(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022018144
(43)【公開日】2022-01-27
(54)【発明の名称】開先形状測定方法、自動溶接方法、および自動溶接装置
(51)【国際特許分類】
B23K 9/127 20060101AFI20220120BHJP
B23K 9/12 20060101ALI20220120BHJP
【FI】
B23K9/127 508B
B23K9/127 508E
B23K9/12 331K
【審査請求】有
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2020121035
(22)【出願日】2020-07-15
(11)【特許番号】
(45)【特許公報発行日】2020-10-14
(71)【出願人】
【識別番号】306022513
【氏名又は名称】日鉄エンジニアリング株式会社
(74)【代理人】
【識別番号】110000637
【氏名又は名称】特許業務法人樹之下知的財産事務所
(72)【発明者】
【氏名】脇田 直弥
(72)【発明者】
【氏名】三木 聡史
(72)【発明者】
【氏名】後藤 憲一
(72)【発明者】
【氏名】木村 文映
(57)【要約】
【課題】画像処理により開先断面形状を効率よく測定できる開先形状測定方法、自動溶接方法、および自動溶接装置を提供する。
【解決手段】溶接ロボットで自動溶接される溶接対象物に形成された開先の断面形状を、溶接ロボットに対する位置が変更可能なカメラを用いて測定する開先形状測定方法であって、カメラが撮影した画像データを溶接ロボットのロボット座標系に対応させるための準備データを、カメラの位置に応じて準備しておく準備工程S1と、カメラが開先を撮影する撮影工程S2と、準備工程S1で準備された準備データを用い、撮影工程S2で撮影された開先の画像データから、開先の断面形状情報を検出する測定工程S3と、を有する。
【選択図】
図3
【特許請求の範囲】
【請求項1】
溶接ロボットで自動溶接される溶接対象物に形成された開先の断面形状を、前記溶接ロボットに対する位置が変更可能なカメラを用いて測定する開先形状測定方法であって、
前記カメラが撮影した被写体のカメラ座標系の画像データを前記溶接ロボットのロボット座標系に対応させるための準備データを、前記カメラの位置に応じて準備しておく準備工程と、
前記カメラが前記開先を撮影する撮影工程と、
前記準備工程で準備された前記準備データを用い、前記撮影工程で撮影された前記開先の画像データから、前記開先の断面形状情報を検出する測定工程と、
を有することを特徴とする開先形状測定方法。
【請求項2】
請求項1に記載した開先形状測定方法において、
前記準備工程では、前記溶接ロボットに固定されかつ前記開先の連続方向と交差する平面上に二次元のゲージを形成しておき、前記ゲージを前記カメラで撮影し、撮影された前記ゲージの画像上の前記ゲージの形状と前記ゲージの元の形状との差から前記カメラで撮影された被写体の画像データ上にカメラ座標系を設定するカメラ校正処理を行うことを特徴とする開先形状測定方法。
【請求項3】
請求項1または請求項2に記載した開先形状測定方法において、
前記準備工程では、前記開先に複数の校正ポイントを設定しておき、前記溶接ロボットを前記溶接ロボットの移動軸のうち前記開先の連続方向と交差するいずれかに沿って移動させ、移動に伴う複数の前記校正ポイントの移動軌跡を前記カメラで検出し、検出された前記移動軌跡に基づいて前記カメラ座標系の軸線方向を校正する移動軸校正処理を行うことを特徴とする開先形状測定方法。
【請求項4】
請求項1から請求項3のいずれか一項に記載した開先形状測定方法において、
前記準備工程では、前記溶接ロボットのトーチを前記開先のトーチねらい位置に配置し、前記カメラで撮影された被写体の画像上の前記トーチねらい位置を前記カメラ座標系の原点に設定する原点校正処理を行うことを特徴とする開先形状測定方法。
【請求項5】
請求項1から請求項4のいずれか一項に記載した開先形状測定方法において、
前記撮影工程では、前記溶接ロボットに設置された照明装置により前記開先を横断方向へ線状に照明することを特徴とする開先形状測定方法。
【請求項6】
溶接ロボットを用いて溶接対象物の自動溶接を行う自動溶接方法であって、
請求項1に記載した開先形状測定方法により前記溶接対象物の開先形状を測定し、
測定した前記開先形状に基づいて前記溶接ロボットを制御し、前記開先を溶接することを特徴とする自動溶接方法。
【請求項7】
請求項6に記載した自動溶接方法において、
前記溶接ロボットを制御する際に、
測定した前記開先形状に基づいて前記開先に対する積層ロジックを演算し、
得られた前記積層ロジックに基づいて前記溶接ロボットを制御することを特徴とする自動溶接方法。
【請求項8】
溶接ロボットを用いて溶接対象物の自動溶接を行う自動溶接装置であって、
前記溶接ロボットに設置され、前記溶接対象物の開先の測定部位を横断方向へ線状に照明可能な照明装置と、
前記溶接ロボットに設置され、前記照明装置で照明された前記測定部位を撮影可能なカメラと、
前記溶接ロボットに接続され、請求項1に記載した開先形状測定方法を実行して前記溶接対象物の開先形状を測定可能、かつ測定した前記開先形状に基づいて前記溶接ロボットを制御可能な制御装置と、を有することを特徴とする自動溶接装置。
【請求項9】
請求項8に記載した自動溶接装置において、
前記制御装置は、測定した前記開先形状に基づいて前記開先に対する積層ロジックを演算し、得られた前記積層ロジックに基づいて前記溶接ロボットを制御可能であることを特徴とする自動溶接装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、開先形状測定方法、自動溶接方法、および自動溶接装置に関する。
【背景技術】
【0002】
