(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022173993
(43)【公開日】2022-11-22
(54)【発明の名称】干渉時間光検出および測距装置
(51)【国際特許分類】
G01S 17/89 20200101AFI20221115BHJP
【FI】
G01S17/89
【審査請求】未請求
【請求項の数】23
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2022044452
(22)【出願日】2022-03-18
(31)【優先権主張番号】17/315,678
(32)【優先日】2021-05-10
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】522111493
【氏名又は名称】オプトウェイヴス インコーポレイテッド
【氏名又は名称原語表記】Optowaves, Inc.
【住所又は居所原語表記】6830 Via Del Oro, Suite 200, San Jose, CA 95119 USA
(74)【代理人】
【識別番号】100134636
【弁理士】
【氏名又は名称】金高 寿裕
(74)【代理人】
【識別番号】100114904
【弁理士】
【氏名又は名称】小磯 貴子
(72)【発明者】
【氏名】ツァイ,ツン-ハン
(72)【発明者】
【氏名】ホウ,ジー ジェンセン
(72)【発明者】
【氏名】ウー,ハオ
(72)【発明者】
【氏名】スー,シャンシン
【テーマコード(参考)】
5J084
【Fターム(参考)】
5J084AA05
5J084AD01
5J084BA04
5J084BA23
5J084BA52
5J084BB28
5J084BB31
5J084BB32
5J084CA10
5J084CA65
(57)【要約】 (修正有)
【課題】対象物までの様々なポイントの測定距離に基づいて対象物の画像を生成する、TOI LiDARシステムを提供する。
【解決手段】TOI LiDARシステムは、干渉光信号から生成された電気信号の包絡線を検出する。この干渉光信号は、対象物へのサンプルアーム発光による後方反射光と参照発光とが合成されて生成される。参照発光は、パルス変調されたコヒーレント光源の発光信号を分割し、参照アームに参照発光を通過させることで作成する。光干渉信号は、平衡光検出器に転送され、電気信号に変換され、デジタルデータに変換される。デジタルデータを評価して、デジタル電気干渉信号の立ち上がりエッジまたは立ち下がりエッジを求め、距離の計算に使用する参照発光と後方反射光の間の時間遅延を求める。
【選択図】
図1A
【特許請求の範囲】
【請求項1】
干渉時間(ToI)検出および測距(LiDAR)の干渉時間LiDARシステムであって、時間-周波数領域反射法に基づいて前記ToI LiDARシステムから対象物までの距離を測定するシステムであり、
コヒーレント光源と、
前記コヒーレント光源に接続する変調制御装置であって、パルス波長変調コヒーレント発光を生成するよう前記コヒーレント光源を変調するために前記コヒーレント光源に転送されるパルス波長制御信号を生成するよう構成した変調制御装置と、
前記パルス波長変調コヒーレント発光を受信するよう前記コヒーレント光源に接続された干渉計であって、前記パルス波長変調コヒーレント発光をサンプル部分と参照部分とに分割するように構成し、前記パルス波長変調コヒーレント発光の前記サンプル部分は、測定対象の前記対象物に入射するように配置され、前記パルス波長変調コヒーレント発光の前記参照部分は、前記TOI LiDARシステムから前記対象物までの距離を求めるための基礎を提供するよう配置された干渉計と、
前記パルス波長変調コヒーレント光の前記サンプル部分を受信するために前記干渉計に接続したスキャナであって、当該スキャナは、前記パルス波長変調コヒーレント光のサンプル部分を前記対象物に物理的に転送し、前記パルス波長変調コヒーレント光で前記対象物の表面を走査するよう構成され、さらに前記パルス波長変調コヒーレント光の後方反射部分を受信して前記後方反射部分を前記スキャナから前記干渉計に転送するよう構成され、前記パルス波長変調コヒーレント光の後方反射部分と前記パルス波長変調コヒーレント光の参照部分とが結合されて光干渉光信号が形成される、前記スキャナと、
前記光干渉光信号を受信し、前記光干渉信号を電気干渉信号に変換するよう構成した光検出器アレイと、
前記光検出器アレイと連通して前記電気干渉信号を受信し、前記電気干渉信号をデジタル電気干渉信号に変換する信号処理装置と、
前記光干渉信号によって求められる時間遅延を計算し、前記対象物からの距離に基づいて表示される撮像範囲を生成するようにプログラムされたコンピュータシステムと、を備えるシステム。
【請求項2】
前記変調制御装置は、前記コヒーレント光源の駆動電流の制御、前記狭帯域光源の温度の調整、または前記光源から出射される光の位相の調整によって、前記コヒーレント光源を変調するよう構成する、請求項1に記載の干渉時間LiDARシステム。
【請求項3】
前記干渉計は、
前記コヒーレント光源から前記パルス波長変調コヒーレント光を受信するよう構成し、前記パルス波長変調コヒーレント光を前記パルス波長変調コヒーレント光の第1部分と前記パルス波長変調コヒーレント光の第2部分とに分割するように構成した第1カプラと、
前記パルス波長変調コヒーレント光の前記第1部分を受信するように接続したサーキュレータであって、前記パルス波長変調コヒーレント光の前記第1部分が前記サーキュレータの第1ポートに入って後続のポートから出るように構成され、前記パルス波長変調コヒーレント光の前記第1部分を前記スキャナに向かわせるサーキュレータと、
前記第1カプラに接続され、前記パルス波長変調コヒーレント光の前記第1部分を受信して前記パルス波長変調コヒーレント光の前記第1部分を前記スキャナへ転送するサンプルアームと、
前記第1カプラに接続され、前記パルス波長変調コヒーレント光の前記第2部分を受信する参照アームと、
前記パルス波長変調コヒーレント光の後方反射部分を受信するよう構成し、前記参照アームから前記パルス波長変調コヒーレント光の前記第2部分を受信するように構成し、前記パルス波長変調コヒーレント光の前記後方反射部分と前記パルス波長変調コヒーレント光の前記第2部分とを結合して光干渉光信号を形成するよう構成した第2カプラと、を備える、請求項1に記載の干渉時間LiDARシステム。
【請求項4】
前記干渉計がさらに、
前記パルス波長変調コヒーレント発光を受信し、前記パルス波長変調コヒーレント発光を前記第1カプラに転送し、前記光源からのコヒーレント発光の偏光状態を調整して前記光干渉信号または干渉電気信号の振幅を最大にするよう構成した偏光制御装置を備える、請求項3に記載の干渉時間LiDARシステム。
【請求項5】
前記光検出器アレイは、偏光ダイバーシティ平衡増幅検出器として構成され、前記光検出器アレイへの入力パワーレベルを測定する少なくとも1つのパワーモニタを備え、前記パワーモニタは、前記対象物の距離と関連する時間遅延を有するよう変調したパワーレベルを出力する、請求項1に記載の干渉時間LiDARシステム。
【請求項6】
前記参照アームの長さは、前記サンプルアームの長さよりも長く、前記参照アームの光路長は、前記システムの最大測距深度の2倍を超える、請求項3に記載の干渉時間LiDARシステム。
