(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022179164
(43)【公開日】2022-12-02
(54)【発明の名称】ガラス部材の加熱装置、ガラス部材の加熱方法、及びそれを用いた光ファイバ用母材の製造方法
(51)【国際特許分類】
C03B 37/029 20060101AFI20221125BHJP
【FI】
C03B37/029
【審査請求】未請求
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2021086452
(22)【出願日】2021-05-21
(71)【出願人】
【識別番号】000005186
【氏名又は名称】株式会社フジクラ
(74)【代理人】
【識別番号】100143764
【弁理士】
【氏名又は名称】森村 靖男
(72)【発明者】
【氏名】高橋 純一
(57)【要約】
【課題】 水に起因する異常状態を検知し得るガラス部材の加熱装置、ガラス部材の加熱方法、及びそれを用いた光ファイバ用母材の製造方法を提供する。
【解決手段】 ガラス部材の加熱装置としての脱水焼結装置100は、ガラス部材としてのコア用多孔質ガラス体20を収容可能な収容空間31Sを有する炉心管31と、炉心管31の一部を囲う炉体35と、炉心管31と炉体35とによって囲われる空間35Sに配置されるヒータ37と、ガス測定部48と、を備え、空間35Sに配置される部材の少なくとも1つには炭素が含まれ、ガス測定部48は、水と炭素との反応に起因して発生するガスの前記空間内の濃度を測定可能である。
【選択図】
図4
【特許請求の範囲】
【請求項1】
ガラス部材の少なくとも一部を収容可能な収容空間を有する炉心管と、
前記炉心管の少なくとも一部を囲う炉体と、
前記炉心管と前記炉体とによって囲われる空間に配置されるヒータと、
ガス測定部と、
を備え、
前記空間に配置される部材の少なくとも1つには炭素が含まれ、
前記ガス測定部は、水と炭素との反応に起因して発生するガスの前記空間内の濃度を測定可能である
ことを特徴とするガラス部材の加熱装置。
【請求項2】
前記ガスは、一酸化炭素、二酸化炭素、メタン、及び水素の少なくとも1つである
ことを特徴とする請求項1に記載のガラス部材の加熱装置。
【請求項3】
前記炉体は、冷却水が流れる流路を有する
ことを特徴とする請求項1または2に記載のガラス部材の加熱装置。
【請求項4】
前記炉体に形成され前記空間に連通する給気口から前記空間に不活性ガスを供給するガス供給部を更に備える
ことを特徴とする請求項1から3のいずれか1項に記載のガラス部材の加熱装置。
【請求項5】
前記ガス測定部は、前記炉体に形成され前記空間に連通する排気口から排気される排気ガスから前記ガスの濃度を測定する
ことを特徴とする請求項1から4のいずれか1項に記載のガラス部材の加熱装置。
【請求項6】
前記ガス測定部によって測定される前記ガスの濃度の経時変化に基づいて、異常状態であるか否かを判断する異常判断部を更に備え、
前記異常判断部は、前記ガス測定部によって測定される前記ガスの濃度と、当該ガスの濃度が測定されるタイミング以前において前記ガス測定部によって測定される前記ガスの濃度の平均値との差が所定値以上である場合に、異常状態であると判断する
ことを特徴とする請求項1から5のいずれか1項に記載のガラス部材の加熱装置。
【請求項7】
ファイバ不良判断部を更に備え、
前記ガラス部材は、光ファイバの一部となる多孔質ガラス体であり、
前記ファイバ不良判断部は、前記ガス測定部によって測定される前記ガスの濃度の経時変化に基づいて、前記光ファイバが不良となるか否かを判断する
ことを特徴とする請求項1から6のいずれか1項に記載のガラス部材の加熱装置。
【請求項8】
前記ガスは、一酸化炭素であり、
前記ガラス部材は、前記光ファイバのコアとなる多孔質ガラス体であり、
前記ファイバ不良判断部は、前記ガス測定部によって測定される前記ガスの濃度と、前記炉体が設置されてから最初に前記ガラス部材を加熱する前の初期状態における前記ガスの濃度との差が550ppmを超える場合に、前記光ファイバが不良となると判断する
ことを特徴とする請求項7項に記載のガラス部材の加熱装置。
【請求項9】
少なくとも一部が炉体によって囲われる炉心管における収容空間にガラス部材の少なくとも一部を収容させ、前記炉心管と前記炉体とによって囲われる空間に配置されるヒータによって前記ガラス部材を加熱するガラス部材の加熱方法であって、
前記空間に配置される部材の少なくとも1つには炭素が含まれ、
前記ヒータによって前記ガラス部材を加熱しつつ、水と炭素との反応に起因して発生するガスの前記空間内の濃度を測定する
ことを特徴とするガラス部材の加熱方法。
【請求項10】
請求項9に記載のガラス部材の加熱方法によって前記ガラス部材としての多孔質ガラス体を加熱する加熱工程を備える
ことを特徴とする光ファイバ用母材の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガラス部材の加熱装置、ガラス部材の加熱方法、及びそれを用いた光ファイバ用母材の製造方法に関する。
【背景技術】
【0002】
光ファイバの製造に用いる光ファイバ用母材を製造する方法として、OVD法(Outside Vapor Deposition method)やVAD法(Vapor Phase Axial Deposition method)等を用いてガラス微粒子を堆積させて多孔質ガラス体を形成し、当該多孔質ガラス体を加熱して焼結させる方法が知られている。
【0003】
下記特許文献1には、多孔質ガラス体を加熱する加熱装置が開示されている。この加熱装置は、多孔質ガラス体を収容する収容空間を有する炉心管と、炉心管の外側に配置されるヒータと、炉心管の一部及びヒータを囲う炉体と、ガス検知器と、を備える。このガス検知器は、炉心管から当該炉心管と炉体とで囲われる空間に漏洩し、炉体に設けられる排気口から排出される漏洩ガスを検知する。このため、この加熱装置によれば、ガス検知器によって炉心管の割れ等の破損を検知できるとされている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、上記のような加熱装置の炉体は、冷却水によって冷却されることがあり、炉体が破損すると、冷却水が炉心管と炉体とで囲われる空間に侵入することがある。また、この空間に不活性ガスを供給して当該空間に配置される部材の燃焼を抑制することがあり、ガスの供給装置等の不具合によってこの空間に不活性ガスとともに水が侵入することがある。炉心管は一般的に石英やカーボン等から成り、このように上記の空間に水が入り込んだ異常状態では、炉心管が破損していなくても当該空間から炉心管の収容空間に水が浸透することがある。ヒータによって多孔質ガラス体を加熱して焼結している際に収容空間に水が浸入すると、最終的に製造される光ファイバの特性である伝送損失等が悪化することがある。
【0006】
そこで、本発明は、水に起因する異常状態を検知し得るガラス部材の加熱装置、ガラス部材の加熱方法、及びそれを用いた光ファイバ用母材の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