鋼材の接合に溶接ロボットを用いた自動溶接が行われている。自動溶接の際には、溶接部分に沿って自走式の溶接ロボットを配置し、予め溶接部分に形成しておいた開先に対して連続的に溶接を行う。溶接ロボットの制御装置においては、溶接ロボットのトーチの開先に対する位置を適切にするために、画像処理による位置制御が利用されている。
【0003】
特許文献1は、開先寸法や開先の中心を簡単な画像処理で正確に求めることができるレーザスポット光による開先倣い方法および装置であって、溶接トーチにレーザ光源およびCCDカメラを設置し、開先にレーザスポット光を照射して照射部位をCCDカメラで撮影し、画素内の反射光の位置から開先の端部の位置を検出し、検出した位置に対して溶接倣い動作を行う。
特許文献2は、開先の状態が設計条件からずれていても無監視で溶接、特にウィービング付き溶接ができる自動開先倣い溶接装置であって、CCDカメラで溶接部位の近傍の画像を撮影し、画像処理によって溶接ロボットのトーチ位置が開先の中心となるように溶接ロボットの位置およびウィービング動作を制御する。
特許文献3は、開先をテレビカメラの画像信号を用いて高速に検出する開先位置検出方法であって、溶接対象の開先近傍の濃淡画像を教示パターンとして記録しておき、溶接動作の際には開先近傍の濃淡画像を検出し、検出した入力パターンのうち教示パターンと最も一致する位置を開先位置として決定する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平9-70664号公報
【特許文献2】特開2003-326362号公報
【特許文献3】特開平9-264713号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
前述した特許文献1の開先倣い動作では、開先におけるレーザスポット光の反射位置が点状になるため、開先の横断形状を測定する際には開先を横断する方向にレーザスポット光を移動させながら撮影を行う必要があった。このため、開先の1断面あたりの測定時間が長くなり、作業効率を向上できなかった。
前述した特許文献2の動作制御では、画像撮影が溶接進行方向つまり開先に沿った方向であると、開先に対して斜めに配置されているトーチの先端位置を適切に検出できない。このため、ウィービング動作を行うために開先に対してトーチが斜めになっている状態など、トーチの先端を画像処理で検出できず、溶接品質を向上できなかった。
前述した特許文献3の位置検出では、レーザスリット光をカメラで撮影して開先倣いを行うため、特定の開先形状にしか自動溶接を適用できない。多様な開先形状に対して自動溶接を適用するには、開先形状計測を行って積層ロジック演算を行う必要があった。
積層ロジックとは、溶接対象物の開先に対し、どのような溶接作業(向き、速度、電圧および電流)を、どのような順序で行うかを指示する溶接計画にあたるものであり、溶接プログラムに編集されて溶接ロボットの動作制御に用いられる。
【0006】
さらに、前述した特許文献1~3の各々は、いずれも溶接動作の間に、画像処理によりトーチ位置と開先位置との位置関係を検出し、動作制御に用いるものであって、予め開先の形状を測定(センシング)しておき、その情報をもとに溶接ロボットによる開先の自動溶接を連続的に行うものではなかった。
溶接ロボットによる自動溶接を連続的に行うためには、予め開先の各位置において、溶接ロボットのトーチが開先に対して適切な位置に配置されるように、各位置の開先の断面形状をセンシングする必要がある。このようなセンシングには、画像測定による形状測定が利用でき、画像によるセンシングには、画像を撮影するカメラを溶接ロボットに支持した構成が採用できる。
撮影した画像から実際の開先の断面形状を得る際には、画像の座標系(カメラ座標系)と溶接ロボットの動作制御に用いられる座標系(ロボット座標系)とを整合させる必要があった。さらに、溶接ロボットに支持したカメラにおいては、トーチの向きなどに応じて溶接作業のつど配置や視野を調整する必要があり、画像処理により開先断面形状の測定を効率よく行うことが難しかった。
【0007】
本発明の目的は、画像処理により開先断面形状を効率よく測定できる開先形状測定方法、自動溶接方法、および自動溶接装置を提供することにある。
【課題を解決するための手段】
【0008】
本発明の開先形状測定方法は、溶接ロボットで自動溶接される溶接対象物に形成された開先の断面形状を、前記溶接ロボットに対する位置が変更可能なカメラを用いて測定する開先形状測定方法であって、前記カメラが撮影した被写体のカメラ座標系の画像データを前記溶接ロボットのロボット座標系に対応させるための準備データを、前記カメラの位置に応じて準備しておく準備工程と、前記カメラが前記開先を撮影する撮影工程と、前記準備工程で準備された前記準備データを用い、前記撮影工程で撮影された前記開先の前記画像データから、前記開先の断面形状情報を検出する測定工程と、を有することを特徴とする。
【0009】
このような本発明では、撮影工程および測定工程により、開先の任意の測定部位について、その断面形状を画像処理により測定(センシング)することができる。断面形状の測定(撮影工程および測定工程)は、溶接ロボットを開先に沿って移動させることで、開先の複数の測定部位について間欠的または連続的に行うことができる。開先の複数の測定部位に対して撮影工程を実施し、後に測定工程をまとめて実施してもよい。測定した開先断面形状は、測定部位ごとに記録しておき、後に参照することができる。
本発明においては、撮影工程および測定工程に先立って準備工程を行うことで、カメラの位置に応じた準備データを準備しておくことができる。
