(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022182765
(43)【公開日】2022-12-08
(54)【発明の名称】合成部材およびその製造方法
(51)【国際特許分類】
E04B 1/94 20060101AFI20221201BHJP
E04C 3/36 20060101ALI20221201BHJP
【FI】
E04B1/94 V
E04C3/36
【審査請求】未請求
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2021090489
(22)【出願日】2021-05-28
(71)【出願人】
【識別番号】000002299
【氏名又は名称】清水建設株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】藤井 雅之
【テーマコード(参考)】
2E001
2E163
【Fターム(参考)】
2E001DD01
2E001EA02
2E001FA02
2E001GA12
2E001HA04
2E001HC02
2E001KA01
2E001LA02
2E001LA20
2E163FA02
2E163FD02
2E163FD12
2E163FD32
2E163FD44
2E163FD46
2E163FD53
2E163FF42
(57)【要約】
【課題】耐火性を有するとともに、部材耐力を向上することができる合成部材およびその製造方法を提供する。
【解決手段】長期荷重を支持するとともに耐火性を有する鉄筋コンクリート部材12と、この鉄筋コンクリート部材12の表面に接して設けられるとともに長期荷重を支持しない木質部材14とを備える合成部材10であって、鉄筋コンクリート部材12と木質部材14とを一体化するために、木質部材14の鉄筋コンクリート部材12に接する側の面に設けられたコッター16をさらに備えるようにする。木質部材14の座屈を防止するために、木質部材14の鉄筋コンクリート部材12に接する側の面に突設されたビスをさらに備えてもよい。
【選択図】
図1
【特許請求の範囲】
【請求項1】
長期荷重を支持するとともに耐火性を有する鉄筋コンクリート部材と、この鉄筋コンクリート部材の表面に接して設けられるとともに長期荷重を支持しない木質部材とを備える合成部材であって、
鉄筋コンクリート部材と木質部材とを一体化するために、木質部材の鉄筋コンクリート部材に接する側の面に設けられたコッターをさらに備えることで、木質部材を構造体として利用していることを特徴とする合成部材。
【請求項2】
木質部材の水平荷重作用時における応力負担時の座屈を防止するために、木質部材の鉄筋コンクリート部材に接する側の面に突設されたビスをさらに備えることを特徴とする請求項1に記載の合成部材。
【請求項3】
長期荷重を鉄筋コンクリート部材のみで支持する機構とすることで、木質部材に対して耐火被覆を不要とすることを特徴とする請求項1または2に記載の合成部材。
【請求項4】
請求項1~3のいずれか一つに記載の合成部材を製造する方法であって、
コンクリート用の型枠として木質部材を組み立てるステップと、木質部材の内側にコンクリートを打設して鉄筋コンクリート部材を構築するステップを有することを特徴とする合成部材の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、木材と鉄筋コンクリートの合成部材およびその製造方法に関するものである。
【背景技術】
【0002】
従来、耐火建築物において、長期荷重を負担する構造材に木材を使用した柱(木構造柱)が知られている。木構造柱を採用すると、木材の表面を石膏ボード等の耐火被覆材で覆う必要があり、構造木をあらわしとできないという問題がある。また、この耐火被覆によってコストが増大する。耐火被覆材の外側を木材からなる仕上げ材で覆い、仕上げ材としての木をあらわしとする方法もあるが、施工手間とコストがさらに増大してしまう。また、木構造柱の接合部を剛接合とすることは困難なため、耐震要素を別に計画する必要がある。
【0003】