上記目的の達成のため、本発明のガラス部材の加熱装置は、ガラス部材の少なくとも一部を収容可能な収容空間を有する炉心管と、前記炉心管の少なくとも一部を囲う炉体と、前記炉心管と前記炉体とによって囲われる空間に配置されるヒータと、ガス測定部と、を備え、前記空間に配置される部材の少なくとも1つには炭素が含まれ、前記ガス測定部は、水と炭素との反応に起因して発生するガスの前記空間内の濃度を測定可能であることを特徴とするものである。
【0008】
また、上記目的の達成のため、本発明は、少なくとも一部が炉体によって囲われる炉心管における収容空間にガラス部材の少なくとも一部を収容させ、前記炉心管と前記炉体とによって囲われる空間に配置されるヒータによって前記ガラス部材を加熱するガラス部材の加熱方法であって、前記空間に配置される部材の少なくとも1つには炭素が含まれ、前記ヒータによって前記ガラス部材を加熱しつつ、水と炭素との反応に起因して発生するガスの前記空間内の濃度を測定することを特徴とする。
【0009】
ガラス部材を脱水、焼結、溶融等する場合、一般的に、ヒータは700℃以上に加熱される。このような高温状態で、上記の空間に水が入り込むと、水とこの空間に配置される部材に含まれる炭素とが反応してガスが発生する。このガラス部材の加熱装置、及びガラス部材の加熱方法では、このように発生するガスの濃度を測定できるため、上記の空間に水が入り込んだ異常状態を検知し得る。
【0010】
前記ガスは、一酸化炭素、二酸化炭素、メタン、及び水素の少なくとも1つであることとしてもよい。
【0011】
前記炉体は、冷却水が流れる流路を有することとしてもよい。
【0012】
このような構成にすることで、熱による炉体の損傷を抑制できる。また、ガス測定部が、水と炭素との反応に起因して発生するガスの上記の空間内の濃度を測定可能であるため、冷却水が上記の空間に入り込むような炉体の損傷を検知し得る。
【0013】
上記のガラス部材の加熱装置は、前記炉体に形成され前記空間に連通する給気口から前記空間に不活性ガスを供給するガス供給部を更に備えることとしてもよい。
【0014】
このような構成にすることで、上記の空間に配置される部材の燃焼を抑制できる。また、ガス測定部が、水と炭素との反応に起因して発生するガスの上記の空間内の濃度を測定可能であるため、不活性ガスとともに水が上記の空間に入り込むようなガス供給部や配管等の不具合を検知し得る。
【0015】
上記のガラス部材の加熱装置では、前記ガス測定部は、前記炉体に形成され前記空間に連通する排気口から排気される排気ガスから前記ガスの濃度を測定することとしてもよい。
【0016】
このような構成にすることで、上記の空間のある地点において上記のガスの濃度を測定する場合と比べて、当該空間においてガスが発生する場所による当該ガスの濃度への影響を抑制できる。このため、上記の場合と比べて、上記の空間に水が入り込んだ異常状態を正確に検知し得る。
【0017】
上記のガラス部材の加熱装置は、前記ガス測定部によって測定される前記ガスの濃度の経時変化に基づいて、異常状態であるか否かを判断する異常判断部を更に備え、前記異常判断部は、前記ガス測定部によって測定される前記ガスの濃度と、当該ガスの濃度が測定されるタイミング以前において前記ガス測定部によって測定される前記ガスの濃度の平均値との差が所定値以上である場合に、異常状態であると判断することとしてもよい。
【0018】
同じ構成の炉体であっても当該炉体の設置状態に応じて定常状態に測定される上記のガスの濃度は変化する傾向にある。このため、上記のような構成にすることで、ガスの濃度が所定値以上となる場合に異常状態であると判断する場合と比べて、適切に異常状態であるか否かを判断し得る。
【0019】
上記のガラス部材の加熱装置は、ファイバ不良判断部を更に備え、前記ガラス部材は、光ファイバの一部となる多孔質ガラス体であり、前記ファイバ不良判断部は、前記ガス測定部によって測定される前記ガスの濃度の経時変化に基づいて、前記光ファイバが不良となるか否かを判断することとしてもよい。
【0020】
上記のように、多孔質ガラス体を焼結している際に収容空間に水が浸入すると、最終的に製造される光ファイバの特性である伝送損失等が悪くなることがあり、収容空間に侵入する水の量が多いほど特性が悪化する傾向にある。このような収容空間への水の侵入は、多孔質ガラス体が焼結されることで形成される透明化されたガラス部材の外観に影響を与えないことがある。このため、透明化されたガラス部材の外観に基づいて、最終的に製造される光ファイバの特性が悪化して当該光ファイバが不良となるか否かを判断し難い場合がある。しかし、収容空間に侵入する水の量が多いほど、水と炭素との反応に起因して発生するガスの量は多くなり、このガスの濃度が高くなる。このため、上記のような構成にすることで、透明化されたガラス部材を製造した段階において、最終的に製造される光ファイバが不良となるか否かを判断でき、光ファイバの不良率を低減し得、光ファイバの生産性を向上し得る。
【0021】
この場合、前記ガスは、一酸化炭素であり、前記ガラス部材は、前記光ファイバのコアとなる多孔質ガラス体であり、前記ファイバ不良判断部は、前記ガス測定部によって測定される前記ガスの濃度と、前記炉体が設置されてから最初に前記ガラス部材を加熱する前の初期状態における前記ガスの濃度との差が550ppmを超える場合に、前記光ファイバが不良となると判断することとしてもよい。
【0022】
本発明者は、コアとなる多孔質ガラス体を加熱している際の一酸化炭素の濃度と上記の初期状態における一酸化炭素の濃度との差が550ppmを超える場合に、当該多孔質ガラス体から成るコアガラス体を含む光ファイバ用母材から製造される光ファイバが不良となることを見出した。このため、このような構成にすることで、最終的に製造される光ファイバが不良となるか否かを適切に予測し得る。
【0023】
本発明の光ファイバ用母材の製造方法は、上記のガラス部材の加熱方法によって前記ガラス部材としての多孔質ガラス体を加熱する加熱工程を備えることを特徴とするものである。
【発明の効果】
【0024】
以上のように、本発明によれば、水に起因する異常状態を検知し得るガラス部材の加熱装置、ガラス部材の加熱方法、及びそれを用いた光ファイバ用母材の製造方法が提供される。
【図面の簡単な説明】
【0025】
【
図1】本発明の実施形態に係る光ファイバの長手方向に垂直な断面の様子を概略的に示す図である。
【
図2】
図1に示す光ファイバを製造するための光ファイバ用母材の長手方向に垂直な断面の様子を概略的に示す図である。
【
図3】本発明の実施形態に係る光ファイバ用母材の製造方法、及び光ファイバの製造方法の工程を示すフローチャートである。
【
図4】第1加熱工程で用いる脱水焼結装置を概略的に示す図である。
【
図5】実験例におけるそれぞれのコアガラスロッドと、焼結時に測定された一酸化炭素及び二酸化炭素のそれぞれの濃度、及び製造された光ファイバの伝送損失との関係を示す図である。
【発明を実施するための形態】
【0026】
以下、本発明に係るガラス部材の加熱装置、ガラス部材の加熱方法、及びそれを用いた光ファイバ用母材の製造方法が添付図面とともに例示される。以下に例示する実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができる。なお、以下で参照する図面では、理解を容易にするために、各部材の寸法を変えて示す場合がある。