準備データとしては、溶接ロボットにおける実際の位置(ロボット座標系)をカメラで撮影した画像上の位置(カメラ座標系)に変換する関数の逆変換(校正関数)を基本要素として含でもよい。このような校正関数は、カメラ画像のホモグラフィ変換などにより取得することができる。このような校正関数が得られれば、カメラ座標系の位置は校正関数によりロボット座標系の位置に変換され、カメラ画像上の位置(カメラ座標系)を読み取ることで、実際の溶接ロボットにおける位置(ロボット座標系)を検出できる。
このような校正関数を含む準備データは、カメラが撮影した画像の画像データを処理する画像処理系に準備しておくことができる。このような画像処理系は、カメラの画像データを処理する際に、準備データを参照し、画像上の位置(カメラ座標系)から実際の位置(ロボット座標系)を検出できる。つまり、準備データを準備することで、カメラの画像処理系に、ロボット座標系に対応したカメラ座標系が設定可能となる。
準備データを準備する際には、溶接ロボットおよびカメラを予め撮影工程と同じ状態としておく。これにより、撮影工程で得られる画像上の位置(カメラ座標系)は溶接ロボットにおける実際の位置(ロボット座標系)を示すものとなる。つまり、測定工程で開先の断面形状情報を検出する際に、開先に対するカメラの配置や向きなどのカメラに関する変動要素に加え、溶接ロボットにおける開先の配置や向きなど、他の変動要素についても、カメラ座標系およびこれを与えることができる準備データで、一括して校正することができる。
従って、溶接ロボットに支持したカメラの配置や向きを溶接作業のたびに調整しても、調整後のカメラ座標系とロボット座標系との関係を準備データに反映させることで、変換後の断面形状の位置の精度を確保できる。
これらにより、画像処理により開先断面形状を効率よく測定できる開先形状測定方法を提供することができる。
【0010】
本発明の開先形状測定方法において、前記準備工程では、前記溶接ロボットに固定されかつ前記開先の連続方向と交差する平面上に二次元のゲージを形成しておき、前記ゲージを前記カメラで撮影し、撮影された前記ゲージの画像上の前記ゲージの形状と前記ゲージの元の形状との差から、前記カメラで撮影された被写体の画像データ上にカメラ座標系を設定するカメラ校正処理を行うことが好ましい。
【0011】
本発明において、カメラで撮影した開先の画像上の開先形状は、開先に対するカメラの傾きおよび向きに応じて変化する。本発明では、カメラで撮影されたゲージの画像上のゲージの形状と、ゲージの元の形状との差から、例えばホモグラフィ変換などの演算処理により、カメラの傾きおよび向きを校正する情報(校正関数)を取得する。校正関数が取得できれば、開先をカメラで撮影し、撮影された開先の画像をホモグラフィ変換することで、カメラの傾きおよび向きに拘わらず、開先の断面形状を正面から、つまり開先の連続方向から見た状態に校正することができる。このような本発明のカメラ校正処理により、カメラで撮影された被写体の画像上に、ロボット座標系に対応したカメラ座標系を設定することができる。
本発明のゲージとしては、例えばパネルの表面にゲージとして二次元を示す図形や格子模様を表示しておき、このパネルを溶接ロボットから延びるアームなどで支持する構造が利用できる。アームを可動式としてカメラ校正処理以外では、ゲージが表示されたパネルをカメラの視野外に退避させてもよい。
本発明のカメラ校正処理において、ゲージの二次元の各軸方向が、ロボット座標系における開先の連続方向と交差する2軸方向と完全に一致していれば、カメラで撮影された画像上に設定されたカメラ座標系を、ロボット座標系と完全に一致したものにできる。しかし、ゲージの姿勢をロボット座標系に対して高精度に固定することは現実には困難である。このため、前述した校正情報に基づいて仮のカメラ座標系を設定しておき、この仮のカメラ座標系をロボット座標系に一致させる他の校正処理を併用することが望ましい。
【0012】
本発明の開先形状測定方法において、前記準備工程では、前記開先に複数の校正ポイントを設定しておき、前記溶接ロボットを前記溶接ロボットの移動軸のうち前記開先の連続方向と交差するいずれかに沿って移動させ、移動に伴う複数の前記校正ポイントの移動軌跡を前記カメラで検出し、検出された前記移動軌跡に基づいて前記カメラ座標系の軸線方向を校正する移動軸校正処理を行うことが好ましい。
【0013】
このような本発明では、複数の校正ポイントの移動軌跡から、カメラ座標系とロボット座標系との軸線の相対的な傾きが検出できる。つまり、校正ポイントの移動軌跡は、実際のロボット座標系の移動軸を示し、カメラで撮影された校正ポイントの画像データ上の移動軌跡、つまりカメラ座標系における移動軌跡の傾きを検出することで、カメラ座標系とロボット座標系との間に軸線の傾きがあっても、これを校正することができる。例えば、前述した本発明のカメラ校正処理で設定された校正関数を含む準備データおよびカメラ座標系がロボット座標系に完全に一致しないものであっても、本発明の移動軸校正処理により、軸線方向まで完全に一致させることができる。
さらに、本発明の移動軸校正では、溶接ロボットの移動量と画像データ上の校正ポイントの変位との比較から、カメラ座標系における単位長さやスケールを校正することができ、これらの情報も準備データに含めておくことができる。
本発明において、複数の校正ポイントとしては、例えば開先の断面形状に表れる角部や折曲点を利用することができ、構成上も簡単で取り扱いを効率よくできる。
【0014】
本発明の開先形状測定方法において、前記準備工程では、前記溶接ロボットのトーチを前記開先のトーチねらい位置に配置し、前記カメラで撮影された被写体の画像上の前記トーチねらい位置を前記カメラ座標系の原点に設定する原点校正処理を行うことが好ましい。
このような本発明では、トーチと開先との実際の位置を一致させることで、ロボット座標系とカメラ座標系との位置基準を設定でき、溶接ロボットのトーチの姿勢が変化していても、その変化を校正関数を含む準備データおよびカメラ座標系に反映させることができる。