一方、鉄骨部材を木材で耐火被覆した部材として、例えば、特許文献1~3に記載のものが知られている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2013-011063号公報
【特許文献2】特開2019-056202号公報
【特許文献3】特開2000-017752号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、上記の従来の特許文献1~3に記載の構造では、木材を耐火被覆材および仕上げ材としてのみ考慮しており、木材を構造体としては利用できていない。このため、耐火性を有するとともに、部材耐力を向上することができる合成部材が求められていた。
【0006】
本発明は、上記に鑑みてなされたものであって、耐火性を有するとともに、部材耐力を向上することができる合成部材およびその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
上記した課題を解決し、目的を達成するために、本発明に係る合成部材は、長期荷重を支持するとともに耐火性を有する鉄筋コンクリート部材と、この鉄筋コンクリート部材の表面に接して設けられるとともに長期荷重を支持しない木質部材とを備える合成部材であって、鉄筋コンクリート部材と木質部材とを一体化するために、木質部材の鉄筋コンクリート部材に接する側の面に設けられたコッターをさらに備えることで、木質部材を構造体として利用していることを特徴とする。
【0008】
また、本発明に係る他の合成部材は、上述した発明において、木質部材の水平荷重作用時における応力負担時の座屈を防止するために、木質部材の鉄筋コンクリート部材に接する側の面に突設されたビスをさらに備えることを特徴とする。
【0009】
また、本発明に係る他の合成部材は、上述した発明において、長期荷重を鉄筋コンクリート部材のみで支持する機構とすることで、木質部材に対して耐火被覆を不要とすることを特徴とする。
【0010】
また、本発明に係る合成部材の製造方法は、上述した合成部材を製造する方法であって、コンクリート用の型枠として木質部材を組み立てるステップと、木質部材の内側にコンクリートを打設して鉄筋コンクリート部材を構築するステップを有することを特徴とする。
【発明の効果】
【0011】
本発明に係る合成部材によれば、長期荷重を支持するとともに耐火性を有する鉄筋コンクリート部材と、この鉄筋コンクリート部材の表面に接して設けられるとともに長期荷重を支持しない木質部材とを備える合成部材であって、鉄筋コンクリート部材と木質部材とを一体化するために、木質部材の鉄筋コンクリート部材に接する側の面に設けられたコッターをさらに備えることで、木質部材を構造体として利用しているので、合成部材として耐火被覆がなくても、耐火性を有するとともに、部材耐力を向上することができるという効果を奏する。
【0012】
また、本発明に係る他の合成部材によれば、木質部材の水平荷重作用時における応力負担時の座屈を防止するために、木質部材の鉄筋コンクリート部材に接する側の面に突設されたビスをさらに備えるので、木質部材の座屈を防止することができるという効果を奏する。
【0013】
また、本発明に係る他の合成部材によれば、長期荷重を鉄筋コンクリート部材のみで支持する機構とすることで、木質部材に対して耐火被覆を不要とする。長期荷重を負担しない部材に対しては、耐火性能は要求されないため、木質部材に対して耐火被覆を不要とすることができるという効果を奏する。
【0014】
また、本発明に係る合成部材の製造方法によれば、上述した合成部材を製造する方法であって、コンクリート用の型枠として木質部材を組み立てるステップと、木質部材の内側にコンクリートを打設して鉄筋コンクリート部材を構築するステップを有するので、合成部材を容易に製造することができるという効果を奏する。
【図面の簡単な説明】
【0015】
【
図1】
図1は、本発明に係る合成部材およびその製造方法の実施の形態を示す図であり、(1)は横断面図、(2)は(1)のA-A線に沿った断面図、(3)は(2)のB-B線に沿った断面図である。
【
図2】
