IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社デンソーの特許一覧

<>
  • 特開-高圧ポンプ 図1
  • 特開-高圧ポンプ 図2
  • 特開-高圧ポンプ 図3
  • 特開-高圧ポンプ 図4
  • 特開-高圧ポンプ 図5
  • 特開-高圧ポンプ 図6
  • 特開-高圧ポンプ 図7
  • 特開-高圧ポンプ 図8
  • 特開-高圧ポンプ 図9
  • 特開-高圧ポンプ 図10
  • 特開-高圧ポンプ 図11
  • 特開-高圧ポンプ 図12
  • 特開-高圧ポンプ 図13
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022174325
(43)【公開日】2022-11-22
(54)【発明の名称】高圧ポンプ
(51)【国際特許分類】
   F02M 59/36 20060101AFI20221115BHJP
   F02M 51/00 20060101ALI20221115BHJP
   F02M 59/46 20060101ALI20221115BHJP
   F02M 59/34 20060101ALI20221115BHJP
【FI】
F02M59/36 E
F02M51/00 F
F02M59/46 Y
F02M59/34
【審査請求】有
【請求項の数】2
【出願形態】OL
(21)【出願番号】P 2022152812
(22)【出願日】2022-09-26
(62)【分割の表示】P 2020185001の分割
【原出願日】2013-01-22
(71)【出願人】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(74)【代理人】
【識別番号】110003214
【氏名又は名称】弁理士法人服部国際特許事務所
(72)【発明者】
【氏名】冨田 浩邦
(72)【発明者】
【氏名】宮本 裕
(57)【要約】
【課題】 燃料が加圧されるポンプ室への燃料の吸入効率を高めることの可能な高圧ポンプを提供する。
【解決手段】 吸入弁41は、導入通路13の内壁に形成された弁座62に着座及び離座する弁座当接部を有する弁本体42、弁本体42の移動方向に延びる筒状の第1案内部43を有し、ポンプ室12と導入通路13とを連通及び遮断する。ストッパ50は、第1案内部43に摺接する筒状の第2案内部52を有し、吸入弁41の反弁座側に当接し、吸入弁41の開弁方向の移動を制限する。バルブ室44は、ストッパ50と吸入弁41との間に形成され、第1スプリング45を収容する。吸入弁41とストッパ50とが当接しているとき、吸入弁41の反弁座側であって第1案内部43よりも径方向外側の第1対向面と、ストッパ50の弁座62側であって第1対向面に対向する第2対向面と、の間の第1空間を経由して、バルブ室44とポンプ室12とが連通している。
【選択図】図3
【特許請求の範囲】
【請求項1】
プランジャ(20)と、
前記プランジャの往復移動により燃料が加圧されるポンプ室(12)、及びそのポンプ室に連通する導入通路(13)を有するポンプボディ(10)と、
前記導入通路の内壁に形成された弁座(62)に着座及び離座する弁座当接部を有する弁本体(42、421)、及びその弁本体の移動方向に延びる筒状の第1案内部(43、431)を有し、前記ポンプ室と前記導入通路とを連通及び遮断する吸入弁(41、411)と、
前記吸入弁の前記第1案内部に摺接する筒状の第2案内部(52、521)を有し、前記吸入弁の反弁座側に当接し、前記吸入弁の開弁方向の移動を制限するストッパ(50、501)と、
前記ストッパと前記吸入弁との間に形成され、前記吸入弁を前記弁座側へ付勢する第1スプリング(45)を収容するバルブ室(44)と、を備え、
前記吸入弁と前記ストッパとが当接しているとき、
前記吸入弁の反弁座側であって、前記第1案内部よりも径方向外側の第1対向面と、
前記ストッパの前記弁座側であって、前記第1対向面に対向する第2対向面と、の間の第1空間を経由して、前記バルブ室と前記ポンプ室とが連通している高圧ポンプ(1)。
【請求項2】
前記吸入弁は、内径が前記第1案内部の内径より小さく前記第1スプリングの一端が当接する第1ばね座を有し、
前記ストッパは、内径が前記第1案内部の内径より小さく前記第1スプリングの他端が当接する第2ばね座を有する請求項1に記載の高圧ポンプ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高圧ポンプに関する。