前述した本発明のカメラ校正処理では、カメラ座標系を設定する際に、カメラ座標系の原点位置も設定可能である。ただし、カメラ校正処理で設定するカメラ座標系は、実際の溶接ロボットの位置との関係が未確定である。これに対し、カメラ校正処理でカメラ座標系を設定したのち、本発明の原点校正処理を行うことで、カメラ座標系を実際のロボット座標系に一致させることができる。
【0015】
本発明の開先形状測定方法において、前記撮影工程では、前記溶接ロボットに設置された照明装置により前記開先を横断方向へ線状に照明することが好ましい。
本発明において、照明装置としては、ラインレーザ照射装置を用いることができる。
このような本発明では、開先の連続方向に沿った任意の位置を測定部位として選択し、選択した測定部位の開先断面形状を撮影工程で撮影し、測定工程で断面形状情報として検出することができる。この際、線状に照明する照明装置により、開先の横断方向に一括して照明できるため、例えばスポット照明を開先の横断方向に移動させつつ撮影するよりも処理を高速で効率よく行うことができる。
【0016】
本発明の自動溶接方法は、溶接ロボットを用いて溶接対象物の自動溶接を行う自動溶接方法であって、本発明の開先形状測定方法により前記溶接対象物の開先形状を測定し、測定した前記開先形状に基づいて前記溶接ロボットを制御し、前記開先を溶接することを特徴とする。
このような本発明では、前述した本発明の開先形状測定方法で説明した通りの効果を得ることができる。
【0017】
本発明の自動溶接方法において、前記溶接ロボットを制御する際に、測定した前記開先形状に基づいて前記開先に対する積層ロジックを演算し、得られた前記積層ロジックに基づいて前記溶接ロボットを制御することが好ましい。
このような本発明では、先に測定した前記開先形状に対して適切な積層ロジックを演算することができ、高品質の自動溶接を効率よく行うことができる。
【0018】
本発明の自動溶接装置は、溶接ロボットを用いて溶接対象物の自動溶接を行う自動溶接装置であって、前記溶接ロボットに設置され、前記溶接対象物の開先の測定部位を横断方向へ線状に照明可能な照明装置と、前記溶接ロボットに設置され、前記照明装置で照明された前記測定部位を撮影可能なカメラと、前記溶接ロボットに接続され、本発明の開先形状測定方法を実行して前記溶接対象物の開先形状を測定可能、かつ測定した前記開先形状に基づいて前記溶接ロボットを制御可能な制御装置と、を有することを特徴とする。
このような本発明では、前述した本発明の開先形状測定方法で説明した通りの効果を得ることができる。
【0019】
本発明の自動溶接装置において、前記制御装置は、測定した前記開先形状に基づいて前記開先に対する積層ロジックを演算し、得られた前記積層ロジックに基づいて前記溶接ロボットを制御可能であることが好ましい。
このような本発明では、測定した前記開先形状に対して適切な積層ロジックを演算することができ、高品質の自動溶接を効率よく行うことができる。
【発明の効果】
【0020】
本発明によれば、画像処理により開先断面形状を効率よく測定できる開先形状測定方法、自動溶接方法、および自動溶接装置を提供することができる。
【図面の簡単な説明】
【0021】
【
図1】本発明の一実施形態の自動溶接装置の撮影状態を示す斜視図。
【
図4】前記実施形態のカメラ校正処理を示す模式図。
【
図5】前記実施形態の移動軸校正処理における1回目の撮影を示す模式図。
【
図6】前記実施形態の移動軸校正処理における2回目の撮影を示す模式図。
【
図7】前記実施形態の移動軸校正処理における移動軸の検出を示す模式図。
【発明を実施するための形態】
【0022】
以下、本発明の一実施形態を図面に基づいて説明する。
図1において、自動溶接装置1は、溶接ロボット10を用いて溶接対象物2の自動溶接を行うものである。
溶接対象物2には、溶接すべき一対の辺縁に溝状の開先3が形成されている。溶接対象物2には、開先3に沿って走行レール11が設置され、溶接ロボット10は走行レール11に沿って移動可能である。
溶接ロボット10においては、溶接対象物2の表面との交差方向がZ軸、開先3および走行レール11の延伸方向がY軸、開先3を横断する方向(Z軸およびY軸とそれぞれ直交する方向)がX軸とされる。
【0023】
溶接ロボット10は、走行レール11に沿って移動するサドル12を有し、サドル12には矩形箱状のケース13が支持されている。
ケース13の内部には図示しない移動機構が設置され、ケース13は走行レール11に対して近接離隔する方向(Z軸方向)、および開先3を横断する方向(X軸方向)へ、それぞれ移動可能である。
ケース13の開先3に臨む側にはブラケット14が設置され、ブラケット14の先端にはホルダ15が支持され、ホルダ15にはトーチ16が保持されている。トーチ16の先端には溶接ワイヤ161が支持されている。
ホルダ15は、ブラケット14に回動可能かつ回動軸Sまわりの任意の角度位置で固定可能であり、ホルダ15の角度によりトーチ16のねらい角Atを調整可能である。
【0024】
溶接ロボット10には、制御装置9が接続されている。
制御装置9は、既存のコンピュータシステムに専用のドライバを組み合わせて構成され、トーチ16に供給する電圧および電流の調整、溶接ワイヤの送り速度の調整、サドル12およびケース13の移動など、溶接ロボット10の各部の動作を制御可能である。
本実施形態の制御装置9は、記憶領域に格納されたプログラムを実行することで、本発明に基づく開先形状測定方法(
図3参照、詳細は後述)を実行可能である。そして、溶接対象物2の開先3に対して、複数の測定部位31で断面形状32を測定することで開先3の全体的な形状を測定し、得られた開先形状に基づいて溶接ロボット10を制御可能である。
【0025】
溶接ロボット10には、本発明の開先形状測定方法に必要な照明装置21およびカメラ22が設置されている。
