(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022188045
(43)【公開日】2022-12-20
(54)【発明の名称】制御装置、露光装置及び物品の製造方法
(51)【国際特許分類】
G03F 7/20 20060101AFI20221213BHJP
G03F 7/22 20060101ALI20221213BHJP
G05B 11/32 20060101ALI20221213BHJP
H01L 21/68 20060101ALI20221213BHJP
【FI】
G03F7/20 521
G03F7/22 H
G05B11/32 F
H01L21/68 K
【審査請求】有
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2022143931
(22)【出願日】2022-09-09
(62)【分割の表示】P 2018127798の分割
【原出願日】2018-07-04
(71)【出願人】
【識別番号】000001007
【氏名又は名称】キヤノン株式会社
(74)【代理人】
【識別番号】110003281
【氏名又は名称】弁理士法人大塚国際特許事務所
(72)【発明者】
【氏名】栗原 孝史
(57)【要約】 (修正有)
【課題】第1移動体と第2移動体との同期誤差を抑制するのに有利な制御装置を提供する。
【解決手段】制御装置は、フィードバック制御系FCRとフィードフォワード制御系FCCWを有し、フィードフォワード制御系は、第1制御対象と第2制御対象のそれぞれに関するフィードバック制御が行われ、第1フィードフォワード制御及び第2フィードフォワード制御が行われていない状態で、第1制御対象に関する第1偏差を計測して得られる第1データを取得し、第1データに基づき第1フィードフォワード操作量を算出し、第1制御対象と第2制御対象のそれぞれに関するフィードバック制御が行われ、第1フィードフォワード操作量を用いて第1フィードフォワード制御が行われている状態で、第2制御対象に関する第2偏差を計測して得られる第2データを取得し、第2データに基づき第2フィードフォワード操作量を算出する算出器51を含む。
【選択図】
図6
【特許請求の範囲】
【請求項1】
第1制御対象及び第2制御対象に関する制御を行う制御装置であって、
前記第1制御対象及び前記第2制御対象のそれぞれに関するフィードバック制御を行うフィードバック制御系と、
前記フィードバック制御が行われている状態において、第1フィードフォワード操作量を用いて前記第1制御対象に関する第1フィードフォワード制御を行い、第2フィードフォワード操作量を用いて前記第2制御対象に関する第2フィードフォワード制御を行うフィードフォワード制御系と、を有し、
前記フィードフォワード制御系は、
前記第1制御対象と前記第2制御対象のそれぞれに関する前記フィードバック制御が行われ、前記第1フィードフォワード制御及び前記第2フィードフォワード制御が行われていない状態で、前記第1制御対象に関する第1偏差を計測して得られる第1データを取得し、
前記第1データに基づき前記第1フィードフォワード操作量を算出し、
前記第1制御対象と前記第2制御対象のそれぞれに関する前記フィードバック制御が行われ、前記第1フィードフォワード操作量を用いて前記第1フィードフォワード制御が行われている状態で、前記第2制御対象に関する第2偏差を計測して得られる第2データを取得し、
前記第2データに基づき前記第2フィードフォワード操作量を算出する、
算出器を含むことを特徴とする制御装置。
【請求項2】
前記算出器は、前記第1制御対象に対する指令が与えられていない状態で前記第1制御対象に第1操作量を与えて得られる第1制御応答を取得し、前記第2制御対象に対する指令が与えられていない状態で前記第2制御対象に第2操作量を与えて得られる第2制御応答を取得し、前記第1データ及び前記第1制御応答に基づき前記第1フィードフォワード操作量を算出し、前記第2データ及び前記第2制御応答に基づき前記第2フィードフォワード操作量を算出することを特徴とする請求項1に記載の制御装置。
