IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ リンカーン グローバル,インコーポレイテッドの特許一覧

特開2022-179447CO2シールド溶接ワイヤの溶滴粒度縮小
<>
  • 特開-CO2シールド溶接ワイヤの溶滴粒度縮小 図1
  • 特開-CO2シールド溶接ワイヤの溶滴粒度縮小 図2
  • 特開-CO2シールド溶接ワイヤの溶滴粒度縮小 図3
  • 特開-CO2シールド溶接ワイヤの溶滴粒度縮小 図4
  • 特開-CO2シールド溶接ワイヤの溶滴粒度縮小 図5
  • 特開-CO2シールド溶接ワイヤの溶滴粒度縮小 図6
  • 特開-CO2シールド溶接ワイヤの溶滴粒度縮小 図7
  • 特開-CO2シールド溶接ワイヤの溶滴粒度縮小 図8
  • 特開-CO2シールド溶接ワイヤの溶滴粒度縮小 図9
  • 特開-CO2シールド溶接ワイヤの溶滴粒度縮小 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022179447
(43)【公開日】2022-12-02
(54)【発明の名称】CO2シールド溶接ワイヤの溶滴粒度縮小
(51)【国際特許分類】
   B23K 9/09 20060101AFI20221125BHJP
   B23K 9/173 20060101ALI20221125BHJP
【FI】
B23K9/09
B23K9/173 C
【審査請求】未請求
【請求項の数】20
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2022082714
(22)【出願日】2022-05-20
(31)【優先権主張番号】63/190,858
(32)【優先日】2021-05-20
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】17/505,768
(32)【優先日】2021-10-20
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】510202156
【氏名又は名称】リンカーン グローバル,インコーポレイテッド
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【弁理士】
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】スティーヴン アール.ピーターズ
(72)【発明者】
【氏名】マシュー エー.ウィークス
(72)【発明者】
【氏名】グレゴリー エム.マッコール
【テーマコード(参考)】
4E001
4E082
【Fターム(参考)】
4E001AA03
4E001BB09
4E001DB03
4E001DD04
4E082AA03
4E082AB02
4E082BA04
4E082ED01
4E082ED03
4E082EF15
(57)【要約】
【課題】 COシールド溶接ワイヤの溶滴粒度縮小を提供する
【解決手段】 溶融金属の溶滴移行を改善するアーク溶接システムが提供される。システムは、溶接電源供給部、溶接波形発生器、及びコントローラを有する溶接電源を含む。2つのフラックスコア溶接ワイヤ電極が溶接電源に接続され、溶接電源により生成される同じ溶接出力電圧及び溶接出力電流により電源供給される。フィードバック回路が溶接電源に接続されて、平均溶接出力電圧を保持するために適応応答を提供する。コントローラは波形発生器と電源供給部を制御して、溶接電流パルスをシールドガスとしてCOを使用するCVフラックスコアアーク溶接プロセスの溶接波形に重畳させて、変更CVフラックスコアアーク溶接プロセスの変更波形を生成する。電流パルスは、変更溶接プロセス中に2つの電極の端間に溶融金属の溶滴を形成するようなタイミングで重畳される。
【選択図】なし
【特許請求の範囲】
【請求項1】
溶融金属の溶滴移行を改善するアーク溶接システムであって、
溶接電源であって、
溶接電源供給部と、
溶接波形発生器と、
コントローラと、
を含む溶接電源と、
前記溶接電源に動作的に接続された2つのフラックスコア溶接ワイヤ電極であって、前記溶接電源により生成される同じ溶接出力電圧及び溶接出力電流により電源供給される2つのフラックスコア溶接ワイヤ電極と、
前記溶接電源に動作的に接続されて、平均溶接出力電圧を保持するために適応応答を提供するフィードバック回路と、
を含み、
前記コントローラは、少なくとも前記溶接波形発生器と前記溶接電源供給部を制御して、シールドガスとしてCOを使用する溶接電流パルスを定電圧(CV)フラックスコアアーク溶接プロセスの溶接波形に重畳させて、変更CVフラックスコアアーク溶接プロセスの変更波形を生成するようにプログラムされ、
前記重畳波溶接電流パルスは、前記変更CVフラックスコアアーク溶接プロセス中に前記2つのフラックスコア溶接ワイヤ電極の端間に溶融金属の溶滴を形成しやすくするようなタイミングで重畳され、その結果、前記溶融金属の溶滴は、溶融池へと移行する時点で、前記重畳波溶接電流パルスを用いない場合より粒度において小さくなるアーク溶接システム。
【請求項2】