【0027】
図1は、本発明の実施形態に係る光ファイバの長手方向に垂直な断面の様子を概略的に示す図である。
図1に示すように、本実施形態の光ファイバ1は、コア10と、コア10の外周面を囲むクラッド11と、クラッド11の外周面を被覆する被覆層12とを主な構成として備える。当該断面におけるコア10の外形は円形とされ、当該コア10はクラッド11の中心に配置されている。なお、当該断面におけるクラッド11の外形は楕円形や多角形等の非円形とされもよい。
図1では、クラッド11の外形が円形とされる光ファイバ1が示されている。
【0028】
コア10の屈折率はクラッド11の屈折率よりも高くされる。本実施形態では、コア10はゲルマニウム(Ge)等の屈折率が高くなるドーパントが添加されたシリカガラスからなり、クラッド11は何ら添加物の無いシリカガラスからなる。なお、コア10が何ら添加物の無いシリカガラスからなり、クラッド11がフッ素(F)等の屈折率が低くなるドーパントが添加されたシリカガラスからなっていてもよい。また、コア10が屈折率を高くするドーパントが添加されたシリカガラスからなり、クラッド11が屈折率を低くするドーパントが添加されたシリカガラスからなっていてもよい。また、屈折率を高くするドーパント及び屈折率を低くするドーパントは特に制限されるものではない。
【0029】
被覆層12は、樹脂からなる。被覆層12を構成する樹脂として、例えば熱硬化性樹脂、紫外線硬化性樹脂が挙げられる。被覆層12は、クラッド11を囲う1つの樹脂の層からなる単層構造とされてもよく、複数の樹脂の層からなる多層構造とされてもよい。
【0030】
図2は、
図1に示す光ファイバ1を製造するための光ファイバ用母材の長手方向に垂直な断面の様子を概略的に示す図である。
図2に示すように、光ファイバ用母材1Pは、コア10となるロッド状のコアガラス体10Pと、コアガラス体10Pの外周面を囲みクラッド11となるクラッドガラス体11Pとから構成される。本実施形態では、当該断面におけるクラッドガラス体11Pの外形は円形であり、コアガラス体10Pはクラッドガラス体11Pの中心に配置されている。また、当該断面におけるコアガラス体10Pの外形は円形である。
【0031】
次に、本実施形態に係る光ファイバ用母材の製造方法について説明する。
【0032】
図3は、本実施形態に係る光ファイバ用母材1Pの製造方法の工程を示すフローチャートである。
図3に示すように、本実施形態の光ファイバ用母材1Pの製造方法は、第1堆積工程P1と、第1加熱工程P2と、第2堆積工程P3と、第2加熱工程P4と、を備える。
【0033】
<第1堆積工程P1>
本工程は、ガラス微粒子を堆積させて
図2に示すコアガラス体10Pとなるコア用多孔質ガラス体を形成する工程である。多孔質ガラス体は、OVD法やVAD法などのスート法によって形成することができる。本実施形態では、VAD法によって、準備したガラスロッドの一端部から当該ガラスロッドの軸方向に沿うようにガラス微粒子を堆積させて、コア用多孔質ガラス体を形成する。
【0034】
<第1加熱工程P2>
本工程は、第1堆積工程P1によって形成されるガラス部材としてのコア用多孔質ガラス体を加熱する工程であり、
図3に示すように、第1脱水工程P2aと第1焼結工程P2bとを含む。まず、本工程で用いるガラス部材の加熱装置としての脱水焼結装置について説明する。
【0035】
図4は、第1加熱工程P2で用いる脱水焼結装置を概略的に示す図である。
図4に示すように、本実施形態の脱水焼結装置100は、加熱炉30と、昇降部40と、第1ガス供給部41と、第2ガス供給部42と、ガス測定部48と、判断部50と、メモリ55と、通知部56と、制御部60と、を主な構成として備える。
【0036】
制御部60は、例えば、マイクロコントローラ、IC(Integrated Circuit)、LSI(Large-scale Integrated Circuit)、ASIC(Application Specific Integrated Circuit)などの集積回路やNC(Numerical Control)装置から成る。また、制御部60は、NC装置を用いた場合、機械学習器を用いたものであってもよく、機械学習器を用いないものであってもよい。以下に説明するように、脱水焼結装置100の幾つかの構成が制御部60によって制御される。
【0037】
本実施形態では、加熱炉30は、炉心管31と、炉体35と、ヒータ37と、断熱材38と、を主な構成として備える。
【0038】
本実施形態の炉心管31は、上下方向に延在する筒状部材であり、収容空間31Sにコア用多孔質ガラス体20を収容可能である。本実施形態では、炉心管31の両端の開口が閉塞されており、上側の開口を閉塞する部位が他の部位から取り外し可能とされている。炉心管31における上側の開口を閉塞する部位には、コア用多孔質ガラス体20を吊り下げるための支持棒22を挿入する貫通孔が形成されている。支持棒22の下端には接続部23が設けられ、コア用多孔質ガラス体20が堆積されたガラスロッド24がこの接続部23に接続されている。炉心管31には、収容空間31Sにそれぞれ連通する排気口E1及び給気口S1が形成されている。炉心管31を構成する材料として、例えば、石英、カーボン等が挙げられる。
【0039】
本実施形態の炉体35は、中空の箱状に形成され、炉体35の外壁内に、図示しない冷却水供給部から供給される冷却水が流れる流路36を有する。流路36に冷却水が流れることによって炉体35が冷却され、熱による炉体35の損傷が抑制される。また、炉体35の中心部には、上下方向に貫通する貫通孔が形成されており、当該貫通孔に炉心管31が挿入される。炉心管31の上端部及び下端部のそれぞれは、炉体35から突出しており、炉体35は上下方向における炉心管31の中央部を囲い、炉心管31と炉体35とによって囲われる空間35Sが形成されている。また、炉体35には、この空間35Sに連通する給気口S2及び排気口E2が形成されている。給気口S2は炉心管31を基準とした水平方向の一方側に位置し、他方側に排気口E2が位置している。炉体35を構成する材料として、例えば、金属が挙げられる。
【0040】
ヒータ37は、発熱することで炉心管31の収容空間31Sに収容されるコア用多孔質ガラス体20を加熱できるように空間35Sに配置される。本実施形態のヒータ37は、カーボン製とされ、炉心管31を囲うリング状に形成されるが、ヒータ37は、複数の加熱部に分割されて構成され、これら複数の加熱部が炉心管31を囲うように不連続に配置されてもよい。ヒータ37は、制御部60からの制御信号により、発熱温度を調節する。ヒータ37が発する熱を有効に利用するため、空間35Sにおけるヒータ37と炉体35との間に、断熱材38が配置されている。断熱材38の数は特に制限されるものではなく、断熱材38は複数に分割されていてもよい。本実施形態の断熱材38はカーボン製とされる。このため、本実施形態では、空間35Sに配置される部材であるヒータ37及び断熱材38には、炭素が含まれている。なお、空間35Sに配置される部材の少なくとも1つに炭素が含まれていればよく、例えば、ヒータ37及び断熱材38の一方は、例えばシリコンカーバイド製であってもよく、加熱炉30は断熱材38を備えなくてもよい。
【0041】
