(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022183527
(43)【公開日】2022-12-13
(54)【発明の名称】滑り支承
(51)【国際特許分類】
F16F 15/02 20060101AFI20221206BHJP
F16F 15/023 20060101ALI20221206BHJP
F16F 15/03 20060101ALI20221206BHJP
F16F 9/53 20060101ALI20221206BHJP
E04H 9/02 20060101ALI20221206BHJP
【FI】
F16F15/02 A
F16F15/02 E
F16F15/02 L
F16F15/023 Z
F16F15/03 G
F16F9/53
E04H9/02 331E
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2021090886
(22)【出願日】2021-05-31
(71)【出願人】
【識別番号】302060926
【氏名又は名称】株式会社フジタ
(74)【代理人】
【識別番号】100089875
【弁理士】
【氏名又は名称】野田 茂
(72)【発明者】
【氏名】馮 徳民
【テーマコード(参考)】
2E139
3J048
3J069
【Fターム(参考)】
2E139AA01
2E139AC19
2E139CA21
2E139CA28
2E139CC02
3J048AA06
3J048AB01
3J048AB11
3J048AC01
3J048AC08
3J048AD01
3J048BE05
3J048BE12
3J048BG04
3J048CB12
3J048CB21
3J048DA01
3J048EA38
3J069AA50
3J069BB10
3J069CC09
3J069CC13
3J069DD11
3J069DD25
3J069EE61
(57)【要約】
【課題】占有スペースおよびコストの抑制を図りつつ大きな地震エネルギーを減衰させる上で有利な滑り支承を提供する。
【解決手段】地震などにより大きい水平方向の力が建物に作用した場合、制御部28がセンサ52により検出した振動量の大きさに応じて磁力発生部22から磁力を発生させる。この磁力は、下向きの滑り面20を上向きの滑り面18に向かって吸引する力として作用するため、下向きの滑り面20が外周部1804から抵抗を受けることになる。さらに、磁気粘性流体50に対してコイル34から磁力が発生することで袋体48に封入された磁気粘性流体50の形状が磁界の方向に沿って延びるように変形し、これにより、ピストンロッド46が上方に突出し、摩擦体24が接触位置P1に移動して摩擦面38が下向きの滑り面20に接触することで、下向きの滑り面20が摩擦抵抗を受ける。
【選択図】
図3
【特許請求の範囲】
【請求項1】
下部構造体に設けられた上向きの滑り面と、
上部構造体に設けられ前記上向きの滑り面の輪郭よりも小さく前記上向きの滑り面の中央部に滑動可能に接触した下向きの滑り面とを備え、
前記上向きの滑り面は、磁力が透過する材料で摩擦係数が小さく形成され、
前記下向きの滑り面は、磁石に吸着される磁性材料で摩擦係数が小さく形成され、
前記下向きの滑り面に対して下方から磁力を発生させる第1磁力発生部が設けられ、
前記第1磁力発生部により発生する磁力を制御する第1制御部が設けられた滑り支承であって、
前記上向きの滑り面に設けられ、前記上向きの滑り面よりも摩擦係数が大きく形成された摩擦面を有する摩擦体と、
前記摩擦体を前記摩擦面が前記下向きの滑り面に接触する接触位置と、前記下向きの滑り面から離間する非接触位置とに移動させるアクチュエータと、
前記アクチュエータを制御する第2制御部とを備える、
ことを特徴とする滑り支承。
【請求項2】
前記上向きの滑り面に開口されたガイド孔が設けられ、
前記摩擦体は、前記ガイド孔の内周面に隙間なく接触する外周面を備え、
前記摩擦体は、前記外周面が前記内周面に案内されつつ前記接触位置と前記非接触位置とに移動される、
ことを特徴とする請求項1記載の滑り支承。
【請求項3】
前記摩擦体の下部に、前記摩擦体よりも外径が大きい鍔部が設けられ、
前記ガイド孔の下部に、前記鍔部が挿入される大径孔が設けられ、
前記鍔部が前記大径孔の上端面に当接することで前記摩擦体が前記接触位置に位置決めされる、
ことを特徴とする請求項2記載の滑り支承。
【請求項4】
前記アクチュエータは、
鉛直方向に向けられた筒状のシリンダと、
前記シリンダのシリンダ室を上下に2分するピストンと、
前記ピストンから上方に延在し前記シリンダの上方に突出し前記摩擦体に連結されたピストンロッドと、
上下に2分されたシリンダ室のうち下方のシリンダ室に収容され磁気粘性流体が封入された可撓性を有する袋体と、
前記磁気粘性流体に対して磁力を発生させる第2磁力発生部とを備え、
前記摩擦体の前記接触位置と前記非接触位置とへの移動は、前記第2制御部により前記第2磁力発生部で発生する磁力を制御することで前記袋体に封入された前記磁気粘性流体の形状を変化させ、これにより前記ピストンを前記シリンダの軸心方向に移動させることでなされる、