【背景技術】
【0002】
従来、内燃機関に燃料を供給する燃料供給系統に設けられ、燃料を加圧する高圧ポンプが知られている。高圧ポンプは、内燃機関のカムシャフトの回転により往復駆動するプランジャによって、導入通路からポンプ室に燃料を吸入、加圧し、加圧した燃料を吐出する。
特許文献1に記載の高圧ポンプは、導入通路に有底筒状の吸入弁が設けられ、その吸入弁のポンプ室側に、吸入弁のリフト量を規定するストッパが設けられている。吸入弁の内側には、ストッパの当接面から突出した凸部が挿入されている。ストッパの凸部は、吸入弁の開弁時および閉弁時の移動を案内する。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2012-082809号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1に記載の高圧ポンプは、吸入弁の内壁とストッパの凸部との間に形成されたバルブ室の燃料が吸入弁の外側に排出されにくい構造になっている。そのため、吸入弁の開弁時、バルブ室の燃料が流体抵抗となり、吸入弁の開弁動作が遅くなると、カムシャフトの回転数或いはプランジャの1ストロークに対する導入通路からポンプ室への燃料の吸入量、即ち、吸入効率が低下する。そのため、内燃機関のカムシャフトが高速で回転し、プランジャの往復移動速度が速くなると、高圧ポンプの燃料吐出量が減少する不具合がある。
本発明は、上記課題に鑑みてなされたものであり、燃料が加圧されるポンプ室への燃料の吸入効率を高めることの可能な高圧ポンプを提供することを目的とする。
【課題を解決するための手段】
【0005】
本発明では、ポンプボディは、プランジャの往復移動により燃料が加圧されるポンプ室、及びそのポンプ室に連通する導入通路を有する。吸入弁は、導入通路の内壁に形成された弁座に着座及び離座する弁座当接部を有する弁本体、及びその弁本体の移動方向に延びる筒状の第1案内部を有し、ポンプ室と導入通路とを連通及び遮断する。ストッパは、吸入弁の第1案内部に摺接する筒状の第2案内部を有し、吸入弁の反弁座側に当接し、吸入弁の開弁方向の移動を制限する。バルブ室は、ストッパと吸入弁との間に形成され、吸入弁を弁座側へ付勢する第1スプリングを収容する。
本発明では、吸入弁とストッパとが当接しているとき、吸入弁の反弁座側であって第1案内部よりも径方向外側の第1対向面と、ストッパの弁座側であって第1対向面に対向する第2対向面と、の間の第1空間を経由して、バルブ室とポンプ室とが連通している。
【0006】
以下、この明細書において、バルブ室の燃料圧力によって吸入弁が閉弁する現象を「自閉」といい、自閉が生じる際のプランジャを駆動するカムシャフトの回転数を「自閉限界回転数」という。
【図面の簡単な説明】
【0007】
図1】本発明の第1実施形態による高圧ポンプの断面図である。
図2図1のII部分の拡大図において、吸入弁の閉弁状態を示す断面図である。
図3図1のII部分の拡大図において、吸入弁の開弁状態を示す断面図である。
図4図2のIV-IV線の断面図である。
図5】軸溝部およびクリアランスの流路断面積と燃料吐出量との関係を示すグラフである。
図6】径溝部の流路断面積と自閉限界回転数との関係を示すグラフである。
図7】第2実施形態による高圧ポンプの吸入弁の閉弁状態を示す断面図である。
図8】第2実施形態による高圧ポンプの吸入弁の開弁状態を示す断面図である。
図9図7のIX-IX線の断面図である。
図10】第3実施形態による高圧ポンプの吸入弁の開弁状態を示す断面図である。
図11図10のXI方向から見たストッパの平面図である。
図12】第4実施形態による高圧ポンプの吸入弁の開弁状態を示す断面図である。
図13図12のXIII-XIII線の断面図である。
【発明を実施するための形態】
【0008】
以下、本発明の第1実施形態を図面に基づいて説明する。
(第1実施形態)
本発明の第1実施形態を図1図6に示す。本実施形態の高圧ポンプ1は、内燃機関に燃料を供給する燃料供給系統に設けられる。燃料タンクから汲み上げられた燃料は、高圧ポンプ1により加圧され、デリバリパイプに蓄圧される。そしてデリバリパイプに接続するインジェクタから内燃機関の各気筒に噴射供給される。
【0009】
(高圧ポンプの構成)
