IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ カール・ツァイス・マイクロスコピー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングの特許一覧

特開2022-177011高速高分解能の顕微鏡検査方法、および高速高分解能の顕微鏡
<>
  • 特開-高速高分解能の顕微鏡検査方法、および高速高分解能の顕微鏡 図1
  • 特開-高速高分解能の顕微鏡検査方法、および高速高分解能の顕微鏡 図2
  • 特開-高速高分解能の顕微鏡検査方法、および高速高分解能の顕微鏡 図3
  • 特開-高速高分解能の顕微鏡検査方法、および高速高分解能の顕微鏡 図4
  • 特開-高速高分解能の顕微鏡検査方法、および高速高分解能の顕微鏡 図5
  • 特開-高速高分解能の顕微鏡検査方法、および高速高分解能の顕微鏡 図6
  • 特開-高速高分解能の顕微鏡検査方法、および高速高分解能の顕微鏡 図7
  • 特開-高速高分解能の顕微鏡検査方法、および高速高分解能の顕微鏡 図8
  • 特開-高速高分解能の顕微鏡検査方法、および高速高分解能の顕微鏡 図9
  • 特開-高速高分解能の顕微鏡検査方法、および高速高分解能の顕微鏡 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022177011
(43)【公開日】2022-11-30
(54)【発明の名称】高速高分解能の顕微鏡検査方法、および高速高分解能の顕微鏡
(51)【国際特許分類】
   G02B 21/00 20060101AFI20221122BHJP
   G01N 21/64 20060101ALI20221122BHJP
【FI】
G02B21/00
G01N21/64 E
【審査請求】有
【請求項の数】25
【出願形態】OL
(21)【出願番号】P 2022134644
(22)【出願日】2022-08-26
(62)【分割の表示】P 2016237492の分割
【原出願日】2016-12-07
(31)【優先権主張番号】10 2015 121 920.4
(32)【優先日】2015-12-16
(33)【優先権主張国・地域又は機関】DE
(71)【出願人】
【識別番号】513072123
【氏名又は名称】カール・ツァイス・マイクロスコピー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング
【氏名又は名称原語表記】Carl Zeiss Microscopy GmbH
【住所又は居所原語表記】Carl-Zeiss-Promenade 10, 07745 Jena, Germany
(74)【代理人】
【識別番号】100110423
【弁理士】
【氏名又は名称】曾我 道治
(74)【代理人】
【識別番号】100111648
【弁理士】
【氏名又は名称】梶並 順
(72)【発明者】
【氏名】トーマス・カルクブレンナー
(57)【要約】      (修正有)
【課題】蛍光発光体を有する試料の高速高分解能の局在化顕微鏡検査の方法を提供する。
【解決手段】照明光源3からの放射線により試料2にある蛍光発光体は励起され、蛍光放射線を放射する。蛍光を発している試料2は、ビームスプリッタ5を介して広視野カメラ4上に撮像される。顕微鏡1の動作は、制御装置6によって制御され、制御装置6は、対応する制御線を介して、広視野カメラ4、照明光源3および任意選択的に試料2が置かれるテーブルに接続され、これらの要素を作動させ、またはこれらの要素からのデータ、特に広視野カメラ4からの画像データを受信し、回折限界を超えた空間分解能を有する撮像が可能となる。
【選択図】図1
【特許請求の範囲】
【請求項1】
蛍光発光体(11)を含有する試料(2)の高速高分解能の顕微鏡検査方法であって、
- 第1の状態および第2の状態を有する蛍光発光体(11)が使用され、前記第1の状態は、前記蛍光発光体(11)が励起放射線(a)の照射によって蛍光放射線(f)を放射する明状態(H)であり、前記第2の状態は、前記蛍光発光体(11)が励起放射線(a)の照射によって蛍光放射線(f)を放射しない暗状態(D)であり、前記蛍光発光体(11)は、励起放射線(a)の照射によって前記明状態(H)から前記暗状態(D)にされることができ、前記明状態(H)は、前記蛍光発光体(11)が前記明状態(H)に留まる特定の明時間(th)を有し、前記暗状態(D)は、特定の寿命(td)であって、その後に前記蛍光発光体(11)が自発的に前記明状態(H)に戻る、特定の寿命(td)を有し、前記暗状態(D)の前記寿命(td)は1~300μsであり、
- 前記試料(2)と、したがって前記蛍光発光体(11)とは、ある強度の励起放射線(a)によって広視野で照らされ、それによって、前記蛍光発光体(11)は励起されて明滅し(B)、その結果、前記蛍光発光体(11)は、前記暗状態(D)の前記寿命(td)と前記明時間(th)との合計により形成される明滅周波数(fB)により、前記明状態(H)と前記暗状態(D)との間で交互に切り替わり、
- 前記明滅する試料(2)は、ある空間分解能において広視野で撮像されてカメラ(4)で検出され、
- 前記励起放射線(a)の強度は、少なくとも一部の蛍光発光体(11)が前記空間分解能に関して個々の画像(14)に分離されるように設定され、前記励起放射線(a)の強度と前記カメラ(4)のリフレッシュレートとは、前記個々の画像(14)が生成される前記リフレッシュレートが前記明滅周波数(fB)より低くないように互いに適合され、
- 前記個々の画像(14)は局在化解析を受け(S4)、前記個々の画像(14)内の分離された蛍光発光体(11)について、前記空間分解能を超える精度で所在場所が決定される、高速高分解能の顕微鏡検査方法。
【請求項2】
前記個々の画像の生成のための積分時間は、前記暗状態(D)の寿命(td)よりも長くない、請求項1に記載の顕微鏡検査方法。
【請求項3】
テスト測定において、前記励起放射線(a)がパルス方式で照射され、前記暗状態(D)の寿命(td)が測定され、
前記リフレッシュレートは、積分時間が前記暗状態(D)の寿命(td)の90%であるという結果を伴って、それに応じて設定される、請求項1または2に記載の顕微鏡検査方法。
【請求項4】
前記リフレッシュレートは、前記積分時間が前記暗状態(D)の寿命(td)の50%であるように設定される、請求項3に記載の顕微鏡検査方法。
【請求項5】
前記リフレッシュレートは、前記積分時間が前記暗状態(D)の寿命(td)の10%であるように設定される、請求項3に記載の顕微鏡検査方法。
【請求項6】
前記積分時間は、300μsより長くない、請求項2~5のいずれか一項に記載の顕微鏡検査方法。
【請求項7】
前記積分時間は、100μsより長くない、請求項6に記載の顕微鏡検査方法。
【請求項8】
前記積分時間は、50μsより長くない、請求項6に記載の顕微鏡検査方法。
【請求項9】
前記積分時間は、1μs~30μsである、請求項6に記載の顕微鏡検査方法。
【請求項10】
前記蛍光発光体(11)は、前記暗状態(D)の寿命(td)に関して化学的に影響さ
れない状態にある、請求項1~9のいずれか一項に記載の顕微鏡検査方法。
【請求項11】
前記励起放射線(a)の強度は、1MW/cmを超えない、請求項1~10のいずれか一項に記載の顕微鏡検査方法。
【請求項12】
前記励起放射線は、50kW/cmを超えない、請求項11に記載の顕微鏡検査方法。
【請求項13】
前記励起放射線は、2kW/cmを超えない、請求項11に記載の顕微鏡検査方法。
【請求項14】
前記励起放射線(a)の強度は、前記明滅周波数(fB)が1/(300μs)より低くない値を有するように設定される、請求項1~13のいずれか一項に記載の顕微鏡検査方法。
【請求項15】