ことを特徴とする請求項1から3の何れか1項記載の滑り支承。
【請求項5】
前記シリンダは、磁力を透過する材料で形成され、
前記第1磁力発生部により前記第2磁力発生部が兼用されている、
ことを特徴とする請求項4記載の滑り支承。
【請求項6】
前記第2磁力発生部は、前記アクチュエータ毎に設けられている、
ことを特徴とする請求項4記載の滑り支承。
【請求項7】
前記第1制御部による前記第1磁力発生部の制御は、前記上部構造体または前記下部構造体の振動量が大きくなるほど前記磁力を大きくするようになされる、
ことを特徴とする請求項1から6の何れか1項記載の滑り支承。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、滑り支承に関する。
【背景技術】
【0002】
建物である上部構造体と建物の基礎をなす下部構造体との間に複数の滑り支承を設け、各滑り支承の一方の滑り面を磁石に吸着される磁性材料で形成し、他方の滑り面に磁性材料に対して磁力を発生させる磁力発生部を設け、地震などにより建物が振動した際に、磁力発生部から磁力を発生させ、一方の滑り面を他方に滑り面に対して吸引させる方向の力を発生させることで一方の滑り面に抵抗を与え、建物に作用する地震エネルギーを減衰させるようにした滑り支承が提案されている(特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上記従来技術では、建物に作用する地震エネルギーが大きくなるほど、磁力発生部によって発生させる磁力や滑り面の面積を大きく確保する必要があり、滑り支承の占有スペースの大型化とコストアップが懸念され、何らかの改善が求められている。
本発明は前記事情に鑑み案出されたもので、本発明の目的は、占有スペースおよびコストの抑制を図りつつ大きな地震エネルギーを減衰させる上で有利な滑り支承を提供することにある。
【課題を解決するための手段】
【0005】
上述した目的を達成するために、本発明の一実施の形態は、下部構造体に設けられた上向きの滑り面と、上部構造体に設けられ前記上向きの滑り面の輪郭よりも小さく前記上向きの滑り面の中央部に滑動可能に接触した下向きの滑り面とを備え、前記上向きの滑り面は、磁力が透過する材料で摩擦係数が小さく形成され、前記下向きの滑り面は、磁石に吸着される磁性材料で摩擦係数が小さく形成され、前記下向きの滑り面に対して下方から磁力を発生させる第1磁力発生部が設けられ、前記第1磁力発生部により発生する磁力を制御する第1制御部が設けられた滑り支承であって、前記上向きの滑り面に設けられ、前記上向きの滑り面よりも摩擦係数が大きく形成された摩擦面を有する摩擦体と、前記摩擦体を前記摩擦面が前記下向きの滑り面に接触する接触位置と、前記下向きの滑り面から離間する非接触位置とに移動させるアクチュエータと、前記アクチュエータを制御する第2制御部とを備えることを特徴とする。
また、本発明の一実施の形態は、前記上向きの滑り面に開口されたガイド孔が設けられ、前記摩擦体は、前記ガイド孔の内周面に隙間なく接触する外周面を備え、前記摩擦体は、前記外周面が前記内周面に案内されつつ前記接触位置と前記非接触位置とに移動される、ことを特徴とする。
また、本発明の一実施の形態は、前記摩擦体の下部に、前記摩擦体よりも外径が大きい鍔部が設けられ、前記ガイド孔の下部に、前記鍔部が挿入される大径孔が設けられ、前記鍔部が前記大径孔の上端面に当接することで前記摩擦体が前記接触位置に位置決めされる、ことを特徴とする。
また、本発明の一実施の形態は、前記アクチュエータは、鉛直方向に向けられた筒状のシリンダと、前記シリンダのシリンダ室を上下に2分するピストンと、前記ピストンから上方に延在し前記シリンダの上方に突出し前記摩擦体に連結されたピストンロッドと、上下に2分されたシリンダ室のうち下方のシリンダ室に収容され磁気粘性流体が封入された可撓性を有する袋体と、前記磁気粘性流体に対して磁力を発生させる第2磁力発生部とを備え、前記摩擦体の前記接触位置と前記非接触位置とへの移動は、前記第2制御部により前記第2磁力発生部で発生する磁力を制御することで前記袋体に封入された前記磁気粘性流体の形状を変化させ、これにより前記ピストンを前記シリンダの軸心方向に移動させることでなされることを特徴とする。
また、本発明の一実施の形態は、前記シリンダは、磁力を透過する材料で形成され、前記第1磁力発生部により前記第2磁力発生部が兼用されていることを特徴とする。
また、本発明の一実施の形態は、前記第2磁力発生部は、前記アクチュエータ毎に設けられていることを特徴とする。
また、本発明の一実施の形態は、前記第1制御部による前記第1磁力発生部の制御は、前記上部構造体または前記下部構造体の振動量が大きくなるほど前記磁力を大きくするようになされることを特徴とする。
【発明の効果】
【0006】