照明装置21は、ラインレーザ照射装置であり、開先3の横断方向(X軸方向)に拡がるレーザ光束を開先3の測定部位31に照射することで、測定部位31を開先3の横断方向へ連続して線状に照明し、断面形状32を周囲よりも明るく浮かび上がらせることができる。
【0026】
カメラ22は、トーチ16を挟んで両側に一対設置され、それぞれ照明装置21で線状に照明された断面形状32を含む測定部位31の画像を撮影し、画像データとして制御装置に送信可能である。
一対のカメラ22は、それぞれCCD(Charge Coupled Device、電荷結合素子)などの固体撮像素子で構成され、支持パネル221および支持アーム222を介して、ケース13の側面に設置された支持レール223に支持されている。
各カメラ22は、支持パネル221に対して向きを調整可能であり、さらに支持レール223に沿ってX軸方向へ移動可能であり、各カメラ22の位置、向きや傾きを調整することで、撮影する際の視野つまり測定部位31を含む溶接対象物2上の撮影領域220を自由に調整できる。
【0027】
図2において、自動溶接装置1は、溶接ロボット10に支持されたパネル23を有する。
パネル23の表面には、直交配置された2本の矢印232,233による二次元のゲージ230が描かれている。
ゲージ230の形状情報、具体的にはパネル23における矢印232,233の基端位置、長さ、先端位置の情報は、予め制御装置9に記憶されている。
【0028】
パネル23は、アーム231を介してブラケット14に支持され、少なくとも下半分が開先3内に入り込むように配置され、パネル23の表面が開先3の連続方向と交差する状態とされている。
アーム231は、ブラケット14に対して回動自在に接続され、パネル23は開先3に入り込んだ状態からカメラ22の視野外まで退避可能である。パネル23をカメラ22の視野外へ退避させるために、アーム231およびパネル23をブラケット14から取り外し可能としてもよい。
【0029】
このような自動溶接装置1においては、溶接対象物2に対する自動溶接作業に先立って、開先3に対するセンシング(開先形状測定作業)を行う。
図3において、開先形状測定作業は、準備工程S1、撮影工程S2、測定工程S3を含む。自動溶接作業は溶接工程S4により行われる。
【0030】
準備工程S1は、カメラ22が撮影した画像データを溶接ロボット10のロボット座標系に対応させるための準備データを、カメラ22の位置に応じて準備する。
すなわち、準備工程S1においては、照明装置21およびカメラ22を有する溶接ロボット10を設置し(処理S11)、カメラ22を開先3に向けて撮影領域を調整する(処理S12)。そして、カメラ22で開先3を撮影して制御装置9で画像処理を行い、カメラ22からの画像データを溶接ロボット10のロボット座標系に対応させる校正関数を準備データとして準備し、画像データを処理する制御装置9にロボット座標系に対応したカメラ座標系を設定するために、カメラ校正処理(処理S13)、移動軸校正処理(処理S14)、原点校正処理(処理S15)を行う。これらのカメラ校正処理(処理S13)、移動軸校正処理(処理S14)、原点校正処理(処理S15)については、のちほど
図4~
図8を用いて詳述する。
【0031】
撮影工程S2においては、カメラ22で開先3を撮影し、画像データとする。
すなわち、
図1に示す状態で、開先3の測定部位31に溶接ロボット10を移動させ(処理S21)、照明装置21により測定部位31を横断方向へ線状に照明し、カメラ22により測定部位31の画像を撮影する(処理S22)。
測定工程S3においては、準備工程S1で準備された準備データを用い、撮影工程S2で撮影された開先3の画像データから、開先3の断面形状情報を検出する。
すなわち、カメラ22で撮影された画像データから測定部位31の断面形状32の情報を検出し(処理S31)、検出された断面形状32の情報を、測定部位31と断面形状32の情報とを対にして制御装置9の記憶領域に記憶する(処理S32)。
これらの撮影工程S2および測定工程S3は、開先3の測定部位31を変更しつつ、開先3の全長あるいは一部区間にわたって、複数回繰り返すことができる。これにより開先3の連続方向に沿った断面形状32を得ること(センシング)ができる。
【0032】
開先3のセンシングができたら、溶接工程S4により自動溶接を行う。
溶接工程S4においては、溶接動作に先立って、制御装置9により、測定工程S3で記憶しておいた各測定部位31の断面形状32の情報から、開先3の溶接ロジックを演算する(処理S41)。
溶接ロジックとしては、センシングで得られた開先3の断面形状32に基づいて、溶接動作の繰り返し回数、各溶接動作でのトーチ16の向き、ワイヤ送り速度、供給電力、溶接ロボット10の走行速度など、多様な溶接パラメータが設定される。
溶接ロジックが演算されたら、得られた溶接ロジックに基づいて溶接ロボット10を制御し、開先3の溶接を実行する(処理S42)。
【0033】
前述の通り、準備工程S1においては、準備データを準備するために、カメラ校正処理(処理S13)、移動軸校正処理(処理S14)、原点校正処理(処理S15)を行う。
これらのカメラ校正処理(処理S13)、移動軸校正処理(処理S14)、原点校正処理(処理S15)は、以下の処理を含む。
【0034】
カメラ校正処理(処理S13)では、パネル23を
図2の状態としてゲージ230をカメラ22の撮影領域220に配置し、カメラ22でゲージ230を撮影する(処理S131)。そして、撮影したゲージ230の形状から、カメラ22で撮影された画像におけるカメラ座標系を設定する(処理S132)。計算にあたっては、制御装置9により、予め記憶しておいたゲージ230の形状情報と、撮影したゲージ230の形状とを比較演算を行う。
【0035】
図4には、カメラ校正処理(処理S13)の具体的な動作が示されている。
ゲージ230の基準点234(例えば矢印232,233の交差する基点)に対して、カメラ22の向きを調整し、カメラ22の光軸Aを基準点234に向けて固定しておく。