前記溶融金属の溶滴の1つの溶滴は、前記重畳波溶接電流パルスの2つ以上のパルスごとに前記溶融池へと移行させられる、請求項1に記載のアーク溶接システム。
【請求項3】
前記フィードバック回路は電圧フィードバック回路を含む、請求項1に記載のアーク溶接システム。
【請求項4】
前記フィードバック回路は電流フィードバック回路を含む、請求項1に記載のアーク溶接システム。
【請求項5】
前記COシールドガスは、前記溶接出力電流が前記溶融金属の溶滴のうちの1つの溶滴の端を離れる時の前記溶接出力電流を制限し、それによって前記溶滴に対して前記溶融池の反対へと上向きの力を生じさせる、請求項1に記載のアーク溶接システム。
【請求項6】
前記重畳波溶接電流パルスの各電流パルスは、前記溶融金属溶滴のうちの1つの溶滴に対して溶融池の反対への上向きの力を発生させる、請求項1に記載のアーク溶接システム。
【請求項7】
前記重畳波溶接電流パルスの振幅、持続時間、及び周波数のうちの少なくとも1つを調整するように構成されたユーザインタフェースをさらに含む、請求項1に記載のアーク溶接システム。
【請求項8】
前記2つのフラックスコア溶接ワイヤ電極がその中を通過しやすくするように構成された溶接ガンをさらに含む、請求項1に記載のアーク溶接システム。
【請求項9】
前記2つのフラックスコア溶接ワイヤ電極を前記溶接ガンへと送給するように構成された少なくとも1つのワイヤフィーダをさらに含む、請求項8に記載のアーク溶接システム。
【請求項10】
前記溶接ガンはコンタクトチップを含み、前記2つのフラックスコア溶接ワイヤ電極はその中を並んで通過し、前記コンタクトチップの同じオリフィスから出るように構成される、請求項8に記載のアーク溶接システム。
【請求項11】
溶融金属の溶滴移行を改善するアーク溶接方法であって、
溶接電流パルスを溶接電源内で定電圧(CV)フラックスコアアーク溶接プロセスの溶接波形に重畳させて、変更CVフラックスコアアーク溶接プロセスの変更波形を生成することと、
前記変更波形を用いた前記変更フラックスコアアーク溶接プロセス中に、2つのフラックスコア溶接ワイヤ電極に前記溶接電源により生成された同じ溶接出力電圧及び溶接出力電流により電源供給することと、
前記変更フラックスコアアーク用プロセスの中でCOをシールドガスとして提供することと、
を含み、
前記重畳波溶接電流パルスは、前記変更CVフラックスコアアーク溶接プロセス中に前記2つのフラックスコア溶接ワイヤ電極の端間に溶融金属の溶滴を形成しやすくするようなタイミングで重畳され、その結果、前記溶融金属の溶滴は、溶融池へと移行する時点で、前記重畳波溶接電流パルスを用いない場合より粒度において小さくなるアーク溶接方法。
【請求項12】
前記重畳波溶接電流パルスの2つ以上のパルスごとに前記溶融池へと移行させられる、請求項11に記載のアーク溶接方法。
【請求項13】
前記COシールドガスは、前記溶接出力電流が前記溶融金属の溶滴のうちの1つの溶滴の端を離れる時の前記溶接出力電流を制限し、それによって前記溶滴に対して前記溶融池の反対へと上向きの力を生じさせる、請求項11に記載のアーク溶接方法。
【請求項14】
前記重畳波溶接電流パルスの各電流パルスは、前記溶融金属溶滴のうちの1つの溶滴に対して溶融池の反対への上向きの力を発生させる、請求項11に記載のアーク溶接方法。
【請求項15】
前記重畳波溶接電流パルスの振幅、持続時間、及び周波数のうちの少なくとも1つを、前記溶接電源のユーザインタフェースを介して調整することをさらに含む、請求項11に記載のアーク溶接方法。
【請求項16】
前記2つのフラックスコア溶接ワイヤ電極を、溶接ガンのコンタクトチップの中と、その同じオリフィスから外へと並べて通過させることをさらに含む、請求項11に記載のアーク溶接方法。
【請求項17】
前記2つのフラックスコア溶接ワイヤ電極を前記溶接ガンへとワイヤフィーダを介して送給することをさらに含む、請求項16に記載のアーク溶接方法。
【請求項18】
前記変更フラックスコアアーク溶接プロセス中に前記溶接電源の電圧-電流(VI)特性を調整することと、
前記変更フラックスコアアーク溶接プロセス中に、前記2つのフラックスコア溶接ワイヤ電極に前記溶接電源により電源供給される際に平均溶接出力電圧及び平均アーク長を保持するように前記電圧-電流(VI)特性を適応させることと、
をさらに含む、請求項11に記載のアーク溶接方法。
【請求項19】
前記溶接出力電圧を前記溶接電源のコントローラにフィードバックして、前記適応を行いやすくすることをさらに含む、請求項18に記載のアーク溶接方法。
【請求項20】
前記溶接出力電流を前記溶接電源のコントローラにフィードバックして、前記適応を行いやすくすることをさらに含む、請求項18に記載のアーク溶接方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照/参照による援用
本米国特許出願は、2021年5月20日に出願された米国仮特許出願第63/190,858号の優先権及び利益を主張するものであり、同仮出願の全体を参照によって本願に援用する。2020年10月6日に発行された米国特許第10,792,752号の全体を参照によって本願に援用する。
【0002】