【請求項7】
前記光干渉信号の最大周波数が前記システムの最小測距深度に相当する、請求項1に記載の干渉時間LiDARシステム。
【請求項8】
前記信号処理装置は、デジタル化された電気干渉信号の包絡線を求めるよう構成する、請求項1に記載の干渉時間LiDARシステム。
【請求項9】
前記信号処理装置は、前記デジタル化電気干渉信号の包絡線の立ち下がりエッジで前記デジタル化電気干渉信号の時間遅延を測定するよう構成する、請求項8に記載の干渉時間LiDARシステム。
【請求項10】
スキャン同期信号を生成するスキャンパターンを作成するよう構成したスキャン制御装置をさらに備え、前記スキャン制御装置は、前記スキャン同期信号を前記スキャナに印加して、前記対象物を表す測定情報の収集を実現する複数のスキャンパターンを生成する、請求項1に記載の干渉時間LiDARシステム。
【請求項11】
前記干渉時間LiDARシステムが、光ファイバ、バルク光学系、集積光回路、または光学素子の任意の組み合わせとして実装される、請求項1に記載の干渉時間LiDARシステム。
【請求項12】
対象物の距離を求めるための方法であって、
コヒーレント光ビームを生成する工程と、
前記コヒーレント光ビームを波長変調または周波数変調信号で変調する工程と、
前記コヒーレント光ビームの第1部分をサンプルアームに結合する工程と、
前記コヒーレント光ビームの第2部分を参照アームに結合する工程と、
前記波長変調されたコヒーレント光ビームの光源からの距離を測定すべき対象物の場所で前記レーザ光ビームの前記第1部分を走査する工程と、
前記測定対象物から前記波長変調されたコヒーレント光ビームの前記第1部分の一部を後方反射する工程と、
前記測定対象物からの前記波長変調されたコヒーレント光ビームの後方反射部分を受光する工程と、
前記コヒーレント光ビームの後方反射部分と前記コヒーレント光ビームの第2部分とを結合して、光干渉コヒーレント光信号を形成する工程と、
前記光干渉波長変調コヒーレント光信号を光検出して、振動する電気干渉信号を形成する工程と、
前記振動する電気干渉信号をデジタル化する工程と、
前記デジタル化した電気干渉信号の包絡線を検出して、前記デジタル化電気干渉信号の前記包絡線を求める工程と、
前記デジタル化した電気干渉信号の前記包絡線の立ち上がりエッジまたは立ち下がりエッジの時間を求める工程と、
前記デジタル化した電気干渉信号の前記包絡線の立ち上がりエッジまたは立ち下がりエッジ間の時間差を求める工程と、
前記測定対象物までの距離を計算する工程と、を備える方法。
【請求項13】
請求項11の各工程を繰り返し実行することにより、前記対象物のドップラー速度を求める工程と、
時間の経過に伴う距離の変化として、前記対象物のドップラー速度の速度を計算する工程とを更に備える、請求項12に記載の方法。
【請求項14】
前記コヒーレント光ビームの偏光状態を調整し、前記光干渉信号または干渉電気信号の振幅を最大化する工程をさらに備える、請求項12に記載の方法。
【請求項15】
前記干渉電気信号の最大周波数は、前記対象物までの距離測定の最小測距深度に相当し、前記干渉電気信号をデジタル化する前記工程のナイキストサンプリング周波数より大きい、請求項12に記載の方法。
【請求項16】
前記干渉電気信号の最小周波数は、前記対象物の距離測定の最大測距深度に相当する、請求項14に記載の方法。
【請求項17】
光ファイバ、バルク光学系、集積光回路、または光学素子の任意の組み合わせを用いて前記方法を実施する工程をさらに備える、請求項12に記載の方法。
【請求項18】
対象物の距離を求めるための装置であって、
コヒーレント光ビームを生成する手段と、
前記コヒーレント光ビームを振幅変調または周波数変調信号で変調して、前記コヒーレント光ビームの振幅を調整する手段と、
前記コヒーレント光ビームの第1部分をサンプル光ファイバケーブルに結合する手段と、
前記コヒーレント光ビームの第2部分を参照アームに結合する手段と、
前記変調されたコヒーレント光ビームの光源からの距離を測定すべき対象物の場所で前記レーザ光ビームの前記第1部分を走査する手段と、
前記測定対象物から前記コヒーレント光ビームの第1部分の一部を後方反射する手段と、
前記測定対象物からの前記コヒーレント光ビームの後方反射部分を受光する手段と、
前記コヒーレント光ビームの後方反射部分と前記コヒーレント光ビームの第2部分とを結合して、光干渉コヒーレント光信号を形成する手段と、
前記光干渉コヒーレント光信号を光検出して、振動する電気干渉信号を形成する手段と、
前記振動する電気干渉信号をデジタル化する手段と、
前記デジタル化した電気干渉信号の包絡線を検出して、前記デジタル化電気干渉信号の前記包絡線を求める手段と、
前記デジタル化した電気干渉信号の前記包絡線の立ち上がりエッジまたは立ち下がりエッジの時間を求める手段と、
前記デジタル化した電気干渉信号の前記包絡線の立ち上がりエッジまたは立ち下がりエッジ間の時間差を求める手段と、
前記測定対象物までの距離を計算する手段と、を備える装置。
【請求項19】
請求項18の手段を繰り返し作動させることにより、前記対象物のドップラー速度を求める手段と、
時間の経過に伴う距離の変化として、前記対象物のドップラー速度の速度を計算する手段とを更に備える、請求項18に記載の装置。
【請求項20】
前記コヒーレント光ビームの偏光状態を調整し、前記光干渉信号または干渉電気信号の振幅を最大化する手段をさらに備える、請求項18に記載の装置。
【請求項21】
前記干渉電気信号の最大周波数は、前記対象物までの距離測定の最小測距深度に相当し、前記干渉電気信号をデジタル化する前記手段のナイキストサンプリング周波数より大きい、請求項18に記載の装置。
【請求項22】
前記干渉電気信号の最小周波数は、前記対象物までの距離測定の最大測距深度に相当する、請求項21に記載の装置。
【請求項23】
光ファイバ、バルク光学系、集積光回路、または光学素子の任意の組み合わせを用いて前記装置を実施する工程をさらに備える、請求項18に記載の装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、光による検出(以降、光検出と呼ぶ)及び測距システムに関し、特に、距離および速度を測定するために光干渉装置およびその方法を利用する光検出および測距システムに関する。
【背景技術】
【0002】
LiDAR(光検出および測距)は、光波を使用して対象物の距離、角度、および速度を求めるという点で、レーダー(電波検出および測距)に類似する。LiDARは、レーザ光の戻り時間や波長の違いを利用して、対象物をデジタル3次元で表現でき、地上・空中・モバイルと幅広い用途で利用されている。LiDAR機器は、一以上のレーザ発振器、光学系、スキャナ、光検出器、信号処理装置で構成される。一以上のレーザ発振器から発生したコヒーレント光ビームは、一連の光学系を介してスキャナに転送され、対象物までの距離または対象物の速度を求めるために対象物に送信される。3次元(3D)スキャンの場合、その物理的特性を求める。光検出器は、対象物が反射したコヒーレント光を受け、このコヒーレント光を電気信号に変換する。この信号を処理して対象物の距離を求める。発振器は、パルス状のコヒーレント光を生成する。信号処理装置は、パルス光を送信した時間を記録し、さらにコヒーレント光の反射光を受信した時間を記録する。対象物の距離は、送信時間と受信時間との差を2で割って、光速を掛けたものとなる。