本発明の一実施の形態によれば、上部構造体または下部構造体に水平方向の大きい力が作用した場合、第1磁力発生部から磁力を発生させることで、下向きの滑り面が上向きの滑り面に向かって吸引される方向の力として作用するため、下向きの滑り面が上向きの滑り面から抵抗を受けることになり、また、アクチュエータにより摩擦体の摩擦面を下向きの滑り面に接触させことで、下向きの滑り面が摩擦抵抗を受けることになる。
そのため、大きい水平方向の力が建物に作用した場合に、2種類の抵抗が発生することにより、より大きな減衰力で建物の揺れを抑制できる。
したがって、従来技術のように磁力発生部によって発生させる磁力や滑り面の面積を大きく確保する必要なく、滑り支承の占有スペースおよびコストの抑制を図りつつ大きな地震エネルギーを減衰させる上で有利となる。
また、本発明の一実施の形態によれば、摩擦体の位置に拘らず摩擦体の外周面とガイド孔の内周面との間に隙間が形成されないようにしたので、塵埃のガイド孔内部への侵入を防止し、耐久性の向上を図る上で有利となる。
また、本発明の一実施の形態によれば、接触位置において鍔部と上端面との間の隙間が閉塞されるため、塵埃のガイド孔内部への侵入を防止し、耐久性の向上を図る上でより有利となる。
また、本発明の一実施の形態によれば、アクチュエータとして、磁力を制御することにより袋体に封入された磁気粘性流体の形状を変化させることでピストンをシリンダの軸心方向に移動させ、これにより摩擦体を接触位置と非接触位置に移動させるものを用いたので、油圧や空圧を用いるアクチュエータを用いる場合に比較して構成の簡素化、コンパクト化を図る上で有利となる。
また、本発明の一実施の形態によれば、第1磁力発生部が第2磁力発生部を兼用するので、構成の簡素化を図り、コストダウンを図る上で有利となる。
また、本発明の一実施の形態によれば、第1磁力発生部と第2磁力発生部を独立して制御できるので、地震エネルギーの減衰の制御をきめ細かく行なう上で有利となる。
また、本発明の一実施の形態によれば、上部構造体または下部構造体の振動量が大きくなるほど第1磁力発生部から発生する磁力を大きくするように第1磁力発生部を制御するので、上部構造体または下部構造体の振動量が大きくなるほど、下向きの滑り面が上向きの滑り面から受ける抵抗が大きくなり、滑り支承によってエネルギーを大きく減衰させる上で有利となる。
【図面の簡単な説明】
【0007】
【
図1】(A)は滑り部材が設けられた下部構造体を断面図で示した第1の実施の形態の滑り支承の側面図、(B)は滑り部材が設けられた下部構造体の平面図である。
【
図2】第1の実施の形態におけるアクチュエータとその周辺を拡大した断面図であり、摩擦体が非接触位置P0に位置した状態を示す。
【
図3】第1の実施の形態におけるアクチュエータとその周辺を拡大した断面図であり、摩擦体が接触位置P1に位置した状態を示す。
【
図4】第2の実施の形態におけるアクチュエータとその周辺を拡大した断面図であり、摩擦体が非接触位置P0に位置した状態を示す。
【
図5】第2の実施の形態におけるアクチュエータとその周辺を拡大した断面図であり、摩擦体が接触位置P1に位置した状態を示す。
【発明を実施するための形態】
【0008】
(第1の実施の形態)
以下、本発明の実施の形態について図面を参照して説明する。
図1に示すように、免震装置10は、例えば、建物である上部構造体12と、建物の基礎をなす下部構造体14との間に配設された複数の滑り支承16と、不図示の複数の積層ゴムと、不図示のエネルギー減衰手段とを備えている。
滑り支承16は、下部構造体14に設けられた上向きの滑り面18と、上部構造体12に設けられ上向きの滑り面18で支持される下向きの滑り面20と、磁力発生部22と、複数の摩擦体24(
図2参照)と、アクチュエータ26(
図2参照)と、制御部28とを含んで構成されている。
複数の滑り支承16はそれら滑り面18、20を介して上部構造体12の荷重を支持し、また、上部構造体12を下部構造体14上で移動可能に支持している。
下向きの滑り面20は、上向きの滑り面18の輪郭よりも小さく、下向きの滑り面20は上向きの滑り面18の中央部1802に位置し、上部構造体12または下部構造体14に水平方向の力が作用したときに、下向きの滑り面20は上向きの滑り面18の中央部1802からその周囲の外周部1804に向かって滑動する。
【0009】
下向きの滑り面20は、上部構造体12の下部から突設された脚部30の下端に設けられ、本実施の形態では、脚部30は上部構造体12の下面1202に取り付けられている。また、脚部30は磁石に吸着される磁性材料で構成され、下向きの滑り面20は摩擦係数が小さく形成されている。
このような磁性材料として、鉄やニッケル合金など磁石に吸着する従来公知の様々な金属材料が使用可能である。
脚部30は、上部構造体12の下面1202にボルトで取着されるフランジ3002と、フランジ3002の中央部から突設された円柱状の柱部3004とを備えている。
そして、柱部3004の円形の下端面が、平坦で平滑な下向きの滑り面20に形成されている。
【0010】
上向きの滑り面18は、下部構造体14の上面1402に設けられている。