本発明の実施形態は、ガスシールドアーク溶接に関する。より詳しくは、本発明の幾つかの実施形態は、COガスシールドアーク溶接プロセス(例えば、COガスをシールドに用いるフラックスコアアーク溶接(FCAW)プロセス)で形成される溶融金属溶接ワイヤ溶滴サイズを縮小するシステム及び方法に関する。
【背景技術】
【0003】
FCAWは、連続的に送給される、フラックスを含む消耗電極と、典型的には定電圧溶接電源を利用する半自動又は自動アーク溶接プロセスであり得る。多くの場合、外部から供給されるシールドガスがフラックスと共に使用され、大気からの必要な保護を生じさせる。FCAWは、その溶接の速さと可搬性から、建設において使用されることが多い。COと一緒に使用されるFCAWワイヤの開発のほとんどは、従来の定電圧(CV)電源及び定速ワイヤフィーダを含み、溶接ワイヤ又は、より具体的には、溶接ワイヤのコアの成分の改良に重点が置かれている。COワイヤは、溶込みを向上させるためによく使用され、世界の中でアルゴン及びアルゴン混合ガスが高額すぎる地域で用いられている。従来のFCAW溶接ワイヤは、COガスでシールドされて、金属溶滴を滴又はグルビュールの形態で溶融プールへと移行させる。COの斥力が、溶溶滴ができるとそれを押し返し、それによってより大きな溶滴が形成される。例えば平行又はデュアルワイヤ構成で使用された場合、溶滴はさらに大きくなる可能性がある。大型の溶滴は多くの場合、始末が悪く、操作性の障害となり、溶接プロセス中にスパッタを飛散させる結果を招くことが多い。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】米国特許第10,792,752号明細書
【発明の概要】
【課題を解決するための手段】
【0005】
システム及びプロセスは、電流の重畳波パルスと共に電圧及び電流の特性を含むアーク制御を提供する(例えば、CO FCAWプロセス中)。電流の重畳波パルスは、1本又は複数の溶接ワイヤの端における溶滴の成長段階中に溶滴を前後に揺動させる役割を果たす。揺動によって溶滴はより安定的且つより早く溶融プールと接触し、その結果、溶滴が望ましくない程度まで大きくならないことが確実となる。
【0006】
1つの実施形態において、溶融金属の溶滴移行を改善するアーク溶接システムが提供される。システムは、溶接電源供給部、溶接波形発生器、及びコントローラを有する溶接電源を含む。2つのフラックスコア溶接ワイヤ電極が溶接電源に動作的に接続される。2つのフラックスコア溶接ワイヤ電極には、溶接電源により生成される同じ溶接出力電圧及び溶接出力電流により電源供給される。フィードバック回路が溶接電源に動作的に接続されて、平均溶接出力電圧を保持するために適応応答を提供する。コントローラは、少なくとも溶接波形発生器と溶接電源供給部を制御して、溶接電流パルスを定電圧(CV)フラックスコアアーク溶接プロセスの溶接波形に重畳させて、変更CVフラックスコアアーク溶接プロセスの変更波形を生成するようにプログラムされる。変更CVフラックスコアアーク溶接プロセスは、シールドガスとしてCOを使用する。重畳波溶接電流パルスは、変更CVフラックスコアアーク溶接プロセス中に2つのフラックスコア溶接ワイヤ電極の端間に溶融金属の溶滴を形成しやすくするようなタイミングで重畳される。その結果、溶融金属の溶滴は、溶融池へと移行する時点で、重畳波溶接電流パルスを用いない場合より粒度において小さくなる。1つの実施形態において、溶融金属の溶滴の1つの溶滴は、重畳波溶接電流パルスの2つ以上のパルスごとに溶融池へと移行させられる。フィードバック回路は、各種の実施形態に応じて電圧フィードバック回路及び/又は電流フィードバック回路を含み得る。COシールドガスは、溶接出力電流が溶融金属の溶滴のうちの1つの溶滴の端を離れる時の溶接出力電流を制限し、それによって溶滴に対して溶融池の反対へと上向きの力を生じさせる。重畳波溶接電流パルスの各電流パルスは、溶融金属の溶滴のうちの1つの溶滴に対して溶融池の反対への上向きの力を発生させる。1つの実施形態において、アーク溶接システムは、重畳波溶接電流パルスの振幅、持続時間、及び周波数のうちの少なくとも1つを調整するように構成されたユーザインタフェースを含む。1つの実施形態において、アーク溶接システムは、2つのフラックスコア溶接ワイヤ電極がその中を通過しやすくなるように構成された溶接ガンと、2つのフラックスコア溶接ワイヤ電極を溶接ガンへと送給するように構成された少なくとも1つのワイヤフィーダを含む。1つの実施形態において、溶接ガンはコンタクトチップを含み、2つのフラックスコア溶接ワイヤ電極はその中を並んで通過し、コンタクトチップの同じオリフィスから出るように構成される。
【0007】