図1に示すように、高圧ポンプ1は、ポンプボディ10、プランジャ20、ダンパ室30、電磁弁部40及び吐出弁部90などを備えている。
ポンプボディ10には、円筒状のシリンダ11が設けられている。シリンダ11には、プランジャ20が軸方向に往復移動可能に収容されている。プランジャ20のポンプボディ10から突出した端部に設けられるスプリング座21と、プランジャ20の外周のオイルシール22を保持するオイルシールホルダ23との間にスプリング24が設けられている。このスプリング24により、プランジャ20は図示しないエンジンのカムシャフト側へ付勢される。そのため、プランジャ20は、カムシャフトのカムプロファイルに従い軸方向に往復移動する。プランジャ20の往復移動により、ポンプ室12の容積が変化することで燃料が吸入、加圧される。
【0010】
次に、ダンパ室30について説明する。
ポンプボディ10には、反シリンダ側に突出する筒状の筒部31が設けられている。筒部31に有底筒状のカバー32が被さることで、ダンパ室30が形成される。
ダンパ室30には、パルセーションダンパ33、支持部材34及び波ばね35が収容されている。
パルセーションダンパ33は、2枚の金属ダイアフラムから構成され、内部に所定圧の気体が密封されている。パルセーションダンパ33は、2枚の金属ダイアフラムがダンパ室30の圧力変化に応じて弾性変形することで、ダンパ室30の燃圧脈動を低減する。
【0011】
ダンパ室30は、図示しない燃料通路を通じて図示しない燃料導入口と連通している。この燃料導入口には図示しない燃料タンクから燃料が供給される。そのため、ダンパ室30は、燃料導入口から燃料タンクの燃料が供給される。
【0012】
続いて、電磁弁部40について説明する。
電磁弁部40は、ポンプ室12とダンパ室30とを連通する導入通路13に設けられ、導入通路13の開放および遮断を制御する。電磁弁部40は、吸入弁41、ストッパ50、および電磁駆動部80などから構成される。
ポンプボディ10には、シリンダ11の中心軸と略垂直に凹部14が設けられている。凹部14の開口をコアハウジング15が覆うことで、ダンパ室30からポンプ室12までの導入通路13が区画される。
【0013】
図1図3に示すように、筒部材60、弁座部材61、吸入弁41およびストッパ50は、この順で、コアハウジング15側からポンプ室12に向かい、導入通路13に設けられている。
筒部材60は、導入通路13の内壁に設けられためねじ141に螺合されている。筒部材60をめねじ141に螺合することにより、弁座部材61およびストッパ50はポンプボディ10の段差17に押し付けられ、ポンプボディ10に固定される。
弁座部材61は、筒状に形成され、ストッパ側に環状の弁座62を有している。弁座部材61は、弁座62の外側に、反吸入弁側に凹む湾曲部63を有している。なお、上述したポンプ室12は、弁座62よりもシリンダ側で燃料が加圧される空間をいう。
【0014】
吸入弁41は、弁本体42および第1案内部43を有する。
吸入弁41の弁本体42は、円板状に形成され、弁座部材61の弁座62に着座および離座可能である。吸入弁41が弁座62に着座することで導入通路13とポンプ室12とが閉塞され、吸入弁41が弁座62から離座することで導入通路13とポンプ室12とが連通する。
吸入弁41は、弁本体42の反弁座側の端面46が、ストッパ50の当接部51に当接する。これにより、吸入弁41は、開弁方向の移動を制限される。
【0015】
吸入弁41の第1案内部43は、弁本体42から反弁座側へ筒状に延びている。第1案内部43の外周面は、ストッパ50の第2案内部52の内周面と摺接する。吸入弁41は、その第1案内部43がストッパ50の第2案内部52に案内されることにより、弁座62からの脱落または傾きが防がれ、弁座62に確実に着座または離座することが可能になる。
【0016】
図2図4に示すように、ストッパ50は、当接部51、第2案内部52、固定部53、連通路54を有し、吸入弁41の開弁方向の移動を制限する。
ストッパ50の当接部51は、円板状に形成され、弁本体42の反弁座側の端面46に当接する。
ストッパ50の第2案内部52は、当接部51から反弁座側へ筒状に延び、吸入弁41の第1案内部43の外周面と摺接する。
ストッパ50の固定部53は、当接部51から径外方向に延びて導入通路13の内壁に固定される。この固定部53は、ポンプ室12をプランジャ側のプランジャ室121と弁座側の弁座室122とに仕切っている。