昇降部40は、把持する支持棒22を昇降する。昇降部40は、制御部60からの制御信号により、支持棒22を昇降して支持棒22に取り付けられるコア用多孔質ガラス体20を上下に移動させる。なお、昇降部40の構成は特に制限されるものではない。
【0042】
第1ガス供給部41は、炉心管31の給気口S1に接続される配管43を介して収容空間31Sに、脱水用ガスを含む第1ガスを供給する。第1ガス供給部41は、制御部60からの制御信号により、第1ガスの供給量を調節する。収容空間31Sに供給される第1ガスは、炉心管31の排気口E1から排気管44に排気される。本実施形態では、第1ガスは脱水用ガス及び不活性ガスの混合ガスとされ、脱水用ガスとして、例えば、塩素、SiCl4、塩化チオニル(SOCl2)、四塩化炭素(CCl4)等の塩素系ガス、及び一酸化炭素が挙げられ、不活性ガスとして、例えば、He、Ar、N2等が挙げられる。
【0043】
第2ガス供給部42は、炉体35の給気口S2に接続される配管45を介して空間35Sに、不活性ガスである第2ガスを供給する。第2ガス供給部42は、制御部60からの制御信号により、第2ガスの供給量を調節する。空間35Sに供給される第2ガスは、炉体35の排気口E2から排気管46に排気される。第2ガスとして、例えば、He、Ar、N2等が挙げられる。
【0044】
本実施形態では、ガス測定部48は、排気管46に取り付けられ、排気口E2から排気される排気ガスから当該排気ガスにおける所定ガスの濃度を測定し、測定した所定ガスの濃度を示す信号を判断部50に出力する。ガス測定部48はこの測定及び出力を断続的または連続的に繰り返す。所定ガスは、水と炭素との反応に起因して発生するガスである。上記のように、空間35Sに配置される部材の少なくとも1つには炭素が含まれる。このため、空間35Sの温度が水と炭素とが反応するような温度、例えば、700℃以上の状態において空間35Sに水が浸入する場合、この水と空間35Sに配置される部材に含まれる炭素とが反応して所定ガスが発生し得る。なお、水と炭素とが反応するような高温状態では、水は水素原子と酸素原子とに分解して、水素原子及び酸素原子と炭素とが反応していると考えられる。所定ガスとして、例えば、一酸化炭素、二酸化炭素、メタン、酸素、及び水素が挙げられ、ガス測定部48は、これらの少なくとも1つの濃度を測定可能に構成される。一酸化炭素の濃度を測定するものとして、例えば、定電位電解式センサが挙げられ、二酸化炭素の濃度を測定するものとして、例えば、非分散型赤外線式センサが挙げられ、メタンや水素の濃度を測定するものとして、例えば、半導体レーザ吸収分光式センサが挙げられ、酸素の濃度を測定するものとして、例えば、ジルコニア濃淡電池式センサが挙げられる。本実施形態のガス測定部48は、一酸化炭素の濃度を測定可能とされる。なお、ガス測定部48は、上記の所定ガスの空間35S内の濃度を測定可能であればよく、例えば、炉体35に取り付けられてもよい。
【0045】
本実施形態の判断部50は、ガス測定部48によって測定される所定ガスの濃度をメモリ55に記憶させるとともに、当該所定ガスの濃度の経時変化に基づいて、脱水焼結装置100が異常状態であるか否かの判断、及び、製造される光ファイバが不良となるか否かの判断をする。判断部50の構成として、例えば、制御部60と同様の構成が挙げられる。
【0046】
メモリ55は、例えば非一過性(non-transitory)の記録媒体であり、RAM(Random Access Memory)やROM(Read Only Memory)等の半導体記録媒体が好適であるが、光学式記録媒体や磁気記録媒体等の任意の形式の記録媒体を包含し得る。本実施形態では、メモリ55には、これらの判断処理を実行するためのプログラム、及び情報が記憶される。判断部50は、メモリ55からプログラム及び情報を読み出し、この状態において異常判断部51及びファイバ不良判断部52を備え、上記の判断処理を実行する。
【0047】
異常判断部51は、ガス測定部48によって測定される所定ガスの濃度の経時変化に基づいて、脱水焼結装置100が異常状態であるか否かの判断をする。本発明者は、後述のように、ガス測定部48によって測定される所定ガスの濃度と、当該ガスの濃度が測定されるタイミング以前においてガス測定部48によって測定される所定ガスの濃度の平均値との差が第1所定値以上となると、空間35Sに水が浸入している異常状態であることを見出した。これは、空間35Sに水が浸入することで当該水と炭素との反応によって所定ガスが発生し、当該所定ガスの濃度が上昇するためと考えられる。このため、本実施形態の異常判断部51は、ガス測定部48によって測定される所定ガスの濃度と、当該ガスの濃度が測定されるタイミング以前においてガス測定部48によって測定される所定ガスの濃度の平均値との差が第1所定値以上となる場合に、異常状態を示す信号を制御部60を介して通知部56に出力する。一方、異常判断部51は、上記の差が第1所定値未満の場合には、信号を制御部60に出力しないが、異常状態でないことを示す信号を制御部60を介して通知部56に出力してもよい。このため、異常判断部51の判断とは、ガス測定部48からの信号に応じて、出力する信号を変化させることである。なお、上記の第1所定値は実験等によって予め設定でき、例えば、所定ガスが一酸化炭素である場合の第1所定値は500ppmとされ、二酸化炭素である場合の第1所定値は450ppmとされる。また、異常判断部51は、信号を直接通知部56に出力してもよい。
【0048】
ファイバ不良判断部52は、光ファイバの一部となる多孔質ガラス体を加熱している際にガス測定部48によって測定される所定ガスの濃度の経時変化に基づいて、当該多孔質ガラス体から成る部材を含む光ファイバ用母材から製造される光ファイバが不良となるか否かの判断をする。本発明者は、後述するように、多孔質ガラス体を加熱している際の所定ガスの濃度と、初期状態における所定ガスの濃度との差が第2所定値を超える場合に、多孔質ガラス体から成るガラス部材を含む光ファイバ用母材から製造される光ファイバが不良となることを見出した。空間35Sに侵入する水の量が多くなると、炉心管31を浸透して収容空間31Sに浸入する水の量も多くなり、製造される光ファイバの特性、例えば、伝送損失が悪化する。そして、上記の差が第2所定値を超えると、長距離伝送用の光ファイバとして一般的に要求される特性を満たさなくなることが分かった。上記の初期状態は、炉体35が設置されてから最初にコア用多孔質ガラス体20を加熱する前の状態である。また、上記の第2所定値は実験等によって予め設定でき、例えば、所定ガスが一酸化炭素であり、多孔質ガラス体が光ファイバ1のコア10となるコア用多孔質ガラス体20である場合には、550ppmである。本実施形態のファイバ不良判断部52は、一酸化炭素の濃度と、初期状態における一酸化炭素の濃度との差が550ppmを超える場合に、光ファイバ1が不良となることを示す信号を制御部60に出力する。一方、ファイバ不良判断部52は、この差が550ppm未満である場合には、信号を制御部60に出力しないが、光ファイバ1が不良とならないことを示す信号を制御部60に出力してもよい。このため、ファイバ不良判断部52の判断とは、ガス測定部48からの信号に応じて、出力する信号を変化させることである。また、ファイバ不良判断部52は、信号を直接通知部56に出力してもよい。