【請求項3】
前記算出器は、
前記第1制御対象と前記第2制御対象のそれぞれに前記フィードバック制御が行われ、前記第1フィードフォワード制御及び前記第2フィードフォワード制御が行われていない状態で、前記第2制御対象に関する第3偏差を計測して得られる第3データを取得し、
前記第2データ及び前記第2制御応答に基づき算出された第3フィードフォワード操作量と前記第3データ及び前記第2制御応答に基づき算出された第4フィードフォワード操作量とに基づいて、前記第2フィードフォワード操作量を算出することを特徴とする請求項2に記載の制御装置。
【請求項4】
前記フィードフォワード制御系は、
前記算出器で算出された前記第2フィードフォワード操作量を格納する記憶部を含み、
前記記憶部に格納した前記第2フィードフォワード操作量を用いて前記第2制御対象に関するフィードフォワード制御を行うことを特徴とする請求項1乃至3のうちいずれか1項に記載の制御装置。
【請求項5】
前記第1制御応答及び前記第2制御応答は、インパルス応答又はステップ応答を含むことを特徴とする請求項2又は3に記載の制御装置。
【請求項6】
基板を露光する露光装置であって、
前記基板を保持する基板ステージと、
前記基板に転写すべきパターンを有するレチクルを保持するレチクルステージと、
前記レチクルステージの駆動に追従するように前記基板ステージの駆動を同期させるように同期制御を行う請求項1乃至5のうちいずれか1項に記載の制御装置と、
を有することを特徴とする露光装置。
【請求項7】
基板を露光する露光装置であって、
前記基板を保持する基板ステージと、
前記基板ステージの駆動を制御する制御装置と、を有し、
前記制御装置は、前記基板ステージの複数の駆動軸に関する駆動の制御を行う請求項1乃至5のうちいずれか1項に記載の制御装置を含むことを特徴とする露光装置。
【請求項8】
請求項6又は7に記載の露光装置を用いて基板を露光する工程と、
露光した前記基板を現像する工程と、
現像された前記基板から物品を製造する工程と、
を有することを特徴とする物品の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、制御装置、露光装置及び物品の製造方法に関する。
【背景技術】
【0002】
半導体デバイスなどの製造に用いられるリソグラフィ装置の1つである露光装置では、レチクル(原版)や基板を保持するステージなどの移動体(制御対象)を目標位置に移動させたときの位置偏差を抑制する必要がある。そこで、移動体の制御応答と位置偏差とに基づいて生成したフィードフォワードテーブルを移動体に印加することで、フィードフォワードテーブルの基となった位置偏差を抑制する技術が提案されている(特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
ステップ・アンド・スキャン方式の露光装置(スキャナー)では、レチクルステージ(第1移動体)及び基板ステージ(第2移動体)の駆動方式として、レチクルステージと基板ステージとを同期駆動するマスタースレーブ方式が採用されている。このような露光装置に特許文献1に開示された技術を適用して、各ステージの位置偏差に基づいて生成されたフィードフォワードテーブルを各ステージに対して印加したとしても、スレーブ側のステージの位置偏差を抑制することができない。更に、レチクルステージの位置偏差と基板ステージの位置偏差との差である同期誤差も大きくなってしまう。
【0005】