1つの実施形態において、溶融金属の溶滴の移行を改善するアーク溶接方法が提供される。方法は、溶接電流パルスを溶接電源内の定電圧(CV)フラックスコアアーク溶接プロセスの溶接波形に重畳させて、変更CVフラックスコアアーク溶接プロセスの変更波形を生成することを含む。方法はまた、変更波形を用いた変更フラックスコアアーク溶接プロセス中に、2つのフラックスコア溶接ワイヤ電極に溶接電源により生成された同じ溶接出力電圧及び溶接出力電流により電源供給することも含む。方法は、変更フラックスコアアーク用プロセスの中でCOをシールドガスとして提供することをさらに含む。重畳波溶接電流パルスは、変更CVフラックスコアアーク溶接プロセス中に2つのフラックスコア溶接ワイヤ電極の端間に溶融金属の溶滴を形成しやすくするようなタイミングで重畳され、その結果、溶融金属の溶滴は、溶融池へと移行する時点で、重畳波溶接電流パルスを用いない場合より粒度において小さくなる。1つの実施形態において、溶融金属の溶滴の1つの溶滴は、重畳波溶接電流パルスの2つ以上のパルスごとに溶融池へと移行させられる。COシールドガスは、溶接出力電流が溶融金属の溶滴のうちの1つの溶滴の端を離れる時の溶接出力電流を制限し、それによって溶滴に対して溶融池の反対への上向きの力を生じさせる。重畳波溶接電流パルスの各電流パルスは、溶融金属の溶滴のうちの1つの溶滴へと溶融池の反対の上向きの力を発生させる。1つの実施形態において、方法は、溶接電源のユーザインタフェースを介して、重畳波溶接電流パルスの振幅、持続時間、及び周波数のうちの少なくとも1つを調整することを含む。1つの実施形態は、ワイヤフィーダを介して2つのフラックスコア溶接ワイヤ電極を溶接ガンに送給することと、2つのフラックスコア溶接ワイヤ電極が溶接ガンのコンタクトチップの中を並んで通過し、その同じオリフィスから出るようにすることを含む。1つの実施形態において、方法は、変更フラックスコアアーク溶接プロセス中に溶接電源の電圧-電流(VI)特性を調整することと、変更フラックスコアアーク溶接プロセス中に2つのフラックスコア溶接ワイヤ電極が溶接電源により電源供給される際、平均溶接出力電圧及び平均アーク長を保持するために電圧-電流(VI)特性を適応させることを含む。方法はまた、溶接出力電圧又は溶接出力電流の少なくとも一方を溶接電源のコントローラにフィードバックして、電圧-電流(VI)特性の適応を行いやすくすることも含む。
【0008】
全体的な本発明のコンセプトの様々な態様は、例示的実施形態についての以下の詳細な説明、特許請求の範囲、及び添付の図面から容易に明らかとなるであろう。
【0009】
添付の図面は、本明細書に組み込まれ、その一部を構成するものであり、本開示の各種の実施形態を示している。図中、示された要素の境界(例えば、ボックス、ボックスの集合、又はその他の形状)は境界の1つの実施形態を表すと理解されたい。幾つかの実施形態において、1つの要素は複数の要素として設計され得、また、複数の要素は1つの要素として設計され得る。幾つかの実施形態において、他の要素の内部コンポーネントとして示されている要素は外部コンポーネントとして実装され、及びその逆もあり得る。さらに、要素は正確な縮尺により描かれていない場合もある。
【図面の簡単な説明】
【0010】
図1】溶接電源を含むアーク溶接システムの1つの実施形態を示す。
図2】溶接電源がどのように調整されるかを表す、従来の電圧-電流特性のグラフの1つの実施形態を示す。
図3】従来のパワー出力曲線のグラフの1つの実施形態を示す。
図4】従来の定電圧(CV)アーク溶接プロセスの電圧及び電流のトレースの1つの実施形態を示す。
図5】電流の幾つかのスパイクとそれに対応する電圧降下を有する、従来の定電圧(CV)アーク溶接プロセスの電圧及び電流のトレースの1つの実施形態を示す。
図6】COをシールドガスとして使用した場合とアルゴンをシールドガスとして使用した場合の違いを示す。
図7】本発明の実施形態による、改良されたアーク溶接プロセスの電圧及び電流のトレースを示す。
図8】COシールドガスを使用した場合の、図7の改良されたアーク溶接プロセスを用いた溶融金属の溶滴の移行の1つの実施形態を示す。
図9】本願で開示する改良されたアーク溶接プロセスの1つの実施形態のフローチャートを示す。
図10】例えば図1のシステムにおいて使用可能なコントローラの例示的な実施形態のブロック図を示す。
【発明を実施するための形態】
【0011】
本明細書中の例及び図面は例示にすぎず、特許請求項の範囲及び主旨により判断される本発明を限定しようとするものではない。
【0012】
多くの電源は、FCAWプロセスをパワー、電流成分による電圧、電圧成分による電流に基づく電圧-電流(VI)特性の調整によって制御する。この調整に加えて、多くの場合、オペレータ又は機械によってコンタクトチップと被加工物との間の距離(CTWD:contact tip to work distance)の長さが変動(変化)させられたとしても、平均的なアーク長が保持されるようにするために適応応答が追加される。COガスでシールドされたFCAWは非常に動的なプロセスであり、溶滴が発生し、成長し、空間中をきわめて高速で動き回る。VI特性は、電圧の変化に応答して変化する電流により誘導される磁力の印加によって、この運動に対抗して反応する。VI特性の設定値は、長時間にわたる適応制御において比較的一定のアーク長を保持するように調整される。コンタクトチップと被加工物との間の距離(CTWD)の変化は、変化に関して、及び消耗溶接ワイヤの端における溶滴までの移動に関して比較的ゆっくりと発生する。
【0013】