溶接ロボット10により支持されたカメラ22の位置は通常開先3からそれた位置にあり、パネル23の正面(開先3の連続方向であるY軸方向)から見ると、カメラ22がX軸方向に変位Dx、Z軸方向に変位Dzで配置されている。さらに、カメラ22の傾きがあり、光軸Aまわりのカメラ22の傾き角Rとする。
【0036】
処理S131により撮影された画像22Cでは、前述したカメラ22の変位Dx,Dzおよび傾き角Rにより、パネル23Cの表面のゲージ230Cの形状(矢印232C,233Cの長さおよび角度)が元の形状に対して変形して表れる。
処理S132においては、制御装置9に記憶されている形状情報のゲージ230R(矢印232R,233Rの長さおよび角度)を参照し、画像22Cに表れたゲージ230Cとの比較演算を行うことで、カメラ22の変位Dx,Dzおよび傾き角Rを計算することができる。そして、得られたカメラ22の変位Dx,Dzおよび傾き角Rに対して、例えばホモグラフィ変換などの演算処理により、準備データとして開先の断面形状を正面つまり開先の連続方向から見た状態に校正する情報(準備データとしての校正関数)が得られる。このような本発明のカメラ校正処理により、カメラで撮影された被写体の画像上に、ロボット座標系に対応したカメラ座標系を設定することができる。
【0037】
図3に戻って、カメラ校正処理(処理S13)が済んだら、パネル23を退避させて
図1の状態に戻し、移動軸校正処理(処理S14)を実行する。
移動軸校正処理(処理S14)では、照明装置21で開先3の測定部位31を照明し、照明された開先3の測定部位31をカメラ22で撮影し、測定部位31の断面形状32における校正ポイントの検出(1回目)を行う(処理S141)。次に、溶接ロボット10を開先3と交差方向(例えばZ軸方向)へ移動し(処理S142)、再びカメラ22で開先3を撮影し、測定部位31の断面形状32における校正ポイントの検出(2回目)を行う(処理S143)。続いて、断面形状32の同じ位置について、1回目の検出における校正ポイントと2回目の検出における校正ポイントとを結ぶ移動軌跡を計算し、得られた校正ポイントの移動軌跡からロボット座標系に合わせてカメラ座標系を校正する(処理S144)。
【0038】
図5、
図6、
図7には、移動軸校正処理(処理S14)の具体的な動作が示されている。
図5において、処理S141では、照明装置21で開先3の測定部位31を照明し、開先3の測定部位31をカメラ22で撮影することで、撮影された画像22Cには測定部位31の断面形状32が捉えられる。断面形状32においては、その折曲点が照明装置21のラインレーザにより高輝度で表れ、校正ポイントP11,P21,P31,P41として検出される(1回目の検出)。
【0039】
図6において、処理S142では、溶接ロボット10のケース13を、開先と交差方向であるZ軸方向へ移動させる。この移動に伴って、照明装置21およびカメラ22もZ軸方向へ並進移動する。
処理S143では、照明装置21で開先3の測定部位31を照明し、開先3の測定部位31をカメラ22で撮影することで、撮影された画像22Cには測定部位31の断面形状32が捉えられる。断面形状32においては、その折曲点が照明装置21のラインレーザにより高輝度で表れ、校正ポイントP12,P22,P32,P42として検出される(2回目の検出)。
【0040】
処理S142,S143で得られた1回目の検出における校正ポイントP11~P41の位置情報、および2回目の検出における校正ポイントP12~P42の位置情報は、それぞれ制御装置9で演算処理される。
図7において、処理S144では、断面形状32の同じ位置について、各ポイントを結ぶ移動軌跡T1、T2,T3,T4を計算する。例えば、1回目の校正ポイントP11から2回目の校正ポイントP12に至る移動軌跡T1を計算し、1回目の校正ポイントP21から2回目の校正ポイントP22に至る移動軌跡T2を計算する。
計算された移動軌跡T1、T2,T3,T4は、それぞれ溶接ロボット10のZ軸方向(ロボット座標系)の移動方向Zrを示し、これを画像22C(カメラ座標系)において検出することで、カメラ座標系(処理S13で設定されたカメラ座標系および準備データの校正関数)を校正し、実際のロボット座標系に合わせることができる。
【0041】
図3に戻って、移動軸校正処理(処理S14)が済んだら、原点校正処理(処理S15)を実行する。
原点校正処理(処理S15)では、溶接ロボット10のトーチ16を開先3のトーチねらい位置に配置し(処理S151)、カメラ22で撮影された画像22C上のトーチねらい位置をカメラ座標系の原点に設定する(処理S152)。
図8において、処理S151では、断面形状32の任意位置(例えば
図5の校正ポイントP11に用いた開先3の折曲点)をトーチねらい位置として選択しておき、溶接ロボット10をX軸方向およびZ軸方向に移動させ、トーチ16から延びる溶接ワイヤ161の先端をトーチねらい位置(P11)に接触させる。制御装置9においては、その時点のロボット座標系での現在位置からトーチねらい位置が検出される。
処理S151では、カメラ22で撮影された画像22Cで検出されるトーチねらい位置(P11)をカメラ座標系の原点に設定する。トーチねらい位置(P11)は、ロボット座標系での現在位置として検出されているので、カメラ座標系での原点位置をロボット座標系に変換することができる。
【0042】
以上のカメラ校正処理(処理S13)、移動軸校正処理(処理S14)、原点校正処理(処理S15)により、カメラ22で撮影された画像22Cにおいて検出されるカメラ座標系の位置と、溶接ロボット10に固有のロボット座標系の位置との関係が得られ、その関係を示す関数の逆関数として校正関数が得られる。これにより、準備工程S1において、カメラ座標系で検出された位置をロボット座標系に変換する校正関数を準備データとして準備することができる。