前記明滅周波数は、1/(50μs)より低くない値を有する、請求項14に記載の顕微鏡検査方法。
【請求項16】
前記明滅周波数は、1/(30μs)~1/(1μs)の値を有する、請求項14に記載の顕微鏡検査方法。
【請求項17】
前記個々の画像(14)の生成において、前記励起放射線(a)はCW放射線として照射される、請求項1~16のいずれか一項に記載の顕微鏡検査方法。
【請求項18】
蛍光発光体(11)を含有する試料(2)の高速顕微鏡検査のための高速高分解能の顕微鏡であって、
- 蛍光放射線(f)を放射するために、励起放射線(a)によって広視野で前記試料(2)を励起するように設計される励起装置(3)と、ある空間分解能において広視野で前記試料(2)を撮像するように設計される撮像装置(4)とであって、前記励起装置(3)は、少なくとも一部の蛍光発光体(11)が前記空間分解能に関して前記撮像において分離されるように設計される、励起装置(3)および撮像装置(4)と、
- 前記分離された蛍光発光体(11)について、前記空間分解能を超える精度で所在場所を決定するように設計される局在化解析装置(6)と、
- 請求項1~17のいずれか一項に記載の方法に従って、前記励起装置(3)および前記撮像装置(4)を制御するように設計される制御装置(6)と
を備える、高速高分解能の顕微鏡。
【請求項19】
前記撮像装置(4)は、ビーム経路の上流に接続されたイメージインテンシファイア(4b)を備えるCMOS2次元検出器(4a)を含む、請求項18に記載の顕微鏡。
【請求項20】
前記リフレッシュレートは、1/(300μs)より低くない値を有する、請求項18に記載の顕微鏡。
【請求項21】
前記値は、1/(100μs)より低くない、請求項20に記載の顕微鏡。
【請求項22】
前記値は、1/(50μs)より低くない、請求項20に記載の顕微鏡。
【請求項23】
前記値は、1/(30μs)~1/(1μs)である、請求項20に記載の顕微鏡。
【請求項24】
前記撮像装置(4)は、2次元検出器としてSPADアレイ(25)を含む、請求項18~20のいずれか一項に記載の顕微鏡。
【請求項25】
画像フィールド(37)を変位させることによって、前記SPADアレイ(25)上に試料フィールド(P)を撮像し、幾つかの部分的な個々の画像から各々の個々の画像(14)を組み立てるために、画像フィールド変位装置(30)を備える、請求項24に記載の顕微鏡。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、蛍光発光体を含有する試料の高速高分解能の局在化顕微鏡検査のための方法に関する。この方法では、試料中の蛍光発光体が蛍光放射線を放射するように励起され、試料はある空間分解能において広視野で撮像され、励起は少なくとも一部の蛍光発光体が空間分解能に関して分離されるようにもたらされ、局在化解析(localization analysis)において、分離された蛍光発光体について、空間分解能を超える精度で所在場所が決定される。
【0002】
さらに、本発明は、蛍光放射線を放射するために試料中の蛍光発光体を励起するように設計される励起装置と、ある空間分解能で試料を撮像するように設計される撮像装置とを備える、蛍光発光体を含有する試料の高速局在化顕微鏡検査のための高分解能顕微鏡に関する。この顕微鏡では、励起装置は、少なくとも一部の蛍光発光体が空間分解能に関して画像内で分離されるように設計され、顕微鏡は、分離された蛍光発光体について、空間分解能を超える精度で所在場所を決定するように設計される局在化解析装置を備える。
【背景技術】
【0003】
最新技術では、回折限界を破るために、顕微鏡検査において種々の方法が開発されている。特許文献1または特許文献2によれば、試料を撮像するために標識物質を使用するPALM(光活性化局在顕微鏡法)と略記される方法が知られており、標識は、例えば光学的放射線を用いて活性化することができる。活性化状態においてのみ標識物質は特定の蛍光放射線を放射することができる。非活性化標識分子は、励起放射線での照射後にさえ、蛍光放射線をまったく放射しないか、または少なくとも顕著には放射しない。したがって、活性化放射線は一般に切り替え信号と呼ばれ、分子は光スイッチと呼ばれる。PALMでは、切り替え信号は、少なくとも一部の活性化標識が隣接する活性化標識と間隔を置かれ、それにより、(顕微鏡検査の光学的分解能の見地において)画像処理方法によって切り離されるか、または実質的に切り離され得るように適用される。これは蛍光発光体のサブセットが分離されると言われる。個々の画像は、このようにして準備された試料についてキャプチャされる。その中で、分離される発光体における、分解能限界によってもたらされる放射線分布の中心が決定される。分子の位置は、光学分解能によって実際に許容されるよりも高い正確度で、この中心から計算することができる。この手順は局在化(localization)と呼ばれる。また、増加した分解能は、「超分解能」と呼ばれる。これは、試料において少なくとも所与の光学分解能の範囲内で分離される、活性化標識のサブセットを区別し得ることを必要とする。これにより、より高い精度で活性化標識の所在場所を決定することができる。すなわち、それらを局在化することができる。
【0004】
PALM法は、個々の標識分子を分離するために統計効果を利用する。切り替え信号の強度を設定することにより、顕微鏡の光学分解能の範囲内で区別され得る蛍光放射線を標識のみが放射し得る十分な部分領域があるように、試料の所与の領域に存在する標識が活性化される確率が非常に低いことを確実にすることができる。分離および局在化のシーケンスは数回繰り返され、毎回異なって構成されるサブセットが個々の画像に寄与する。これらの個々の画像からの局在化データは、高分解能の全体画像を形成するために最終的に集められる。
【0005】
PALM法は、検出される標識の活性化に関して、例えば特許文献3において改良された。このために、特定の電子状態を有する蛍光標識が使用される。それらは、分子の大多数が電子的な蛍光性でない暗状態にさせられるように、高輝度の照明放射線によって活性化される。したがって、そのとき蛍光を発している残りの分子は、光学分解能に関して分離することができる。撮像および個々の画像のキャプチャは、十分な割合の分子が暗状態にされるとすぐに、すなわち励起と同期してなされる。個々の画像に対する露光時間は、励起放射線の一定の照射によって標識を暗状態にさせるのにかかる平均時間に基づいている。特許文献3は、暗状態の寿命が化学物質の添加を通して延長されるという趣旨の試料中の分子の操作を必要とする。
【0006】
その一方で、例えばSTORM、dSTORMなど、他の略記を与えられたPALMの修正形態が、技術的な文献において説明されていることにも留意されたい。したがって、本明細書では、蛍光分子を最初に分離して次に局在化することによって、使用される装置の光学分解能を超える空間分解能を達成するすべての顕微鏡検査方法を包含するために、用語「局在化顕微鏡検査(localization microscopy)」を使用する。
【0007】
通例、局在化顕微鏡検査は、照明のために高い空間分解能を必要としない。多くの場合、単純な広視野照明で十分である。しかしながら、それは、各々の場合に分離される分子を含む、試料の多くの個々の画像がキャプチャされることを必要とする。完全に試料を撮像するために、個々の画像のすべての合計は、可能な限り分子のすべてが少なくとも1つの個々の画像で分離されることを確実にしなければならない。したがって、局在化顕微鏡検査のために、言及された複数の個々の画像は、定期的にキャプチャされなければならず、それは全体画像を生成するためにある一定の持続時間を必要とする。
【0008】
