、gは分離用スリット41の幅であり、L2は各振動領域22における分離用スリット41の長さである。分離用スリット41の幅gは、各振動領域22の側面同士が対向する部分の間隔のことであり、例えば、図36中に示される部分の幅となる。分離用スリット41の長さL2は、例えば、図36中に示される部分の長さとなる。
【0206】
そして、本実施形態の圧電装置は、図45に示されるように、低周波ロールオフ周波数fr、圧電素子1の共振周波数fmb、ヘルムホルツ周波数fhの順に周波数が大きくなるように構成されている。具体的には、各周波数は、上記数式4~6に示されるように、受圧面空間S1の音響コンプライアンスCf、バック空間S2の音響コンプライアンスCb、分離用スリット41の音響抵抗Rgに基づいた値となる。このため、各周波数は、受圧面空間S1の音響コンプライアンスCf、バック空間S2の音響コンプライアンスCb、分離用スリット41の音響抵抗Rgが調整されることによって値が調整されている。
【0207】
より詳しくは、低周波ロールオフ周波数frは、音響コンプライアンスCbおよび音響抵抗Rgを大きくするほど小さくなる。圧電素子1の共振周波数fmbは、音響コンプライアンスCmおよび音響コンプライアンスCbを大きくするほど小さくなる。本実施形態では、音響コンプライアンスCbを調整することによって圧電素子1の共振周波数fmbが調整される。ヘルムホルツ周波数fhは、イナータンスLfおよび音響コンプライアンスCfを大きくするほど小さくなる。本実施形態では、音響コンプライアンスCfを調整することでヘルムホルツ周波数fhが調整される。これにより、ヘルムホルツ周波数fhが圧電素子1の共振周波数fmbより小さくされている場合と比較して、圧電装置が一般的には低周波ロールオフ周波数frと共振周波数fmbとの間における周波数の音圧を検出するのに利用されるため、感度を維持できる周波数を増加できる。
【0208】
また、本実施形態では、低周波ロールオフ周波数が20Hz以下とされると共にヘルムホルツ周波数が20kHzとなるように、音響コンプライアンスCf、音響コンプライアンスCb、音響抵抗Rgが調整される。つまり、本実施形態では、低周波ロールオフ周波数frおよびヘルムホルツ周波数fhは、可聴域から外れる値とされている。このため、本実施形態の圧電装置では、可聴域での感度を維持できる周波数を増加できる。なお、圧電素子1の共振周波数fmbは、例えば、13kHzとされる。
【0209】
ここで、低周波ロールオフ周波数を20Hz以下にするためには、以下のようにすればよい。すなわち、低周波ロールオフ周波数frに影響する音響抵抗Rgは、上記の数式10のように示される。このため、低周波ロールオフ周波数を20Hz以下とするためには、上記の数式4を20Hz以下となるようにすればよく、音響抵抗RgがRg≧1/(40π×Cb)を満たすようにすればよい。したがって、分離用スリット41の幅gは、下記数式11を満たされるように形成されればよい。
【0210】
【数11】
そして、低周波ロールオフ周波数frを20Hz以下とするために必要な音響抵抗Rgは、バック空間S2の音響コンプライアンスCbとの関係で図46に示されるようになる。この場合、現実的な振動領域22の厚さhおよび分離用スリット41の長さL2と、分離用スリット41の幅gとの関係は、図47に示されるようになる。このため、図47に示されるように、分離用スリット41の幅gは、3μm以下であれば、低周波ロールオフ周波数を20Hz以下とすることができる。
【0211】
また、上記のような圧電装置では、受圧面空間S1に音圧が導入された際、バック空間S2の容積が大きいほど感度が高くなり易く、信号とノイズの比であるSN比が大きくなり易い。この場合、図48に示されるように、信号強度比(dB)は、音響コンプライアンスCfに対する音響コンプライアンスCbの比であるCb/Cfが14以下になると、基準に対して一般的にノイズが大きいとされる-3dB以下となる。なお、ここでの基準とは、信号が最も大きくなる場合のSN比を基準としている。また、基準に対して-3dB以下とは、人間の聴力で変化を感じ取ることが困難な範囲である。したがって、本実施形態では、Cb/Cfが14以下とされている。これにより、ノイズの低減を図ることができる。
【0212】
さらに、上記のような圧電装置では、振動領域22が振動することで検出が行われる。また、上記のような圧電装置では、受圧面空間S1に音圧が導入されていない状態においても、ブラウン運動により、振動領域22に対して受圧面空間S1側およびバック空間S2側から空気粒が衝突する。この場合、受圧面空間S1側からの空気粒の衝突とバック空間S2側からの空気粒の衝突の仕方が異なると、振動領域22が不要振動してノイズの要因となる。
【0213】