【0017】
ストッパ50の固定部53には、板厚方向に通じる複数の連通路54が設けられる。連通路54は、固定部53の周方向に配設され、プランジャ室121と弁座室122とを連通する。
連通路54の内壁のうち、ストッパ50の径内方向に位置する連通路54の内壁を通る仮想円Cを図4に示す。この仮想円Cの直径D1は、図3に示すように、吸入弁41の弁本体42の外径D2よりも大きい。
【0018】
ストッパ50の第2案内部52の内壁には、軸溝部70が周方向に、例えば等間隔で4個設けられている。軸溝部70は、ストッパ50の軸方向から見て、第2案内部52の内壁から径外方向へ凸の円弧状に形成されている。
ストッパ50の当接部51の弁本体側の端面には、径溝部71および段部72が設けられている。径溝部71は、当接部51の周方向に、例えば等間隔で4個設けられている。径溝部71は、軸溝部70と連通路54とを接続するように設けられている。
段部72は、ストッパ50の当接部51の径内側に円環状に設けられている。なお、この段部72は廃止してもよい。
【0019】
吸入弁41とストッパ50との間には、バルブ室44が形成される。バルブ室44には、第1スプリング45が設けられる。第1スプリング45は、吸入弁41を弁座側に付勢している。
ポンプ室12とバルブ室44とは、上述した径溝部71、軸溝部70、及び第1案内部43と第2案内部52とのクリアランス73によって連通している。
ここで、4本の径溝部71の流路断面積を合せた面積は、第1案内部43と第2案内部52とのクリアランス73の流路断面積と4本の軸溝部70の流路断面積とを合わせた面積よりも小さい。
そのため、図3に示すように、吸入弁41が開弁状態のとき、バルブ室44とポンプ室12との間を流れる燃料の流量は、4本の径溝部71の流路断面積を合せた面積によって定まる。したがって、径溝部71の流路断面積を小さくすることで、高圧ポンプの調量行程時におけるバルブ室44への燃料流入が絞られ、バルブ室44の燃料圧力の上昇が抑制され、自閉限界回転数を高くすることが可能になる。
【0020】
一方、図2に示すように、吸入弁41が閉弁状態のとき、弁本体42の反弁座側の端面46とストッパ50の当接部51との間は全周で開いているので、バルブ室44からポンプ室12へ流れる燃料の流量は、第1案内部43と第2案内部52とのクリアランス73の流路断面積と4本の軸溝部70の流路断面積とを合わせた面積によって定まる。したがって、軸溝部70の流路断面積を大きくすることで、高圧ポンプの吸入行程時においてバルブ室44の燃料が流体抵抗となることなく吸入弁41は開弁するため、燃料の吸入効率を高めることができる。
【0021】
電磁駆動部80について説明する。
図1に示すように、コアハウジング15の内側にニードルガイド16が固定されている。ニードルガイド16は、ニードル81を軸方向に移動可能に支持している。
ニードル81は、一端が可動コア82に固定され、他端が吸入弁41に当接可能である。
ニードル81は、その外壁から径外方向に延びる係止部83が設けられている。この係止部83とニードルガイド16との間に第2スプリング84が設けられている。第2スプリング84は、第1スプリング45よりも強い力で、ニードル81をポンプ室側に付勢している。
【0022】
可動コア82は、磁性体から形成され、コアハウジング15の内側に設けられた可動コア室85に収容される。可動コア82は、軸方向に往復移動可能である。
固定コア86は、磁性体から形成され、コアハウジング15と非磁性体からなる環状部87を挟んで設けられる。
固定コア86の径外側にコネクタ88が設けられている。コネクタ88は、有底筒状のヨーク881により保持されている。コネクタ88の内側に設けられたボビン882にコイル89が巻回されている。コネクタ88の端子883を通じてコイル89に通電されると、コイル89は磁界を発生する。
【0023】
コイル89に通電していないとき、可動コア82と固定コア86とは、第2スプリング84の弾性力により互いに離れている。ニードル81は、ポンプ室側へ移動し、ニードル81の端面が吸入弁41を押圧する。
コイル89に通電されると、固定コア86、可動コア82、ヨーク881及びコアハウジング15によって形成される磁気回路に磁束が流れ、可動コア82が第2スプリング84の弾性力に抗し、固定コア86側に磁気吸引される。これにより、ニードル81は、吸入弁41に対する押圧力を解除する。