また、キャプチャ時間は、それ自体として有利な広視野検出が、個々の分子の検出に十分高感度でなければならない2次元検出器も必然的に必要とするという点で、局在化顕微鏡検査のために問題である。通常は量子効率によって示される感度および読み出し雑音は、理想的には個々の分離された分子を検出することができるようなものでなければならない。この要件は、個々の画像のキャプチャにおける積分時間についての下限値と、したがって画像リフレッシュレートの上限値とを、局在化顕微鏡検査の最新技術で使用されるカメラに対して設定する。
【0009】
生細胞の顕微鏡検査が実行されることになるとき、時間制限は特に懸念されるものである。これに対して局在化顕微鏡検査を適当な時間体制へと導くために、各々の回折限界点について幾つかの分子を評価に入れること、したがって、回折限界点である撮像の分解能限界の見地において、分子群を隣接する分子群から分離することで十分であるという趣旨で、用語「分離される」を拡張することが考慮され得る。したがって、活性化分子の密度をデータキャプチャ中にすでに増加させることができ、所与の数の分子をより速く検出することができる。しかしながら、現在の顕微鏡検査方法の場合、これは局在化精度を過度に犠牲にすることになる。
【0010】
特許文献3は、暗状態の寿命が化学的操作によって増加されるという点で、積分持続時間の問題を回避しようと試みている。類似の手法は、非特許文献1によってもとられている。ここでは、積分時間は、個々の分子出現の分離のために適切に設定することができる。しかしながら、試料はその後に化学的に操作される必要がある。
【0011】
SOFIとも呼ばれる、いわゆるゆらぎ解析は、高分解能への別のルートを表している。ここでは、個々の蛍光体が明滅させられ、明滅する試料が広視野検出で撮像される。したがって、分解能の増加は、局在化を通してではなく、異なる明滅状態間の相互関係を通して行われる。SOFI顕微鏡検査法の手法は、航海における灯台の認識と同様に見ることができる。そこでは、特定の灯台は、その明滅動作において他の灯台と異なることになる。まったく同一の場所で、隣接する点の明滅と異なる明滅が生じるとき、この場所に発光体(航海における灯台、顕微鏡検査における蛍光分子)が存在しなければならないことは明らかである。SOFI顕微鏡検査法は、相互に関係付けられたゆらぎが、カメラがアクセス可能な時間尺度で必ず生じることを必要とする。これは、最終的に、きわめて特定の染料または標識、例えば十分にゆっくり明滅するいわゆる量子ドットを必要とする。これらの染料は、生きている試料にはあまり適当でなく、あるいはまったく適当でない。加えて、分解能の妥当な増加のために、ある一定の最小数の個々の画像が必要とされるため、ここでも長い測定長の問題がある。特許文献3におけるように、カメラの積分期間は、明滅する発光体の明状態の持続時間にも適合される。SOFI顕微鏡検査法は、相互関係を評価し、分離のステップおよび局在化のステップなしで動作するため、局在化顕微鏡検査とはみなされない。加えて、分解能の可能な増加が、局在化顕微鏡検査と比較して限定される。生細胞の顕微鏡検査の場合におけるさらなる態様は光損傷である。非特許文献2は、短波長を用いた照射がより長波長の光を用いた照射よりも何倍も有害であることを示している。PALM/dSTORMなどのために使用される切り替え波長は405nmであり、光スイッチなしで済ませるさらなる理由である。
【0012】
したがって、蛍光発光体の選択に関して限定されず、特に蛍光発光体の化学的操作をまったく必要としない、高分解能の顕微鏡検査方法の必要性が存在する。特に高速の顕微鏡検査が望まれる。このような方法は、特に生細胞の顕微鏡検査のために要求される。
【先行技術文献】
【特許文献】
【0013】
【特許文献1】国際公開第2006/127692号
【特許文献2】独国特許出願公開第102006021317A1号
【特許文献3】独国特許出願公開第102008024568A1号
【非特許文献】
【0014】
【非特許文献1】Heilemann et al.,“Super-resolution imaging with small organic fluorophores.”,Angewandte Chemie International Edition,48.37,(2009):6903-6908
【非特許文献2】Waeldchen et al.,Scientific Reports,5:15348,DOI:10.1038/srep15348,October 2015
【発明の概要】
【発明が解決しようとする課題】
【0015】
本発明の目的は、局在化顕微鏡検査方法を特定すると共に、従来の染料によって化学的操作なしで高速撮像を可能にする、この方法のために設計された顕微鏡を提供することである。
【課題を解決するための手段】
【0016】
本発明は、蛍光発光体を含有する試料の高速高分解能の顕微鏡検査方法を提供する。第1の状態および第2の状態を有する蛍光発光体が使用される。第1の状態は、蛍光発光体が励起放射線の照射によって蛍光放射線を放射する明状態である。第2の状態は、蛍光発光体が励起放射線の照射によって蛍光放射線を放射しない暗状態である。蛍光発光体は、励起放射線の照射によって明状態から暗状態にされることができる。暗状態は、特定の寿命であって、その後に蛍光発光体が自発的に明状態に戻る、特定の寿命を有する。試料と、したがって蛍光発光体とは、ある強度の励起放射線によって広視野で照らされる。それによって、蛍光発光体は励起されて明滅し、蛍光発光体は、ある明滅周波数で、自然の、すなわち化学的に修正されない明状態と暗状態との間で、交互に切り替わる。明滅する試料は、ある空間分解能において広視野で撮像されてカメラで検出される。励起放射線の強度は、少なくとも一部の蛍光発光体が、空間分解能に基づいて個々の画像で分離されるように設定される。励起放射線の強度およびカメラのリフレッシュレートは、個々の画像が生成されるリフレッシュレートが平均明滅周波数より低くならないように互いに適合される。個々の画像は局在化解析を受ける。この局在化解析では、個々の画像内の分離された蛍光発光体について、空間分解能を超える精度で所在場所が決定される。
【0017】
さらに、本発明は、蛍光発光体を含有する試料の高速顕微鏡検査のための高分解能顕微鏡を提供する。顕微鏡は、蛍光放射線を放射するために励起放射線によって広視野で試料を照射するように設計される励起装置を備える。顕微鏡は、ある空間分解能において広視野で試料を撮像するように設計される撮像装置をさらに備える。励起装置は、少なくとも一部の蛍光発光体が空間分解能に基づいて撮像において分離されるように設計される。局在化解析装置は、分離された蛍光発光体について、空間分解能を超える精度で所在場所を決定するように設計される。制御装置は、言及した顕微鏡検査方法に従って、励起装置および撮像装置を制御するように設計される。局在化解析装置および制御装置は、1つの装置に組み合わせることもできる。
【0018】