このため、不要振動に関するノイズを低減するためには、受圧面空間S1の容積とバック空間S2の容積とを等しくすることが好ましい。これにより、不要振動に関するノイズの低減を図ることができる。
【0214】
以上説明したように、本実施形態では、低周波ロールオフ周波数fr、圧電素子1の共振周波数fmb、ヘルムホルツ周波数fhが順に周波数が大きくなるように、音響コンプライアンスCf、音響コンプライアンスCb、音響抵抗Rgが調整されている。このため、ヘルムホルツ周波数fhが圧電素子1の共振周波数fmbより小さくされている場合と比較して、感度を維持できる周波数を増加できる。
【0215】
また、本実施形態では、低周波ロールオフ周波数frが20Hz以下とされ、ヘルムホルツ周波数fhが20kHz以上とされている。このため、可聴域での感度を維持することができる。この場合、分離用スリット41の幅gが3μm以下とされていることにより、低周波ロールオフ周波数frを20Hz以下とすることができる。
【0216】
さらに、本実施形態では、Cb/Cfが14以下とされている。このため、ノイズの低減を図ることができる。
【0217】
また、本実施形態では、受圧面空間S1の容積とバック空間S2の容積とを等しくすることにより、不要振動に関するノイズの低減を図ることができる。
【0218】
(他の実施形態)
本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
【0219】
例えば、上記各実施形態において、振動部20は、少なくとも1層の圧電膜50と、1層の電極膜60とを有する構成とされていればよい。
【0220】
また、上記各実施形態において、振動部20のうちの浮遊領域21bは、4つの振動領域22に分割されるのではなく、3つ以下の振動領域22に分割されるようにしてもよいし、5つ以上の振動領域22に分割されるようにしてもよい。
【0221】
そして、上記各実施形態において、センシング部30は、1つの振動領域22で構成されるようにしてもよい。つまり、例えば、上記第1実施形態では、1つの浮遊領域21bによって構成される4つの振動領域22により、4つのセンシング部30が構成されるようにしてもよい。この場合、上記第7実施形態では、1つの浮遊領域21bのみを有する構成とすると共に当該浮遊領域21bに複数の振動領域22が構成されるようにし、各振動領域22の共振周波数が異なるようにしてもよい。
【0222】
また、上記第1実施形態では、応力増加用スリット42が形成されずに分離用スリット41が浮遊領域21bの角部に達するように形成され、角部C1は、第1領域R1における分離用スリット41が内側に凹まされることで構成されていてもよい。
【0223】
さらに、上記第3実施形態において、振動領域22の一端部22aは、仮想線K1に対して他端部22b側と反対側に膨らんだ部分を有する形状とされていればよく、円弧状とされていなくてもよい。同様に、上記第4実施形態において、振動領域22の一端部22aは、仮想線K2に対して他端部22b側と反対側に膨らんだ部分を有する形状とされていればよく、円弧状とされていなくてもよい。
【0224】
また、上記第5実施形態において、硬膜82は、第2領域R2における第1領域R1側と他端部22b側との間で均等に形成されていてもよいし、他端部22b側より第1領域R1側の方が密に形成されていてもよい。また、上記第5実施形態において、硬膜82が埋め込まれる孔部81は、上層電極膜63、上層圧電膜52、中間電極膜62、および下層圧電膜51を貫通するように形成されていなくてもよい。例えば、孔部81は、上層電極膜63および上層圧電膜52のみを貫通するように形成されていてもよい。つまり、第2領域R2に形成される硬膜82の深さは、適宜変更可能である。さらに、上記第5実施形態において、硬膜82は、第1、第2電極部71、72と同じ材料ではなくてもよく、圧電膜50よりもヤング率の高い材料であれば、構成される材料は特に限定されない。
【0225】
そして、上記第6実施形態において、応力増加用スリット42は形成されていなくてもよい。このような圧電素子1としても、検出精度が低下することを抑制できる。さらに、上記第6実施形態において、温度検出素子91および発熱素子92は、下層電極膜61が形成されている部分に配置されていてもよいし、上層電極膜63が形成されている部分に配置されていてもよい。また、上記第6実施形態において、温度検出素子91および発熱素子92は、第1領域R1に形成されていてもよい。さらに、上記第7実施形態等で記載したように、上記第7実施形態以降の各実施形態では、応力増加用スリット42が形成されていない。但し、応力増加用スリット42は、適宜各実施形態に形成されていてもよい。また、上記第16実施形態においては、制御部120aの作動によって検出精度の向上を図ることができる。したがって、上記第16実施形態においては、圧電素子1に向上部が形成されていなくてもよい。