【0049】
本実施形態の通知部56は、異常判断部51からの信号及びファイバ不良判断部52からの信号に基づく通知を行う。通知部56としては、例えば、ディスプレイ及びスピーカーの少なくとも一方を有する構成が挙げられる。
【0050】
次に、第1加熱工程P2の第1脱水工程P2a及び第1焼結工程P2bについて説明する。
【0051】
<第1脱水工程P2a>
本工程は、脱水焼結装置100を用いてコア用多孔質ガラス体20を加熱してコア用多孔質ガラス体20を脱水する工程である。本工程では、まず、
図4に示すように、支持棒22に吊り下げられたコア用多孔質ガラス体20を炉心管31の収容空間31Sに収容させる。第1ガス供給部41は、制御部60からの制御信号により、第1ガスを収容空間31Sに供給し、当該収容空間31Sに第1ガスを充填するとともに、収容空間31S内のガスを排気管44から排気させる。また、第2ガス供給部42は、制御部60からの制御信号により、第2ガスを空間35Sに供給し、当該空間35Sに第2ガスを充填するとともに、空間35S内のガスを排気管46から排気させる。このため、空間35S内のヒータ37、断熱材38等が燃焼することを抑制できる。
【0052】
ヒータ37は、このように第1ガス供給部41及び第2ガス供給部42がガスを供給している状態で、制御部60からの制御信号により、発熱する。ヒータ37が発熱している状態で、昇降部40は、制御部60からの制御信号により、コア用多孔質ガラス体20の全体がヒータ37を横切るように、コア用多孔質ガラス体20を所定の速度で移動させる。このため、コア用多孔質ガラス体20がヒータ37によって所定の温度で加熱される。この加熱により、第1ガスに含まれる脱水用ガスによって、コア用多孔質ガラス体20のOH基や付着した水分が除去される。なお、加熱温度は、コア用多孔質ガラス体20の焼結温度より低い温度でかつコア用多孔質ガラス体20から水分を除去できる温度であればよく、例えば、1100℃以上1400℃以下であることが好ましい。加熱温度が1100℃以上であることによって、コア用多孔質ガラス体20へのガスの拡散が促進され、加熱温度が1400℃以下であることによって、コア用多孔質ガラス体20が軟化することを十分に抑制し得る。
【0053】
このようにヒータ37によってコア用多孔質ガラス体20を加熱している際、ガス測定部48は、所定の時間間隔、例えば、1分間隔で、一酸化炭素の濃度を測定し、測定した一酸化炭素の濃度を示す信号を判断部50に出力する。つまり、本工程では、ヒータ37によってコア用多孔質ガラス体20を加熱しつつ、ガス測定部48によって一酸化炭素の濃度を測定しており、このような加熱方法によってコア用多孔質ガラス体20を加熱する。
【0054】
異常判断部51は、ガス測定部48によって測定される所定ガスとしての一酸化炭素の濃度と、当該一酸化炭素の濃度が測定されるタイミング以前においてガス測定部48によって測定される一酸化炭素の濃度の平均値との差が第1所定値以上となる場合に、異常状態を示す信号を通知部56に出力し、通知部56は異常判断部51からの信号に基づく通知を行う。このため、作業者は、通知部56の通知によって異常状態を認識し得る。また、ファイバ不良判断部52は、ガス測定部48によって測定される一酸化炭素の濃度と、上記の初期状態においてガス測定部48によって予め測定された一酸化炭素の濃度との差が550ppmを超える場合に、光ファイバが不良となることを示す信号を制御部60に出力し、通知部56はファイバ不良判断部52からの信号に基づく通知を行う。このため、作業者は、通知部56の通知によって製造される光ファイバが不良となることを判断し得る。
【0055】
<第1焼結工程P2b>
本工程は、第1脱水工程P2a後に当該第1脱水工程P2aで用いた脱水焼結装置100を用いてコア用多孔質ガラス体20を加熱してコア用多孔質ガラス体20を焼結する工程である。第1脱水工程P2aと同様に、第1ガス供給部41は第1ガスを収容空間31Sに供給し、第2ガス供給部42は第2ガスを空間35Sに供給する。また、ヒータ37は、このように第1ガス供給部41及び第2ガス供給部42がガスを供給している状態で、発熱する。また、ヒータ37が発熱している状態で、昇降部40は、コア用多孔質ガラス体20の全体がヒータ37を横切るように、コア用多孔質ガラス体20を所定の速度で移動させる。このため、コア用多孔質ガラス体20がヒータ37によって所定の温度で加熱され、当該加熱よってコア用多孔質ガラス体20を焼結する。なお、加熱温度は、コア用多孔質ガラス体20が焼結して透明ガラス化する温度であればよく、例えば、1300℃以上1650℃以下であることが好ましい。
【0056】
ガス測定部48は、第1脱水工程P2aと同様に、例えば、1分間隔で、一酸化炭素の濃度を測定し、測定した一酸化炭素の濃度を示す信号を判断部50に出力する。このため、本工程では、第1脱水工程P2aと同様に、ヒータ37によってコア用多孔質ガラス体20を加熱しつつ、ガス測定部48によって一酸化炭素の濃度を測定しており、このような加熱方法によってコア用多孔質ガラス体20を加熱する。そして、第1脱水工程P2aと同様に、通知部56によって、異常判断部51及びファイバ不良判断部52からの信号に基づく通知がなされる。本工程によって、コア用多孔質ガラス体20が透明ガラス化され、
図2に示すコアガラス体10Pとなるコアガラスロッドとなり、切断等によってガラスロッド24からコアガラスロッドを得る。
【0057】
<第2堆積工程P3>
本工程は、第1焼結工程P2bによって形成されたコアガラスロッドの外面にガラス微粒子を堆積させて
図2に示すクラッドガラス体11Pとなるクラッド用多孔質ガラス体を形成する工程である。本実施形態では、OVD法によってコアガラスロッドの外周面にガラス微粒子を堆積させてクラッド用多孔質ガラス体を形成するが、クラッド用多孔質ガラス体の形成方法は、特に制限されるものではない。
【0058】
<第2加熱工程P4>
本工程は、第2堆積工程P3によって形成されるクラッド用多孔質ガラス体を加熱する工程であり、
図3に示すように、第2脱水工程P4aと第2焼結工程P4bとを含む。本実施形態では、第1加熱工程P2で用いた脱水焼結装置100と同じ構成の別の脱水焼結装置100を用いてこれら工程を行うが、第1加熱工程P2で用いた脱水焼結装置100を用いてもよい。
【0059】
<第2脱水工程P4a>
本工程は、脱水焼結装置100を用いてクラッド用多孔質ガラス体を加熱してクラッド用多孔質ガラス体を脱水する工程である。本工程は、主に、クラッド用多孔質ガラス体が形成されたコアガラスロッドを炉心管31の収容空間31Sに収容させる点において、第1脱水工程P2aと異なる。このため、本工程の詳細な説明は省略するが、本工程では、ヒータ37によってクラッド用多孔質ガラス体を加熱してクラッド用多孔質ガラス体を脱水しつつ、ガス測定部48によって一酸化炭素の濃度を測定する。なお、本工程では、ファイバ不良判断部52は光ファイバが不良となるか否かの判断を行わず、通知部56は異常判断部51からの信号に基づく通知を行う。
【0060】
<第2焼結工程P4b>