本発明は、蛍光放射線を放射するために励起放射線、すなわち特定波長の光を用いた照明によって励起され、励起時に蛍光放射線を放射することができる、局在化顕微鏡検査のための蛍光発光体を使用する。励起放射線を用いた照明下で、蛍光発光体は、絶えず非励起の基底状態と励起状態との間のサイクルを通過して、基底状態に再び戻る。基底状態から励起状態への遷移は、励起放射線によって促進される。分子レベルでは、これは励起放射線の光子の吸収によって説明される。蛍光発光体は、励起状態から基底状態に戻り、その戻る間に光学的な蛍光放射線を放射する。分子レベルでは、励起状態から基底状態へのこの変化は、蛍光光子の放射と関係している。蛍光発光体が励起状態に留まる期間は、ナノ秒のスケールである。すなわち、励起光子の吸収後、蛍光発光体は、励起状態にまったく留まらないも同然であり、むしろ事実上直ちに蛍光光子を放射する。この状況の結果は、励起放射線で照らされる蛍光発光体が連続的に蛍光放射線を放射するということである。蛍光発光体を励起放射線でいつでも励起することができ、蛍光発光体は照らされる限り蛍光放射線を放射する、蛍光発光体のこの状態を本明細書では「明状態」と呼ぶ。蛍光発光体が励起放射線の照射にもかかわらず蛍光放射線を放射しない、したがって励起放射線に対してほとんど無反応である暗状態がこれと対比される。暗状態は、例えば、分子のいわゆる三重項状態とすることができる。このような暗状態および特に三重項状態は、ある一定の寿命を有する。すなわち、基底状態から今度は励起放射線を用いた励起および蛍光放射線の放射がいつでも可能であるため、蛍光発光体が暗状態から基底状態に(光学的放射線の放射なしで)戻るために、したがって明状態になるために、ある一定の時間がかかる。暗状態の寿命は、励起状態の寿命より著しく長い。換言すれば、本発明の枠組内で、明状態は、蛍光放射線が放射される蛍光発光体の基底状態および励起状態を含む。これに対して、暗状態は、励起放射線の照明下でさえ、蛍光発光体を励起状態にすることが可能でなく、したがって蛍光放射線が放射されない状態である。
【0019】
励起放射線の照射によって、蛍光発光体は第1の確率で明状態に留まる。第1の確率より小さい第2の確率で、蛍光発光体は暗状態へ移る。しかしながら、暗状態の寿命は励起状態の寿命よりはるかに長いため、蛍光発光体が特定の期間内に暗状態に移行することになる確率は、励起放射線の強度の増加とともに増加する。発光体は、暗状態の寿命の間は暗状態に留まり、そのとき励起放射線に無反応であるため、この寿命の間はほとんどスイッチを切られる。暗状態と異なり、明状態自体に明確な寿命があるとは考えられない。明状態の励起状態に寿命があると考えられるのみである。しかしながら、すでに述べたように、これは暗状態の寿命より何倍も短い。理論的な2状態系では、特定の強度の励起放射線によって励起された蛍光発光体は、ほとんど無制限の蛍光放射線を放射し得る。
【0020】
本発明は、励起放射線の照射によって、蛍光発光体の特定の割合が暗状態、例えば三重項状態に移行するという、ほとんどすべての蛍光発光体の一般的な特性を使用する。暗状態に入る蛍光発光体の割合は、励起放射線の強度に依存する。それは、励起放射線の強度が増加するにつれて増加する。各々の蛍光発光体について、それが励起光子を通して基底状態から標準的な励起状態へ移り、そこから無放射で暗状態へ移ることになる、ある一定の確率が存在する。用語「無放射」は、蛍光放射線の波長に関連している。通例、暗状態にある確率は、励起放射線の強度が増加するにつれて増加する。蛍光発光体が暗状態にある場合、蛍光発光体は、暗状態の寿命の間は蛍光放射線を放射しない。蛍光発光体が暗状態から明状態に戻っていたときにのみ、発光体は励起されれば再び蛍光放射線を放射することができる。これらの状況によって、蛍光発光体は明滅し、明滅の暗時間は暗状態の寿命によって決定される。発光体は、明状態で励起されている間は発光しているため、明時間の長さは、蛍光発光体が明状態から暗状態へ移るのにどの程度長くかかるかに依存する(最終的には、平均明時間は励起放射線の強度に依存する)。期間、したがって明滅の明滅周波数は、明時間と暗状態の平均寿命との合計によって形成される。暗時間の持続時間は励起強度に依存するため、明滅周波数は励起強度の選択によって設定される。
【0021】
幾つかの実施形態では、暗時間、すなわち暗状態の平均寿命は、すべての明滅周波数に対して分子特有に事前決定される。幾つかの実施形態では、それは化学的に操作されない。すなわち、暗時間は自然の暗状態の寿命である。換言すれば、励起放射線の強度の適当な選択を通して蛍光発光体が暗状態へと一時的に変化することによって、明状態における各々の蛍光発光体の連続的な発光が中断されるという点で明滅が生成される。
【0022】
本発明は、励起強度の適当な選択によって望ましい周波数で染料を明滅させ、局在化顕微鏡検査を行い、カメラの積分時間または画像周波数を明滅周波数に適合させる。幾つかの理由で、これは最新技術から離れた体系的な変更を表す。
【0023】
1.本発明は、蛍光発光体の明滅を計画的に引き起こし、この明滅を局在化顕微鏡検査のために使用する。画像キャプチャは、リフレッシュレートが明滅周波数より低くならないように設計される。局在化顕微鏡検査のために、蛍光発光体は、明滅しているために必ず数回検出される。これに対して、従来のPALM手法およびその修正形態は、分子を可能であれば一度のみ照らされた状態にするものであり、いずれにしても明滅を正確に回避することを目的とする。
【0024】
2.従来の蛍光体のために、したがって蛍光顕微鏡検査の通常用途の大多数のために、暗状態への遷移の確率は、言及したように、励起放射線の強度に依存する。明時間、したがって明滅周波数は、互いに関して逆に変化する。励起放射線がより強くなるほど、蛍光体はより多く暗状態へ移り、明時間はより短くなる(明滅周波数はより高くなる)。したがって、明滅周波数は、単純な光学手段によって適切に設定して、カメラの必要性に適合させることができる。明滅周波数を増加させることによって、分子が明状態にある期間は減少する。しかしながら、暗状態は、好ましくは不変の分子特有の寿命を有する自然の暗状態であるため、長さが変化しないままである。したがって、明時間と暗時間との間の比率は、暗状態が明状態と比較して長くなるという点において制御される。相対的なスケールで、化学的操作を伴う最新技術でのみ可能であった結果、すなわち暗状態の延長が達成される。
【0025】
3.明滅周波数を参照することにより、本発明は、カメラの積分時間/画像周波数と励起放射線の強度との相互作用の有利な利用を達成し、PALMでは利用可能でなかった、従来の蛍光体を化学的影響なしで局在化顕微鏡検査のために使用することができるという結果をもたらす。
【0026】
4.明滅周波数より低くならないカメラのリフレッシュレートは、カメラの設定の、例えば画像キャプチャの積分時間の、励起放射線の強度に対する適当な相互適合を通して取得することができる。したがって、励起放射線強度によって規定される明滅周波数とカメラ積分時間/リフレッシュレートによって規定されるカメラの検出感度との間の逆の関係が利用される。幾つかの実施形態では、局在化解析においてマルチエミッタ解析を利用する。すなわち、蛍光発光体の群が蛍光発光体の他の群から分離されるという意味で、「分離される」という用語を理解し、または、少なくとも一部の蛍光発光体が個々の画像内で空間分解能を考慮して分離されるという定義を理解する。それにもかかわらずカメラは好ましい性能範囲で動作するため、分解能は最新技術で予想されるほど大きく減少しない。
【0027】
5.個々の画像のリフレッシュレートは明滅周波数より低くならないため、明滅周波数に対する参照は、正確に明滅分子の1つの暗状態がそれぞれの個々の画像に含まれることを確実にする。この周波数は、1つの明状態および1つの暗状態から構成される。したがって、対応する分子の局在化は、従来の方法で依然として可能である。そのため、本発明による顕微鏡検査方法の局在化解析は、標準的なPALMまたはその修正形態の局在化解析と基本的には異ならない。しかしながら、試料の蛍光発光体がそれらの明時間の間に幾つかの光子を放射するため、各々の分子はそのとき、幾つかの光子によって検出される。これは、最新技術と比べて比較的短く明滅周波数に適合される積分時間に有利な補償を提供する。比較的迅速な画像キャプチャは、驚くべきことに局在化解析において、信号/雑音比の劣化につながらない。
【0028】
励起放射線の強度とリフレッシュレートとを互いに適合させるために、本発明の幾つかの実施形態では、テスト測定で暗状態の寿命を測定し、それに応じてリフレッシュレートを設定する。寿命を測定するために、励起放射線をパルス方式で放出してもよく、蛍光放射線は、励起放射線に同期して検出することができる。例えば蛍光相関分光法によって知られているように、連続波動作で励起して自己相関分析を行うことも可能である。