【0226】
さらに、上記第7実施形態において、各センシング部30におけるそれぞれの振動領域22の共振周波数が異なるのであれば、振動領域22の構成は適宜変更可能である。例えば、各センシング部30におけるそれぞれの振動領域22は、膜厚や、材料が異なるものとされることで共振周波数が異なるようにされていてもよい。
【0227】
なお、各センシング部30におけるそれぞれの振動領域22の膜厚や材料を異なるものとする場合には、例えば、振動領域22を構成する圧電膜50を成膜する際等に適宜マスクを配置することで膜厚や材料を異なるものとするようにしてもよい。また、例えば、圧電膜50を成膜した後にエッチング等で膜厚を調整したり、エッチングした部分に再度別の圧電膜50を成膜することで膜厚や材料を異なるものとするようにしてもよい。但し、エッチングした部分に再度別の圧電膜50を成膜する場合には、例えば、エッチングした部分の側面をテーパとすることにより、新たに成膜する別の圧電膜50との間にボイドが形成され難くなるため好ましい。このように、膜厚や材料を異ならせる場合には、使用用途に応じて最適なものを選択し易くできる。また、各振動領域22は、一端部22aと他端部22bとの間の長さを異ならせつつ、膜厚や材料も変更するようにしてもよい。
【0228】
そして、上記各実施形態を適宜組み合わせることもできる。例えば、上記第1実施形態を上記各実施形態に適宜組み合わせ、第1領域R1のうちの支持体10から浮遊している部分に角部C1が形成されるようにしてもよい。上記第2実施形態を上記各実施形態に適宜組み合わせ、第1領域R1の一端部に角部C2が形成されるようにしてもよい。上記第3実施形態を上記各実施形態に適宜組み合わせ、凹部10aの開口端を円形状にしてもよい。上記第4実施形態を上記各実施形態に適宜組み合わせ、凹部10aの開口端を円形状にすると共に、浮遊領域21bに分離用スリット41を形成し、当該分離用スリット41が浮遊領域21b内で終端するようにしてもよい。上記第5実施形態を上記各実施形態に適宜組み合わせ、第2領域R2に硬膜82を配置するようにしてもよい。上記第6実施形態を上記各実施形態に適宜組み合わせ、温度検出素子91および発熱素子92を配置するようにしてもよい。上記第7実施形態を上記各実施形態に適宜組み合わせ、複数のセンシング部30を備える構成としてもよい。上記第8実施形態を上記各実施形態に適宜組み合わせ、凹部10aの側面に保護膜100を備えるようにしてもよい。上記第9実施形態を上記各実施形態に適宜組み合わせ、支持基板11の側面11cに窪み構造を形成するようにしてもよい。上記第10実施形態を上記各実施形態に組み合わせ、圧電素子1をプリント基板131にフリップチップ実装するようにしてもよい。上記第11実施形態を上記各実施形態に適宜組み合わせ、中間電極膜62の形状を変更するようにしてもよい。上記第12、第13実施形態を上記各実施形態に組み合わせ、第1領域R1と第2領域R2との区画の仕方を変更するようにしてもよい。上記第14実施形態を上記各実施形態に組み合わせ、各振動領域22を反らせつつ、各振動領域22が回路基板120に並列に接続されるようにしてもよい。上記第15実施形態を上記各実施形態に組み合わせ、反射膜140を備える構成としてもよい。上記第16実施形態を上記各実施形態に組み合わせ、圧電装置を構成した際に自己診断を行うようにしてもよい。上記第17実施形態を各実施形態に組み合わせ、下層電極膜61および上層電極膜63が中間電極膜62より膜厚が薄くされると共に、下層電極膜61と上層電極膜63との剛性が等しくされるようにしてもよい。上記第18実施形態を各実施形態に組み合わせ、電荷領域620の数を最大感度の90%以上となるように調整するようにしてもよい。上記第19実施形態を各実施形態に組み合わせ、低周波ロールオフ周波数fr、圧電素子1の共振周波数fmb、ヘルムホルツ周波数fhが順に大きくなるように調整されていてもよい。そして、上記各実施形態を組み合わせたもの同士をさらに組み合わせることもできる。なお、上記各実施形態や各実施形態を組み合わせたものにおいて、必要に応じて構成要件の一部を除いた構成とすることもできる。例えば、上記のように、上記第6実施形態等では応力増加用スリット42が形成されていなくてもよい。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13A
図13B
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30A
図30B
図31
図32
図33
図34
図35
図36
図37
図38
図39
図40
図41
図42
図43A
図43B
図43C
図44
図45
図46
図47
図48