本発明は、このような従来技術の課題に鑑みてなされ、第1移動体と第2移動体との同期誤差を抑制するのに有利な制御装置を提供することを例示的目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するために、本発明の一側面としての制御装置は、第1制御対象及び第2制御対象に関する制御を行う制御装置であって、前記第1制御対象及び前記第2制御対象のそれぞれに関するフィードバック制御を行うフィードバック制御系と、前記フィードバック制御が行われている状態において、第1フィードフォワード操作量を用いて前記第1制御対象に関する第1フィードフォワード制御を行い、第2フィードフォワード操作量を用いて前記第2制御対象に関する第2フィードフォワード制御を行うフィードフォワード制御系と、を有し、前記フィードフォワード制御系は、前記第1制御対象と前記第2制御対象のそれぞれに関する前記フィードバック制御が行われ、前記第1フィードフォワード制御及び前記第2フィードフォワード制御が行われていない状態で、前記第1制御対象に関する第1偏差を計測して得られる第1データを取得し、前記第1データに基づき前記第1フィードフォワード操作量を算出し、前記第1制御対象と前記第2制御対象のそれぞれに関する前記フィードバック制御が行われ、前記第1フィードフォワード操作量を用いて前記第1フィードフォワード制御が行われている状態で、前記第2制御対象に関する第2偏差を計測して得られる第2データを取得し、前記第2データに基づき前記第2フィードフォワード操作量を算出する、
算出器を含むことを特徴とする。
【0007】
本発明の更なる目的又はその他の側面は、以下、添付図面を参照して説明される好ましい実施形態によって明らかにされるであろう。
【発明の効果】
【0008】
本発明によれば、例えば、第1移動体と第2移動体との同期誤差を抑制するのに有利な制御装置を提供することができる。
【図面の簡単な説明】
【0009】
【
図1】本発明の一側面としての露光装置の構成を示す概略図である。
【
図2】レチクルステージと基板ステージとを同期駆動する制御部の制御ブロック線図である。
【
図3】レチクルステージと基板ステージとを同期駆動する制御部の制御ブロック線図である。
【
図4】フィードフォワードテーブルを算出する処理を説明するためのフローチャートである。
【
図5】電流ドライバの電流指令値に印加する操作量の一例を示す図である。
【
図6】第1実施形態におけるレチクルステージと基板ステージとを同期駆動する制御部の制御ブロック線図である。
【
図7】第1実施形態におけるフィードフォワードテーブルを算出する処理を説明するためのフローチャートである。
【
図8】第1実施形態におけるフィードフォワードテーブルを算出する処理を説明するためのフローチャートである。
【
図10】基板ステージの駆動を制御する制御部の制御ブロック線図である。
【
図11】基板ステージの駆動を制御する制御部の制御ブロック線図である。
【
図12】フィードフォワードテーブルを算出する処理を説明するためのフローチャートである。
【
図13】第2実施形態における基板ステージの駆動を制御する制御部の制御ブロック線図である。
【
図14】第2実施形態におけるフィードフォワードテーブルを算出する処理を説明するためのフローチャートである。
【
図15】第2実施形態におけるフィードフォワードテーブルを算出する処理を説明するための図である。
【
図16】第2実施形態におけるフィードフォワードテーブルを算出する処理を説明するための図である。
【
図17】フィードフォワードテーブルの更新を説明するためのフローチャートである。
【発明を実施するための形態】
【0010】
<第1実施形態>
図1は、本発明の一側面としての露光装置1の構成を示す概略図である。露光装置1は、半導体デバイスなどの製造工程であるリソグラフィ工程に採用され、基板にパターンを形成するリソグラフィ装置である。露光装置1は、本実施形態では、ステップ・アンド・スキャン方式で基板を露光して、レチクルのパターンを基板に転写する。
【0011】
露光装置1は、光源2からの光でレチクル4を照明する照明光学系3と、レチクル4を保持して移動するレチクルステージ10と、レチクル4のパターンを基板6に投影する投影光学系5とを有する。また、露光装置1は、基板6を保持して移動する基板ステージ20と、ミラー7と、レーザ干渉計8と、制御部9とを有する。
【0012】
光源2は、波長約248nmのKrFエキシマレーザ、波長約193nmのArFエキシマレーザなどのエキシマレーザを使用する。但し、光源2の種類及び個数は限定されず、例えば、波長約157nmのF2レーザを光源2として使用してもよい。