【0029】
積分時間は、好ましくは暗状態の寿命の90パーセント、特に好ましくは50パーセント、きわめて特に好ましくは10パーセントである。
【0030】
本発明は、ほとんどの標準的な蛍光体の暗寿命の規模の時間体制で動作する。この範囲は1μs~300μsである。励起強度は、蛍光を発しない暗状態の寿命によって明滅動作が支配されるように設定される。ほとんどの場合、これは三重項状態である。画像周波数が1/(300μs)の値未満に下がらないように、励起放射線の強度を設定することが好ましい。
【0031】
顕微鏡検査方法の実施形態において、励起放射線の強度は、1MW/cmを超えることはなく、好ましくは50kW/cmを超えることはなく、特に好ましくは2kW/cmを超えることはない。
【0032】
リフレッシュレートは、好ましくは明滅周波数の150%を上回ることはなく、さらに好ましくは130%を上回ることはなく、特に好ましくは110%を上回ることはなく、きわめて特に好ましくは105%を上回ることはなく、かつ100%を上回るように選択され、100%には到達しない。
【0033】
特に好ましい実施形態において、蛍光発光体は、それらの暗状態の寿命に関して化学的に影響されない状態にある。生細胞に対する化学的な影響は一般に非常に不利であるため、このことは生細胞の顕微鏡検査において特に有利である。本発明は、励起放射線の出力をリフレッシュレートに適合させる。試料の光子圧力は、より速いリフレッシュレートで減少するため、このことは生細胞の顕微鏡検査に対して特に有利である。
【0034】
顕微鏡のセットアップは、典型的な広視野蛍光顕微鏡のセットアップに対応し、したがって、制御装置は、励起強度およびリフレッシュレートを互いに合わせるために励起装置および撮像装置を制御するように適合される。励起放射線は、連続放射線(CW放射線)の形態で試料を照らすことができる。蛍光測定のために、パルス励起およびそれに同期したカメラの動作が好ましい。この同期動作は、個々の分子の発光体に対して信号対背景放射線の比率を改善するために、すなわち、例えば相当に長いまたは相当に短い寿命で、暗状態のおよび/または明状態の相当に異なる寿命の背景自己蛍光が試料に存在しているときにも使用することができる。
【0035】
本発明は、カメラのリフレッシュレートと試料の明滅周波数とを互いに調整する。明滅周波数、したがってリフレッシュレートを比較的高く設定することには、一定の利点がある。その際、カメラの積分時間は比較的短い。高いリフレッシュレートを使用する幾つかの実施形態では、カメラ内のSPAD検出器アレイを利用する。したがって、カメラがSPADアレイを備えることが好ましい。
【0036】
多数のピクセルを有するSPADアレイは、入手することが比較的難しく高価である。好ましい実施形態では、広視野での回折限界撮像を依然として可能としない数のピクセルを有するSPADアレイが使用される。これらの実施形態では、Carl Zeiss Microscopy GmbHの独国特許出願公開第102012205032A1号によって知られる技術を使用することができる。この技術によれば、試料は画像フィールドで撮像され、画像フィールドの位置は試料全体にわたって数回ずらされる。部分的な個々の画像が画像フィールドの各々の位置について取得され、取得された部分的な個々の画像は、個々の画像を形成するために組み立てられる。
【0037】
方法ステップが以下で解説される場合、それらのステップは、適切に設計された制御装置を有する顕微鏡の対応する動作によって実現することができる。したがって、方法の特徴が説明される場合、これらは、例えば適当な動作プログラムを通して、制御装置の設計に関連している。例えば対応するプログラミング手段を通して達成される制御装置の特徴が、同じように対応する動作方法の特徴に関連し、かつこれを開示するように意図され、当然のことながら逆も同様に当てはまる。
【0038】
上で明示された特徴および下でさらに解説される特徴が、述べられた組合せでだけでなく、他の組合せでまたは単独で、本発明の趣旨および範囲から逸脱することなく使用され得ることが理解される。
【0039】
本発明は、本発明に不可欠な特徴も開示する添付の図面を参照して、例としてさらにより詳細に解説される。局在化顕微鏡検査は、PALMの変形形態の実施例について解説される。しかしながら、上述のように、これは本発明を限定するものではない。
【図面の簡単な説明】
【0040】
図1】PALM法に基づく本発明の一実施形態による顕微鏡の概略表現である。
図2】PALM法に基づいて図1の顕微鏡で高分解能画像を生成するためのフローチャートである。
図3】蛍光発光体の明状態および暗状態を解説するための項図の概略表現である。
図4】蛍光発光体の明滅状態を解説するためのタイミング図である。
図5】生成される個々の画像上の平面図である。
図6】高分解能の顕微鏡検査方法を行うための顕微鏡の概略表現である。
図7図1の顕微鏡の画像フィールドの異なる位置を有する試料の表面上の平面図である。
図8】隣接する画像フィールド位置間の重複を例示するための図2に類似した表現である。
図9】2つの蛍光顕微鏡検査画像であり、上の画像は標準的な広視野キャプチャに対応し、下の画像は同じ試料の高分解能の全体画像である。
図10図9の画像の区間「1」および「2」を通した2つの断面表現である。
【発明を実施するための形態】
【0041】
図1は、高分解能で試料2を撮像する顕微鏡1を概略的に示している。ここで、撮像の回折限界を超えて増加した空間分解能を有する撮像方法に対して、最新技術において普通である高分解能という用語が使用される。顕微鏡1は、蛍光発光体を含有する試料2を撮像するのに役に立つ。照明光源3からの放射線を用いて蛍光発光体は励起され、蛍光放射線を放射する。蛍光を発している試料2は、ビームスプリッタ5を介して広視野カメラ4上に撮像される。顕微鏡1の動作は、制御装置6によって制御される。制御装置6は、(さらに識別されない)対応する制御線を介して、広視野カメラ4、照明光源3および任意選択的に試料2が置かれるテーブルに接続され、これらの要素を作動させ、またはこれらの要素からのデータ、特に広視野カメラ4からの画像データを受信する。
【0042】
一実施形態では、広視野カメラ4は、CMOSカメラおよびイメージインテンシファイアの組み合わせを備える。例えば、Gige-Visionによる「強化された高速CMOSカメラ」、または上流のイメージインテンシファイア、例えばLambert Instrumentsによるイメージインテンシファイア「HiCATT、ハイスピードカメラアタッチメント」を有する、CMOSカメラの形態で実現される。この実施形態および他の実施形態において、広視野カメラ4は、そのリフレッシュレート、すなわち露光時間または積分時間に関して調節することができる。制御装置6は、制御線を介して対応する設定を引き受ける。さらに、好ましい実施形態では、制御装置6は、リフレッシュレートへの同期を確立する。
【0043】
照明光源3は、試料に励起放射線Aを放出する。この放射線の強度は、CW放射線の形態またはパルス放射線の形態で、制御装置6によって設定される。さらに、制御装置6は任意選択的に、キャプチャされた個々の画像で局在化解析も行い、処理された個々の画像から高分解能の全体画像を生成する。
【0044】