図2は、本実施の形態を適用した柱梁接合部の一例を示す図であり、(1)~(4)は鉄骨梁の場合、(5)~(8)はRC梁の場合である。
【
図3】
図3は、本発明の他の実施の形態を示す図である。
【
図4】
図4は、本発明の他の実施の形態を示す図である。
【
図5】
図5は、合成部材の作用説明図であり、(1)は水平荷重による曲げ応力作時の説明図、(2)はビスによる座屈防止の説明図、(3)はコッターによる軸力伝達の説明図である。
【発明を実施するための形態】
【0016】
以下に、本発明に係る合成部材およびその製造方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
【0017】
(合成部材およびその製造方法)
図1に示すように、本発明の実施の形態に係る合成部材10は、柱として使用される部材であり、長期荷重を支持するとともに耐火性を有する鉄筋コンクリート部材12(以下、RC部材という。)と、このRC部材12の表面に接して設けられるとともに長期荷重を支持しない木質部材14とを備える。木質部材14のRC部材12に接する側の面にコッター16が設けられる。
【0018】
RC部材12は、矩形(正方形)断面の柱軸状のコンクリート18と、コンクリート18内に配置された主筋20(鉄筋)およびせん断補強筋22(鉄筋)を備える。主筋20は、横方向に間隔をあけて柱軸方向に配置され、せん断補強筋22は、上下方向に間隔をあけて環状に配置される。
【0019】
木質部材14は、RC部材12の前後左右の各表面に当接配置される4枚の板からなる。各板の端部24は、横断面視で45度に傾斜したテーパー状になっており、隣接する各端部24はこの部分で接合している。このため、合成部材10全体の断面形状は矩形である。なお、各端部24どうしの接合には、例えば接着剤、木質構造用ビス、ラグスクリュー等の接合手段を用いることができるが、施工性から木質構造用ビスを用いることが好ましい。木質部材14には、例えば集成材やCLT(Cross Laminated Timber)等を用いることができる。木質部材14は、RC部材12のコンクリート18用の型枠として用いられ、RC部材12と一体に施工される。
【0020】
コッター16は、RC部材12と木質部材14とを一体化するために木質部材14の裏面側に設けられる。コッター16は、正面視で矩形の凹状形状に形成され、上下方向および水平方向にそれぞれ間隔をあけて複数設けられる。木質部材14は、RC部材12のコンクリート18用の型枠として用いるため、コッター16の凹状形状の内部には、コンクリート打設によりコンクリート18が充填されることになる。コッター16により軸力を伝達することで、合成部材10として曲げ応力を木質部材14の部分でも負担できるようになり、耐力が向上する。
図1(2)の例では、1枚の木質部材14の裏面側の左右部分にコッター16を2列配置するとともに、コッター16を正面視で矩形の凹状形状に形成した場合を示しているが、本発明のコッターの配置や形状はこれに限るものではない。なお、
図1(1)の例では、左右方向(水平方向)が想定される加力方向Fであり、右端の圧縮縁Gから引張鉄筋重心位置までの長さが有効せいHである。
【0021】
この合成部材10を製造する場合には、例えば、まずコンクリート用の型枠として木質部材14を組み立てる。続いて、木質部材14の内側の領域に、主筋20、せん断補強筋22を組み立てる。その後、木質部材14の内側にコンクリート18を打設してRC部材12を構築する。木質部材14は、RC部材12の型枠として一体に施工され、RC部材12から脱型しないでそのまま使用する。これにより、合成部材10を容易に製造することができる。
【0022】
本実施の形態の合成部材10によれば、長期荷重を支持するとともに耐火性を有するRC部材12と、その表面にコッター16を介して設けられるとともに長期荷重を支持しない木質部材14からなるので、耐火性を有するとともに、部材耐力を向上することができる。また、耐火性能が求められる建物においては、長期荷重を耐火性能のあるRC部材12のみで負担し許容応力度設計を行うことで、特別な耐火被覆を必要としない。耐火被覆が不要となることで、コストを低減することができる。さらに、耐火被覆を設けることなく、構造体の木をあらわしにすることが可能である。また、型枠併用の仕上げにより、通常の木仕上げと比べて施工手間とコストを軽減することができる。