多くの従来の変圧器の設計は、電流の増大と共に100アンペアにつき1/2~8ボルトの速度で変化する電圧に基づいて考案された。多くの現代のインバータの設計は、この応答を模倣することに、真の平均定電圧を保持するための適応制御を追加してプログラムされている。本発明の1つの実施形態において、100アンペアにつき5ボルト低下する電圧のVI特性が採用され、35ボルトの設定値が用いられ、200アンペアで動作すると、その結果、10ボルト低下し、25ボルトの電圧調整が行われる。長時間にわたる適応制御により、事前設定された25ボルトの平均を保持するために設定値が調整される。
【0014】
本発明のある実施形態によれば、デルタ電流(電流パルス)がプログラミングを介して設定周波数で重畳されると、溶接ワイヤ電極の端で形成される溶滴の粒度を縮小できる。各電流パルスは溶適への磁気による斥力を誘導し、それを溶融プールからさらに遠ざける。電流パルスが終了し、出力が定常状態のVI特性に戻ると、磁力が緩和され、溶滴は(表面張力により)溶融プールに向かって跳ね戻り、多くの場合、溶滴が大きくなりすぎる(所望の粒度以上になる)前に、溶融プールと接触して金属の移行を開始する。この揺動は、より高速/より小さい溶滴が溶融プールに移行するのを促進し、それによってプロセスはより制御された状態となる。さらに、適応応答は、平均電圧の調整に寄与し、VI設定値(電流パルスに応答する)を低下させ、それによって、送給ワイヤからの押す力が溶滴に作用する斥力を克服することができる。
【0015】
ここで図を参照するが、図は本発明の例示的な実施形態を図解することを目的としているにすぎず、それを限定しようとしておらず、図1は、溶接電源110を含むアーク溶接システム100の1つの実施形態を示している。溶接電源110は、溶接波形の出力を溶接ガン/トーチ130へと少なくとも1つの溶接ワイヤ電極E(例えば、2つの溶接ワイヤ電極E)を通じて送達し、溶接アークAを生成する。溶接ワイヤ電極Eは、少なくとも1つのワイヤフィーダ150を介して溶接動作に送達される。ワイヤフィーダ150は、電極Eを溶接部に送達することができるような何れの既知の構成のものとすることもでき、幾つかの実施形態において、ワイヤフィーダ150は電極Eのワイヤ送給速度を電源110からの信号に基づいて調整できる。
【0016】
1つの実施形態において、2つのフラックスコア溶接ワイヤ電極Eは溶接電源110に動作的に接続される。2つのフラックスコア溶接ワイヤ電極Eは、溶接電源110により生成された同じ溶接出力電圧及び溶接出力電流により電源供給される。溶接ガンは、2つのフラックスコア溶接ワイヤ電極がその中を通過しやすくなるように構成される。ワイヤフィーダは、2つのフラックスコア溶接ワイヤ電極を溶接ガンへと送給するように構成される。溶接ガンはコンタクトチップを含み、2つのフラックスコア溶接ワイヤ電極は並んでそこを通過するように構成される(例えば、2020年10月6日に発行された(特許文献1)を参照されたく、同特許の全体を参照によって本願に援用する)。
【0017】
電源110の全体的な構成は、電源110が前述のように機能し、動作することができるかぎり、例えばGMAW及びFCAW型溶接動作が可能な既知の電源のそれと、類似したものとすることができる。例えば、電源110は、オハイオ州クリーブランドのThe Lincoln Electric Companyが製造するPower Wave(登録商標)型電源のそれと同様に構成できる。もちろん、本発明の実施形態はこのような構成に限定されず、これは単に例示的とされる。
【0018】
図1に示されるように、電源110は入力信号をL1、L2、及びL3を通じて受信するように構成される。図1は3相入力を示しているが、他の実施形態では単相入力を利用できる。電源110は電力変換ユニット112を含み、これは入力信号を受信し、信号を出力相(出力インバータ114等)に出力することができ、それによって電源110の出力は溶接アークを保持できる。電力変換ユニット112は、複数の異なるコンポーネントで構成できる。例えば、これは整流回路及び、整流信号を受信し、定電圧を出力インバータ114に出力できるバックブースト回路で構成できる。もちろん他の例示的な実施形態では、出力インバータ114はチョッパ又は、電力変換ユニット112と共同して溶接信号を出力できる他のあらゆる種類の出力回路とすることができる。1つの実施形態によれば、電力変換ユニット112及び出力インバータ/チョッパ114は、本明細書においてまとめて溶接電源供給部又は単に電源供給部と呼ばれる。
【0019】
電源110はまた、波形発生器116を含み、これは電力変換ユニット112と出力インバータ114の少なくとも一方又は両方の出力を制御して、アークAを生成するために使用される所望の溶接波形を提供するのを助ける回路である。例えば、波形発生器116は、電力変換ユニット112及び出力インバータ114(又は、利用されるあらゆる出力コンポーネント)の一方又は両方に連結されて、溶接中にアークAを生じさせ、保持するために使用される所望の電流波形を発生させるために使用できる。それに加えて、電源110はコントローラ118を有し、これは例えば、電源110の機能及び動作を制御することのできる何れの種類のCPU又はプロセッサ型デバイスとすることもできる。例えば、本明細書の図10のコントローラ1000を参照されたい。例えば各種の電子回路(例えば、論理回路)及びメモリを有するその他の種類のコントローラも使用可能である。
【0020】