図3は、顕微鏡1で使用される蛍光発光体についての項図を概略的に示している。蛍光発光体は、基底状態S0を有する。励起放射線Aの照射を通して、蛍光発光体は励起状態S1へ移り、そこから蛍光放射線の放射とともに基底状態へ戻る。基底状態S0および励起状態S1は、蛍光発光体の明状態Hを形成する。明状態Hにおいて、蛍光発光体は励起放射線Aの照射に対していつでも蛍光放射線Fを放射する。励起状態S1の寿命は数ナノ秒であるため、明状態Hにおいては、励起放射線Aで照らされる蛍光発光体は絶えず蛍光放射線Fを放射する。蛍光放射線Fの個々の光子の放射がナノ秒間隔で起こるという事実は本明細書では関係なく、また本明細書で説明される装置を用いた測定技術によっては検出できない。
【0045】
励起放射線Aは、蛍光発光体を、励起状態S1を経由して三重項状態T1にすることもできる。これは、数μsの範囲、例えば1μs~300μsの寿命を有する。蛍光発光体が三重項状態T1にある間、蛍光発光体は励起放射線Aのさらなる照射に反応しない。三重項状態への遷移および三重項状態からの遷移は、(少なくとも蛍光放射線Fの波長に関して)無放射であり、したがって図3では破線で描かれる。蛍光発光体はそのとき、励起放射線Aを用いた照明にもかかわらず蛍光放射線Fを放射しないため、三重項状態T1は、したがって暗状態Dである。蛍光発光体が基底状態S0に戻ったとき、したがって暗状態Dを出て再び明状態Hにあるときのみ、蛍光発光体は、励起放射線Aを用いた照明に対して絶えず蛍光放射線Fを放射する。
【0046】
励起状態S1から基底状態S0への遷移の確率は、励起状態S1から三重項状態T1への遷移の確率よりはるかに高い。したがって、励起放射線Aの光子の照射に対して、蛍光発光体は、暗状態Dに変化するよりも明状態Hに留まる可能性がはるかに高い。しかしながら、確率はゼロではない。励起放射線Aの強度が増加するにつれて、すなわち、いわば励起放射線の光子による衝撃の増加とともに、蛍光発光体がある一定の期間内に暗状態Dに移行する確率は増加する。
【0047】
図3で示される項図は、単なる実施例と解釈されるべきであり、単に励起放射線Aを照射することによって両方とも到達される明状態Hおよび暗状態Dがあるという意味で、本明細書で使用される物質を蛍光発光体として特徴付けるようにのみ意図される。暗状態Dで、単一状態が三重項状態T1の形態で存在することが絶対的に必要ではなく、多状態系も可能である。しかしながら、蛍光発光体が、ゼロを上回る遷移の確率で励起放射線Aの入射を通して暗状態Dへ移ることは重要である。
【0048】
これは、励起放射線Aの波長と異なる波長の放射線を使用するPALM変形形態に対して大きな相違をもたらす。特定のスイッチング放射線で動作する、dSTORMとして知られるPALM変形形態は、一例にすぎない。このような別個のスイッチング放射線は、本発明の実施形態では使用されない。むしろ、蛍光発光体は、もっぱら励起放射線Aの照射を通して(ある一定の確率で)暗状態へ移る。
【0049】
この状況の効果は、図4に示されている。この図は、蛍光発光体の光放射のタイムシーケンスを表している。この中で、下位レベル8は暗い蛍光発光体を示し、上位レベル9は蛍光を発している蛍光発光体を示している。解説したように、蛍光発光体は、励起放射線Aによってある一定の確率で暗状態Dにさせられるため、励起放射線Aの照射を通して、蛍光発光体は遅かれ早かれ、光る明状態(上位レベル9)から暗状態(下位レベル8)へと移る。この暗状態Dの間、発光体は暗いままである。この暗状態の持続時間は、上記の場合において、蛍光発光体に対して光学的に影響され得ない。暗時間(図4の曲線の下位レベル8)は、暗状態Dの寿命tdに相当する。その後、蛍光発光体は、再び暗状態Dを出て光る(図4の上位レベル9)。純粋に統計的に、蛍光発光体は、ある一定期間後に再び暗状態Dへと戻ることになる。蛍光発光体が光る期間は、明時間thを表す。明時間thは、暗状態Dへの遷移の確率に依存し、したがって励起放射線Aの強度に依存する。結果として、蛍光発光体は、非発光(下位レベル8)と発光(上位レベル9)との連続から形成される明滅7を行う。この明滅の期間PBは、その逆数が明滅周波数fBであり、暗状態Dの寿命tdと明時間thとの合計によって形成される。
【0050】
励起放射線Aの強度が増加されると、発光体が暗状態Dへ移る確率が増加し、それによって明時間thが減少する。この状況は、図4では破線で描かれている。励起放射線Aの強度を増加させることによって、統計的平均ではより早く暗状態Dに到達するため、平均明時間thは短縮される。図4では、これは左から見た第2の暗状態の前方への変位10によって、破線でプロットされている。明滅周波数fBが増加する(明滅期間PBが減少する)ことは直ちに見てとることができ、暗状態Dの寿命tdは変化しないままである。それは好ましくは、暗状態Dの自然寿命、例えば三重項状態T1の自然寿命に対応する。
【0051】
制御装置6は、顕微鏡1が、局在化に基づく顕微鏡検査方法、例えばPALM法を行うように全体として設計されている。
【0052】
実行される方法手順は、フロー図として図2に表されている。ステップS1における方法の開始後、励起ステップS2において、試料2は照明光源3からの励起放射線Aによって照らされる。これは個々の蛍光発光体が撮像の空間分解能に関して分離されるように行われる。後続の画像キャプチャステップS3で撮像が行われ、このステップでは、少なくとも個々の蛍光発光体の隣接する蛍光発光体からの間隔が広視野撮像の空間分解能よりも大きいという点で、広視野で試料の個々の画像を供給する。この状態は図5に概略的に示されており、これは試料2の個々の画像14を示している。個々の画像で、個々の蛍光発光体11は分離されている。ここでは、それらは星印としてプロットされている。現時点においては暗状態Dにある発光しない蛍光発光体は、図5ではリングによって記号で表されている。大多数の蛍光発光体、特に領域13の蛍光発光体は、それらを互いから切り離すことができるように間隔を置かれている。しかしながら、例えば領域12では、個々の蛍光発光体は、互いに非常に接近して隣り合っているため、それらは光学的におよび局在化解析において区別することができない。100%分離を達成することができない(またこれがまったく必要でもない)という事実は、局在化解析に関する当業者には周知である。
【0053】
後続の局在化ステップS4は、これらの分離された蛍光発光体について、回折限界が実際に許容するよりも大きい空間分解能で画像中の所在場所を決定する。領域12内にあるような切り離すことができない蛍光発光体は、局在化ステップS4で廃棄される。これは、分離された蛍光発光体からキャプチャされる放射線が、1つの蛍光発光体から発するのか、または少数の蛍光発光体から発するのかを、局在化ステップS4で利用するという点において起こり得る。この知識から所在場所が決定され、蛍光発光体は、回折限界が許容するよりも高い精度で位置決めされる。局在化ステップS4で行われる局在化解析は、分離された蛍光発光体のエアリーディスクの中心が決定されるように単純化された方式で想定することができ、その中心はそのときの所在場所を表す。蛍光発光体の所在場所は、点像分布関数に当てはめることによって、単純に中心を決定するよりも正確に決定することができる。この関数は、例えば2Dガウス分布によって近似することができ、または光学系の実験的に決定された点像分布関数を使用することもできる。局在化解析を行うために、例えば、本明細書の導入部分で言及した刊行物から、多くの異なる手法が最新技術において知られている。
【0054】