【0023】
地震時等の水平荷重に対してはRC部材12と木質部材14との合成効果により部材耐力が向上する。部材の耐震性能が向上することにより、躯体費用を低減することができる。耐火性能が求められない建物においては、木質部材14に長期荷重を負担させて設計することも可能である。また、二次設計において、木質部材14が圧壊しないことを確認すれば、RC造と同等の構造特性係数Dsとする構造計算ルート3の設計が可能である。さらに後述するような調湿・空調効果により、環境負荷を低減することができる。
【0024】
上記の実施の形態において、コッター16で木質部材14とRC部材12の一体化を図る場合を例にとり説明したが、本発明はこれに限るものではない。木質部材14の裏面にコッター16を設けることに加え、木質部材14の裏面に所定の間隔でビス等の連結部材をRC部材12のコンクリートに向けて突設してもよい。このようにすれば、ビス等の連結部材によって木質部材14の座屈を防止することができる。また、ビス等の連結部材により部材耐力の低減が防止されるので、コッター16と併用することで合成部材10の部材耐力をより向上することができる。ビス等の連結部材は、木質部材14の裏面側のコッター16内に設けてもよいし、コッター16がない部分に設けてもよい。
【0025】
(柱梁接合部)
次に、本実施の形態の合成部材を柱に適用した柱梁接合部について説明する。
図2は、本実施の形態の合成部材10を柱に適用した柱梁接合部の一例であり、(1)~(4)は梁が鉄骨梁の場合、(5)~(8)は梁がRC(鉄筋コンクリート)梁の場合である。(1)は(2)のA-A線に沿った断面図、(2)は(1)のB-B線に沿った断面図、(3)は(1)のC-C線に沿った断面図、(4)は(1)のD-D線に沿った断面図である。(5)は(6)のE-E線に沿った断面図、(6)は(5)のF-F線に沿った断面図、(7)は(5)のG-G線に沿った断面図、(8)は(5)のH-H線に沿った断面図である。
【0026】
図2に示すように、合成部材10を構成する木質部材14は、柱梁接合部26の仕口部28で上下に分断される。仕口部28は、略直方体状の鉄筋コンクリートからなり、その上下は合成部材10を構成するRC部材12に連続している。
図2(1)~(4)の鉄骨梁の場合の仕口部28には、前後左右の四方からH形鋼からなる鉄骨梁30が接続している。一方、
図2(5)~(8)のRC梁の場合の仕口部28には、前後左右の四方からRC梁32が接続している。このような構成においては、木質部材14が長期荷重を負担しないようにするため、木質部材14の下端の脚部34にクリアランスを設けておき、施工時において上部のRC部材12の躯体工事完了後に無収縮モルタル等でクリアランスを埋めることが好ましい。こうすることで、木質部材14が長期荷重を負担しないため地震時等の水平荷重作用時の部材耐力が向上する。
【0027】
図2(1)~(4)の鉄骨梁の場合、(5)~(8)のRC梁の場合、いずれの場合においても、木質部材14は柱梁接合部26で分断されるため、水平荷重に対しては引張応力を負担することはなく圧縮応力のみを負担する。RCと木の合成断面の平面保持を仮定すると、RC部材12の有効せいHが大きくなることで部材耐力が向上する。部材の塑性化領域においては、木質部材14が終局耐力に達していなければ木質部材14の脆性破壊は生じないため、二次設計ではRC造と同等の構造特性係数Dsを採用して設計することができる。
【0028】
柱梁接合部26では木質部材14を機械的に接合しない。水平荷重時に圧縮縁となる木質部材14角部のめり込みによる損傷や局部変形を防ぐために、
図3(1)に示すように、木質部材14の下端部の縁にアングル材等の保護材36をビス等で取り付けることで、圧縮端を保護する。こうすることで、地震による繰返し荷重時に耐力劣化が生じず、靱性性能が向上する。負担応力によって端部のめり込みによる損傷や局部変形が懸念されない場合は、保護材36は不要とすることもできる。
【0029】