【0013】
照明光学系3は、光源2からの光でレチクル4を照明する光学系である。照明光学系3は、光源2からの光の形状を整形するビーム整形光学系やレチクル4を均一な照度分布で照明するための多数の2次光源を形成するオプティカルインテグレータなどを含む。
【0014】
レチクル4は、基板6に転写すべきパターンを有し、レチクルステージ10に保持及び駆動される。レチクル4(のパターン)で回折された光は、投影光学系5を介して、基板6に投影される。レチクル4と基板6とは、光学的に共役の関係に配置される。露光装置1は、ステップ・アンド・スキャン方式の露光装置であるため、レチクル4と基板6とを同期走査することによって、レチクル4のパターンを基板6に転写する。
【0015】
レチクルステージ10は、レチクル4を保持(吸着)するためのチャックを含み、X軸方向、Y軸方向、Z軸方向及び各軸の回転方向に移動可能に構成される。ここで、レチクル4や基板6の面内で走査方向をY軸、それに垂直な方向をX軸、レチクル4や基板6の面に垂直な方向をZ軸とする。
【0016】
投影光学系5は、レチクル4のパターンを基板6に投影する光学系である。投影光学系5は、屈折系、反射屈折系、或いは、反射系を使用することができる。
【0017】
基板6は、レチクル4のパターンが投影(転写)される基板である。基板6には、レジスト(感光剤)が塗布されている。基板6は、シリコン基板、ガラスプレート、その他の基板を含む。
【0018】
基板ステージ20は、基板6を保持(吸着)するためのチャックを含み、X軸方向、Y軸方向、Z軸方向及び各軸の回転方向に移動可能に構成される。基板ステージ20には、ミラー7が固定されており、ミラー7を利用して、レーザ干渉計8により基板ステージ20の位置及び速度が検出される。
【0019】
制御部9は、CPUやメモリなどを含むコンピュータで構成され、記憶部に記憶されたプログラムに従って露光装置1の各部を統括的に制御して露光装置1を動作させる。例えば、制御部9は、レチクルステージ10と基板ステージ20との同期駆動を制御する。制御部9は、本実施形態では、レチクルステージ10及び基板ステージ20を制御対象とする。具体的には、制御部9は、レチクルステージ10(第1移動体)の駆動(第1制御対象)に追従するように基板ステージ20(第2移動体)の駆動(第2制御対象)を同期させるように同期駆動、即ち、同期制御を行う(制御装置として機能する)。
【0020】
図2は、レチクルステージ10と基板ステージ20とを同期駆動(同期制御)する制御部9の制御ブロック線図である。
図2を参照するに、レチクルステージ10(の駆動)を制御するために、制御器11と、電流ドライバ12と、レチクルステージ10を駆動する駆動部としてのリニアモータ13とが構成されている。同様に、基板ステージ20(の駆動)を制御するために、制御器21と、電流ドライバ22と、基板ステージ20を駆動する駆動部としてのリニアモータ23とが構成されている。
【0021】
図2に示すように、各ステージの制御ブロックにはフィードバック制御ループ(フィードバック制御系)FB
R及びFB
Wが構成されている。フィードバック制御ループFB
R及びFB
Wは、レチクルステージ10及び基板ステージ20のそれぞれに対して、目標位置からの位置偏差を低減するようにフィードバック制御を行う。レチクルステージ10のフィードバック制御ループFB
Rでは、レチクルステージ10の検出位置15と位置指令値16との差である位置偏差14に基づいて制御器11で決定(算出)した電流指令値を電流ドライバ12に与える。電流ドライバ12は、電流指令値に対応する電流値をリニアモータ13に与えることでレチクルステージ10が駆動される。同様に、基板ステージ20のフィードバック制御ループFB
Rでは、基板ステージ20の検出位置14と位置指令値26との差である位置偏差24に基づいて制御器21で決定(算出)した電流指令値を電流ドライバ22に与える。電流ドライバ22は、電流指令値に対応する電流値をリニアモータ23に与えることで基板ステージ20が駆動される。
