(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022174623
(43)【公開日】2022-11-24
(54)【発明の名称】半割軸受、内燃機関、及び自動車
(51)【国際特許分類】
F16C 17/02 20060101AFI20221116BHJP
F16C 9/02 20060101ALI20221116BHJP
F16C 33/06 20060101ALI20221116BHJP
F16C 33/20 20060101ALI20221116BHJP
F16C 33/24 20060101ALI20221116BHJP
【FI】
F16C17/02 Z
F16C9/02
F16C33/06
F16C33/20 Z
F16C33/24 A
【審査請求】未請求
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2021080543
(22)【出願日】2021-05-11
(71)【出願人】
【識別番号】000207791
【氏名又は名称】大豊工業株式会社
(74)【代理人】
【識別番号】110000752
【氏名又は名称】弁理士法人朝日特許事務所
(74)【代理人】
【識別番号】100147810
【弁理士】
【氏名又は名称】渡邉 浩
(72)【発明者】
【氏名】加藤 慎一
【テーマコード(参考)】
3J011
3J033
【Fターム(参考)】
3J011AA02
3J011AA07
3J011BA02
3J011BA13
3J011JA02
3J011KA02
3J011MA02
3J011PA02
3J011RA03
3J011SB02
3J011SB03
3J011SB04
3J011SC01
3J011SD01
3J033AA02
3J033GA05
(57)【要約】
【課題】片当たりによる焼付きを抑制しつつ、フリクションを改善した軸受を提供する。
【解決手段】半割軸受(1)は、相手軸(9)と摺動する内周面(12)を含む半円筒形状を有する軸受本体(11)と、内周面(12)のうち相手軸(9)の軸方向の少なくとも一方の端において全周に渡って形成された傾斜(121、122)とを有し、傾斜(121、122)の深さが周方向において異なる半割軸受(1)。
【選択図】
図3
【特許請求の範囲】
【請求項1】
軸と摺動する内周面を含む半円筒形状を有する軸受本体と、
前記内周面のうち前記軸の軸方向の少なくとも一方の端において全周に渡って形成された傾斜と
を有し、
前記傾斜の深さが周方向において異なる
半割軸受。
【請求項2】
前記傾斜の深さは、合せ面近傍において前記軸方向の中央よりも深い
請求項1に記載の半割軸受。
【請求項3】
前記傾斜は、合せ面近傍において前記軸方向の中央より幅が広い
請求項1又は2に記載の半割軸受。
【請求項4】
前記内周面が、前記軸方向の両端において前記傾斜を有する
請求項1乃至3のいずれか一項に記載の半割軸受。
【請求項5】
前記内周面において前記軸方向の両端に前記傾斜が形成され、当該内周面と合せ面との境界において、当該2つの傾斜が繋がる
請求項1乃至4のいずれか一項に記載の半割軸受。
【請求項6】
前記内周面及び前記傾斜に形成された、前記周方向に全周に渡って延びる複数の溝を有する
請求項1乃至5のいずれか一項に記載の半割軸受。
【請求項7】
請求項1乃至6のいずれか一項に記載の半割軸受を用いた内燃機関。
【請求項8】
請求項7に記載の内燃機関を有する自動車。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半割軸受、内燃機関、及び自動車に関する。
【背景技術】
【0002】
半割軸受において軸方向の端に傾斜を形成する技術が知られている。例えば特許文献1は、負荷能力の減少を抑えつつ弾性変形による軸の片当たりを防止するため、周方向において幅が異なるクラウニングが形成されたコンロッド軸受を開示している。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
軸受にかかる負荷は周方向において一様ではないが、特許文献1に記載の軸受ではクラウニングの深さは周方向において一定である。特許文献1に記載の軸受にはフリクションに改善の余地があった。