【0043】
本実施形態によれば、次のような効果を得ることができる。
本実施形態では、撮影工程S2および測定工程S3により、開先3の任意の位置を測定部位31として選択し、その断面形状32を画像処理により測定(センシング)することができる。断面形状32の測定(撮影工程S2および測定工程S3)は、溶接ロボット10を開先3に沿って移動させることで、開先3の複数の測定部位31について間欠的または連続的に行うことができる。
【0044】
本実施形態では、撮影工程S2および測定工程S3に先立って準備工程S1を行うことで、カメラ22が撮影した画像データを溶接ロボット10のロボット座標系に対応させる準備データを、カメラ22の位置に応じて準備しておくことができる。これにより、ロボット座標系に対して準備データを適用することで、カメラ22の配置(開先3に対するカメラ22の位置)および向き(カメラ22の光軸方向、視野の傾き)に応じたカメラ座標系を設定することができる。つまり、開先3に対するカメラ22の配置や向きなどのカメラ22に関する変動要素に加え、溶接ロボット10における開先3の配置や向きなど、他の変動要素についても、準備データで一括して校正することができる。
従って、溶接ロボット10に支持したカメラ22の向きを溶接作業のたびに調整しても、調整後のカメラ座標系とロボット座標系との関係を準備データに反映させることで、変換後の断面形状32の位置の精度を確保できる。
【0045】
本実施形態では、準備工程S1においてカメラ校正処理S13を行い、溶接ロボット10に固定されかつ開先3の連続方向と交差する平面上に二次元のゲージ230を形成しておき、ゲージ230をカメラ22で撮影し(処理S131)、撮影された画像22C上のゲージ230Cの形状と元のゲージ230Rの形状との差から、カメラ座標系とロボット座標系との傾きおよび変位を計算(処理S132)した。
これにより、開先3に対するカメラ22の傾きおよび向きに応じて、撮影された画像22C上のゲージ230Cが、元のゲージ230Rから変化することを利用して、カメラ22の傾きおよび向きを校正する情報を得ることができる。
つまり、ゲージ230が表示されたパネル23を溶接ロボット10に固定し、開先3が連続する方向(Y軸方向)と直交方向(X-Z方向)に配置することで、開先3の断面形状32を正面、つまり開先3の連続方向から見た状態に校正することができる。
【0046】
本実施形態では、パネル23の表面にゲージ230を表示し、このパネル23を溶接ロボット10から延びるアーム231で支持した。このため、簡単な構造でカメラ校正処理S13に必要なゲージ230を準備することができる。
さらに、ゲージ230が表示されたパネル23を、可動式のアーム231を介して支持し、カメラ校正処理S13以外ではパネル23をカメラ22の視野外に退避させることができる。
【0047】
本実施形態では、準備工程S1において移動軸校正処理S14を行い、開先3に複数の校正ポイントP11~P41を設定しておき、カメラ22で撮影して1回目の検出(処理S141)を行ったあと、溶接ロボット10をZ軸に沿って移動させ(処理S142)、移動後の校正ポイントP12~P42をカメラ22で撮影して2回目の検出(処理S143)を行い、移動に伴う複数の校正ポイントの移動軌跡T1~T4を検出し、検出された移動軌跡T1~T4からカメラ座標系とロボット座標系との傾きおよび変位を計算した。
これにより、複数の校正ポイントP11~P41,P12~P42の移動軌跡T1~T4から、カメラ座標系とロボット座標系とのXYZ3軸の傾きおよび変位の校正を行うことができる。
つまり、校正ポイントP11~P41,P12~P42の移動軌跡T1~T4は、実際のロボット座標系の移動軸を示し、カメラ22で撮影された画像データ上の移動軌跡、つまりカメラ座標系における移動軌跡の傾きを検出することで、カメラ座標系とロボット座標系との間に軸線(Z軸,X軸)の傾きがあっても、これを校正することができる。例えば、前述したカメラ校正処理S13で設定されたカメラ座標系がロボット座標系に完全に一致しないものであっても、移動軸校正処理S14により、軸線方向まで完全に一致させることができる。
さらに、移動軸校正処理S14では、溶接ロボット10の移動量(移動軌跡T1~T4の長さ)と画像データ上の校正ポイントの変位との比較から、カメラ座標系における単位長さやスケールを校正することができる。
前記実施形態では、複数の校正ポイントP11~P41として、開先3の断面形状32に表れる折曲部を利用したので、構成上も簡単で取り扱いを効率よくできる。
【0048】
本実施形態では、準備工程S1において原点校正処理S15を行い、溶接ロボット10を移動させてトーチ16を開先3のトーチのねらい位置(P11)に配置し、カメラ22で撮影された画像22C上のトーチねらい位置をカメラ座標系の原点に設定した。
これにより、トーチ16と開先3との実際の位置を一致させることで、ロボット座標系とカメラ座標系との位置基準を設定でき、溶接ロボット10のトーチ16の姿勢が変化していても、その変化を準備データに反映させることができる。
【0049】
本実施形態では、照明装置21として、ラインレーザ照射装置を用い、開先3の横断方向に延びる連続した線状の照明とすることができる。これにより、開先3の連続方向に沿った任意の位置を測定部位31として選択し、選択した測定部位31の開先断面形状を撮影工程S2で撮影し、測定工程S3で開先3の断面形状32として検出できる。また、測定部位31の断面形状32をカメラ22で一括して撮影することができ、スポット照明を開先3の横断方向に移動させつつ撮影するよりも、処理を高速で効率よく行うことができる。
【0050】
本実施形態では、溶接工程S4において、溶接ロボット10を制御する際に、撮影工程S2および測定工程S3を繰り返して測定(センシング)しておいた開先3の断面形状32に基づいて、開先3に対する積層ロジックを演算し(処理S41)、得られた積層ロジックに基づいて溶接ロボット10を制御(処理S42)した。