【0022】
レチクルステージ10と基板ステージ20とをマスタースレーブ方式で同期駆動する際に、レチクルステージ10の位置偏差14を、同期パスフィルタ30を介して、基板ステージ20の位置偏差24に加えている。これにより、レチクルステージ10の駆動に対して基板ステージ20が追従するように、基板ステージ20が制御される。ここで、同期パスフィルタ30は、スレーブである基板ステージ20の制御帯域を考慮したフィルタリング(例えば、ローパスフィルタ)を行う。
【0023】
図2において、同期誤差41は、レチクルステージ10の位置偏差14と基板ステージ20の位置偏差24との差を示している。但し、投影光学系5の倍率(レチクル4のパターンの縮尺)が1/Nである場合、両ステージを同期駆動する際のレチクルステージ10の駆動ストロークは、基板ステージ20の駆動ストロークのN倍となる。従って、同期誤差41は、レチクルステージ10の位置偏差14を1/N倍した値と基板ステージ20の位置偏差24との差として求める。
【0024】
図3は、特許文献1に開示された技術を適用した場合におけるレチクルステージ10と基板ステージ20とを同期駆動(同期制御)する制御部9の制御ブロック線図である。
図3を参照するに、レチクルステージ10の制御ブロックに対して、算出器17と、フィードフォワードテーブル18と、切替スイッチ100とが追加されている。換言すれば、レチクルステージ10の制御ブロックに対して、目標位置からの位置偏差を低減するようにフィードフォワード制御を行うフィードフォワード制御系FC
Rが構成されている。算出器17は、レチクルステージ10の位置偏差14に基づいて、フィードフォワードテーブル18を算出(生成)する。切替スイッチ100は、フィードフォワードテーブル18を電流ドライバ12への電流指令値に印加するかどうかを切り替えるためのスイッチである。同様に、基板ステージ20の制御ブロックに対して、算出器27と、フィードフォワードテーブル28と、切替スイッチ200とが追加されている。換言すれば、基板ステージ20の制御ブロックに対して、目標位置からの位置偏差を低減するようにフィードフォワード制御を行うフィードフォワード制御系FC
Wが構成されている。算出器27は、基板ステージ20の位置偏差24に基づいて、フィードフォワードテーブル28を算出(生成)する。切替スイッチ200は、フィードフォワードテーブル28を電流ドライバ22への電流指令値に印加するかどうかを切り替えるためのスイッチである。
【0025】
図4を参照して、特許文献1に開示された技術におけるフィードフォワードテーブル18及び28を算出する処理について説明する。かかる処理では、算出器17及び27のそれぞれにおいて、各ステージの位置偏差に基づいて、フィードフォワードテーブル18及び28が算出される。
【0026】
S11では、切替スイッチ100及び200をOFFにして、各ステージのフィードフォワードテーブル18及び28を電流ドライバ12及び22の電流指令値に印加しない状態にする。
【0027】
S12では、レチクルステージ10と基板ステージ20とを実際に使用する際(基板6を露光する露光処理の際)と同じ軌道で同期駆動させながら、各ステージの位置偏差14及び24を計測する。ここで、計測されたレチクルステージ10の位置偏差をeRStとし、計測された基板ステージ20の位置偏差をeWStとし、位置偏差eRSt及びeWStのそれぞれに関して、位置偏差を抑制したいサンプリング時間区間(t=1~M)で抽出する。抽出した各ステージの位置偏差ERRRS及びERRWSは、以下の式(1)及び(2)とする。
【0028】
【0029】
【0030】
S13では、各ステージの制御応答(入出力応答)を計測する。具体的には、レチクルステージ10が静止している状態(位置指令値16がゼロ)において、切替スイッチ100をONにして、フィードフォワードテーブル18の代わりに、
図5に示す操作量FFΔを電流ドライバ12の電流指令値に印加する。そして、レチクルステージ10の制御応答r