また、
図3(2)に示すように、木質部材14の縁切り位置は柱梁接合部26の仕口部28ではなく柱中央部38に設けることも可能である。柱中央部38の反曲点付近に木質部材14の縁切りを設けた場合、木縁部の保護材36は不要である。
【0030】
図3(3)~(6)は、
図2(1)~(4)の変形例を示したものである。
図3(3)~(6)に示すように、柱梁接合部26を跨ぐ態様で上下方向に延びる引きボルト40を上下の木質部材14に設け、上下に分断される木質部材14を引きボルト40で接続してもよい。引きボルト40で引張応力を負担させることにより合成部材10の耐力がさらに向上する。ただし、引張応力を受ける引きボルト40の降伏耐力は、木質部材14の引張耐力・めり込み耐力以下とし、靭性性能を確保した設計とすることが好ましい。
図3(3)~(6)の例は鉄骨梁の場合における引きボルト40の納まり例であるが、
図2(5)~(8)のRC梁の場合も同様に引きボルト40を設けることができる。この場合の設計も上記と同様に行うことができる。
【0031】
上記の実施の形態では、合成部材10を柱部材として使用する場合を例にとり説明したが、本発明はこれに限るものではなく、合成部材をRC梁や鉄骨梁などの梁部材として用いる場合にも同様に適用可能である。梁部材においても圧縮要素として木質部材14を働かせることで、部材有効せいが大きくなり部材耐力が向上する。
【0032】
(調湿・空調効果)
次に、調湿・空調効果について説明する。
木材は、周囲の湿度が高い時には内部に水分を吸収し、乾燥している時には内部の水分を空中に放出する調湿機能を持っている。合成部材10のあらわしとなる木質部材14の表面に凹凸加工を施す、もしくは凹凸加工を施した木材を張り付け、木が空気に触れる表面積を大きくとることで、木材のもつ調湿効果を最大化し室内環境負荷を低減することも可能である。
図4に、木質部材の表面に施される凹凸加工の例を示す。また、木材は熱伝導率が鉄の約1/430、コンクリートの約1/12と小さく、厚みのある木材を使用することで室内の温度変化を和らげる効果も期待できる。
【0033】
(合成部材としての部材耐力)
次に、上記の合成部材10としての部材耐力の設計方法について補足説明する。
水平荷重による曲げ応力作用時の断面内の応力度分布図を
図5(1)に示す。水平荷重のみによる曲げ応力作用時において、合成部材10の場合とRC部材12単体の場合の応力度分布を比較すると、合成部材10の場合は圧縮側の木質部材14が有効となるためコンクリートおよび鉄筋に作用する応力についてCσc
1<Cσc
2、T
1<T
2となり作用応力が小さくなる。
ただし、
Cσc
1:合成部材のコンクリートに作用する圧縮縁応力度
Cσc
2:RC部材単体のコンクリートに作用する圧縮縁応力度
T
1:合成部材の鉄筋に作用する引張応力
T
2:RC部材単体の鉄筋に作用する引張応力
【0034】
合成部材10の部材耐力は、木質部材14に作用する圧縮縁応力度Mσcが木質部材14の許容圧縮応力度Mfcに達したとき、コンクリートに作用する圧縮縁応力度Cσcがコンクリートの許容圧縮応力度Cfcに達したとき、または引張鉄筋応力度rσtが鉄筋の許容引張応力度rfcに達したときに対して求めたそれぞれの曲げモーメントのうち、最小値を許容曲げモーメントMaとする。軸力については、長期軸力はRC断面で負担し、水平荷重によって生じる圧縮力は全断面、引張力はRC断面で負担する。断面算定時は下式を確認することが望ましい。
Mσc<Mfc、Cσc<Cfc、rσt<rft
【0035】
(軸力を受ける木質部材の座屈防止)
次に、軸力を受ける木質部材14の座屈防止に関する設計方法について補足説明する。
水平荷重時にフレームとして部材に軸力が生じる場合は、合成部材10として木質部材14も軸力を負担する。木質部材14の許容圧縮応力度を超えないよう木質構造用ビスまたはラグスクリュー等の連結部材で木質部材14とコンクリートを結合することが望ましい。
【0036】
圧縮力を受ける木質部材14の算定式は、木質構造設計基準・同解説にしたがい下式による。
σc≦ηfc