下部構造体14はコンクリート製で、下部構造体14の上面1402に平面視円形の凹部1404が設けられ、上向きの滑り面18は、この凹部1404に取着された滑り部材32の上面で構成され、上向きの滑り面18は摩擦係数が小さく形成されている。
滑り部材32は、磁力を透過する低摩擦材料から形成され、このような磁力を透過する低摩擦材料として、例えば、ポリテトラフルオロチレンを主成分とする合成樹脂材料など従来公知の様々な合成樹脂材料が使用可能である。
上向きの滑り面18は、円形の中央部1802とその外周に位置する円環状の外周部1804とで構成され、上向きの滑り面18の中央部1802は、下向きの滑り面20の直径よりも大きい直径で形成されている。したがって、上向きの滑り面18の中央部1802の輪郭は、下向きの滑り面20の輪郭よりも大きい。
【0011】
磁力発生部22は、上向きの滑り面18に設けられ、下向きの滑り面20に対して下方から磁力を発生させる第1磁力発生部22Aとして機能する。また、本実施の形態では、磁力発生部22は、後述する磁気粘性流体50に対して磁力を発生させる第2磁力発生部22Bとしても機能しており、言い換えると、第1磁力発生部22Aが第2磁力発生部22Bを兼用している。
本実施の形態では、磁力発生部22は、上向きの滑り面18の外周部1804に設けられている。
磁力発生部22により磁力を発生させると、この磁力により下向きの滑り面20は上向きの滑り面18に向かって吸引される。
磁力発生部22は、外周部1804で中央部1802の中心を中心とした仮想円周上に周方向に等間隔をおいて配置された複数のコイル34からなるコイル環状列36によって構成されている。各コイル34は、後述する制御部28から電流が供給されることで磁力を発生させる電磁石である。また、複数のコイル34は、滑り部材32に埋め込まれて配置されている。
本実施の形態では、コイル環状列36は、中央部1802の中心からの半径を異ならせた複数の仮想円周上に設けられており、コイル環状列36は、第1コイル環状列36Aと、第1コイル環状列36Aよりも中央部1802の中心からの半径が大きい第2コイル環状列36Bの2つ設けられている。
なお、磁力発生部22を構成するコイル環状列36は、2列に限定されず、1列であっても、3列以上であっても良い。
【0012】
本実施の形態では、磁力発生部22は、上向きの滑り面18の外周部1804で中央部1802の中心を中心とした仮想円周上に周方向に等間隔をおいて配置された複数のコイル34からなるコイル環状列36によって構成されているので、建物に作用する水平方向の力の方向に拘わらず、外周部1804から下向きの滑り面20に安定して磁力を作用させることができるので、下向きの滑り面20が上向きの滑り面18の外周部1804からより安定して抵抗を受けることになり、滑り支承16によって地震エネルギーを減衰させ、地震による建物の揺れを抑制する上で有利となる。
また、本実施の形態では、磁力発生部22は、複数の第1コイル環状列36A、第2コイル環状列36Bが中央部1802からの半径を異なる2つの仮想円周上に設けられているので、建物の水平方向への変位量が大きくなっても確実に外周部1804から下向きの滑り面20に安定して磁力を作用させることができるので、下向きの滑り面20が上向きの滑り面18の外周部1804からより安定して抵抗を受けることになり、滑り支承16によって地震エネルギーを減衰させ、地震による建物の揺れを抑制する上で有利となる。
【0013】
図2(A)、(B)に示すように、複数の摩擦体24は、上向きの滑り面18に設けられ、上向きの滑り面18よりも摩擦係数が大きく形成された摩擦面38を有している。
摩擦体24は、例えば、滑り部材32よりも摩擦係数が大きな材料で構成され、このような材料として合成樹脂材料やエラストマー(ゴム)などの従来公知の様々な材料が使用可能である。
また、摩擦面38に対して表面処理(表面加工)を行なうことによって摩擦面38の摩擦係数を調整してもよい。
【0014】
図1(B)に示すように、本実施の形態では、摩擦体24は、コイル環状列36(第1、第2コイル環状列36A、36B)と同一の仮想円周上に間隔をおいて設けられ、各摩擦体24は、コイル環状列36を構成するコイル34と交互に配置されている。
図2に示すように、摩擦体24は、円柱状に形成され、上端に摩擦面38が形成された摩擦体本体2402と、摩擦体本体2402の下部に設けられ摩擦体本体2402よりも半径が大きい鍔部2404とを備えている。
摩擦体本体2402の外周面は、以下に説明するガイド孔40の小径孔4002の内周面に隙間なく接触する箇所である。
なお、図中符号2406は、摩擦面38と摩擦体本体2402の外周面とが交差する角部に形成された面取りを示しており、面取り2406を形成することで、接触位置P1に位置した摩擦体24の角部による下向きの滑り面20への損傷を防止し、耐久性の向上が図られている。
【0015】
滑り部材32には上向きの滑り面18に開口するガイド孔40が設けられ、摩擦体24はガイド孔40によって鉛直方向に案内されている。