RStを計測する。なお、操作量FFΔは、本実施形態では、インパルス信号であるため、レチクルステージ10の制御応答r
RStは、インパルス応答となる。但し、操作量FFΔとして、ステップ信号を印加してもよい。この場合、レチクルステージ10の制御応答r
RStは、ステップ応答となる。同様に、基板ステージ20が静止している状態(位置指令値26がゼロ)において、切替スイッチ200をONにして、フィードフォワードテーブル28の代わりに、
図5に示す操作量FFΔを電流ドライバ22の電流指令値に印加する。そして、基板ステージ20の制御応答r
WStを計測する。また、計測した制御応答r
RSt及びr
WStのそれぞれから任意の区間でデータを抽出する。ここでは、便宜上、t=1~Mとするが、t=T+1~T+M(Tは、任意のサンプリング時間)としてもよい。抽出した各ステージの制御応答RSP
RS及びRSP
WSは、以下の式(3)及び(4)とする。
【0031】
【0032】
【0033】
S14では、各ステージに関するフィードフォワードテーブル(フィードフォワード操作量)を算出する。ここで、レチクルステージ10に関するフィードフォワードテーブルをFFRSとし、基板ステージ20に関するフィードフォワードテーブルをFFWSとする。レチクルステージ10に関しては、S12で計測した位置偏差ERRRSと、S13で計測した制御応答RSPRSとから、位置偏差ERRRSを抑制する位置偏差に基づいて、フィードフォワードテーブルFFRSを算出する。同様に、基板ステージ20に関しては、S12で計測した位置偏差ERRWSと、S13で計測した制御応答RSPWSとから、位置偏差ERRWSを抑制する位置偏差に基づいて、フィードフォワードテーブルFFWSを算出する。
【0034】
フィードフォワードテーブルFFRS及びFFWSの算出について具体的に説明する。各ステージについて、1サンプル後に操作量FFΔを印加した際も制御応答RSPRS及びRSPWSが得られると仮定し、その制御応答をRSPRS1及びRSPWS1とする。同様に、2サンプル後、3サンプル後、・・・、Nサンプル後の制御応答をRSPRS2及びRSPWS2、RSPRS3及びRSPWS3・・・、RSPRSN及びRSPWSNとする。この場合、レチクルステージ10の制御応答RSPRS0、RSPRS1、・・・、RSPRSNは、以下の式(5)となる。なお、基板ステージ20に関しては、レチクルステージ10と同様であるため、以下では説明を省略する。
【0035】
【0036】
レチクルステージ10の制御応答が線形性を有していれば、操作量FFΔを任意のゲインg倍したg・FFΔに対するレチクルステージ10の制御応答は、g・RSPRSとなる。従って、Nサンプル後の操作量FFΔのゲインをgNとすれば、以下の式(6)が成り立つ。
【0037】
【0038】
ここで、Nサンプル後の操作量FFΔの全てを印加したときのレチクルステージ10の応答Rは、N個の応答の和となるため、以下の式(7)が成り立つ。
【0039】
【0040】
レチクルステージ10(電流ドライバ12の電流指令値)にフィードフォワードテーブルFFRSを印加して位置偏差ERRRSを除去する(打ち消す)ためには、応答データRが位置偏差ERRRSと等しくなればよい。従って、以下の式(8)に示すように、疑似逆行列を用いて、ゲインgNを求めることができる。
【0041】
【0042】
このようにして求めたゲインgNを用いて、レチクルステージ10の位置偏差ERRRSを抑制する位置偏差に基づいたフィードフォワードテーブルFFRS(ゲインgNを操作量FFΔに乗算した-gN・FFΔ)が求まる。
【0043】