1つの実施形態において、コントローラ118は、溶接動作中、溶接アークAから(それぞれ)電流及び電圧フィードバックを提供する電流フィードバック回路120及び電圧フィードバック回路122からのフィードバックを受信する。このフィードバックを用いて、コントローラ118は電源110の動作を調整し、最適化して、所望の出力を提供することができる。例えば、1つの実施形態において、フィードバック回路122は溶接電源110に動作的に接続され(例えば、その一部であり)、平均溶接出力電圧を保持するための適応応答を提供する。1つの実施形態において、電流フィードバック回路120は、電流シャント121を含み、ガン130に電気的に接続される電流検知構成の一部である。図1に示されるように、幾つかの実施形態において、コントローラ118はまた、ワイヤフィーダ150にも連結され、それによってコントローラはワイヤフィーダ150からのフィードバックを受け取るほか、溶接動作中にワイヤフィーダの150の動作、例えばワイヤ送給速度を制御することができる。
【0021】
1つの実施形態において、コントローラ118は、少なくとも溶接波形発生器116及び溶接電源供給部を制御して、溶接電流パルスを定電圧(CV)フラックスコアアーク溶接プロセスの溶接波形に重畳させ、変更CVフラックスコアアーク溶接プロセスの変更波形を生成するようにプログラムされる。重畳波溶接電流パルスは、変更CVフラックスコアアーク溶接プロセス中に2つのフラックスコア溶接ワイヤ電極Eの端間に溶融金属の溶滴が形成されやすくなるようなタイミングで重畳される。その結果、溶融金属の溶滴は、溶融池に移行される時点で、重畳波溶接電流パルスがない場合より粒度において小さくなる。
【0022】
図2は、従来の電圧-電流(VI)特性の1つの実施形態のグラフ200を示し、溶融電源がどのように調整され得るかを表している。グラフ200の電圧-電流特性は、電流100アンペアにつき5ボルトの勾配を有する。例えば、事前設定電圧が24ボルトに設定されていると、グラフ200を用いれば、溶融電源は溶接プロセス中に360アンペアの電流を送達することになる。アーク溶接プロセス中に溶融金属の溶滴が溶接ワイヤ電極の先端に作られると、溶滴は空間中を動き回る。溶滴が溶融池(溶融プール)に近付くと、電圧は例えば23ボルトまで低下し得る。すると、電流は380アンペアまで増大することになる。このような電流の増大は、溶滴を池とは反対に駆動する傾向があり、アーク長がより長くなり、電圧がより高くなる。25ボルトで、電流は340アンペアとなる。電流がより低いと、溶滴は溶融池に近づくことができる。調整されたシステムによって、アーク溶接プロセスは自然平衡状態となる。1つの実施形態において、適応制御(縦えば、コントローラ118による制御)は、グラフ200の設定値(この例では開回路電圧(OCV)=42ボルトとして説明されている)を上下に調整して平衡点を所望の電圧と等しくすることによって、システムの平均電圧を事前設定電圧へと駆動する。
【0023】
図3は、従来のパワー出力曲線の1つの実施形態のグラフ300を示す。パワー出力曲線は、溶接電源を調整するためのまた別の方法である。図2の勾配と同様に、パワー出力曲線は出力を平衡点へと駆動する。各種の実施形態によれば、パワー設定値は、システムを事前設定電圧に駆動するための適応制御を有していてもいなくてもよい。
【0024】
図4は、従来の定電圧(CV)アーク溶接プロセスの電圧及び電流のトレースの1つの実施形態を示す。上のトレース410は、未変更の電圧(V)を表し、中央のトレース420は未変更の電流(I)を表す。従来のCVアーク溶接プロセスは、電圧-電流特性により調整される(例えば、図2の通り)。適応応答は下のトレース430の中で、平均電圧又はアーク長を保持するための電圧のフィードバックループとして示されている。
【0025】
図5は、電流の幾つかのスパイクとそれに対応する電圧低下を有する従来の定電圧(CV)アーク溶接プロセスの電圧及び電流のトレースの1つの実施形態を示す。上のトレース510は未変更の電圧(V)を表し、下のトレース520は未変更の電流(I)を表す。電流のスパイクとそれに対応する電圧低下は、より大きい溶滴が溶融プールに移行する箇所を示している。このイベントは従来のCVでは1~5ヘルツごとに発生する。パルス状にすると、移行はより頻繁に発生し、電流のスパイクをなくす必要がなく、その結果、スパッタが減る。
【0026】
図6は、COをシールドガスとして使用した場合とアルゴンをシールドガスとして使用した場合との違いを示している。COがシールドガスとして使用されたとき(図6の左側)とアルゴンが主なシールドガスとして使用されたとき(図6の右側)に斥力が生じる。アルゴンの場合、電流が溶滴を離れる時に広いアークが生成され、したがって力は下向きであり、溶滴をワイヤの端から押し出す。COは、溶滴の端から離れる際の電流を制限し、溶滴に対して上向きの力を生じさせる。
【0027】