ガイド孔40は、摩擦体本体2402の外径に対応する内径で形成された小径孔4002と、小径孔4002の下部に設けられ鍔部2404が挿入される大径孔4004とを備え、小径孔4002と大径孔4004との境目には、鍔部2404が当接可能な環状の上端面4006が形成されている。
【0016】
アクチュエータ26は、摩擦体24を摩擦面38が下向きの滑り面20に接触する接触位置P1と、下向きの滑り面20から離間する非接触位置P0とに移動させるものであり、本実施の形態では、摩擦体24毎に設けられている。
この際、摩擦体24は、その摩擦体本体2402の外周面が小径孔4002の内周面に案内されつつ接触位置P1と非接触位置P0とに移動される。
すなわち、
図2(B)に示すように、アクチュエータ26により摩擦体24が上方に移動され、鍔部2404が上端面4006に当接することで摩擦体24が接触位置P1に位置決めされ、
図2(A)に示すように、アクチュエータ26により摩擦体24が下方に移動すること摩擦体24が接触位置P1から非接触位置P0に移動される。
【0017】
本実施の形態では、アクチュエータ26は、シリンダ42と、ピストン44と、ピストンロッド46と、袋体48と、磁気粘性流体50と、第2磁力発生部22Bとを含んで構成されている。
シリンダ42は、円筒状を呈し、底壁4202と、底壁4202の周囲から起立する周壁4204と、周壁4204の上端を閉塞する上壁4206とを備え、ガイド孔40の下部においてその軸心をガイド孔40の軸心と合致させた状態で滑り部材32に埋設されている。
シリンダ42は、滑り部材32と同様に、磁力を透過する材料、例えば、合成樹脂材料で形成されている。
ピストン44は、シリンダ42によって構成されるシリンダ室を上シリンダ室42Aと下シリンダ室42Bに2分するものであり、シリンダ42の軸心に沿って移動可能に設けられている。
ピストンロッド46は、ピストン44から上方に延在しシリンダ42の上壁4206から上方に突出し摩擦体24に連結されている。
袋体48は、下シリンダ室42Bに収容され磁気粘性流体50が封入され可撓性および伸縮性を有している。
袋体48の材料として例えば膜状のゴムが用いられる。
磁気粘性流体50(Magneto Rheological Fluid:MR流体)は、鉄(Fe)等の磁性粒子をオイル等の溶媒に分散させた流体であり、磁気粘性流体50に対して磁力が発生されることにより(言い換えると磁界が印加されることにより)磁界の方向に沿って延びるように形状が変化する機能性流体である。また、磁気粘性流体50は、磁力が発生されることにより粘度が大きく変化する機能性流体である。発生される磁力が大きくなるほど(言い換えると印加される磁界が強くなるほど)形状が大きく変化し、また、粘度が高く変化する。
【0018】
第2磁力発生部22Bは、磁気粘性流体50に対して磁力を発生させる(言い換えると磁界を印加する)ものである。
本実施の形態では、前述した磁力発生部22が、磁気粘性流体50に対して磁力を発生させる第2磁力発生部22Bを兼用している。
摩擦体24の接触位置P1と非接触位置P0への移動は、制御部28により第2磁力発生部22Bで発生する磁力を制御することで(言い換えると磁気粘性流体50に印加する磁界を制御することで)袋体48に封入された磁気粘性流体50の形状を磁界(本実施の形態では鉛直方向を向いた磁界)に沿って変化させることによってなされる。
すなわち、
図3に示すように、磁界の印加により磁気粘性流体50が磁界に沿って延びるように形状が変化することで磁気粘性流体50が袋体48を介してピストン44を上方に押圧することでピストンロッド46と一体に摩擦体24が上方に移動して接触位置P1に移動される。
また、
図2に示すように、磁界の印加がなくなることにより磁気粘性流体50が元の形状に戻ることで袋体48を介してピストン44が下方に移動し、ピストンロッド46と一体に摩擦体24が下方に移動して非接触位置P0に移動される。
なお、磁気粘性流体50が元の形状に戻るとは、摩擦体24、ピストンロッド46、ピストン44から袋体48に加わる重量、および、磁気粘性流体50自体に作用する重力と、下シリンダ室42Bに収容された状態での袋体48の弾性とが釣り合った状態となることである。
【0019】
制御部28は、磁力発生部22により発生する磁力を制御する第1制御部を構成している。
制御部28は、CPU、記憶部、インターフェース回路などを含むマイクロコンピュータを含んで構成されている。
記憶部にはCPUが実行する制御プログラムが格納されている。
また、インターフェース回路を介して複数のコイル34、センサ52が接続されている。
センサ52は、滑り支承16が設置された建物、すなわち、上部構造体12あるいは下部構造体14の振動量(例えば加速度)を検出するものである。
CPUが制御プログラムを実行することでセンサ52の検出結果に基づいてコイル34に対する通電量(電流)を制御し、下向きの滑り面20に対して発生する磁力および磁気粘性流体50に印加する磁力を制御する。