【0024】
次に吐出弁部90について説明する。
吐出弁部90は、吐出弁91、規制部材92、スプリング93などから構成されている。
ポンプボディ10には、シリンダ11の中心軸と略垂直に吐出通路94が形成されている。吐出弁91は、吐出通路94に往復移動可能に収容されている。吐出弁91は、弁座95に着座又は離座することで、吐出通路94を開閉する。
吐出弁91の燃料吐出口96側に設けられた規制部材92は、吐出弁91の燃料吐出口96側への移動を規制する。
スプリング93は、一端が規制部材92に当接し、他端が吐出弁91に当接し、吐出弁91を弁座側へ付勢している。
【0025】
ポンプ室12の燃料の圧力が上昇し、ポンプ室側の燃料から吐出弁91が受ける力がスプリング93の弾性力と弁座95の下流側の燃料から受ける力との和よりも大きくなると、吐出弁91は弁座95から離座する。これにより、燃料吐出口96から燃料が吐出される。
一方、ポンプ室12の燃料の圧力が低下し、ポンプ室側の燃料から吐出弁91が受ける力がスプリング93の弾性力と弁座95の下流側の燃料から受ける力との和よりも小さくなると、吐出弁91は弁座95に着座する。これにより、弁座95の下流側の燃料がポンプ室12へ逆流することが防がれる。
【0026】
(高圧ポンプの作動)
次に高圧ポンプ1の作動について説明する。
(1)吸入行程
カムシャフトの回転により、プランジャ20が上死点から下死点に向かって下降すると、ポンプ室12の容積が増加し、燃料が減圧される。吐出弁91は弁座95に着座し、吐出通路94を閉塞する。
一方、吸入弁41は、ポンプ室12と導入通路13との差圧により、第1スプリング45の付勢力に抗してストッパ側へ移動し、開弁状態となる。
図2に示すように、高圧ポンプの吸入行程開始直後、バルブ室44の燃料は、軸溝部70及び第1案内部43と第2案内部52とのクリアランス73から、弁本体42の反弁座側の端面46とストッパ50の当接部51との間を通り、ポンプ室12へ流れる。このとき、径溝部71を流れる燃料は、連通路54を通りプランジャ室121へ流れる。このように、径溝部71から連通路54へ直接燃料が流れるので、バルブ室44からプランジャ室121へ流れる燃料の流体抵抗が低減する。
なお、吸入行程の前行程である吐出行程の途中からコイル89への通電は停止されているので、吸入行程において、可動コア82と一体のニードル81は、第2スプリング84の付勢力によりポンプ室側へ移動し、吸入弁41をポンプ室側へ押圧する。
吸入弁41の開弁により、ダンパ室30から導入通路13を経由し、ポンプ室12に燃料が吸入される。
【0027】
(2)調量行程
カムシャフトの回転により、プランジャ20が下死点から上死点に向かって上昇すると、ポンプ室12の容積が減少する。このとき、所定の時期まではコイル89への通電が停止されているので、第2スプリング84の付勢力によりニードル81が吸入弁41をポンプ室側へ押圧し、吸入弁41は開弁状態を維持する。
吸入弁41の開弁により、ポンプ室12と導入通路13とは連通した状態が維持される。このため、一度ポンプ室12に吸入された低圧燃料が、導入通路13を経由し、ダンパ室30へ戻される。したがって、ポンプ室12の圧力は上昇しない。
図3に示すように、高圧ポンプの調量行程時、径溝部71は、ポンプ室12からバルブ室44への燃料の流れを規制し、バルブ室44の燃料圧力の上昇を抑制する。したがって、バルブ室44の燃料圧力が吸入弁41に作用することによって発生する吸入弁41の自閉力は小さいものとなる。
【0028】
(3)吐出行程
プランジャ20が下死点から上死点に向かって上昇する途中の所定の時刻に、コイル89へ通電される。するとコイル89に発生する磁界により、固定コア86と可動コア82との間に磁気吸引力が発生する。この磁気吸引力が第2スプリング84の弾性力と第1スプリング45の弾性力との差よりも大きくなると、可動コア82とニードル81は固定コア側へ移動する。これにより、吸入弁41に対するニードル81の押圧力が解除される。吸入弁41は、第1スプリング45の弾性力、及びポンプ室12からダンパ室側へ排出される低圧燃料の流れによって生ずる力により、弁座側へ移動し、閉弁状態となる。すなわち、図3の状態から図2の状態へ移行する。吸入弁41が閉弁するとき、ポンプ室12の燃料は、径溝部71、段部72、軸溝部70、および第1案内部43と第2案内部52とのクリアランス73を通り、バルブ室44へ流入する。なお、段部72は、第1案内部43と第2案内部52とのクリアランス73の全周に燃料が流入しやすくする。