これにより、開先3の形状に対して適切な積層ロジックを演算することができ、高品質の自動溶接を効率よく行うことができる。
【0051】
なお、本発明は前述した実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形などは本発明に含まれる。
前記実施形態では、準備工程S1ののち、選択した測定部位31についての撮影工程S2および測定工程S3を繰り返し、開先3の全長または所定区間にわたる断面形状32を確保し、得られた開先3の形状に基づいて溶接工程S4を実行した。
これに対し、撮影工程S2および測定工程S3は個別に行ってもよく、例えば全ての測定部位31について撮影工程S2を繰り返して画像22Cを記録しておき、のちに各測定部位31の画像22Cに対して測定工程S3を繰り返し行ってもよい。
また、撮影工程S2および測定工程S3を繰り返すことは必須ではなく、開先3の形状が均一である場合など、ひとつの測定部位31について撮影工程S2および測定工程S3を1回だけ行うとしてもよい。
【0052】
前記実施形態において、カメラ校正処理S13では、ゲージ230として2本の矢印232,233を用いたが、カメラ22で撮影した画像22Cにおいてカメラ22の方位や傾きが検出可能な図形であればよく、形が異なる複数の点の配列パターンなど、適宜選択することができる。ゲージ230は、パネル23に印刷などで表示されたものに限らず、発光するものなどでもよい。
ゲージ230が表示されたパネル23は、可動式のアーム231により退避可能なものに限らず、溶接ロボット10に対して着脱自在とされたものであってもよい。
【0053】
前記実施形態において、移動軸校正処理S14では、校正ポイントの1回目の検出ののち、Z軸方向に移動して2回目の検出を行ったが、この際の移動軸としては、開先3の連続方向と交差する軸線方向であればよく、Z軸に代えてX軸について行ってもよい。
前記実施形態では、複数の校正ポイントP11~P41として、開先3の断面形状32に表れる折曲部を利用したが、断面形状32の任意部位にマーカを形成して校正ポイントとしてもよい。
【0054】
前記実施形態では、照明装置21としてラインレーザ照明装置を用いたが、レーザ光に限らず他の光源でもよく、開先3をその横断方向へ線状に連続して、または線状に並ぶ多点で照明できればよく、断面形状32となる画像22Cを一括して取り込むことができればよい。
前記実施形態において、移動軸校正処理S14では、溶接ロボット10の位置の変化によるアーム231の撓み量の変化やカメラ22が撮影可能な全視野内にゲージ230を配置しなければならない困難性等を考慮し、パネル23に表示されたゲージ230を用いることなく、溶接ロボット10をZ軸方向に移動させることで、カメラ座標系およびロボット座標系のZ軸方向の差を求めたが、これに限られるものではない。
例えば、パネル23とは別のパネルを設けても良い。そして、溶接ロボット10のZ軸方向の移動軸を示す矢印とX軸方向の移動軸を示す矢印とをこの別のパネルに設けても良い。これにより、それぞれの矢印がそれぞれの移動軸(Z軸およびX軸)を示すので、溶接ロボット10をそれぞれの移動軸に沿って移動させることなく、カメラ22でこの別のパネルを撮影してホモグラフィ変換等の画像処理をすることで、カメラ座標系およびロボット座標系のZ軸方向およびX軸方向の差を求めることができる。
また、別のパネルを設けることなく、前記実施形態のパネル23の姿勢を調整し、表面に描かれたゲージ230の矢印232が溶接ロボット10のZ軸方向の移動軸と一致し、かつ、ゲージ230の矢印233が溶接ロボット10のX軸方向の移動軸と一致するようにパネル23を配置してもよい。これにより、矢印232が溶接ロボット10のZ軸方向の移動軸を示し、矢印233が溶接ロボット10のX軸方向の移動軸を示すので、溶接ロボット10をそれぞれの移動軸に沿って移動させることなく、このようなパネル23をカメラ22で撮影することで、別のパネルを設けることなく、カメラ座標系およびロボット座標系のZ軸方向およびX軸方向の差を求めることができる。
【産業上の利用可能性】
【0055】
本発明は、開先形状測定方法、自動溶接方法、および自動溶接装置に利用できる。
【符号の説明】
【0056】
1…自動溶接装置、10…溶接ロボット、11…走行レール、12…サドル、13…ケース、14…ブラケット、15…ホルダ、16…トーチ、161…溶接ワイヤ、2…溶接対象物、21…照明装置、22…カメラ、220…撮影領域、221…支持パネル、222…支持アーム、223…支持レール、22C…画像、23…ゲージ、230…ゲージ、230C…撮影されたゲージ、230R…元のゲージ、231…アーム、232…矢印、232C…撮影された矢印、232R…元の矢印、233…矢印、233C…撮影された矢印、233R…元の矢印、234…基準点、23C…撮影されたゲージ、3…開先、31…測定部位、32…断面形状、9…制御装置、A…光軸、At…角、Dx…変位、Dz…変位、P11…校正ポイント、P12…校正ポイント、P21…校正ポイント、P22…校正ポイント、P31…校正ポイント、P32…校正ポイント、P41…校正ポイント、P42…校正ポイント、R…傾き角、S…回動軸、S1…準備工程、S11…処理、S12…処理、S13…カメラ校正処理、S131…処理、S132…処理、S14…移動軸校正処理、S141…処理、S142…処理、S143…処理、S144…処理、S15…原点校正処理、S151…処理、S152…処理、S2…撮影工程、S21…処理、S22…処理、S3…測定工程、S31…処理、S32…処理、S4…溶接工程、S41…処理、S42…処理、T1…移動軌跡、T2…移動軌跡、T3…移動軌跡、T4…移動軌跡、Zr…移動方向。