ただし、λ≦30のときη=1、30<λ≦100のときη=1.3-0.01λ、100<λのときη=3000/λ2
λ=lk/i
σc:木質部材に作用する圧縮縁応力度、fc:木質部材の許容圧縮応力度
η:材の細長比に応じて決まる座屈低減係数、λ:細長比
i:座屈方向の断面二次半径
【0037】
木質部材14の座屈拘束のためのコンクリートと木の接合方法を
図5(2)に示す。
木質構造用ビス等を介してコンクリートと接合することで木質構造用ビス等の間隔を座屈長さlkとする。有効な座屈長さlkとするためには、座屈方向に生じる力P(木質部材圧縮耐力の2%)に対して、コンクリート部のコーン破壊耐力Ta1、木質構造用ビス等断面積の引張耐力Ta2および木質構造用ビス等の木に対する引抜耐力Ta3が大きいことが条件となる。
【0038】
P=0.02A・fc(A:木質部材断面積、fc:木質部材の許容圧縮応力度)
P<Ta1=Σ2dπ・fs(fs:コンクリートのせん断耐力、d:木質構造用ビス等の突出長)
P<Ta2=ΣAs・ft(As:木質構造用ビス等の有効断面積、ft:木質構造用ビス等の許容引張応力度)
P<Ta3=Σpa(木質構造設計基準・同解説による)
【0039】
(コッターによる軸力伝達)
次に、コッター16による軸力伝達に関する設計方法について補足説明する。
RC部材12と木質部材14を一体化するため、RC部材12に生じた応力を木質部材14に設けたコッター16を介して伝達する。木とコンクリートのコッター16による接合部を
図5(3)に示す。RC部材12と木質部材14の一体化のためには、コッター下部(コッター下部面積MA)に生じる応力度Mσcが木質部材14の許容圧縮応力度Mfc以下であることが条件となる。コッター下部に生じる応力度Mσcは、コッター間隔xと水平荷重によりコンクリート圧縮縁に生じる応力度Cσcより、下式による。
【0040】
Mfc≦Mσc
=Cσc・x/MA
【0041】
コッター16と、木質部材14の座屈防止のための木質構造用ビスを併用する場合には、
図5(3)のようなコッター16を有する領域に、上記の計算で求めた木質構造用ビスが必要ピッチで配置されることになる。
【0042】
以上説明したように、本発明に係る合成部材によれば、長期荷重を支持するとともに耐火性を有する鉄筋コンクリート部材と、この鉄筋コンクリート部材の表面に接して設けられるとともに長期荷重を支持しない木質部材とを備える合成部材であって、鉄筋コンクリート部材と木質部材とを一体化するために、木質部材の鉄筋コンクリート部材に接する側の面に設けられたコッターをさらに備えることで、木質部材を構造体として利用しているので、合成部材として耐火被覆がなくても、耐火性を有するとともに、部材耐力を向上することができる。
【0043】
また、本発明に係る他の合成部材によれば、木質部材の水平荷重作用時における応力負担時の座屈を防止するために、木質部材の鉄筋コンクリート部材に接する側の面に突設されたビスをさらに備えるので、木質部材の座屈を防止することができる。
【0044】
また、本発明に係る他の合成部材によれば、長期荷重を鉄筋コンクリート部材のみで支持する機構とすることで、木質部材に対して耐火被覆を不要とする。長期荷重を負担しない部材に対しては、耐火性能は要求されないため、木質部材に対して耐火被覆を不要とすることができる。
【0045】
また、本発明に係る合成部材の製造方法によれば、上述した合成部材を製造する方法であって、コンクリート用の型枠として木質部材を組み立てるステップと、木質部材の内側にコンクリートを打設して鉄筋コンクリート部材を構築するステップを有するので、合成部材を容易に製造することができる。
【産業上の利用可能性】
【0046】
以上のように、本発明に係る合成部材およびその製造方法は、耐火建築物に有用であり、特に、部材耐力を向上した合成部材を得るのに適している。
【符号の説明】
【0047】
10 合成部材
12 鉄筋コンクリート部材
14 木質部材
16 コッター
18 コンクリート
20 主筋(鉄筋)
22 せん断補強筋(鉄筋)
24 端部
26 柱梁接合部
28 仕口部
30 鉄骨梁
32 RC梁
34 脚部
36 保護材
38 柱中央部
40 引きボルト