【0029】
吸入弁41が閉弁した時から、ポンプ室12の燃料圧力は、プランジャ20の上昇と共に高くなる。ポンプ室12の燃料圧力が吐出弁91に作用する力が、吐出通路94の燃料圧力が吐出弁91に作用する力およびスプリング93の付勢力よりも大きくなると、吐出弁91が開弁する。これにより、ポンプ室12で加圧された高圧燃料は吐出通路94を経由して燃料吐出口96から吐出する。
なお、吐出行程の途中でコイル89への通電が停止される。ポンプ室12の燃料圧力が吸入弁41に作用する力は、第2スプリング84の付勢力よりも大きいので、吸入弁41は閉弁状態を維持する。
高圧ポンプ1は、(1)から(3)の行程を繰り返し、内燃機関に必要な量の燃料を加圧して吐出する。
【0030】
(軸溝部等の流路断面積)
図5は、軸溝部70およびクリアランス73の流路断面積を変えたときの高圧ポンプの燃料吐出量特性を示すものである。
吸入弁41の第1案内部43は、図2または図4に示す直径D3のものを使用した。つまり、吸入弁41の第1案内部43の投影面積は、π(D3/2)2mm2である。
図5において、横軸の「面積比」は、「吸入弁41の第1案内部43の投影面積」に対する「通路面積」の比である。「通路面積」とは、軸溝部70の流路断面積とクリアランス73の流路断面積とを合わせた面積である。
縦軸の「燃料吐出量」は、高圧ポンプが調量行程を経ることなく全量吐出するときのプランジャ1ストローク当たりの体積である。
【0031】
燃料に粘度の低い80℃のガソリンを使用した場合、実線Aに示すように、通路面積が12%以上で燃料吐出量が一定となる。
燃料に20℃のガソリンを使用した場合、実線Bに示すように、通路面積比が17%以上で燃料吐出量が一定となる。
燃料に粘度の高い-30℃のエタノールを使用した場合、実線Cに示すように、通路面積比が17%以上で燃料吐出量が一定となる。
この結果から、通路面積は、吸入弁41の第1案内部43の外径の投影面積に対し、17%以上が好ましい。これにより、高圧ポンプは、燃料の粘度が高い状況においても、内燃機関の高回転時における吸入効率の低下を防ぐことができる。
【0032】
なお、矢印Dで示すように、ストッパ50の第2案内部52の肉厚が薄くなることによる強度限界と、製品加工上の公差から、通路面積は、吸入弁41の第1案内部43の外径の投影面積に対し、18~24%がさらに好ましい。
【0033】
(径溝部の流路断面積)
図6は、径溝部71の流路断面積を変えたときの高圧ポンプの自閉限界特性である。
図6において、横軸の「面積比」は、「吸入弁41の第1案内部43の投影面積」に対する「径溝部面積」の比である。「径溝部面積」とは、複数、例えば4本の径溝部71の流路断面積を合わせた面積である。
縦軸の「自閉限界回転数」は、吸入弁41が自閉するカムシャフトの回転数を示している。
【0034】
図6のグラフは、燃料に粘度の高い-30℃のエタノールを使用した場合であり、径溝部面積を大きくすると自閉限界回転数は低下し、径溝部面積比が15%より大きくなると一定になる。
この結果より、径溝部面積は、吸入弁41の第1案内部43の外径の投影面積に対し、15%以下が好ましい。これにより、高圧ポンプは、燃料の粘度が高い状況においても、自閉限界回転数を高めることができる。
【0035】
なお、車両に要求される自閉限界回転数を満足するためには、ストッパ50の当接部51と吸入弁41の反弁座側の端面46とのリンキングによる開弁応答性の低下を考慮すると、矢印Eで示すように、径溝部面積は、吸入弁41の第1案内部43の外径の投影面積に対し、2.5~6.3%がさらに好ましい。
【0036】
(第1実施形態の作用効果)
第1実施形態は、次の作用効果を奏する。
(1)第1実施形態では、吸入弁41のストッパ50の当接部51に設けた径溝部71と第2案内部52に設けた軸溝部70により、ポンプ室12とバルブ室44とを連通した。
これにより、高圧ポンプの吸入行程開始時、バルブ室44からポンプ室12へ流れる燃料の流量は、軸溝部70の流路断面積及び第1案内部43と第2案内部52とのクリアランス73の流路断面積によって定まる。したがって、軸溝部70の流路断面積を大きくすることで、バルブ室44の燃料が流体抵抗となることなく、吸入弁41の開弁速度が速くなる。この結果、導入通路13からポンプ室12への燃料の吸入効率を高めることができる。