【0003】
振幅変調連続波(AMCW)LiDARは、位相差方式のLiDARの一種である。直接パルスを検出するのとは異なり、位相差方式のLiDARは、連続レーザ信号を発する。レーザ出射振幅を高速の無線周波数(RF)信号で変調し、出力光信号を符号化する。出射信号と反射信号の位相差を検出し、測距を行う。正弦波で変調した連続レーザ波形の位相シフトを利用して、対象物までの距離を推測することができる。
【0004】
周波数変調連続波(FMCW)LiDARは、AMCW LiDARに似ているが、変調と復調を電気的にではなく光学的に行う。FMCW LiDARは、波長可変光源と干渉計を用いて、対象物の距離を高感度で測定する。 “Comb-Calibrated Frequency-Modulated Continuous-wave Lidar, Y. Xie et al., 2020 IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Pisa, Italy, 2020, pp. 372-376, URL: https://ieeexplore.ieee.org/stamp/stamp.jsp? tp=&arnumber=9160234&isnumber=9159966に2/15/2021に掲載”は、FMCW LiDARを絶対距離の測定に非常に適したものと記載している。FMCWレーザの周波数は、キャリア信号によって線形変調され、レーザの往復飛行時間を正確に測定する。戻ってきたレーザと出射したレーザの間のうなり周波数信号を検出することにより、飛行時間を高精度に計算することができ、高精度な距離測定が可能である。
【発明の概要】
【0005】
本開示の目的は、時間-周波数領域反射率測定に基づく干渉時間(TOI)光検出及び測距(LiDAR)システムを提供することである。本TOI LiDARシステムは、時間-デジタル変換器またはデータ取得システムを使用して、干渉信号の時間遅延または干渉時間(TOI)を記録する。
【0006】
本開示の他の目的は、コヒーレント光源の小波長変調に基づくTOI LiDARシステムを提供することである。出力波長は、コヒーレント光源の動作電流または動作温度によって決まる。
【0007】
これらの目的の少なくとも1つを達成するために、TOI LiDARシステムは、変調制御装置に接続されたコヒーレント光源を有する。変調制御装置は、コヒーレント光源に転送されるパルス波長制御信号を生成するよう構成する。パルス波長制御信号は、電流変調信号でもよいし、レーザ周囲温度調整信号でもよい。パルス波長制御信号は、コヒーレント光源を変調し、パルス波長変調コヒーレント発光を発生させる。
【0008】
パルス波長変調コヒーレント発光は、干渉計への入力となる。干渉計は、パルス波長変調コヒーレント発光をサンプリング部分と参照部分とに分割するよう構成する。パルス波長変調コヒーレント発光のサンプリング部分は、測定対象物に入射するように配置する。パルス波長変調コヒーレント発光の参照部分は、TOI LiDARシステムから対象物までの距離を求めるための参照基礎となるように配置する。干渉計はさらに、パルス波長変調されたコヒーレント光をスキャナに転送するよう構成する。スキャナは、パルス波長変調コヒーレント光の第1部分を対象物に物理的に転送して、パルス変調コヒーレント光で対象物の表面を走査するよう構成する。スキャナはさらに、対象物から後方反射されたパルス波長変調コヒーレント光の一部を受光するよう構成する。後方反射されたパルス波長変調コヒーレント光をスキャナから干渉計に転送し、その後パルス波長変調コヒーレント光の参照部分と結合して光干渉光信号を形成する。
【0009】
TOI LiDARシステムは、光干渉信号を電気干渉信号に変換するよう構成した光検出器アレイを有する。様々な実施形態において、光検出器は、偏光ダイバーシティ平衡増幅検出器(polarization-diversity balanced amplified detector)として構成する。光検出器は、光検出器への入力パワーレベルを測定する少なくとも1つのパワーモニタを有する。このパワーモニタは、対象物の距離と関連する時間遅延を有するよう変調したパワーレベルを出力する。
【0010】
TOI LiDARシステムは、電気干渉信号を受信し、デジタルデータとして電気干渉信号の振幅を表すデジタルデータにこの電気干渉信号を変換する信号処理装置を有する。この信号処理装置は、対象物からの距離に基づいて表示される撮像範囲を生成するよう構成する。表示される撮像範囲は、光干渉信号によって求められる時間遅延を計算するようにプログラムされたコンピュータシステムによって計算される。
【0011】
変調制御装置は、狭帯域コヒーレント光源の駆動電流、狭帯域光源の温度の制御、または光源から出射される光の位相の調整によって、コヒーレント光源を変調する波長変調制御信号を生成するよう構成する。他の実施形態では、変調制御装置は、干渉計のサンプルアームと参照アームとの光の間に時間遅延がある場合に、干渉を発生させるパルス位相制御信号を生成する。
【0012】
様々な実施形態において、干渉計は、光源からのコヒーレント発光の偏光状態を調整し、光干渉信号又は干渉電気信号の振幅を最大化するために用いられる偏光制御装置を備える。干渉計は、偏光制御装置からパルス波長変調コヒーレント光を受光する第1カプラを有する。このカプラは、パルス波長変調されたコヒーレント光を分割する。パルス波長変調コヒーレント光の第1部分は、少なくとも1つのサンプルアームに供給される。パルス波長変調コヒーレント光の第2部分は、参照アームに供給される。干渉計は、少なくとも一つのサンプルアームからのパルス波長変調コヒーレント光の第1部分を受光するよう接続されたサーキュレータを有する。このサーキュレータは、サンプルアームからのパルス波長変調コヒーレント光がサーキュレータに入って、次のポートから出るように構成する。通常、次のポートは、時計回りの方向にパルス波長変調コヒーレント光をスキャナへと向かわせる。スキャナは、サンプルパルス波長変調コヒーレント光を物理的に転送して対象物を走査するよう構成する。サンプリングされたパルス波長変調コヒーレント光は、測距測定を行う対象物からスキャナへと後方反射され、干渉計内のサーキュレータに転送される。その後、後方反射されたパルス波長変調コヒーレント光は、サーキュレータから第2カプラに送られる。
【0013】
干渉計の参照アームは、サンプリングアームの長さの2倍以上の長さを有する。参照アーム内のパルス波長変調コヒーレント光の第2部分は、第2カプラに印加される。参照アームで移動するパルス波長変調コヒーレント光の第2部分を、回収した後方反射パルス波長変調光と結合し、光干渉光信号を形成する。この光干渉光信号は、第2のカプラを出て、光検出器アレイに入る。
【0014】
参照アームの光路長は、システムの最大測距深度の2倍を超えて、サンプルアームの光路長よりも長い。光干渉信号の最大周波数は、システムの最小測距深度に相当する。
【0015】
光干渉信号の最大周波数は、TOI LiDARシステムの最小測距深度に相当し、データ取得および信号処理装置におけるデジタイザのナイキストサンプリング周波数よりも大きい。光干渉信号の最小周波数は、TOI LiDARシステムの最大測距深度に相当する。検出された光干渉の時間遅延は、光干渉信号の包絡線の立ち下がりエッジで測定する。