本工程は、第2脱水工程P4a後に当該第2脱水工程P4aで用いた脱水焼結装置100を用いてクラッド用多孔質ガラス体を加熱してクラッド用多孔質ガラス体を焼結する工程である。本工程は、主に、第2脱水工程P4aよって脱水されたクラッド用多孔質ガラス体が形成されたコアガラスロッドを炉心管31の収容空間31Sに収容させる点において、第1脱水工程P2aと異なる。このため、本工程の詳細な説明は省略するが、本工程では、ヒータ37によってクラッド用多孔質ガラス体を加熱してクラッド用多孔質ガラス体を焼結しつつ、ガス測定部48によって一酸化炭素の濃度を測定する。なお、本工程では、ファイバ不良判断部52は光ファイバが不良となるか否かの判断を行わず、通知部56は異常判断部51からの信号に基づく通知を行う。
【0061】
本工程においては、コアガラスロッドはほとんど変化することなく
図2に示すコアガラス体10Pとなる。また、クラッド用多孔質ガラス体が透明ガラス化されてクラッドガラス体11Pとなる。こうして、
図2に示す光ファイバ用母材1Pが得られる。
【0062】
このようにして得られる光ファイバ用母材1Pを紡糸炉によって加熱して線引きすることで、コアガラス体10Pがコア10となり、クラッドガラス体11Pがクラッド11となり、コア10とクラッド11とから構成される光ファイバ裸線が得られる。そして、この光ファイバ裸線を被覆層12となる樹脂で被覆することで、被覆層12が形成され、
図1に示す光ファイバ1が製造される。
【0063】
以上説明したように、本実施形態のガラス部材の加熱装置としての脱水焼結装置100は、炉心管31と、炉体35と、ヒータ37と、ガス測定部48と、を備える。炉心管31はガラス部材としてのコア用多孔質ガラス体20の全体を収容可能な収容空間31Sを有する。炉体35は炉心管31の少なくとも一部を囲い、ヒータ37は炉心管31と炉体35とによって囲われる空間35Sに配置される。この空間35Sに配置される部材の少なくとも1つには炭素が含まれる。ガス測定部48は、水と炭素との反応に起因して発生する所定ガスの空間35S内の濃度を測定可能である。
【0064】
また、本実施形態のガラス部材としてのコア用多孔質ガラス体20及びクラッド用多孔質ガラス体の加熱方法は、炉心管31と炉体35とによって囲われる空間35Sに配置されるヒータ37によってこれらガラス部材を加熱する。この空間35Sに配置される部材の少なくとも1つには炭素が含まれる。そして、ヒータ37によってこれらガラス部材を加熱しつつ、水と炭素との反応に起因して発生する所定ガスの空間35S内の濃度を測定する。
【0065】
ガラス部材を、脱水、焼結、溶融等する場合、一般的に、ヒータは700℃以上に加熱される。このような高温状態で、上記の炉心管31と炉体35とで囲われる空間35Sに水が入り込むと、水とこの空間に配置される部材に含まれる炭素とが反応してガスが発生する。本実施形態の脱水焼結装置100、及びガラス部材の加熱方法では、このように発生するガスの濃度を測定できるため、上記の空間35Sに水が入り込んだ異常状態を検知し得る。
【0066】
また、本実施形態の脱水焼結装置100及びガラス部材の加熱方法では、炉体35は、冷却水が流れる流路36を有するため、熱による炉体35の損傷を抑制できる。また、ガス測定部48が水と炭素との反応に起因して発生するガスの上記の空間35S内の濃度を測定可能であるため、冷却水が上記の空間35Sに入り込むような炉体35の損傷を検知し得る。
【0067】
また、本実施形態の脱水焼結装置100は、炉体35に形成され空間35Sに連通する給気口S2から空間35Sに不活性ガスを供給する第2ガス供給部42を更に備える。このため、空間35Sに配置される部材であるヒータ37、断熱材38等の燃焼を抑制できる。また、ガス測定部48が水と炭素との反応に起因して発生するガスの空間35S内の濃度を測定可能であるため、不活性ガスとともに水が空間35Sに入り込むような第2ガス供給部42や第2ガス供給部42に接続される配管45等の不具合を検知し得る。
【0068】
また、本実施形態の脱水焼結装置100及びガラス部材の加熱方法では、炉体35に形成され空間35Sに連通する排気口E2から排気される排気ガスから所定ガスの濃度を測定する。このため、空間35Sのある地点において所定ガスの濃度を測定する場合と比べて、当該空間35Sにおいて所定ガスが発生する場所による当該所定ガスの濃度への影響を抑制できる。このため、上記の場合と比べて、空間35Sに水が入り込んだ異常状態を正確に検知し得る。
【0069】
また、本実施形態の脱水焼結装置100は、ガス測定部48よって測定される所定ガスの濃度の経時変化に基づいて、異常状態であるか否かを判断する異常判断部51を更に備える。異常判断部51は、ガス測定部48によって測定される所定ガスの濃度と、当該所定ガスの濃度が測定されるタイミング以前においてガス測定部48によって測定される所定ガスの濃度の平均値との差が第1所定値以上である場合に、異常状態であると判断する。同じ構成の炉体35であっても当該炉体35の設置状態に応じて定常状態に測定される所定ガスの濃度は変化する傾向にある。このため、上記のような構成にすることで、ガスの濃度が所定値以上となる場合に異常状態であると判断する場合と比べて、適切に異常状態であるか否かを判断し得る。
【0070】
本実施形態の脱水焼結装置100は、ファイバ不良判断部52を更に備え、光ファイバ1の一部となる多孔質ガラス体であるコア用多孔質ガラス体20を加熱する。このファイバ不良判断部52は、コア用多孔質ガラス体20を加熱している際にガス測定部48よって測定される所定ガスの濃度の経時変化に基づいて、光ファイバ1が不良となるか否かを判断する。
【0071】
コア用多孔質ガラス体20を焼結している際に収容空間31Sに水が浸入すると、最終的に製造される光ファイバ1の特性である伝送損失等が悪化することがあり、収容空間31Sに侵入する水の量が多いほど特性が悪化する傾向にある。このような収容空間31Sへの水の侵入は、コア用多孔質ガラス体20が焼結されることで形成される透明化されたガラス部材の外観に影響を与えないことがある。このため、透明化されたガラス部材の外観に基づいて、最終的に製造される光ファイバ1の特性が悪化して当該光ファイバ1が不良となるか否かを判断し難い場合がある。しかし、収容空間31Sに侵入する水の量が多いほど、水と炭素との反応に起因して発生するガスの量は多くなり、当該ガスの濃度が高くなる。このため、上記のような構成にすることで、透明化されたガラス部材を製造した段階において、最終的に製造される光ファイバ1が不良となるか否かを判断でき、光ファイバ1の不良率を低減し得、光ファイバ1の生産性を向上し得る。
【0072】
本実施形態では、所定ガスは一酸化炭素であり、ファイバ不良判断部52は、光ファイバ1のコア10となるコア用多孔質ガラス体20を加熱している際にガス測定部48よって測定される一酸化炭素の濃度と、初期状態における一酸化炭素の濃度との差が550ppmを超える場合に、光ファイバ1が不良となると判断する。前述のように、本発明者は、この差が550ppmを超える場合に、当該コア用多孔質ガラス体20から成るコアガラス体10Pを含む光ファイバ用母材1Pから製造される光ファイバ1が不良となることを見出した。このため、このような構成にすることで、最終的に製造される光ファイバ1が不良となるか否かを適切に判断し得る。
【0073】