(2)吸入弁41が閉弁状態から開弁状態となる直前には、弁本体42の反弁座側の端面46とストッパ50の当接部51とが接近する。そのため、径溝部71の流路断面積を小さくすることで、バルブ室44の燃料による流体抵抗を利用し、弁本体42の反弁座側の端面46とストッパ50の当接部51との衝突音を小さくすることができる。
(3)高圧ポンプの調量行程時、バルブ室44の燃料圧力の上昇は、径溝部71の流路断面積によって定まる。したがって、径溝部71の流路断面積を小さくすることで、バルブ室44の燃料圧力の上昇が抑制され、自閉限界回転数を高くすることができる。
(4)また、高圧ポンプの調量行程時、バルブ室44の燃料圧力の上昇が抑制されることから、電磁駆動部80の第2スプリング84の荷重を小さくできる。そのため、調量行程から吐出行程に移行する際に電磁駆動部80に供給する電力を小さくできる。よって、高圧ポンプ1を小型化し、消費電力を低減することができる。
【0037】
(5)第1実施形態では、第1案内部43と第2案内部52とのクリアランス73の流路断面積と軸溝部70の流路断面積とを合わせた面積は、径溝部71の流路断面積よりも大きい。
これにより、高圧ポンプの吸入行程開始直後にバルブ室44からポンプ室12へ流れる燃料の流量を増加すると共に、高圧ポンプの調量行程時にバルブ室44の燃料圧力の上昇を抑制することが可能になる。したがって、高圧ポンプは、吸入効率の向上と自閉限界回転数の向上とを両立し、プランジャ20の往復移動速度が速くなる内燃機関の高回転時に、高圧ポンプの燃料吐出量を確実に制御することができる。
【0038】
(6)第1実施形態では、ストッパ50は、連通路54と径溝部71とが接続している。
これにより、高圧ポンプの吸入行程時、バルブ室44の燃料は軸溝部70および径溝部71から連通路54を通り、プランジャ室121へ流れる。このように、径溝部71から連通路54へ直接燃料が流れるので、バルブ室44からプランジャ室121へ流れる燃料の流体抵抗が低減する。そのため、吸入弁41の開弁速度が速くなり、高圧ポンプは燃料の吸入効率を高めることができる。
【0039】
(7)第1実施形態では、ストッパ50の径内方向に位置する連通路54の内壁を通る仮想円Cは、吸入弁41の弁本体42の外径よりも大きい。
これにより、高圧ポンプの調量行程時、プランジャ室121から連通路54を通り弁座室122へ流れる燃料の動圧は、吸入弁41の弁本体42に直接作用しないので、吸入弁41の自閉限界回転数を高めることができる。
【0040】
(第2実施形態)
本発明の第2実施形態を図7図9に示す。以下、複数の実施形態において、上述した第1実施形態と実質的に同一の構成には同一の符号を付して説明を省略する。
第2実施形態では、吸入弁41の弁本体42の反弁座側の端面46に径溝部711が設けられ、第1案内部43の外壁に軸溝部701が設けられる。
径溝部711は、弁本体42の周方向に、例えば等間隔で4個設けられている。径溝部711は、軸溝部701とポンプ室12とを接続するように設けられている。
軸溝部701は、第1案内部43の周方向に、例えば等間隔で4個設けられている。軸溝部701は、吸入弁41の軸方向から見て、第1案内部43の外壁から径内方向へ凸の円弧状に形成されている。
【0041】
第2実施形態においても、4本の径溝部711の流路断面積を合せた面積は、第1案内部43と第2案内部52とのクリアランス73の流路断面積と4本の軸溝部701の流路断面積とを合わせた面積よりも小さい。また、それらの流路断面積は、図5及び図6の実験結果により設定することが可能である。よって、第2実施形態は、第1実施形態と同様の作用効果を奏する。
【0042】
(第3実施形態)
本発明の第3実施形態を図10及び図11に示す。
第3実施形態では、吸入弁411は、いわゆるシルクハット型に形成され、円盤状の弁本体421、及びその弁本体421の径内側からニードル81側へ円筒状に延びる第1案内部431を有する。
ストッパ501は、当接部511、第2案内部521、固定部531および連通路541を有する。当接部511は、板状に形成され、弁本体421の反弁座側の端面461に当接する。第2案内部521は、当接部511からニードル側へ柱状に突出し、吸入弁411の第1案内部431の内周面と摺接する。固定部531は、当接部511から径外方向に延びて導入通路13の内壁66に固定される。連通路541は、固定部531の周方向に、例えば等間隔で3箇所設けられる。