【図面の簡単な説明】
【0016】
【
図1A】本開示の原理を具現化したTOI LiDARシステムの概略図である。
【
図1B】本開示の原理を具現化したTOI LiDARシステムの概略図である。
【
図1C】本開示の原理を具現化したTOI LiDARシステムの概略図である。
【0017】
【
図2A】本開示の原理を具現化した電気的TOI測定回路のブロック図である。
【0018】
【
図2B】本開示の原理を具現化した、電気的TOI測定を行うよう構成した信号処理装置のプログラム構造を示すブロック図である。
【0019】
【
図2C】本開示の原理を具現化した参照アームのパルス入力フリンジと包絡線をプロットした図である。
【0020】
【
図2D】本開示の原理を具現化したサンプルアームの後方反射パルスフリンジと包絡線をプロットした図である。
【0021】
【
図3】本開示の原理を具現化したTOI LiDARシステムのフレームベースの速度測定方法を示す図である。
【0022】
【
図4A】本開示の原理を具現化した小信号変調器のブロック図である。
【0023】
【
図4B】本開示の原理を具現化した、小信号コヒーレント光源の概略図である。
【0024】
【
図5A】本開示の原理を具現化したSSM-TOI電気測定回路を示すブロック図である。
【0025】
【
図5B】本開示の原理を具現化した、SSM-TOI電気測定を行うよう構成する信号処理装置のプログラム構造を示すブロック図である。
【0026】
【
図6】本開示の原理を具現化した、SSM-TOIドップラー速度測定を実行するよう構成したデジタル信号処理装置のブロック図である。
【0027】
【
図7】本開示の原理を具現化した、TOIおよび飛行時間集積回路のブロック図である。
【0028】
【
図8A】本開示の原理を具現化した、SSM-TOI電気計測を採用する対象物の距離を求める方法のフローチャートである。
【0029】
【
図8B】本開示の原理を具現化した、SSM-TOI電気計測を採用する対象物のドップラー速度を求める方法のフローチャートである。
【発明を実施するための形態】
【0030】
対象物までの様々なポイントの測定距離に基づいて対象物の画像を生成するようTOI LiDARシステムを構成する。このTOI LiDARシステムは、干渉光信号から生成した電気信号の包絡線を検出する。この干渉光信号は、対象物へのサンプルアーム発光による後方反射光と、参照発光とから生成される。参照発光は、パルス波長変調されたコヒーレント光源の発光信号を分割し、参照アームに参照発光を通過させることで作成する。光干渉信号は、光検出器に転送されて電気信号に変換されデジタルデータに変換される。このデジタルデータを評価して参照発光と後方反射光の立ち下がりエッジを求め、参照発光と後方反射光との間の時間遅延を求める。その後、この時間遅延から距離を計算する。
【0031】
図1A、
図1B、
図1Cは、本開示の原理を具現化するTOI LiDARシステムの概略図である。
図1Aを参照すると、TOI LiDARシステム100は、パルス波長変調狭帯域幅光源105を備える。このパルス波長変調光源105は、単一または複数の縦モードで構成される出力スペクトルを有するパルス変調コヒーレント光を出射する。共振空洞の縦モードは、空洞内に閉じ込められた波が形成する特定の定在波パターンである。レーザでは、通常2枚以上のミラーで構成される空洞共振器で光が増幅される。空洞には、光を反射するミラー面の壁があり、定在波モードがほとんど損失なく空洞内に存在できるようになっている。縦モードは、空洞の反射面で何度も反射した後、建設的干渉によって強化された反射波の波長に相当する。それ以外の波長は相殺的干渉により抑制される。縦モードパターンでは、ノードが空洞の長さに沿って軸方向に配置される。パルス波長変調光源105は、当該技術分野で公知であり、固体レーザ、ガスレーザ、液体レーザ、または半導体レーザに分類される4種類のレーザのうちの1つとして実装される。本開示で述べる構成において、パルス波長変調光源105は、その波長または周波数が電流または温度のいずれかによって制御される半導体レーザとして示される。以下、パルス波長変調光源105の変調について説明する。
【0032】
パルス波長変調狭帯域光源105は、パルス波長変調コヒーレント光を干渉計110に出射する。パルス波長変調狭帯域幅光源105の出射光は、自由空間、光ファイバ、または光導波路を介して干渉計110に送られる。
【0033】
様々な実施形態において、干渉計110は、光ファイバ、バルク光学系、集積光回路、又はそれらのいくつかの組み合わせとして実装される。干渉計110は、パルス波長変調コヒーレント光を受光する偏光制御装置115を有する。偏光制御装置115は、光源105からのパルス波長変調コヒーレント光の偏光状態を調整し、光路155a、155bで転送される光干渉信号、または干渉電気信号162の振幅を最大化する。光源105からのパルス波長変調コヒーレント光、または偏光制御装置115を介して転送されたパルス波長変調コヒーレント光は、カプラ(coupler)120に送られる。カプラ120は、コヒーレント光を、少なくとも1つのサンプルアーム122に供給されるサンプル部分と、干渉計110内の参照アーム140に供給されるパルス波長変調コヒーレント光の参照部分とに分割する。サンプルアーム122と参照アーム140は、自由空間経路、光ファイバ、または光導波路として実装される。
【0034】
干渉計は、サンプルアーム122からのパルス波長変調コヒーレント光のサンプル部分を受光するサーキュレータ125を有する。サーキュレータ125は、パルス波長変調コヒーレント光のサンプル部分がサーキュレータ125に入って、次のポートからサンプルアーム122の一セクションへと出るように構成する。次のポートによって、通常(ただし必須ではないが)時計回りの方向にコヒーレント光をサンプルアーム122を介してスキャナ130に向かわせる。スキャナ130は、サンプルパルス波長変調コヒーレント光135を物理的に転送して対象物を走査するよう構成する。サンプリングされたパルス波長変調コヒーレント光135は、測距測定を行うための対象物から後方反射される。後方反射されたパルス波長変調コヒーレント光は、スキャナ130が受光し、サーキュレータ125に転送される。その後、後方反射されたパルス波長変調コヒーレント光は、光路145を通って第2カプラ150に転送される。この光路は、自由空間経路、光ファイバ、または光導波路として実装される。
【0035】
自由空間経路、光ファイバ、または光導波路として実装される参照アーム140は、参照アーム140の経路長がTOI LiDARシステム100の最大測距深度と一致するように追加の経路長を提供する追加の光経路142を有する。少なくとも1つのサンプルアーム122および参照アーム140からの光パルス波長変調コヒーレント光信号同士は、カプラ150内で結合され、光干渉信号を生成する。
【0036】
少なくとも1つのサンプルアーム122と参照アーム140からの各パルス波長変調コヒーレント光信号をヘテロダイン検波し、ベース信号からうなり周波数を抽出する。うなり信号は、カプラからの2つの出力において180°の位相差を有する。平衡検出器160は、各入力チャネルからの信号を減算して、うなり信号である干渉信号を抽出する。