以上、本発明について、上記実施形態を例に説明したが、本発明はこれらに限定されるものではない。
【0074】
例えば、上記実施形態では、異常判断部51及びファイバ不良判断部52を備える脱水焼結装置100を例に説明した。しかし、脱水焼結装置100は異常判断部51及びファイバ不良判断部52の少なくとも一方を備えなくてもよい。この場合、例えば、作業者が、ガス測定部48によって測定される所定ガスの濃度の経時変化に基づいて、異常状態であるか否かの判断や光ファイバ1が不良となるか否かの判断をしてもよい。
【0075】
上記実施形態では、ガス測定部48によって測定される所定ガスの濃度と、当該所定ガスの濃度が測定されるタイミング以前においてガス測定部48によって測定される所定ガスの濃度の平均値との差が第1所定値以上である場合に、異常状態であると判断する異常判断部51を例に説明した。しかし、異常判断部51は、ガス測定部48によって測定される所定ガスの濃度の経時変化に基づいて、異常状態であるか否かを判断すればよい。例えば、異常判断部51は、所定ガスの濃度が所定の閾値以上となる場合に、異常状態であることを示す信号を出力してもよい。この所定の閾値は、例えば、所定ガスが一酸化炭素である場合、700ppmとされ、所定ガスが二酸化炭素である場合、800ppmとされる。しかし、適切に異常状態であるか否かを判断する観点では、異常判断部51は、本実施形態のように異常状態であるか否かを判断することが好ましい。また、異常判断部51は、所定ガスの濃度と当該所定ガスの濃度が測定されるタイミング以前における所定ガスの濃度の中央値の差、所定ガスの濃度と当該所定ガスの濃度が測定されるタイミング以前における所定ガスの濃度の平均値から標準偏差を引いた値との差、所定ガスの濃度と当該所定ガスの濃度が測定されるタイミング以前における所定ガスの濃度の最小値との差等に基づいて、異常状態であると判断してもよい。この場合、異常判断部51は、これらの差が所定値以上である場合に異常状態であると判断し、この所定値は、それぞれの差に対して実験等に基づいて設定する。また、光ファイバ1が不良となるような状態は、異常状態である。このため、異常判断部51は、例えば、上記実施形態のファイバ不良判断部52と同様に、ガラス部材を加熱している際にガス測定部48よって測定される一酸化炭素の濃度と、初期状態における一酸化炭素の濃度との差が550ppmを超える場合に、異常状態であると判断してもよい。
【0076】
上記実施形態では、コア用多孔質ガラス体20を加熱している際にガス測定部48よって測定される一酸化炭素の濃度と、初期状態における一酸化炭素の濃度との差が400ppmを超える場合に、光ファイバ1が不良となると判断するファイバ不良判断部52を例に説明した。しかし、ファイバ不良判断部52は、ガス測定部48によって測定される所定ガスの濃度の経時変化に基づいて、異常状態であるか否かを判断すればよい。例えば、ファイバ不良判断部52は、所定ガスの濃度が所定の閾値以上となる場合に、光ファイバ1が不良となることを示す信号を出力してもよい。この所定の閾値は、例えば、所定ガスが一酸化炭素である場合、700ppmとされ、所定ガスが二酸化炭素である場合、800ppmとされる。また、上記実施形態では、ファイバ不良判断部52は、第1加熱工程P2において測定される所定ガスの濃度の経時変化に基づいて、光ファイバ1が不良となるか否かを判断していた。ここで、光ファイバ1のクラッド11となるクラッド用多孔質ガラス体を焼結している際に収容空間31Sに水が浸入すると、最終的に製造される光ファイバ1の特性である伝送損失が悪化することがあり、収容空間31Sに侵入する水の量が多いほど伝送損失が悪化する傾向にある。このため、ファイバ不良判断部52は、第2加熱工程P4において測定される所定ガスの濃度の経時変化に基づいて、光ファイバ1が不良となるか否かを判断してもよい。この場合、実験値等に基づいて、光ファイバ1が不良となるか否かを判断するための所定ガスの濃度の閾値等を設定する。
【0077】
また、上記実施形態では、炉心管31の一部を囲う炉体35を例に説明した。しかし、炉体35は、炉心管31の少なくとも一部を囲っていればよく、例えば、炉心管31の全体を囲っていてもよい。
【0078】
また、上記実施形態では、第2ガス供給部42を備える脱水焼結装置100を例に説明した。しかし、脱水焼結装置100は第2ガス供給部42を備えなくてもよく、例えば、第2ガス供給部42に替わって、排気管46から空間35S内の空気を排気して空間35Sを真空状態にする排気部を備えてもよい。このように空間35Sを真空状態にすることで、空間35S内のヒータ37、断熱材38等が燃焼することを抑制できる。
【0079】
また、上記実施形態では、コアガラス体10Pとなるコア用多孔質ガラス体20を形成する第1堆積工程P1を例に説明した。しかし、第1堆積工程P1で形成する多孔質ガラス体は、特に制限されるものではなく、例えば、コアガラス体10Pとクラッドガラス体11Pの一部となる多孔質ガラス体であってもよい。この場合、第2堆積工程P3では、第1焼結工程P2bによって形成されるガラスロッドの外面にガラス微粒子を堆積させてクラッドガラス体11Pの他の一部となる多孔質ガラス体を形成する。
【0080】
また、上記実施形態では、第1堆積工程P1、第1加熱工程P2、第2堆積工程P3、及び第2加熱工程P4を備える光ファイバ用母材1Pの製造方法を例に説明した。しかし、光ファイバ用母材1Pの製造方法は、上記のガラス部材の加熱方法によってガラス部材としての多孔質ガラス体を加熱する加熱工程を備えていればよい。例えば、光ファイバ用母材1Pの製造方法は、第1堆積工程P1及び第1加熱工程P2を含んでいなくてもよい。この場合、例えば、第2堆積工程P3では、まず、コアガラスロッドを購入等によって準備し、当該コアガラスロッドの外周面にガラス微粒子を堆積させてクラッド用多孔質ガラス体を形成する。
【0081】
また、上記実施形態では、第1ガスが脱水用ガス及び不活性ガスの混合ガスとされ、当該第1ガスが第1ガス供給部41から収容空間31Sに供給されている状態で多孔質ガラス体を加熱する第1焼結工程P2b及び第2焼結工程P4bを例に説明した。しかし、第1焼結工程P2b及び第2焼結工程P4bでは、収容空間31Sに不活性ガスのみが供給されている状態で多孔質ガラス体を加熱してもよい。この場合、例えば、第1ガス供給部41の構成を、供給する第1ガスを脱水用ガス及び不活性ガスを含むガスと不活性ガスのみとに変更できる構成とする。そして、制御部60は、工程に応じて第1ガス供給部41から供給される第1ガスが切り替わるように当該第1ガス供給部41を制御する。
【0082】
また、上記実施形態では、第1脱水工程P2a及び第1焼結工程P2bにおいて、同じ脱水焼結装置100によってコア用多孔質ガラス体20を加熱し、第2脱水工程P4a及び第2焼結工程P4bにおいて、同じ脱水焼結装置100によってクラッド用多孔質ガラス体を加熱していた。しかし、例えば、それぞれの工程において、互いに異なる脱水焼結装置100によって多孔質ガラス体を加熱してもよい。また、光ファイバ用母材1Pの製造方法は、第1加熱工程P2によってコア用多孔質ガラス体20が焼結されたガラス体を延伸してコアガラスロッドを得る延伸工程を更に備えていてもよい。なお、炉心管31は、ガラス部材の少なくとも一部を収容する収容空間31Sを有していればよく、炉心管31の両端に開口が形成されていてもよい。例えば、上記のガラス体を延伸する装置、光ファイバ用母材1Pを加熱する紡糸炉及び先端加工炉も本発明のガラス部材の加熱装置に含まれる。