【0043】
ストッパ501の第2案内部521の外壁には、軸溝部702が周方向に、例えば等間隔で3個設けられている。軸溝部702は、ストッパ501の軸方向から見て、第2案内部521の内壁から径内方向へ凸の円弧状に形成されている。
ストッパ501の当接部511の弁本体側の端面には、当接部511の周方向に、例えば3個の径溝部712が等間隔で設けられている。径溝部712と軸溝部702とは、吸入弁411の第1案内部431の径内側で連通している。
【0044】
ストッパ501の径溝部712と軸溝部702は、ポンプ室12とバルブ室44とを連通している。第3実施形態においても、3本の径溝部712の流路断面積を合せた面積は、第1案内部431と第2案内部521とのクリアランス73の流路断面積と3本の軸溝部702の流路断面積とを合わせた面積よりも小さい。
そのため、吸入弁411が開弁状態のとき、バルブ室44とポンプ室12との間を流れる燃料の流量は、3本の径溝部712の流路断面積を合せた面積によって定まる。したがって、高圧ポンプは、調量行程時におけるバルブ室44の燃料圧力の上昇を抑制し、自閉限界回転数を高くすることが可能である。
【0045】
一方、吸入弁411が閉弁状態のとき、弁本体421の反弁座側の端面461とストッパ501の当接部511との間が全周で開いているので、バルブ室44からポンプ室12へ流れる燃料の流量は、第1案内部431と第2案内部521とのクリアランス73の流路断面積と3本の軸溝部702の流路断面積とを合わせた面積によって定まる。したがって、高圧ポンプは、吸入行程時においてバルブ室44の燃料をポンプ室12に速やかに流し、燃料の吸入効率を高めることができる。
よって、第3実施形態は、第1、第2実施形態と同様の作用効果を奏する。
【0046】
(第4実施形態)
本発明の第4実施形態を図12及び図13に示す。
第4実施形態では、吸入弁411の弁本体421の反弁座側の端面461に径溝部713が設けられ、第1案内部431の内壁に軸溝部703が設けられる。
径溝部713は、弁本体421の周方向に、例えば等間隔で3個設けられている。軸溝部703は、第1案内部431の周方向に、例えば等間隔で3個設けられている。軸溝部703は、吸入弁411の軸方向から見て、第1案内部431の内壁から径外方向へ凸の円弧状に形成されている。径溝部713と軸溝部703は、ポンプ室12とバルブ室44とを連通している。
第4実施形態においても、3本の径溝部713の流路断面積を合せた面積は、第1案内部431と第2案内部521とのクリアランス73の流路断面積と3本の軸溝部703の流路断面積とを合わせた面積よりも小さい。
よって、第4実施形態は、第1~第3実施形態と同様の作用効果を奏する。
【0047】
(他の実施形態)
上述した実施形態では、電磁弁部40に関し、コイル89に通電していないとき、可動コア82が吸入弁41,411を開弁するノーマリーオープン弁として説明した。これに対し、他の実施形態では、電磁弁部は、コイルに通電していないとき、可動コアが吸入弁を閉弁するノーマリークローズ弁としてもよい。
上述した実施形態では、吸入弁41,411とニードル81とを別体で構成した。これに対し、他の実施形態では、吸入弁とニードルとを一体で構成してもよい。
上述した第2実施形態では、吸入弁41の第1案内部43の外壁から径内方向へ凸の円弧状に軸溝部701を形成した。これに対し、他の実施形態では、軸溝部は、吸入弁の第1案内部の外壁に平面状に形成してもよい。すなわち、軸溝部および径溝部の断面形状に限定はない。
本発明は、上記実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において、種々の形態で実施することができる。
【符号の説明】
【0048】
1 ・・・高圧ポンプ
12 ・・・ポンプ室
41,411・・・吸入弁
42,421・・・弁本体
43,431・・・第1案内部
44 ・・・バルブ室
50,501・・・ストッパ
52,521・・・第2案内部
70、701、702、703・・・軸溝部
71、711、712、713・・・径溝部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13