個々の画像14における局在化ステップS4の1つの単一の実行は、対応する広視野画像内で発光した、すなわち暗状態Dでない蛍光発光体についてのみ所在場所を与える。さらに、分離された蛍光発光体のみが局在化される(したがって、例えば領域12の発光体は局在化されない)。可能であれば、すべての蛍光発光体に関して試料を撮像するために、ステップS2~S4は、最良の場合には、分離された蛍光発光体のサブセットが少なくとも一度すべての蛍光発光体11を有するようにするために数回繰り返される。したがって、質問ステップS5が局在化ステップS4に続き、ここでは試料2が十分な程度に撮像されたかどうかチェックされる。例えばこのステップは、局在化ステップS4の前のサイクルのすべてから取得した多数の所在場所にアクセスすることができる。このような手段は、所在場所の許容誤差を決定せずに動作するPALM法または他の局在化ベースの高分解能方法でも使用されるため、このような質問は最新技術の当業者には周知である。試料が十分に包括的に検出された場合(J分岐)、ステップS6で全体画像が生成され、画像が表示される。そうでなければ(N分岐)、ステップS2~S4が再び実行され、繰り返しサイクルの間に、可能な限り他の蛍光発光体が分離されるように注意が払われる。
【0055】
(それが最も単純である故に)最も有利な選択肢は、最初に個々の画像14をすべてキャプチャしてそれらを保存し、次に保存された各々の個々の画像14に対して局在化解析を実行することである。あるいは、特に十分な処理能力の場合には、オンライン解析が行われる。画像表示ステップS6における全体画像の生成および表示の後、ステップS7が方法を終了させる。試料2は、光学的な回折限界が許容するよりも良好な空間分解能で撮像された。
【0056】
励起放射線Aは、試料中の蛍光発光体を明滅7するように励起し、蛍光発光体は、明状態Hと暗状態Dとの間を明滅周波数fBで交互に切り替わる。励起ステップS2は、適当な強度の励起放射線Aを介して、明滅する試料を提供する。明滅する試料2は、画像キャプチャステップS3において広視野撮像機器構成で撮像され、広視野カメラ4で検出される。カメラはリフレッシュレートを有しており、したがって、個々の画像14のそれぞれに対して画像キャプチャ時間を規定する。画像キャプチャ時間は、個々の画像生成プロセスの積分時間によって決定される。制御装置6は、広視野カメラ4でこの積分時間を設定する。さらに、制御装置6は、照明光源3で励起放射線Aの強度を設定する。
【0057】
励起放射線Aの強度と蛍光体11が明滅する明滅周波数fBとは、互いに関連している。励起強度Aが大きく増加すると、明滅周波数fBは増加する。同時に、リフレッシュレートの増加は、広視野カメラ4の検出感度を低下させる。対応する感度曲線または感度依存性を記述する他のデータは、制御装置6に保存される。同様に、励起強度Aと明滅周波数fBとの間の関係、または励起強度と平均明時間thとの間の関係は、制御装置6に保存される。この関係は、曲線としてまたはデータの形態で(例えばテーブルとして)保存することができる。それは、蛍光体に対して事前に知られているか、または顕微鏡の特別なテスト測定モードで決定される。テスト測定モードは、要求に応じてまたは自動的に、制御装置6によって実行される。このテスト測定モードで、制御装置6は、同期された照明光源3および広視野カメラ4のパルス動作を通して、(励起強度の関数として1つの選択肢で)暗状態Dの寿命tdおよび/または明時間thおよび/または明滅周波数fBを検出する。あるいは、寿命測定は、CW励起放射線(上記を参照のこと)を用いても行うことができる。
【0058】
制御装置6は、制御装置6に保存された要求、または制御装置6に入力された要求に従って、照明光源3によって放射される励起放射線Aの強度および広視野カメラ4のリフレッシュレートを設定する。
【0059】
要求は、例えば、可能な限り速く画像キュプチャが必要とされると主張することができる。制御装置6は、広視野カメラ4のリフレッシュレートと光学的検出限界との間の保存された関係から、試料2を撮像するために必要とされる最小リフレッシュレートを決定し、明滅周波数fBがリフレッシュレートを下回るように、照明光源3において励起放射線Aの強度を設定する。励起放射線Aの強度と個々の画像キャプチャのリフレッシュレートとの互いの相互作用は、全体画像の生成を最小化するように適合されるため、この動作モードは、高速動作モードと解釈することができる。個々の画像キャプチャの許容可能な最大リフレッシュレートを決定する際、蛍光発光体11の一部の分離に対する要件は、マルチエミッタ解析として、すなわち各々の回折限界点に対して幾つかの分子が評価に入ることを許して、ステップS4において局在化解析を行うことによってさらに下げることができる。したがって、広視野カメラ4についての性能要求はさらに減少され、可能なリフレッシュレートは増加する(ただし、これは若干のしかし一定の用途において容認可能な分解能の犠牲を伴う)。
【0060】
可能な限り速い画像キャプチャの反対の極致は、蛍光発光体11の最大の分離を目的とする、励起放射線Aの強度とリフレッシュレートとの相互適合である。その際、制御装置6は、照明光源3において励起放射線Aの強度を増加させ、それによって明滅周波数が増加する。同時に、リフレッシュレートも最大に設定され、それによって、究極的には分離の程度も増加する。暗状態の寿命と比較した露光時間がより短いほど、分離はより大きくなり得る。このようにして、局在化精度、したがって高分解能が増加される(ただし、試料の光子負荷または圧力を犠牲にする)。
【0061】
好ましい実施形態では、制御装置6は、リフレッシュレートと励起放射線強度との相互適合に関するパラメータが指定される入力インタフェースを有する。インタフェースは、例えば、ユーザに対する入力インタフェース、または対応するパラメータデータを供給するためのデータインタフェースとすることができる。1つの実施形態では、パラメータデータまたはユーザを介した入力は、好ましくは相対的なスケール、例えば0~100で画像キャプチャレートを指定する値を含むことができる。別の実施形態では、代わりにまたは加えて、ここでも好ましくは無次元スケールで、局在化精度および/または試料の光子圧力のパラメータを指定することができる。パラメータ値または幾つかのパラメータ値から、制御装置6は、保存された関係またはテーブルに従って、広視野カメラ4において設定されるリフレッシュレートまたは積分時間または露光時間、および(CWまたはパルス放射線として)照明光源3において設定される励起放射線Aの強度を決定する。
【0062】
本明細書の概要部分で解説したように、幾つかの実施形態では、発光体の特性変数の測定をさらに行う制御装置6を含む。これは例えば、明滅周波数fBまたは暗状態Dの寿命tdの測定とすることができる。顕微鏡1は広視野カメラ4を使用し、当該広視野カメラ4のリフレッシュレートが明滅周波数fBに設定または適合される。高いリフレッシュレートを実現することを可能にするために、幾つかの実施形態では、SPADアレイを備える広視野カメラ4を使用する。
【0063】
この手法の改良では、望ましい試料フィールドで必要とされる分解能に対して理論的には十分でないはずのSPADアレイが使用される。図6は、顕微鏡1のこの実施形態を概略的に示している。顕微鏡1は平らな試料2を撮像する。試料2の試料領域Pが撮像される。顕微鏡1は、試料フィールドPを撮像するために対物レンズ23およびさらなるレンズ24を備える。試料フィールドPの一部は、空間分解で、すなわちピクセル化検出器25で撮像される。それによって、図1の設計と対照的に、試料2の画像フィールドは、検出される試料フィールドより小さい検出器25上に撮像される。試料2は、照明光源3の1つの実施例である、レーザからの励起放射線Aに暴露される。励起放射線Aは、蛍光放射線Fを放射するために、試料2中の蛍光発光体11を励起する。励起放射線Aは、より詳細に説明されない光学系およびビームスプリッタ5を介して、対物レンズ23へのビーム経路に結合される。放射線は、ビームスプリッタ5から偏向ミラー29および適応ミラー30までを走る。偏向ミラー29は、ビーム経路をコンパクトに保つのに役立ち、その他の点ではさらなる重要性を有さない。適応ミラー30は、個々に作動させることができるミラーセグメントを含む。適応ミラー30は、撮像ビーム経路および照明ビーム経路の中間画像平面ZBに配置される。適応ミラー30は、試料領域P全体にわたって画像フィールドをシフトするための画像フィールドシフト装置の実施例であり、この画像フィールドは検出器25で撮像される。他の選択肢は、ミラースキャナまたは試料ホルダによる試料シフトである。中間画像平面ZBに同じく配置される絞り32も画像フィールド選択に寄与する。試料2の画像は、レンズ33および旋回ミラー34を介して、同様に中間画像平面ZBにある検出器25に到達する。旋回ミラー34は、代替的には通常の広視野カメラ35で試料を見ることを可能にする。旋回ミラー34およびカメラ35は、任意選択的である。カメラ35の動作の間、絞り32は好都合な方法で全開に設定されるか、またはビーム経路から除去され、試料2の試料フィールド全体が照らされるという結果になる。撮像ビーム経路にはレンズ31も設けられ、これはレンズ33のように中間の撮像をもたらす。レンズ31は、絞り32が配置される中間画像平面ZBを規定する。レンズ33は、検出器25が配置される中間画像平面ZBを規定する。