【0037】
この光干渉信号は、自由空間経路、光ファイバ、または光導波路として実装された光路155aおよび155bに印加される。光干渉信号は、光経路155aおよび155bに印加され、平衡光検出器160に転送されて、光経路155aおよび155bからの光干渉信号が干渉電気信号162に変換される。
【0038】
干渉電気信号162は、平衡光検出器160によって生成され、信号処理装置165内のデータ取得回路に転送され、そこで干渉電気信号162がデジタルデータに変換される。光干渉信号の最大周波数は、TOI LiDARシステムの最小測距深度に相当する。光干渉信号の最大周波数は、データ取得または信号処理装置165におけるデジタイザのナイキストサンプリング周波数よりも大きい。
【0039】
光路155a、155bに印加される光干渉信号の最小周波数は、TOI LiDARシステム100の最大測距深度に相当する。検出された光干渉の時間遅延は、光干渉信号の包絡線の立ち下がりエッジで測定する。
【0040】
その後、デジタルデータをコンピュータ170に転送し、さらに処理および表示する。いくつかの実施形態において、信号処理装置165は、単一のユニットとしてコンピュータ170と一体化してもよい。
【0041】
様々な実施形態では、コンピュータ170は、変調/走査制御装置175に接続される。他の実施形態では、コンピュータ170を変調/走査制御装置175と一体化する。変調/走査制御装置175は、コヒーレント光源105に印加する変調制御信号177の変調度、周波数、および形状を決める変調サブ回路を有する。変調/走査制御装置175はさらに、変調/走査同期信号179を信号処理装置165およびスキャナ130に提供する走査制御回路を有する。この走査制御回路は、スキャナ130に印加する適切な変調/走査同期信号179を生成するのに使用する所望の走査パターンを作成する。
【0042】
スキャナ130は、サンプルパルス波長変調コヒーレント光135を分散させて、TOI測定に基づく画像を形成する1次元または2次元スキャナとして実装してもよい。一次元走査パターンは、時間的に線形または非線形であってもよく、一方向または双方向であってもよい。TOI LiDARシステム100のいくつかの実装では、2次元走査パターンは、時間的に線形であっても非線形であってもよい。ラスタースキャン、スパイラルスキャンなど、測定情報を収集するためのパターンであってもよい。スキャナ130は、機械的に検流計ミラー、微小電気機械システム(MEMS)、圧電アクチュエータとして、または光学的に音響光学(AO)偏向器を備えて、またはソリッドステート式のスキャナとして実現してもよい。測定情報を収集するために必要な走査動作を提供するという本開示の原理に沿った他の方法があってもよい。
【0043】
図1Bを参照すると、このTOI LiDARシステム100は、
図1Aと同じ構造を有するが、パルス波長変調コヒーレント光の第2の部分が参照アーム200に印加される。自由空間経路、光ファイバ、または光導波路として実装される参照アーム200の光ファイバケーブルは、参照アーム200の光路長がTOI LiDARシステム100の最大測距深度と一致するように追加の光路142を有する。参照アーム200内のパルス波長変調コヒーレント光は、第2サーキュレータ210の入力ポートに印加される。パルス波長変調コヒーレント光は、第2サーキュレータ210の入出力ポートから参照アーム200の追加セグメントに送信される。コヒーレント光は、ミラー215に入射する。ミラー215は、コヒーレント光に遅延を与えるが、いくつかの実施形態では、光遅延線で置き換えられる。ミラー215は、コヒーレント光を第2サーキュレータ210に直接反射して戻し、カプラ150に導く。ミラーが反射したコヒーレント光は、後方反射したパルス波長変調コヒーレント光と結合され、光干渉信号を形成する。ミラー215は、TOI LiDARシステム100の最大範囲に相当する参照像平面として機能する。ミラー215があれば、追加の経路長202が第2サーキュレータ210とミラー215との間に位置する場合、光の二重通過によって追加の経路長202の長さを半分にすることができる。ミラー215によって、コストダウンと省スペース化が可能になる。
【0044】
ミラー215を光遅延線に置き換える場合、参照アーム全経路長の微調整の自由度を高めることができる。遅延の調整可能な範囲は通常センチメートルのオーダーであるため、全体の撮像範囲を変更するというよりは、主にシステム変動の小さな変更に対応するためである。
【0045】
光干渉信号は、自由空間経路、光ファイバ、または光導波路として実装された光路155aおよび155bに印加される。上述のように、光干渉信号は、光経路155aおよび155bに送られ、平衡光検出器160に転送されて、光経路155aおよび155bからの光干渉信号が干渉電気信号162に変換される。
【0046】
いくつかの実装では、
図1Aおよび
図1Bの参照アーム140、200が、サンプルアーム103より長い光路長を有してもよい。サンプルアーム122と参照アーム140、200からのパルス波長変調コヒーレント光信号が干渉するタイミングは、干渉包絡線の立ち下がりエッジとなる。様々な実施形態において、参照アーム140及び200は、サンプルアーム122よりも短い光路長を有してもよい。サンプルアーム122と参照アーム140および200からのパルス波長変調コヒーレント光信号の干渉のタイミングの発生は、干渉包絡線の立ち上がりエッジとなる。
【0047】
図1Cを参照すると、このTOI LiDARシステム100は、
図1Aと同じ構造を有するが、参照アーム140のパルス波長変調コヒーレント光の第2部分は、第1カプラ120を出て第3カプラ300に入射する。参照アーム140は、自由空間経路、光ファイバ、または光導波路として実装される。第3カプラ300は、パルス波長変調コヒーレント光の第2部分を2つのパルス波長変調コヒーレント光ビームにさらに分割する。パルス波長変調コヒーレント光ビームの第2の部分のうち第1部分は、同様に自由空間経路、光ファイバ、または光導波路として実装される第2の参照アーム305に印加される。第2参照アーム305のパルス波長変調コヒーレント光ビームの第2の部分のうち第2部分は、掃引線形較正装置315に印加される。
【0048】
掃引線形較正装置315は、コヒーレント光源105の波長掃引の線形性を較正するための電気信号を発生するマッハツェンダー干渉計やファブリペローフィルタである。波長変調が光周波数領域で線形でない場合、掃引線形較正装置315が、マッハツェンダー干渉計またはファブリペローフィルタのいずれかからの固定経路長差から干渉信号を生成する。一般的には、光検出器や平衡検出器を用いて電気信号を発生させる。そのゼロ交差タイミングは、光周波数領域において等間隔に対応し、信号処理装置165内のデータ取得システムに光クロックを提供する。掃引線形較正装置315は、平衡検出器160で検出された干渉信号162を較正する。掃引線形較正装置315の出力は、信号処理装置165に転送される。
【0049】