【0005】
これに対し本発明は、片当たりによる焼付きを抑制しつつ、フリクションを改善した軸受を提供する。
【課題を解決するための手段】
【0006】
本発明は、軸と摺動する内周面を含む半円筒形状を有する軸受本体と、前記内周面のうち前記軸の軸方向の少なくとも一方の端において全周に渡って形成された傾斜とを有し、前記傾斜の深さが周方向において異なる半割軸受を提供する。
【0007】
前記傾斜の深さは、合せ面近傍において前記軸方向の中央よりも深くてもよい。
【0008】
前記傾斜は、前記合せ面近傍において前記軸方向の中央より幅が広くてもよい。
【0009】
前記内周面が、前記軸方向の両端において前記傾斜を有してもよい。
【0010】
前記内周面において前記軸方向の両端に前記傾斜が形成され、当該内周面と合せ面との境界において、当該2つの傾斜が繋がってもよい。
【0011】
この半割軸受は、前記内周面及び前記傾斜に形成された、前記周方向に全周に渡って延びる複数の溝を有してもよい。
【0012】
また、本発明は、上記いずれかに記載の半割軸受を用いた内燃機関。
【0013】
さらに、本発明は、上記の内燃機関を有する自動車を提供する。
【発明の効果】
【0014】
本発明によれば、片当たりによる焼付きを抑制しつつ、フリクションを改善することができる。
【図面の簡単な説明】
【0015】
【
図1】一実施形態に係る軸受10の構造を例示する図。
【
図2】一実施形態に係る半割軸受1の構造を例示する図。
【
図3】傾斜121及び傾斜122の形状を例示する図。
【
図10】実施例及び比較例の表面プロファイルの測定結果を示す。
【
図11】応力分布のシミュレーション結果を例示する図。
【
図12】接触圧力のシミュレーション結果を例示する図。
【
図13】傾斜121及び傾斜122の別の形状の例を示す図。
【
図14】傾斜121及び傾斜122の別の形状の例を示す図。
【
図15】傾斜121及び傾斜122の別の形状の例を示す図。
【
図16】変形例に係る内周面12の表面形状を例示する図。
【発明を実施するための形態】
【0016】
1.構成
本実施形態に係る軸受は、摺動面にクラウニングを形成して軸の片当たりを抑制しようとするものである。軸受の摺動面にクラウニングを形成する技術は従来より知られているが、従来技術において、クラウニングの深さは周方向において一定である。さらに、従来、エンジンの仕様により高い負荷が想定される軸受は、クラウニングを一様に(負荷が低い環境で使用されるものより)深くする設計を採用してきた。あるいは、特許文献1の軸受のように、負荷の高いことが想定される領域にクラウニングを形成し、負荷が低いことが想定される領域にクラウニングを形成しない、という設計思想があった。
【0017】
ここで、一般に、潤滑油環境下でのフリクションFは次式で表される。
F=μ・U/h
μは潤滑油の粘度、Uは相手軸の回転速度、hは軸受の摺動面と相手軸との距離を示す。このように、フリクションの向上という観点で見ると、負荷が低いことが想定される領域においては実はクラウニングはより深い方が好ましいと考えられる。本発明はこの問題に対処する。
【0018】
なお、「クラウニング」はその語源からして軸方向の両側に形成されるものを指すと理解されることがあるが、後述するように本発明の表面形状は必ずしも軸方向の両端に形成する必要はなく、片側だけに形成されてもよい。したがって、以下においてはクラウニングに相当する表面形状を「傾斜」と表す。
【0019】
図1は、一実施形態に係る軸受10の構造を例示する図である。軸受10は、例えば、自動車の内燃機関において主軸受として用いられる軸受である。軸受10は、相手軸9と摺動し、かつ相手軸を支持する。軸受10は、ハウジング8に固定される。
図1は、相手軸9の軸方向に平行かつ相手軸9の径方向の中心を通る断面を示す。軸受10は、2つの半割軸受、具体的には半割軸受1及び半割軸受2から構成される。一例において、ハウジング8は自動車のエンジン(すなわち内燃機関)のシリンダブロックであり、相手軸9はクランクシャフト(詳細にはクランクシャフトのメインジャーナル又はクランクピン)である。