図7は、本発明のある実施形態による改良型のアーク溶接プロセスの電圧及び電流のトレースを示している。上のトレース710は未変更の電圧(V)を表し、中央のトレース720は未変更の電流(I)を表す。これらのトレースは、従来の電圧-電流特性と重畳された電流のパルスとを含む新たなパルス波形(すなわち、変更CVフラックスコアアーク溶接プロセスの変更波形)を示す。電流の各パルスは溶接アーク電極の端において溶滴に上向きの斥力をかける。電流のパルスが緩和されると(減衰すると)、力が取り除かれ、溶滴は跳ね戻り、多くの場合、溶融プールと接触する。このようにして、電流のパルスを加えることにより、溶融金属の溶滴は大きくなりすぎないうちに溶融プールと接触し、その中へと移行する傾向がある。これは、COをシールドガスとして使用する場合に特に有益である。トレース710及び720は以下の条件に対応する:300インチ毎分(ipm)のワイヤ送給速度、29V/310アンペアで、100% COガスでシールドされたツイン(2本ワイヤ)の.045 Ultracore 12C溶接ワイヤを使用。
【0028】
1つの実施形態において、各重畳波電流パルスは1.5ミリ秒の持続時間にわたる175アンペアの追加電流を表す。溶融金属の溶滴のうちの1つの溶滴は、重畳波溶接電流パルスの2つ以上のパルスごとに溶融池に移行する。ユーザインタフェース(例えば、ユーザノブ、押しボタン、又はタッチスクリーンディスプレイ)が、重畳波電流パルスの振幅及び/又は持続時間及び/又は周波数を調整するために画定され得る。適応応答(下のトレース730に示される)は、平均電圧(例えば、約28ボルト)を保持する。平均電流はチップから被加工物との間の距離(CTWD)に依存し、例えば265アンペアであり得る。この実施形態において、プロセスは2本の.045又は1.2mm FCAWワイヤを250ipmのワイヤ送給速度で進めている。両方のワイヤは横並びで同じコンタクトチップを通じて同じコンタクトチップのオリフィスを通過している。重畳波パルスの同じ電流が両方のワイヤに印加される。他の実施形態では両方のワイヤがコンタクトチップの別のオリフィスを通過し得、又は1本のワイヤ(例えば、1/16又は.052 FCAWワイヤ)のみが使用され得る。
【0029】
図8は、COシールドガスを使用した場合の、図7の改良型アーク溶接プロセスを用いた溶融金属の溶滴移行の1つの実施形態を示す。溶滴810は、電流パルス820の前、パルス中、及び後に関する複数のステージで示されている。電流パルス820は、溶滴810を上方に反発させる(溶滴810の中に見られる上向きの矢印により示される)。これは、力が溶滴を溶融プールへと押しやる従来のパルス溶接とは異なる。電流が緩和されると(ピーク後)、溶滴810は跳ね戻り、溶融プールに向かって発せられ(溶滴810の中に見られる下向きの矢印により示される)、溶融プールと接触し、移行する傾向を有する。
【0030】
図9は、本願で開示される1つの実施形態の改良型アーク溶接プロセス900のフローチャートを示す。プロセス900のステップ910で、電圧-電流(VI)特性は溶接電源により調整され、事前設定された電圧を保持するようになされる(例えば、平均アーク長を得る平均溶接出力電圧)。タイマ又は周波数条件が(例えば、コントローラ118内で)満たされると、プロセス900のステップ920で、電流パルスが溶接電流に重畳される。ピーク時間の後(例えば、コントローラ118により判断される)、アーク溶接プロセスはステップ910に戻り、プロセスが繰り返される。このようにして、溶接電流パルスは溶接電源内で定電圧(CV)フラックスコアアーク溶接プロセスの溶接波形に重畳されて、変更CVフラックスコアアーク溶接プロセスの変更波形が生成される。2つのフラックスコア溶接ワイヤ電極には、変更波形を用いた変更フラックスコアアーク溶接プロセス中に溶接電源により生成される同じ溶接出力電圧及び溶接出力電流により電源供給される。COは、変更フラックスコアアーク溶接プロセスの中でシールドガスとして使用される。重畳波溶接電流パルスは、変更CVフラックスコアアーク溶接プロセス中に2つのフラックスコア溶接ワイヤ電極の端間で溶融金属の溶滴が形成されやすくなるタイミングで重畳される。その結果、溶融金属の溶滴は、溶融池に移行する時点で、重畳波溶接電流パルスを用いない場合より粒度において小さくなる。このようにして、溶接ワイヤ電極の端において形成される溶融金属の溶滴粒度の制御の改善が実現され、その結果、溶滴の溶融池へのより望ましい移行がなされ、スパッタが減少する。
【0031】
図10は、例えば図1のシステムにおいて(例えば、コントローラ118として)使用可能な例示的な実施形態のコントローラ1000のブロック図を示す。図10を参照すると、コントローラ1000は少なくとも1つのプロセッサ1014(例えば、マイクロプロセッサ、中央処理ユニット、グラフィクス処理ユニット)を含み、これはバスサブシステム1012を介して複数の周辺機器と通信する。これらの周辺機器としては、例えばメモリサブシステム1028及びファイル記憶サブシステム1026を含む記憶サブシステム1024、ユーザインタフェース入力機器1022、ユーザインタフェース出力機器1020、及びネットワークインタフェースサブシステム1016が含まれる。入力及び出力機器により、ユーザとコントローラ1000とのやりとりが可能となる。ネットワークインタフェースサブシステム1016は、外部ネットワークとのインタフェースを提供し、他の機器内の対応するインタフェース機器に連結される。
【0032】