参照アーム305の第2パルス波長変調コヒーレント光ビームは、第2カプラ150に印加される。上記のように、後方反射されたコヒーレント光は、カプラ150に誘導される。参照アーム305内の参照コヒーレント光は、後方反射したコヒーレント光と結合され、光干渉信号を形成する。光干渉信号は、自由空間経路、光ファイバ、または光導波路として実装された光路155aおよび155bに印加される。上述のように、光干渉信号は、光経路155aおよび155bを介して転送され、平衡光検出器160に転送されて、光経路155aおよび155bからの光干渉信号が干渉電気信号162に変換される。
【0050】
図2Aは、本開示の原理を具現化した電気TOI測定回路のブロック図である。平衡検出器160が生成した
図1A、
図1B、
図1Cの干渉電気信号162は、包絡線検出器400で受信され、干渉電気信号162の包絡線405に変換される。包絡線検出器400は、無線周波数(RF)電力検出器、二乗平均平方根(RMS)検出器、または周波数復調器として実装される。無線周波数(RF)電力検出器、二乗平均平方根(RMS)検出器、または周波数復調器は、当技術分野で知られており、市販の装置である。無線周波数(RF)電力検出器、二乗平均平方根(RMS)検出器、または周波数復調器は、干渉電気信号162中の高周波成分を除去することで干渉電気信号162の包絡線を識別する。
【0051】
包絡線信号405は、エッジ検出器410に転送される。エッジ検出器410があるパルスイベントを決定し、エッジ検出器の出力410にそのパルスイベントを配置する。パルスイベントとは、包絡線信号405の立ち上がりエッジまたは立ち下がりエッジを示すものである。エッジ検出器410は、エッジ-グリッチ変換器、XORゲート及び遅延回路、微分回路等として実現される。エッジ-グリッチ変換器、XORゲートおよび遅延回路、微分回路も同様に当技術分野で知られており、市販されている。
【0052】
エッジ検出器の出力415は、時間-デジタル変換器420の入力と接続される。時間-デジタル変換器420は、時間差信号を生成し、これを時間-デジタル変換器420の出力430に転送する。この時間差信号は、パルスイベント405およびパルスイベント425間の立ち上がりエッジまたは立ち下がりエッジの時間を示す。パルスイベント425は、変調/走査制御装置175から転送された光源変調信号の立ち上がりエッジまたは立ち下がりエッジに対応する。パルスイベント425は、時間間隔をカウントする際に、時間-デジタル変換器420を起動するためのトリガとなる。エッジ検出器410のパルス出力415によって、時間-デジタル変換器420による時間間隔のカウントを終了させるためのパルスイベントが得られる。時間-デジタル変換器420の出力430における一連の時間差信号は、コンピュータ170が表示する画像を形成するための深度測定値に変換される。
【0053】
図2Bは、本開示の原理を具現化した信号処理装置のプログラム構造を示すブロック図である。平衡検出器160が生成する
図1A、
図1B、
図1Cの干渉電気信号162は、データ取得モジュール440でデジタル化される。データ取得モジュール440は、変調/走査制御装置175からの変調/走査同期信号179によってトリガされる。干渉電気信号がデジタル信号442に変換され、データ取得モジュール440の出力に配置される。干渉電気信号162の最大周波数は、TOI LiDARシステム100の最小測距深度に相当し、データ取得モジュール440のデジタイザのナイキストサンプリング周波数よりも大きい。干渉電気信号の最小周波数は、TOI LiDARシステム100の最大測距深度に相当する。検出された干渉電気信号162の時間遅延は、干渉電気信号162の包絡線の立ち下がりエッジで測定される。
【0054】
デジタル信号442は、信号処理装置165によって実行される包絡線検出器プロセス445によって処理され、デジタル干渉電気信号442の包絡線信号447を求める。包絡線検出器プロセス445は、デジタル信号442のヒルベルト変換の絶対値をとることによって実行される。次に、エッジ検出プロセス450によって包絡線信号447を処理し、干渉電気信号の発生タイミングを識別し、包絡線信号447と変調/スキャン同期信号179の立ち上がりエッジまたは立ち下がりエッジの間の時間差457を計算することができる。
【0055】
図2Cは、本開示の原理を具現化した参照アームのパルス入力フリンジ(干渉縞)460と包絡線465をプロットした図である。
図2Cは、ゼロ(0)メートル位置で対象物を検出するプロトタイプTOIシステム100の干渉電気信号の例である。
図2Dは、本開示の原理を具現化したサンプルアームの後方反射パルスフリンジ470と包絡線475をプロットした図である。
図2Dは、180メートル位置で対象物を検出するプロトタイプTOIシステム100の干渉電気信号の例である。
図2Aのエッジ検出器410または
図2Bのエッジ検出器プロセス450は、参照アーム460の包絡線の立ち下がりエッジt
0の時間と、サンプルアーム475の包絡線の立ち下がりエッジt
1の時間とを求める。カウンタ420またはカウンタプロセス455は、参照アームの立ち下がりエッジ時間t
0とサンプルアームの立ち下がりエッジ時間t
1との間の時間間隔をカウントする。測定する対象物までの距離は、次の式で求める。
距離=c*(t
0-t
1)
ただし、cは光速を、t
0は、参照アームの立ち下がりエッジ時間を、t
1は、サンプルアームの立ち下がりエッジ時間を示す。
一連の時間差457は、深度情報に変換され、コンピュータ170が表示する画像を形成することができる。
【0056】
図3は、本開示の原理を具現化したTOI LiDARシステムのフレームベースの速度測定方法を示す図である。各フレーム490a、490b、・・・、490m、490m+1、・・・、490y、490zは、
図1A、
図1B、
図1Cの平衡光検出器160が取り込んだものであり、データ495nおよび495m+1を表す。データ495nおよび495m+1は、信号処理装置165に転送され、
図2Aおよび
図2Bに記載したように処理されて、データの立ち上がりエッジまたは立ち下がりエッジを求める。このように、データの立ち上がりエッジまたは立ち下がりエッジの判定により、データ495nと495m+1間の時間差が得られる。次に、データ495nと495m+1間の距離を、データ495nと495m+1の間の時間差(t
m+1-t
m)として求める。データ495nと495m+1の間の時間差(t
m+1-t
m)に、光路155aおよび155bに印加した光干渉信号のサンプリングのフレームレートを掛けて、測定対象物の速度を求める。
【0057】
図4Aは、本開示の原理を具現化した
図1A、
図1B、および
図1Cの変調ドライバに組み込まれた小信号変調器のブロック図である。小信号変調器は、DC電圧源V
DCおよび変調電圧V
MODを受信するよう接続された加算回路500を有する。加算回路500は、DC電圧源V
DCと変調電圧V
MODとを加算合成し、変調信号505を形成する。変調信号505は、電圧源のV
DCの電圧よりも小さい振幅を有し、方形波、三角波、正弦波、サメ歯状波、または任意の波形、さらにはこれらの波形の組み合わせを含む波形のグループから選択される。変調信号505は、レーザドライバ510に印加される。変調信号505の電圧は、コヒーレント光源105を駆動するために電流に変換される。あるいは、変調信号505を変換した電流は、コヒーレント光源105のレーザダイオードの温度を安定させるために用いられる熱電冷却装置に印加される。熱電冷却装置を介して変調電流を投入することにより、コヒーレント光源105のレーザダイオードの温度が変化する。コヒーレント光源105のレーザダイオードは、ダイオード温度を監視するためのサーミスタを内蔵している。これによって、熱電冷却装置とサーミスタとによって、温度監視と正確な温度変調とをもたらす制御ループを形成できる。