【0020】
図2は、一実施形態に係る半割軸受1の構造を例示する図である。
図2(A)は上面図を、
図2(B)は側面図を、それぞれ示す。半割軸受1は、半円筒形状の軸受本体11を有する。半円筒形状とは、円筒を軸方向に平行な面で半分に分割した形状をいう。軸受本体11は、使用される環境において要求される特性を満たす材料、例えば、金属、樹脂、又はこれらの複合材料で形成される。金属材料としては、例えば、鉄系合金(例えば鋼又は鋳鉄など)、アルミニウム系合金、又は銅系合金が用いられる。樹脂材料としては、例えば、ポリアミドイミド(PAI)、ポリイミド(PI)、ポリアミド(PA)、ポリエーテルエーテルケトン(PEEK)、又はこれらの複合材料が用いられる。これらの樹脂をバインダー樹脂として用い、バインダー樹脂中に添加剤を分散させてもよい。添加剤としては、固体潤滑剤(ポリテトラフルオロエチレン(PTFE)、MoS2、又は黒鉛など)、硬質物(SiC、Al2O3、Si3N4など)、及び軟質物(Sn、Al、又はBiなど)のうち少なくとも1種を含む。一例において、軸受本体11は金属で形成され、樹脂コーティング層を有さない。さらに、複合材料としては、金属材料(例えば、鋼の基材層に積層したアルミニウム系合金又は銅系合金の軸受層)の上に樹脂材料(例えば上記の樹脂コーティング層)の被覆層が用いられてもよい。別の複合材料としては、金属材料(例えば、銅の基材層に積層したアルミニウム系合金又は銅系合金の軸受層)の上に積層した軟質な金属材料(例えばSn、Sn合金、Bi、Bi合金などの金属めっき層)の被覆層が用いられてもよい。
【0021】
軸受本体11は、内周面12、外周面13、合せ面14、及び合せ面15を有する。内周面12は、相手軸9と摺動する。内周面12は、相手軸9の軸方向の一端及び他端(すなわち両端)において傾斜121及び傾斜122を有する。傾斜121及び傾斜122については後述する。外周面13は、ハウジング8と接する。外周面13は、半割軸受1がハウジング8に対して滑るのを抑制する表面構造(例えば、突起又は爪)を有してもよい。合せ面14及び合せ面15は、半割軸受2の合せ面と接する。半割軸受1と半割軸受2とを組み合わせ、円筒形状の軸受10が構成される。この例において、半割軸受2は、傾斜121及び傾斜122に相当する傾斜を有さない点以外は、半割軸受1と同様の構造を有する。
【0022】
以降の説明のため、外周面13が描く円弧の中心Cを原点とする極座標を定義する。外周面13の周方向の中心と中心Cとを結ぶ線を角度θ=0とし、図中時計回りを正方向、反時計回りを負方向として定義する。角度θを軸受角という。
【0023】
図3は、傾斜121及び傾斜122の形状を例示する図である。
図3(A)、(B)、及び(C)は、それぞれ、
図2(A)の上面図におけるA-A断面、B-B断面、及びC-C断面を示す。なおこれらの図においては、説明を容易にするため、傾斜121及び傾斜122の大きさを誇張して描いている。傾斜121及び傾斜122は縦横比も誇張されており、実物よりも深く図示されている。傾斜121及び傾斜122は、前述のとおりクラウニングに相当する表面形状であり、緩やかに傾斜した表面形状をいう。具体的には、傾斜の深さ(軸受の径方向の長さ、図のd1及びd2)は、傾斜の幅(軸方向の長さ、図のw1及びw2)よりも数桁程度小さい。一例において、傾斜の幅は数mmかつ深さは数μmであり、深さは幅の1/1000程度のオーダーである。関連技術において、摺動面に面取りを形成した軸受が知られている。「面取り」とは幅と深さが同程度の表面形状をいう。一例において、面取りは幅も深さも数mmであり同程度のオーダーである。また、A-A断面又はB-B断面において、傾斜121及び傾斜122が基準面(例えば外周面13)となす角は0.6°未満であることが好ましく、0.15°未満であることがさらに好ましく、0.06°未満であることがさらに好ましい。これに対し、面取りの角度は約30乃至60°である。これらの意味において、本実施形態でいう「傾斜」は面取りとは異なる表面形状を指す。
【0024】