具体的に説明すると、大きさの異なる振動を段階ごとに分けて、各段階の振動の大きさとコイル環状列36毎の複数のコイル34に通電する通電量とを対応付けたテーブルを予め記憶部に記憶しておく。
CPUは、センサ52によって検出された振動量からテーブルを参照して振動の大きさに対応する電気量によりコイル34に通電を行う。
【0020】
本実施の形態では、制御部28は、外周部1804において中央部1802の中心から距離が離れるほど磁力発生部22から発生する磁力を次第に大きくするように磁力発生部22を制御する。言い換えると、制御部28は、中央部1802の中心から距離が離れるほどコイル環状列36毎に複数のコイル34から発生する磁力を次第に大きくするように磁力発生部22を制御する。すなわち、第1コイル環状列36Aの磁力よりも第2コイル環状列36Bの磁力が大きくなるように制御する。
また、本実施の形態では、センサ52で検出された上部構造体12または下部構造体14の振動量が大きくなるほど磁力発生部22から発生する磁力を次第に大きくするように磁力発生部22を制御する。
すなわち、外周部1804において中央部1802の中心から距離が離れるほど各コイル環状列36から発生する磁力を次第に大きくし、かつ、上部構造体12または下部構造体14の振動量が大きくなるほど各コイル環状列36から発生する磁力を次第に大きくするように磁力発生部22を制御する。
【0021】
本実施の形態では、制御部28(第1制御部)は、アクチュエータ26を制御する第2制御部を兼用しており、磁力発生部22により磁気粘性流体50に対して発生する磁力を制御する(言い換えると磁気粘性流体50に対して印加する磁界を制御する)。
本実施の形態では、磁力発生部22から発生される磁力は、アクチュエータ26が動作することにより摩擦体24が接触位置P1に移動されるに足る値に設定されている。
したがって、磁力発生部22から磁力が発生された場合は摩擦体24が接触位置P1に移動され、磁力発生部22から磁力が発生しない場合は、摩擦体24が非接触位置P0に移動されることになる。
【0022】
次に、本実施の形態の作用効果について説明する。
風などにより小さい水平方向の力が建物に作用した場合には、不図示の積層ゴムが剪断変形すると共に、下向きの滑り面20が、上向きの滑り面18の中央部1802の輪郭内で移動する。
したがって、小さい水平方向の力が建物に作用した場合、小さい水平方向の力による建物の揺れが抑制される。
この場合、制御部28は、センサ52で検出された振動量が小さいので、まだ磁力発生部22から磁力を発生させない。
【0023】
また、地震などにより大きい水平方向の力が建物に作用した場合には、不図示の積層ゴムが剪断変形すると共に、下向きの滑り面20が、上向きの滑り面18の中央部1802から外周部1804に移動し、その際に、不図示のエネルギー減衰手段によりエネルギーが減衰される。
さらに、制御部28がセンサ52により検出した振動量の大きさに応じて磁力発生部22、すなわち、上向きの滑り面18の外周部1804に設けられた各コイル環状列36の複数のコイル34から磁力を発生させる。
この磁力は、下向きの滑り面20を上向きの滑り面18に向かって吸引する力として作用するため、下向きの滑り面20が上向きの滑り面18の外周部1804から抵抗を受けることになる。
【0024】
さらに、磁気粘性流体50に対してコイル34から磁力が発生することで袋体48に封入された磁気粘性流体50の形状が磁界の方向(鉛直方向)に沿って延びるように変形し、これにより、ピストンロッド46が上方に突出し、摩擦体24が接触位置P1に移動して摩擦面38が下向きの滑り面20に接触することで、下向きの滑り面20が摩擦抵抗を受けることになる。
そのため、大きい水平方向の力が建物に作用した場合に、2種類の抵抗が発生することにより、より大きな減衰力で建物の揺れを抑制できる。
したがって、従来技術のように磁力発生部22によって発生させる磁力や滑り面18、20の面積を大きく確保する必要がなく、滑り支承16の占有スペースおよびコストの抑制を図りつつ大きな地震エネルギーを減衰させる上で有利となる。
また、滑り支承16によっても地震エネルギーが減衰され、免震装置10の減衰力の一部を滑り支承16が負担することから、免震装置10に要求される減衰力を変えずに、鉛プラグやオイルダンパーなどのエネルギー減衰手段を小型化でき、したがって、免震装置10の小型化を図る上で有利となる。
【0025】
また、本実施の形態では、下向きの滑り面20に対して下方から磁力を発生させる第1磁力発生部22Aが、磁気粘性流体50に対して磁力を発生させる第2磁力発生部22Bを兼用しているので、構成の簡素化、コストダウンを図る上で有利となる。
【0026】
なお、上向きの滑り面18の中央部1802の輪郭と、下向きの滑り面20の輪郭とを同一に形成してもよいが、本実施の形態のように、上向きの滑り面18の中央部1802を、下向きの滑り面20の直径よりも大きい直径で形成し、言い換えると、上向きの滑り面18の中央部1802の輪郭を、下向きの滑り面20の輪郭よりも大きく形成すると、風などにより小さい水平方向の力が建物に作用した場合には、従来と同様に、下向きの滑り面20が、上向きの滑り面18の中央部1802の輪郭内で円滑に速やかに移動する。