【0058】
コヒーレント光源105は、コヒーレント光信号520を干渉計に出射する。
図1A、
図1B、
図1Cの参照アーム140、200、305とサンプルアーム122の間に光路長の差がある場合には、光干渉を導入するように波長/光周波数の波形変調を選択する。
【0059】
図4Bは、本開示の原理を具現化した、
図4Aに記載の小信号変調コヒーレント光源の概略図である。電源電圧源V
DCは、第1PMOSトランジスタTX1のソースに印加される。第1トランジスタTX1のドレインは、コヒーレント光源LD1(レーザダイオード1)(
図1A、
図1B、および
図1Cの105)に接続する。第1トランジスタTX1のゲートは、デジタル変調信号V
DMODによって制御される。コヒーレント光源LD1は、第2トランジスタTX2のソースに接続され、そのゲートもデジタル変調信号V
DMODによって制御される。第2PMOSトランジスタTX2のドレインは、第1NMOSトランジスタTX3のソースに接続され、そのゲートはアナログ変調信号V
AMODによって制御され、そのドレインは抵抗Rに接続され、抵抗Rは共通グランドに接続される。デジタル変調信号V
DMODがhighおよびlowであれば、それぞれ光源410をオンおよびオフとすることができる。デジタル変調信号V
DMODがhighであると、アナログ変調信号V
AMODは、光源LD1に小信号変調を提供することができる。光源LD1は、インバータINV1により短い遷移時間で停止させることができる。インバータINV1は、デジタル変調信号V
DMODの反転と、第3PMOSトランジスタTX4と第2NMOSトランジスタTX5のゲートを制御するために使用する。第3PMOSトランジスタTX4のソースと第2NMOSトランジスタTX5のドレインは、光源LD1に接続される。第3PMOSトランジスタTX4のドレインと第2NMOSトランジスタTX5のソースはグランドに接続される。デジタル変調信号V
DMODがhighからlowに遷移する間、第3PMOSトランジスタTX4と第2NMOSトランジスタTX5がオンとなり、光源LD1内の電流を直ちに排出するので、TOI用途向けの短い遷移時間が生成される。
【0060】
図5Aは、本開示の原理を具現化したSSM-TOI電気測定回路を示すブロック図である。平衡検出器160から発生した干渉電気信号162は、周波数-電圧変換器525で受信される。干渉電気信号162の周波数は、周波数-電圧変換器525の出力530で電圧に変換される。この電圧は、干渉電気信号162の周波数に比例する。周波数-電圧変換器525は、FM復調器、周波数検出器、または当技術分野で知られている任意の周波数-電圧変換回路で形成される。出力530の電圧レベルが、エッジ検出器535の出力540にパルスを発生させるエッジ検出器535への入力となる。このパルスは、立ち上がりエッジ、すなわち周波数-電圧変換器525の出力530における電圧レベルの立ち上がりエッジ、または立ち下がりエッジに相当する。エッジ検出器535は,エッジ-グリッチ変換器,XORゲートと遅延回路,微分回路,または当技術分野で既知の任意のエッジ検出回路によって形成される。時間-デジタル変換器550は、時間-デジタル変換器550の出力555で時間差信号Δ
TDを生成する。この時間差信号Δ
TDは、エッジ検出器535の出力540における立ち上がりエッジまたは立ち下がりエッジのパルスと、変調/走査制御装置175からの変調/走査同期信号179との差分である。一連の時間差507は、深度に変換され、コンピュータ170が表示する画像を形成する。
【0061】
図5Bは、本開示の原理を具現化した、SSM-TOI電気測定を行うよう構成する信号処理装置175のプログラム構造を示すブロック図である。平衡検出器160が生成した干渉電気信号162は、変調/走査制御装置175からの変調/走査同期信号179によってトリガされたデータ取得モジュール605によってデジタル化される。干渉電気信号162は、出力565で干渉デジタル信号に変換される。干渉電気信号162の最大周波数は、TOI LiDARシステム100の最小測距深度に相当し、データ取得モジュール605のデジタイザのナイキストサンプリング周波数よりも大きい。
【0062】
光路155a、155bに印加される光干渉信号の最小周波数は、TOI LiDARシステム100の最大測距深度に相当する。検出された電気干渉162の時間遅延は、干渉電気信号162の包絡線の立ち下がりエッジで測定される。干渉デジタル信号は、周波数検出器プロセス570によって処理されて、周波数検出器プロセス570の出力575でその瞬時周波数値を識別する。周波数検出器プロセス570は、短時間フーリエ変換、ウェーブレット変換、または当技術分野で知られている別の周波数検出器プロセスなどの方法を実行する。次に、周波数検出器プロセス570の出力575での瞬時周波数値は、エッジ検出器プロセス585によって処理されて、エッジ検出器プロセスの出力590で、干渉電気信号162の立ち上がりエッジまたは立ち下がりエッジのタイミングの発生および時間差ΔTDを識別する。時間差ΔTDは、出力575の瞬時周波数値の立ち上がりエッジまたは立ち下がりエッジと変調/走査同期信号179との間の時間として求める。一連の時間差ΔTDは、深度に変換され、コンピュータ170が表示する画像を形成する。
【0063】
図6は、本開示の原理を具現化した、SSM-TOIドップラー速度測定を実行するよう構成したデジタル信号処理装置のブロック図である。
図6は、データ取得及び信号処理装置165が利用する、
図1Cの掃引線形較正装置315によって実行される掃引線形化補正を示す図である。TOI LiDARシステム100がSSM-TOIモードで動作する場合、測定対象物の速度情報は、干渉電気信号162に符号化される。平衡光検出器160が生成した干渉電気信号162は、変調ドライバ175からの変調/走査同期信号179および光周波数較正クロック600によってトリガされたデータ取得モジュール605によってデジタル化され、干渉電気信号162をデータ取得モジュール605の出力607でデジタル信号に変換する。このデジタル信号は、光周波数空間において線形である。干渉電気信号162の最大周波数は、TOI LiDARシステム100の最小測距深度に相当し、データ取得モジュール605のナイキストサンプリング周波数よりも大きい。
【0064】