図3(A)のA-A断面は、軸受本体11の周方向中央における、軸方向に平行な断面である。周方向中央において、傾斜121及び傾斜122の幅はw1かつ深さはd1である。
図3(B)のB-B断面は、軸受本体11の周方向端(すなわち合せ面との境界)における、軸方向に平行な断面である。周方向端において、傾斜121及び傾斜122の幅はw2かつ深さはd2である。ここで、傾斜121及び傾斜122の周方向端と周方向中央とを比較すると、周方向端の方が幅が広くかつ深さが深い。すなわちw2>w1かつd2>d1である。
【0025】
図3(C)のC-C断面は実際には半円筒形状を有しているが、ここでは傾斜121及び傾斜122の深さプロファイルを明確にするため、外周面13を直線に展開した仮想展開図を示す。傾斜121及び傾斜122は、全周に渡って形成される。すなわち、傾斜121及び傾斜122の周方向一端は合せ面14に達して(すなわち繋がって)おり、他端は合せ面15に達して(すなわち繋がって)いる。傾斜121及び傾斜122の深さは周方向において異なっている。θ1<θ<θ2の範囲において、傾斜121及び傾斜122の深さはほぼ一定である。θ1及びθ2の値は、軸受10が使用される環境(例えばエンジンの形式)に応じて設計される。一例において、V型エンジンを想定すると、θ1<-60°かつθ2>60°であることが好ましい。
【0026】
θ<θ1の範囲において、傾斜121及び傾斜122の深さは、合せ面14に向かうにつれ徐々に深くなる。同様に、θ>θ2の範囲において、傾斜121及び傾斜122の深さは、合せ面14に向かうにつれ徐々に深くなる。深さd2と深さd1との関係は、
d2=kd1
と表せる。係数kは、1.2より大きいことが好ましく、1.5より大きいことがより好ましく、2.0より大きいことがさらに好ましい。
【0027】
なおここでは説明を省略したが、半割軸受1はクラッシリリーフを有してもよい。クラッシリリーフは内周面12において、周方向に沿って合せ面近傍に形成される逃げである。クラッシリリーフの深さは、傾斜121及び傾斜122の深さよりも深い。θ1及びθ2は、クラッシリリーフの内側であっても外側であってもよい。
【0028】
図3では傾斜121及び傾斜122の深さプロファイルを示したが、幅についても同様である。すなわち、θ1<θ<θ2の範囲において、傾斜121及び傾斜122の幅はほぼ一定である(θ1及びθ2は深さプロファイルと共通)。θ<θ1の範囲において、傾斜121及び傾斜122の深さは、合せ面14に向かうにつれ徐々に広くなる。θ>θ2の範囲において、傾斜121及び傾斜122の深さは、合せ面14に向かうにつれ徐々に広くなる。
【0029】
2.製造方法
半割軸受1の製造方法、特に、傾斜121及び傾斜122を形成する方法について説明する。まず、作業者は治具90を準備する。治具90は、以下の工程の間、半割軸受を支持する装置である。
【0030】
図4は、治具90の構造を例示する図である。
図4(A)は上面図を、
図4(B)は正面図を、
図4(C)はD-D断面を、それぞれ示す。治具90の構成要素の相互の位置関係を説明する際には、半割軸受1を説明する際に用いた座標系を用いる。治具90は、半円筒形状の内周面91を有する。治具90は、内周面91において半割軸受を支持する。内周面91は、突起92及び突起93を有する。突起92及び突起93は、内周面91において軸方向の両端に形成される。突起92及び突起93は、内周面91において全周に渡って形成される。突起92及び突起93の形状は狙いとする傾斜の形状に応じて設計される。一例において、突起92及び突起93は、高さ数μmかつ幅数μm程度の突起である。突起92及び突起93は、切削、溶接、又はめっきなどにより形成される。
【0031】
以下、
図5乃至
図9を参照して傾斜121及び傾斜122を形成する方法を説明する。作業者は、(まだ傾斜121及び傾斜122が形成されていない)半割軸受を治具90に取り付ける(
図5)。半割軸受は、外周面13が突起92及び突起93に接するように取り付けられる。半割軸受を治具90に取り付けた状態で、作業者は、半割軸受に圧力を加える(
図6)。一例において、作業者は、合せ面14及び合せ面15に対して圧力を加える。
【0032】