したがって、風などによる小さい水平方向の力が建物に作用した場合、建物の揺れを速やかに効率的に抑制する上で有利となる。
【0027】
また、本実施の形態では、磁力発生部22は、外周部1804で中央部1802の中心を中心とした仮想円周上に周方向に等間隔をおいて配置された複数のコイル3434からなるコイル環状列36によって構成されているので、建物に作用する水平方向の力の方向に拘わらず、外周部1804から下向きの滑り面20に安定して磁力を作用させることができるので、下向きの滑り面20が外周部1804からより安定して抵抗を受けることになり、滑り支承16によって地震エネルギーを減衰させ、地震による建物の揺れを抑制する上で有利となる。
また、本実施の形態では、複数の第1コイル環状列36A、第2コイル環状列36Bが中央部1802の中心からの半径を異ならせた複数の仮想円周上に設けられているので、建物の水平方向への変位量が大きくなっても確実に外周部1804から下向きの滑り面20に安定して磁力を作用させることができるので、下向きの滑り面20が外周部1804からより安定して抵抗を受けることになり、滑り支承16によって地震エネルギーを減衰させ、地震による建物の揺れを抑制する上で有利となる。
【0028】
また、制御部28により、上向きの滑り面18の中央部1802の中心からの距離に拘わらず磁力発生部22から発生する磁力を同一となるように磁力発生部22を制御してもよいが、本実施の形態のように、制御部28により、外周部1804において上向きの滑り面18の中央部1802の中心から距離が離れるほど磁力が大きくなるように磁力発生部22を制御すると、地震などにより大きい水平方向の力が建物に作用した場合には、下向きの滑り面20が、上向きの滑り面18の中央部1802から離れれば離れるほど、言い換えると、建物の水平方向への変位量が大きくなればなるほど、上向きの滑り面18が外周部1804から受ける抵抗が大きくなり、滑り支承16によって地震エネルギーを大きく減衰させる上で有利となる。
したがって、大きい水平方向の力が建物に作用した場合、より大きな減衰力により建物の揺れを抑制する上でより有利となる。
【0029】
また、制御部28により、センサ52で検出された建物の振動量に拘わらず磁力発生部22から発生する磁力を変化させず同一となるように磁力発生部22を制御してもよいが、本実施の形態のように、制御部28により、センサ52で検出された建物の振動量が大きくなるほど磁力発生部22から発生する磁力を次第に大きくするよう磁力発生部22を制御すると、地震などにより大きい水平方向の力が建物に作用した場合には、建物に作用する力が大きくセンサ52で検出される振動量が大きくなればなるほど、下向きの滑り面20が上向きの滑り面18の外周部1804から受ける抵抗が大きくなり、滑り支承16によって地震エネルギーを大きく減衰させる上で有利となる。
したがって、大きい水平方向の力が建物に作用した場合、より大きな減衰力により建物の揺れを抑制する上でより有利となる。
【0030】
また、本実施の形態では、摩擦体24は、上向きの滑り面18に開口されたガイド孔40の内周面に隙間なく接触する外周面を備え、摩擦体24は、外周面が内周面に案内されつつ接触位置P1と非接触位置P0とに移動されるようにした。
したがって、摩擦体24の位置に拘らず摩擦体24の外周面とガイド孔40の内周面との間に隙間が形成されないため、塵埃のガイド孔40内部への侵入を防止し、耐久性の向上を図る上で有利となる。
【0031】
また、本実施の形態では、摩擦体24の鍔部2404がガイド孔40の大径孔4004の上端面4006に当接することで摩擦体24が接触位置P1に位置決めされるようにしたので、接触位置P1において鍔部2404と上端面4006との間の隙間が閉塞されるため、塵埃のガイド孔40内部への侵入を防止し、耐久性の向上を図る上でより有利となる。
【0032】
なお、アクチュエータとして、油圧アクチュエータや空圧アクチュエータなど従来公知の様々なアクチュエータを用いることができる。
しかしながら、本実施の形態のように、アクチュエータ26として、磁力を制御することにより袋体48に封入された磁気粘性流体50の形状を変化させることでピストン44をシリンダ42の軸心方向に移動させ、これにより摩擦体24を接触位置P1と非接触位置P0に移動させるものを用いると、油圧や空圧を用いるアクチュエータを用いる場合に比較して構成の簡素化、コンパクト化を図る上で有利となる。
【0033】
また、本実施の形態では、アクチュエータ26のシリンダ42を、磁力を透過する材料で形成し、第1磁力発生部22Aが、袋体48に封入された磁気粘性流体50に対して磁力を発生させる第2磁力発生部22Bを兼用するので、構成の簡素化を図り、コストダウンを図る上で有利となる。