干渉電気信号162の最小周波数は、TOI LiDARシステム100の最大測距深度に相当する。検出された干渉電気信号162の時間遅延は、干渉電気信号162の包絡線の立ち下がりエッジで測定される。光周波数較正クロック600は、マッハツェンダー干渉計、ファブリペロー共振器、エタロン共振器、または光周波数較正クロック600の生成に適した他の任意の干渉計または共振器から生成される。デジタル信号607は、瞬時周波数値を求めるための周波数検出器プロセス610への入力となる。瞬時周波数値は、周波数検出器プロセス610の出力611に配置される解(solution)である。様々な実施形態において、データ取得モジュール605の出力607におけるデジタル信号が光周波数空間においてそもそも線形である場合、光周波数較正クロック600は必要ではない。いくつかの実装形態では、周波数検出器は、短時間フーリエ変換、ウェーブレット変換、または他の適切な周波数検出器プロセスとして実現され得る。次に、周波数検出器プロセス610の出力611での瞬時周波数値は、干渉の発生タイミングを識別するために、エッジ検出器プロセス615によって処理される。次に、エッジ検出器プロセス615は、瞬時周波数値の立ち上がりエッジまたは立ち下がりエッジと変調/スキャン同期信号179との間の時間差ΔTDを計算し、その後、周波数検出器プロセス610の出力620として時間差ΔTDを配置する。
【0065】
SSM-TOIドップラー速度測定の他の実施態様では、データ取得モジュール605の出力607におけるデジタル化された干渉電気信号が、対象物の移動速度を計算するためのドップラー速度計算プロセス625への入力となる。対象物の移動速度は、ドップラー速度算出プロセス625の出力630である。ドップラー速度計算プロセス625の1つの実施形態において、ドップラー速度計算プロセス625は、測定対象物の移動速度に比例する連続する前方掃引と後方掃引との干渉電気信号162の周波数の時間差ΔTDを測定することによって実現される。変調/走査同期信号179の対称性により、測定誤差を最小限に抑えることができる。エッジ検出器620の出力における一連の時間差ΔTDと測定対象物の移動速度とをそれぞれ深度と速度に変換し、コンピュータ170が表示する画像を形成することができる。SSM-TOIドップラー速度測定のいくつかの実装形態では、干渉電気信号162においてドップラー周波数シフトにより導入される速度を少なくとも1つのローパスフィルタを用いて直接抽出してもよい。周波数シフトを検出し、デジタル信号処理を必要とせずに速度電気信号に変換することができる。
【0066】
図7は、本開示の原理を具現化する、干渉時間および飛行時間集積回路のブロック図である。平衡光検出器160から発生した干渉電気信号162は、包絡線検出器650に転送される。包絡線検出器650は、包絡線検出器650の出力652に印加される干渉電気信号162の包絡線信号を求める。包絡線検出器650は、無線周波数(RF)電力検出器、二乗平均平方根(RMS)検出器、または周波数復調器として実装される。次に、干渉電気信号162の包絡線信号が第1エッジ検出器655を通過する。第1エッジ検出器655は、第1エッジ検出器655の出力657において、包絡線検出器650の出力657における干渉電気信号162の包絡線信号の立ち上がりエッジ又は立ち下がりエッジに対応する第1パルス信号を生成する。エッジ検出器655は,エッジ-グリッチ変換器,XORゲートと遅延回路,微分回路,または当技術分野で既知の任意のエッジ検出回路によって形成される。
【0067】
後方反射コヒーレント光145からの電気信号が平衡検出器160のモニタチャネルから抽出され、後方反射電気信号145を形成する。モニタチャネルからの後方反射電気信号145は、後方反射電気信号の145のパワースペクトルであり、包絡線信号とみなすことができる。後方反射電気信号145は、第2エッジ検出器660の入力である。第2エッジ検出器660は、第2エッジ検出器660の出力662に第2パルス信号を発生する。
【0068】
第1エッジ検出器655の出力657の第1パルス信号、第2エッジ検出器660の出力662の第2パルス信号、および変調/走査同期信号179が、マルチチャネル時間-デジタル変換器665に印加される。マルチチャネル時間-デジタル変換器665は、時間-デジタル変換器665の出力670に第1の時間差信号を生成する。第1時間差信号ΔTD1は、第1のパルス信号の立ち上がりエッジまたは立ち下がりエッジと、光源変調/スキャン同期信号179の立ち上がりエッジまたは立ち下がりエッジに対応する変調/スキャン同期信号179との間の時間をデジタル化したものである。
【0069】
マルチチャネル時間デジタル変換器665は、第2エッジ検出器660の出力662における第2パルス信号の立ち上がりエッジまたは立ち下がりエッジと、光源変調の立ち上がりエッジまたは立ち下がりエッジに対応する変調/走査同期信号179との間の第2時間差信号ΔTD2を生成する。第1時間差信号ΔTD1と第2時間差信号ΔTD2とを平均化または加重平均化する。平均化または加重平均化された第1時間差信号ΔTD1と第2時間差信号ΔTD2は深度に変換され、コンピュータ170が表示する画像を形成する。
【0070】
図8Aは、本開示の原理を具現化する、SSM-TOI電気計測を採用した対象物の距離を求める方法のフローチャートである。レーザ光ビームを発生する(800)。レーザ光ビームを波長変調信号または周波数変調信号で変調し(805)、レーザ光ビームの波長または周波数を調整する。次に、レーザ光ビームを偏光して(810)、レーザ光の偏光状態を調整し、光干渉信号または干渉電気信号の振幅を最大化する。
【0071】
レーザ光ビームの第1部分を、サンプリング光ファイバケーブルに結合する(815)。レーザ光ビームの第2部分を、参照光路に結合する(820)。変調レーザ光線源からの距離を求める対象物の場所でレーザ光ビームの第1部分を走査する(825)。
【0072】
レーザコヒーレント光ビームの第1部分の一部を、測定対象物から後方反射させて受光する(830)。レーザ光ビームの第1部分の後方反射部分を、レーザ光ビームの第2の部分と結合し(835)、光干渉コヒーレント光信号を形成する。光干渉コヒーレント光信号を平衡光検出器に送信し(840)、光干渉コヒーレント光信号を振動する電気干渉信号に変換する(845)。振動する電気干渉信号をデジタル化する(850)。干渉電気信号の最大周波数は、TOI LiDARシステムの最小測距深度に相当し、デジタル化のナイキストサンプリング周波数よりも大きい。干渉電気信号162の最小周波数は、TOI LiDARシステム100の最大測距深度に相当する。
【0073】
デジタル電気干渉信号の包絡線が包絡線検出プロセスを経て、デジタル電気干渉信号の包絡線を識別する(855)。デジタル電気干渉信号の包絡線の立ち上がりエッジまたは立ち下がりエッジの時間を求める(860)。デジタル電気干渉信号の包絡線の立ち上がりまたは立ち下がりエッジと変調/走査同期信号の時間差を求め(865)、測定対象物までの距離を算出する(870)。
【0074】
図8Bは、本開示の原理を具現化する、SSM-TOI電気計測を採用した対象物のドップラー速度を求める方法のフローチャートである。SSM-TOI電気測定を利用して対象物のドップラー速度を求める方法は、
図9Aの方法ステップを反復して実行すること(875)から始まる。対象物のドップラー速度を、距離の時間変化として求める(880)。
【0075】
特に好ましい実施形態を参照して本開示を例示および説明してきたが、本開示の精神及び範囲から逸脱することなく、形態及び詳細における様々な変更がなされ得ることを当業者であれば理解されるであろう。特に、
図1A、
図1B、または
図1CのTOI LiDARシステム100は、光ファイバ、バルク光学系、集積光回路、または当技術分野で知られている光学素子の任意の組み合わせとして実装することができる。
【外国語明細書】