圧力を加えない状態において、半割軸受の外周面13は、治具90の内周面91と平行である(
図7。なお
図7乃至
図9はD-D断面に相当する)。半割軸受に圧力が加えられると、半割軸受は、突起92及び突起93の高さに応じて、軸方向中央付近が外周側に張り出すように弾性変形する(すなわちたわむ)(
図8)。作業者は、圧力をかけたまま、半割軸受の内周面12を切削する。切削は、軸受の中心Cを中心として回転する刃を用いて行われる。この刃による切削面は、軸方向に平行である(
図8の破線)。この工程により、半割軸受の軸方向端が中央よりも多く切削される(
図9)。合せ面14及び合せ面15から圧力をかけているので、合せ面14及び合せ面15近傍の方がより弾性変形の量が大きく、周方向中央の方がより弾性変形の量が小さい。したがって、回転刃により切削することにより、合せ面14及び合せ面15近傍においてより広く深い傾斜が形成される。
【0033】
3.実施例
本願の発明者らは半割軸受1(実施例)、クラウニングを有さない半割軸受(比較例1)、及び周方向に一様なクラウニングが形成された半割軸受(比較例2)を試作し、その表面プロファイルを測定した。
【0034】
図10は、実施例並びに比較例1及び2の表面プロファイルの測定結果を示す。実施例においては、中央において幅約3~4mmかつ深さ約2~3μm、合せ面近傍において幅約4.5~9mmかつ深さ約3~4μmの傾斜が形成されている。比較例1においては、傾斜は観察されない(なお実験の都合上、実施例1は表面の切削条件が他と異なるため表面の凹凸が大きくなっている)。比較例2においては、周方向の位置によらず幅約3.5mm、深さ約5μmの傾斜が形成されている。このように、表面プロファイルを測定すれば半割軸受1のように周方向の位置に応じて幅及び深さが異なる傾斜が形成された半割軸受は、比較例1及び2のような、傾斜が形成されていない又は一様な傾斜が形成された半割軸受と異なっていることが分かる。
【0035】
図11は、V6エンジンにおける主軸受のロア半割軸受における、応力分布のシミュレーション結果を例示する図である。なお
図11のシミュレーションは、本実施形態に係る半割軸受1ではなく、関連技術に係る半割軸受(軸方向端にクラウニングの無い半割軸受)を用いて、以下の条件で行われた。
解析条件:EHL(弾性流体潤滑)解析
モデル:V6過給エンジン
回転数:6,000rpm
シミュレーション結果が示すように、V6エンジンのロア半割軸受においては、(軸受の位置によっても差異はあるが)周方向中央近傍において大きな負荷がかかり、合せ面近傍における負荷は相対的に小さいことが分かる。したがって、実施例に係る半割軸受1を用いれば、負荷の大きい領域は狭い傾斜(すなわち広い摺動面)で負荷を受けつつ、負荷の小さい領域は傾斜をより深くすることでフリクションを改善することができる。
【0036】
図12は、V6エンジンにおける#3ジャーナルにおける接触圧力のシミュレーション結果を例示する図である。なお、本実施形態に係る半割軸受1においては各断面(例えば
図3のA-A断面、B-B断面、及びC-C断面)にかかる負荷が異なることになるため同じ条件で比較をすることが難しい。そこでここでは、全周に同じ幅のクラウニングが形成されたと仮定した場合における、接触圧力のクラウニング幅依存性を示す。
図12から、クラウニング幅が大きくなると接触圧力が減少する(すなわちフリクションが改善する)ことが分かる。
図12のシミュレーション結果によれば、比較例1(クラウニング幅:ゼロmmに相当)においてはクラウニングを設けた場合と比較して接触圧力が2倍程度高くなってしまう。比較例2においては周方向に一様なクラウニングが形成されているので、例えば合わせ面近傍等、負荷の小さい領域におけるフリクションは改善の余地がある。
【0037】
4.変形例
本発明は上述の実施形態に限定されるものではなく、種々の変形実施が可能である。以下、変形例をいくつか説明する。以下の変形例に記載された事項のうち2つ以上の事項が組み合わせて適用されてもよい。
【0038】
図13は、傾斜121及び傾斜122の別の形状の例を示す図である。
図13乃至