【0034】
なお、本実施の形態では、複数の摩擦体24をコイル環状列36と同一の仮想円周上(外周部1804で中央部1802の中心を中心とした仮想円周上)で等間隔をおいて配置した場合について説明した。
しかしながら、複数の摩擦体24をコイル環状列36と別の仮想円周上に等間隔をおいて配置してもよく、あるいは、複数の摩擦体24をコイル環状列36と同一の仮想円周状に等間隔をおいて配置すると共に、コイル環状列36と別の仮想円周上に等間隔をおいて配置してもよい。
複数の摩擦体24を上記仮想円周上以外の箇所に配置してもよいが、上述のように複数の摩擦体24を仮想円周上に等間隔をおいて配置すると、上部構造体12または下部構造体14の振動の方向に拘らず摩擦面38と下向きの滑り面20との摩擦を確実に発生させることができ、地震エネルギーを安定して減衰させる上で有利となる。
【0035】
(第2の実施の形態)
次に、
図4、
図5を参照して第2の実施の形態について説明する。
なお、以下の実施の形態において第1の実施の形態と同様の部分、部材については同一の符号を付してその説明を省略し、異なる部分について重点的に説明する。
第2の実施の形態の滑り支承16Aでは、第1磁力発生部22A(
図4、
図5では図示を省略)とは別に第2磁力発生部22Bを設けている。
図1(B)を流用して説明すると、第1の実施の形態と同様に、第1磁力発生部22A(コイル34)は、上向きの滑り面18の外周部1804に設けられている。
【0036】
第2磁力発生部22Bは、アクチュエータ26Aのシリンダ42の周壁4204を囲むように螺旋状に巻かれて配置されたコイル54により構成され、コイル54は、周壁4204の外周面に接着剤等により取り付けられている。
コイル54は、電流が流れることによって袋体48に封入された磁気粘性流体50に対して磁力を発生させる電磁石であり、制御部28によって供給される電流が制御される。
なお、周壁4204が磁力を透過する材料で形成されていれば、螺旋状に巻かれたコイル54を周壁4204の内部に埋設してもよい。
また、周壁4204の内周面に沿って螺旋状に巻かれたコイル54を周壁4204の内周面に取り付け、コイル54の磁力を直接磁気粘性流体50に印加させるようにしてもよく、その場合、シリンダ42は磁力を透過しない材料で構成してもよい。
【0037】
制御部28のCPUが制御プログラムを実行することでセンサ52の検出結果に基づいてコイル34に対する通電量(電流)を制御し、下向きの滑り面20に対して発生する磁力を制御すると共に、コイル54に対する通電量(電流)を制御して袋体48に封入された磁気粘性流体50に対して磁力を発生させる。
コイル54から磁気粘性流体50に発生させる磁力の大きさ(磁気粘性流体50に印加する磁界の強さ)は、摩擦体24を非接触位置P0から接触位置P1に移動させるに足りる大きさであればよいことは第1の実施の形態と同様である。
【0038】
第1の実施の形態と同様に、大きさの異なる振動を段階ごとに分けて、各段階の振動の大きさとコイル環状列36毎の複数のコイル34に通電する通電量とを対応付けたテーブルを予め記憶部に記憶しておく。
CPUは、センサ52によって検出された振動量からテーブルを参照して振動の大きさに対応する電気量によりコイル34に通電を行う。
【0039】
第2の実施の形態によれば、第1の実施の形態と同様の効果が奏されることは無論のこと、制御部28により第1磁力発生部22Aで発生させる磁力と、第2磁力発生部22Bで発生させる磁力とを独立して制御できるため、第1磁力発生部22Aおよび第2磁力発生部22Bの双方を機能させて地震エネルギーを減衰させることができることは無論のこと、第1磁力発生部22Aおよび第2磁力発生部22Bの一方を機能させ他方の機能を停止させて地震エネルギーを減衰させることもできる。
したがって、建物に加わる振動の大きさに応じて第1磁力発生部22Aおよび第2磁力発生部22Bによって発生させる磁力を選択的に制御することで、地震エネルギーを適切に減衰させる上で有利となる。
【符号の説明】
【0040】
10 免震装置
12 上部構造体
1202 下面
14 下部構造体
1402 上面
1404 凹部
16、16A 滑り支承
18 上向きの滑り面
1802 中央部
1804 外周部
20 下向きの滑り面
22 磁力発生部
22A 第1磁力発生部
22B 第2磁力発生部
24 摩擦体
2402 摩擦体本体
2404 鍔部
2406 面取り
26、26A アクチュエータ
28 制御部(第1制御部、第2制御部)
30 脚部
3002 フランジ
3004 柱部
32 滑り部材
34 コイル
36 コイル環状列
36A 第1コイル環状列
36B 第2コイル環状列
38 摩擦面
3802 面取り
40 ガイド孔
4002 小径孔
4004 大径孔
4006 上端面
42 シリンダ
4202 底壁
4204 周壁
4206 上壁
42A 上シリンダ室
42B 下シリンダ室
44 ピストン
46 ピストンロッド
48 袋体
50 磁気粘性流体
52 センサ
54 コイル