【0083】
以下、本発明を、実験例を挙げて更に詳細に説明するが、本発明はこれらに制限されるものではない。
【0084】
図4に示す脱水焼結装置100を用いて、
図3に示す第1堆積工程P1及び第1加熱工程P2を32回繰り返すことによって、32本のコアガラスロッドを製造した。この脱水焼結装置100では、炉体35が設置されてから1本目のコアガラスロッドを製造するまでの間にヒータ37は加熱されていなかった。また、炉体35が設置されてから一本目のコアガラスロッドを製造するための第1加熱工程P2より前の初期状態における一酸化炭素及び二酸化炭素のそれぞれの空間35S内の濃度をガス測定部48によって測定した。初期状態での一酸化炭素の濃度は150ppmであり、二酸化炭素の濃度は260ppmであった。また、それぞれのコアガラスロッドを製造する際の第1加熱工程P2中に、一酸化炭素及び二酸化炭素のそれぞれの空間35S内の濃度をガス測定部48によって測定した。この測定結果を
図5に示す。なお、
図5には、後述する伝送損失も示されている。
【0085】
また、別の脱水焼結装置100を用いて、
図3に示す第2堆積工程P3及び第2加熱工程P4を行うことによって、これらコアガラスロッドのそれぞれから
図2に示す光ファイバ用母材1Pと同様の光ファイバ用母材1Pを製造した。それぞれの光ファイバ用母材1Pを製造する際の第2加熱工程P4中に、一酸化炭素及び二酸化炭素のそれぞれの空間35S内の濃度をガス測定部48によって測定した。一酸化炭素の濃度は、150ppm以上250ppm以下であり、二酸化炭素の濃度は、250ppm以上400ppm以下であった。また、光ファイバ用母材1Pの製造後に空間35Sを確認したところ、当該空間35Sへの水の侵入はなかった。
【0086】
また、製造した32本の光ファイバ用母材1Pのそれぞれを紡糸炉によって加熱して線引きすることで、それぞれの光ファイバ用母材1Pから
図1に示す光ファイバ1と同様の光ファイバ1を製造した。それぞれの光ファイバ1におけるコア10の直径は概ね10μmであり、クラッド11の直径は概ね125μmであった。また、それぞれの光ファイバ1について、OTDR(Optical Time Domain Reflectometer)を用いて1383nmの波長の光における伝送損失を測定した。その測定結果は上記のように
図5に示されている。なお、
図5には、長距離伝送用の光ファイバとして一般的に要求される伝送損失の値としての0.31dB/kmを示す一点鎖線が記載されている。
【0087】
図5に示すように、1本目から27本目までのコアガラスロッドから製造された光ファイバ1の伝送損失は概ね0.28dB/kmであり、28本目のコアガラスロッドから製造された光ファイバ1の伝送損失は0.309dB/kmであった。29本目以降のコアガラスロッドから製造された光ファイバ1の伝送損失は0.31dB/kmを超えており、29本目以降では、本数が増えるにつれて伝送損失が増加する傾向にあった。また、1本目から28本目のコアガラスロッドを製造する際の一酸化炭素の濃度が最大となるのは、28本目であり、28本目における一酸化炭素の濃度は397ppmであった。また、1本目から28本目のコアガラスロッドのうち、二酸化炭素の濃度が最大となったのは、28本目であり、28本目における二酸化炭素の濃度は448ppmであった。29本目における一酸化炭素の濃度は703ppmであり、29本目における二酸化炭素の濃度は813ppmであり、29本目以降における一酸化炭素及び二酸化炭素の濃度は、本数が増加するにつれて増加していた。このため、28本目を製造するときに空間35S内に水が浸入しはじめ、28本目以降では、本数が増えるにつれて空間35S内に侵入する水の量が多くなっていたと考えられる。また、上記のように、初期状態での一酸化炭素の濃度は150ppmであり、二酸化炭素の濃度は260ppmであった。このため、ガラス部材としてのコア用多孔質ガラス体20を加熱する際の一酸化炭素の濃度と、炉体35が設置されてから最初にコア用多孔質ガラス体20を加熱する前の初期状態における一酸化炭素の濃度との差が550ppmを超える場合に、光ファイバ1が不良となることが分かった。また、コア用多孔質ガラス体20を加熱する際の二酸化炭素の濃度と、この初期状態における二酸化炭素の濃度との差が550ppmを超える場合に、光ファイバ1が不良となることも分かった。また、一酸化炭素の濃度が700ppm以上となる場合、二酸化炭素の濃度が800ppm以上となる場合に、光ファイバ1が不良となることが分かった。なお、水と炭素が反応すると一酸化炭素及び二酸化炭素とともにメタン、酸素、及び水素も発生する。メタン、酸素、及び水素の発生量は、化学量論的に一酸化炭素及び二酸化炭素の発生量に比例する傾向にある。このため、メタン、酸素、及び水素のそれぞれの濃度についても、実験値等に基づいて、光ファイバ1が不良となるか否かを判断するための基準値を設定できる。
【0088】
また、1本目から28本目では、一酸化炭素の濃度と、当該一酸化酸素が測定されるタイミング以前において測定される一酸化炭素の濃度の平均値との差は、500ppm以下であった。また、29本目では、当該差は、506ppmであった。このため、当該差が500以上である場合に、脱水焼結装置100が異常状態であることが分かった。また、1本目から28本目では、二酸化炭素の濃度と、当該に二酸化酸素が測定されるタイミング以前において測定される二酸化炭素の濃度の平均値との差は、550ppm以下であった。また、29本目では、当該差は、553ppmであった。このため、当該差が550以上である場合に、脱水焼結装置100が異常状態であることが分かった。また、一酸化炭素の濃度が700ppm以上となる場合、二酸化炭素の濃度が800ppm以上となる場合に、脱水焼結装置100が異常状態であることが分かった。なお、上記のように、メタン、酸素、及び水素の発生量は、一酸化炭素及び二酸化炭素の発生量に比例する傾向にあるため、メタン、酸素、及び水素のそれぞれの濃度についても、実験値等に基づいて、脱水焼結装置100が異常状態であるか否かを判断するための基準値を設定できる。
【産業上の利用可能性】
【0089】
以上説明したように、水に起因する異常状態を検知し得るガラス部材の加熱装置、ガラス部材の加熱方法、及びそれを用いた光ファイバ用母材の製造方法が提供され、光ファイバ通信等の分野で利用することが期待される。
【符号の説明】
【0090】
1・・・光ファイバ
1P・・・光ファイバ用母材
20・・・コア用多孔質ガラス体(多孔質ガラス体)
31・・・炉心管
31S・・・収容空間
35・・・炉体
35S・・・空間
36・・・流路
37・・・ヒータ
41・・・第1ガス供給部
42・・・第2ガス供給部
48・・・ガス測定部
51・・・異常判断部
52・・・ファイバ不良判断部
60・・・制御部
100・・・脱水焼結装置(加熱装置)
S1,S2・・・給気口
E1,E2・・・排気口
P1・・・第1堆積工程
P2・・・第1加熱工程
P3・・・第2堆積工程
P4・・・第2加熱工程