図15は、半割軸受1の上面図を示す。この例において、合せ面14と内周面12との境界において、傾斜121及び傾斜122は繋がっている(すなわち、内周面12に平坦な部分が無い)。既に説明したように合せ面近傍においては負荷が小さいので、軸方向の全体に渡って内周面12に傾斜を形成しても問題ない。これにより、合せ面近傍における傾斜121及び傾斜122をより深くすることができ、フリクションをより改善することができる。
【0039】
図14は、傾斜121及び傾斜122のさらに別の形状の例を示す図である。この例において、傾斜121及び傾斜122の深さは、周方向中央から合せ面に向かって徐々に深くなる(図示しているのは傾斜121及び傾斜122の幅のプロファイルであるが、深さのプロファイルも同様である)。例えば、負荷がより周方向中央に集中することが想定される環境(例えば、L型エンジン)では、このような構造を採用することにより、フリクションをより改善することができる。
【0040】
図15は、傾斜121及び傾斜122のさらに別の形状の例を示す図である。この例において、内周面12には傾斜121のみが形成され、傾斜122は形成されない。すなわち、軸方向の片側のみに傾斜が形成される。例えば、軸方向の片側に対してのみ相手軸の片当たりが発生することが想定される環境においては、このような構造が有効である。
【0041】
図16は、変形例に係る内周面12の表面形状を例示する図である。この例において、内周面12には、複数の溝123が形成される。溝123は、周方向に沿って内周面12の全周に渡って延びる溝である。これら複数の溝123は、隣り合う溝と間隔pで形成される。個々の溝123は、幅wgかつ高さhである。なお図では高さhを誇張して示しているが、高さhは、間隔pの1/100、1/1000、又はそれよりさらに小さいオーダーである。幅wgは、個々の溝123における頂部と頂部との距離である。ここで、傾斜121及び傾斜122の最大深さをdmaxとすると、h≧dmaxである。この例において、未使用の状態ではwg=pである。この例の半割軸受1が使用されると、使用に伴って溝123の頂部が摩耗し、幅wg及び高さhが減少する。使用時において、まず傾斜121及び傾斜122における溝123から摩耗が始まる。環境により摩耗量は異なるが、ある程度摩耗すると傾斜121及び傾斜122以外の部分(ランド部という)がプラトー面となって負荷容量が増大し、摩耗は停止する。負荷が低い、又は中程度の環境では、溝123の頂部を結ぶ線が(
図16の断面において)平坦となるように摩耗する(すなわち傾斜121及び傾斜122の方がランド部より高さhが高い)。負荷が高い環境では、傾斜121及び/又は傾斜122における溝123の頂部がさらに摩耗し、傾斜121及び傾斜122の溝123はランド部の溝123と同程度又はそれ以上に摩耗する。この例の半割軸受1は、溝123の摩耗を利用しているので、どのような負荷のエンジンでもフリクション向上の効果を得ることができる。
【0042】
実施形態で説明した傾斜121及び傾斜122の形状はあくまで例示であり、本発明はこれに限定されるものではない。例えば、傾斜121及び傾斜122は、周方向中央において最も深く、合せ面に近づくにつれ浅くなってもよい。また、傾斜121及び傾斜122は、周方向中央に対して回転方向の上流と下流で対称でなくてもよい。回転方向の上流のみ、又は下流のみ、傾斜121及び傾斜122が深くなってもよい。さらに、傾斜121及び傾斜122の幅は深さに合わせて増減するものに限定されない。傾斜121及び傾斜122は、一定の幅を有し、かつ深さが周方向において変化してもよい。傾斜121及び傾斜122は、例えば治具90の突起92及び突起93の形状及び/又は位置を調整することによりその形状及び位置を調整することができる。なお実施形態において説明した傾斜121及び傾斜122の形成方法はあくまで例示であり、例えばプレス加工により傾斜121及び傾斜122が形成されてもよい。
【符号の説明】
【0043】
1…半割軸受、2…半割軸受、8…ハウジング、9…相手軸、10…軸受、11…軸受本体、12…内周面、13…外周面、14…合せ面、15…合せ面、90…治具、91…内周面、92…突起、93…突起、121…傾斜、122…傾斜、123…溝