ユーザインタフェース入力機器1022には、キーボード、マウス、トラックボール、タッチパッド又はグラフィクスタブレット等のポインティングデバイス、スキャナ、ディスプレイ上に組み込まれたタッチスクリーン、音声認識システム、マイクロフォン、等の音声入力機器、及び/又はその他の種類の入力機器が含まれ得る。一般に、「入力機器」という用語は、情報をコントローラ1000に、又は通信ネットワークに入力するための、考え得るあらゆる種類の機器及び方法を含むものとする。
【0033】
ユーザインタフェース出力機器1020には、表示サブシステム、プリンタ、又は音声出力機器等の非視覚的ディスプレイが含まれ得る。表示サブシステムには、ブラウン管(CRT)、液晶ディスプレイ(LCD)等のフラットパネル機器、プロジェクション機器、又は可視画像を作るための他の幾つかのメカニズムが含まれ得る。表示サブシステムはまた、例えば音声出力機器を介して非視覚的表示も提供し得る。一般に、「出力機器」という用語の使用は、コントローラ1000からユーザへ、又は他のマシン若しくはコンピュータシステムへ情報を出力するための、考え得るあらゆる種類の機器及び方法を含むものとする。
【0034】
記憶サブシステム1024は、本明細書に記載の機能性の幾つか又は全部を提供するプログラミング及びデータ構成を記憶する。例えば、コンピュータ実行可能命令及びデータは一般に、プロセッサ1014が単独で、又は他のプロセッサと共に実行し得る。記憶サブシステム1024内で使用されるメモリ1028は、プログラム実行中に命令及びデータを記憶する主ランダムアクセスメモリ(RAM)1030及びその中に固定命令が記憶されるリードオンリメモリ(ROM)1032を含む各種のメモリを含むことができる。ファイル記憶サブシステム1026は、プログラム及びデータファイルのための永久的ストレージを提供することができ、ハードディスクドライブ、ソリッドステートドライブ、フロッピディスクドライブ及びそれに関連するリムーバブルメディア、CD-ROMドライブ、光ドライブ、又はリムーバブルメディアカートリッジを含み得る。特定の実施形態の機能性を実装するコンピュータ実行可能命令及びデータは、ファイル記憶サブシステム1026によって記憶サブシステム1024の中に、又はプロセッサ1014によりアクセス可能なその他のマシンの中に記憶され得る。
【0035】
バスサブシステム1012は、コントローラ1000の各種のコンポーネント及びサブシステムに意図したとおりに相互に通信させるためのメカニズムを提供する。バスサブシステム1012は概略的に単独のバスとして示されているが、バスサブシステムの代替的な実施形態では複数のバスが使用され得る。
【0036】
コントローラ1000は、様々なタイプのものとすることができる。コンピューティングデバイス及びネットワークの変化し続ける性質により、図10に描かれているコントローラ1000の説明は、幾つかの実施形態を例示することを目的とした具体例にすぎないものとする。図10に描かれているコントローラ1000より多くの、又は少ないコンポーネントを有する、コントローラの他の多くの構成が可能である。
【0037】
開示されている実施形態はかなり詳細に図示され、説明されているが、付属の特許請求項の範囲を制限すること、又は何らかの方法でそのような詳細に限定することは意図されていない。言うまでもなく、主題の各種の態様を説明するために、コンポーネント又は方法論の考え得る全ての組合せを説明することは不可能である。したがって、本開示は図示され、説明されている具体的な詳細又は解説のための例には限定されない。それゆえ、本開示は、米国特許法第101条の保護対象に関する法的要件を満たす、付属の特許請求項の範囲内に含まれる代替案、改良、及び変更を包含することが意図される。特定の実施形態の前述の説明は、例として行われている。その開示から、当業者であれば一般的な発明のコンセプト及びそれに伴う利点を理解するだけでなく、開示された構造及び方法の様々な明らかな変更及び改良に気付くであろう。そのため、このような変更及び改良の全てを、付属の特許請求項により定義される一般的な発明のコンセプト及びその等価物の主旨と範囲に含まれるものとしてカバーすることが求められる。
【符号の説明】
【0038】
100 アーク溶接システム
110 溶接電源
112 電力変換ユニット
114 出力インバータ
116 波形発生器
118 コントローラ
120 電流フィードバック回路
121 電流シャント
122 電圧フィードバック回路
130 溶接ガン
150 ワイヤフィーダ
200 グラフ
300 グラフ
410 トレース
420 トレース
430 トレース
510 トレース
520 トレース
710 トレース
720 トレース
730 トレース
810 溶滴
820 電流パルス
1000 コントローラ
1012 バスサブシステム
1014 プロセッサ
1016 ネットワークインタフェース
1020 ユーザインタフェース出力機器
1022 ユーザインタフェース入力機器
1024 記憶サブシステム
1026 ファイル記憶サブシステム
1028 メモリサブシステム
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
【外国語明細書】