【0064】
図6の実施例で適応ミラー30によって実現される画像フィールド変位機構の機能は、検出される試料2の試料フィールドPの平面図を示す図7から明らかである。試料フィールドPよりかなり小さい画像フィールドは、37でラベル付けされている。画像フィールド37は、試料フィールドP全体にわたってシフトされる。対応するシフト位置およびシフト位置から生じる画像フィールド37の位置は、図7において概略的に示される。
【0065】
図8は、隣接する位置38の間に重複領域39が生じるように、画像変位装置が画像フィールド37を種々の位置38にすることを示している。これは任意選択的であるが、試料フィールドPを再現する1つの画像を形成するために、個々の部分画像を後で組み立てることをより容易にする。
【0066】
適応ミラー30を用いた実施形態では、適応ミラー30は、試料フィールドP全体にわたって画像フィールド37をシフトする1つまたは複数のグループ化された要素を含む。検出器25で撮像される画像フィールド37のサイズは、一方では検出器25自体の表面積によって、他方では絞り32の大きさによって、事前に決定される。絞り32は、撮像を改善するが必須ではない。絞り32が省略される場合、対応する中間画像平面ZBおよびこれを生成するための光学手段はなしで済ますことができる。
【0067】
検出器25は、試料フィールドP全体が撮像される場合、究極的には対物レンズ23によって規定される光学的分解能限界にはるかに及ばないであろう幾つかのピクセルを有する検出器アレイである。したがって、検出器25は、局在化顕微鏡検査のためには、それ自体では不適当であることになる。したがって、画像フィールド37のサイズおよび顕微鏡1の拡大率は、分解能限界に対応する試料2における構造長が、検出器上のピクセルのサイズに対応するか、またはさらに大きいように選択される。それにもかかわらず、試料フィールドPは、画像フィールド37を幾つかの位置へシフトすることによって走査することができる。したがって、高い測定速度を有する検出器を使用することができる。電子検出器の場合、個々の画像のリフレッシュレートは、検出器の積分時間および読み出し時間によって限定される。顕微鏡1の検出器25は、例えば、比較的大きい従来のCMOSベースまたはCCDベースの2次元検出器よりも大きさは小さいがはるかに速い、アバランシェフォトダイオード、光電子増倍管またはGaAsPハイブリッド検出器のアレイとすることができる。したがって、試料フィールドPは、空間分解検出器25によって撮像される。ここで、光学的撮像は、最大分解能が回折限界である、構造長が検出器上でその構造長の規模で検出器ピクセルに対応するように行われる。検出される画像フィールド37は、試料フィールドPよりはるかに小さい。試料フィールドP全体の検出のために、画像フィールドは種々の位置38にもってこられる。各々の位置について、試料2の下位の個々の画像14は、現在位置38に対応してキャプチャされる。その後、下位の個々の画像は、試料フィールドPの個々の画像14を形成するために組み立てられる。このさらなるデベロップメントは、標準的な広視野での撮像のためには十分でないピクセル数で利用可能な高速検出器アレイを使用することができる。例えば、128×128ピクセルを有するSPADアレイが使用される場合、Niclass et al.,IEEE Journal of Solid State Circuits 43,page 2977,2008によって知られているように、5×5の異なる画像フィールド位置の合計は、サイズが50μmの典型的な試料フィールドをカバーすることができる。
【0068】
図9は、説明された顕微鏡の実施形態を用いて生成された2つの画像を示している。Carl Zeiss Microscopy GmbHによる、Elyra型顕微鏡が使用された。画像キャプチャのための検出器として、米国DullesのVideo Scope International,Ltd.による、Ultracam7が使用された。蛍光体は、染料Alexa488である。この染料はファロイジンにマークを付け、それによって細胞の細胞骨格(アクチン)の一部が着色される。励起放射線の強度は、488nmの波長において0.1kW/cmであった。
【0069】
上の画像では、図9の標準的な広視野画像41を示しているのに対して、下の画像は同じ試料の高分解能の全体画像42を示している。30,000の個々の画像が生成され、それらの画像は、復帰時間を含む31.25μsの露光時間に対応する32kHzのフレームレートでキャプチャされた。合計測定時間として1秒を要した。局在化解析のために、2Dガウス関数が当てはめられた。EMCCD検出器を用いた従来のPALM顕微鏡検査法では、同じ測定のために10分~17分を必要とするであろう。広視野画像41は、30,000の個々のフレームを、何ら処理を施すことなく単純に合計することによって取得された。したがって、広視野画像41は、露光時間が1秒の画像に対応する。
【0070】
図10は、図9の広視野画像41および全体画像42における、マークが付いた2つの区間「1」および「2」を示している。図10の上部の表現は、区間「1」に対する2つの曲線、すなわち、広視野画像41に対する曲線43、および高分解能全体画像42に対する曲線44を示している。
【0071】
見てとれるように、高分解能全体画像42における空間分解能は非常に良好である。図10の下部の表現は、区間「2」を参照して、不正確な情報が一部の区間に対して広視野で確かに生じる場合があり、それによって例えば隣接する明領域を曲線内で過度に光らせることを証明している。これは、高分解能全体画像42によって回避される。この相違は、図10の下部の表現で明らかに認識することができる(例えば0.8μm~0.9μmの領域で参照のこと)。広視野画像41に対する曲線45は、高分解能の全体画像42の曲線46によれば、実際に試料構造がないか、または僅かにのみ存在する位置で最大を呈する。
【0072】
暗状態の実施例として三重項状態が説明されたが、これは単に例として理解されるべきである。三重項状態でない暗状態を有する、蛍光顕微鏡検査の当業者に周知の蛍光染料が存在する。
【0073】
顕微鏡検査方法、および対応する顕微鏡1の設計を行うことは、特に次の時間体制、すなわち暗寿命tdが3μs~320μsの範囲で有利である。カメラの積分時間は、好ましくはこの寿命より短い。したがって、可能な極値は、th=0.1td、td=3μs、PB=3.3μsおよびfB=約300kHzである。別の極致では、thはtd=300μsにほぼ等しく、PB=600μsおよびfB=1.6kHzである。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10