このようにして求めたフィードフォワードテーブルFFRS及びFFWSのそれぞれは、フィードフォワードテーブル18及び28として、レチクルステージ10及び基板ステージ20のそれぞれの制御ブロックの記憶部に格納される。そして、露光処理におけるレチクルステージ10及び基板ステージ20の駆動中に、各ステージの検出位置15及び25に応じて、各ステージに対してフィードフォワードテーブル18及び28を印加する。この際、レチクルステージ10の位置偏差14は、フィードフォワードテーブル18を印加することで抑制される。従って、レチクルステージ10の駆動に追従するために基板ステージ20に印加されるレチクルステージ10の位置偏差14は、フィードフォワードテーブル18をレチクルステージ10に印加する前の位置偏差と異なる。但し、フィードフォワードテーブル28は、レチクルステージ10にフィードフォワードテーブル18を印加する前の位置偏差14を含む位置偏差を抑制するたに求めたテーブルである。そのため、フィードフォワードテーブル28を基板ステージ20に印加すると、基板ステージ20の位置が正しく補正されず、基板ステージ20の位置偏差24が大きくなる。その結果、レチクルステージ10と基板ステージ20との同期誤差41が大きくなり、露光精度が低下してしまう。
【0044】
そこで、本実施形態では、基板ステージ20の制御ブロックに対して、
図6に示すように、算出器27に代えて算出器51を設けている。換言すれば、基板ステージ20の制御ブロックに対して、フィードフォワード制御を行うフィードフォワード制御系FCC
Wが構成されている。フィードフォワード制御系FCC
Wは、後述するように、フィードフォワード制御系FC
Wとは異なり、フィードバック制御が行われている状態におけるレチクルステージ10と基板ステージ20との同期誤差を低減するようにフィードフォワード制御を行う。
図6は、本実施形態におけるレチクルステージ10と基板ステージ20とを同期駆動(同期制御)する制御部9の制御ブロック線図である。
【0045】
算出器51は、レチクルステージ10と基板ステージ20との同期誤差41と、基板ステージ20の制御応答RSPWSとに基づいて、フィードフォワードテーブル52を算出(生成)する。そして、フィードフォワードテーブル52を電流ドライバ22への電流指令値に印加することで、基板ステージ20の位置偏差24を抑制し、レチクルステージ10と基板ステージ20との同期誤差41を抑制することが可能となる。
【0046】
図7を参照して、第1実施形態におけるフィードフォワードテーブル52を算出する処理について説明する。かかる処理では、算出器51において、レチクルステージ10と基板ステージ20との同期誤差41に基づいたフィードフォワードテーブル52が算出される。
【0047】
S21では、切替スイッチ100及び200をOFFにして、各ステージのフィードフォワードテーブル18及び52を電流ドライバ12及び22の電流指令値に印加しない状態にする。
【0048】
S22では、レチクルステージ10と基板ステージ20とを実際に使用する際(基板6を露光する露光処理の際)と同じ軌道で同期駆動させながら、各ステージの位置偏差14及び24を計測(取得)する。そして、特許文献1に開示された技術と同様にして、各ステージの位置偏差を抑制したいサンプリング時間区間でデータを抽出し、抽出したレチクルステージ10の位置偏差をERRRSとし、抽出した基板ステージ20の位置偏差をERRWSとする。
【0049】
S23では、基板ステージ20の制御応答を計測する。具体的には、基板ステージ20が静止している状態(位置指令値26がゼロ)において、
図5に示す操作量FFΔを電流ドライバ22の電流指令値に印加する。そして、基板ステージ20の制御応答を計測して任意の区間でデータを抽出し、抽出した基板ステージ20の制御応答をRSP
WSとする。
【0050】
S24では、以下の式(9)に示すように、S22で計測した位置偏差ERRRSと位置偏差ERRWSとの差分から同期誤差SYNを算出する。
【0051】
【0052】
S25では、基板ステージ20に関するフィードフォワードテーブルを算出する。ここで、基板ステージ20に関するフィードフォワードテーブルをFFSYNとする。具体的には、S24で算出した同期誤差SYNとS23で計測した制御応答RSPWSとから、式(8)と同様に、以下の式(10)としたときのゲインgNを求める。そして、同期誤差SYNを抑制する同期誤差に基づいて、フィードフォワードテーブルFFSYNを算出する。
【0053】
【0054】
このようにして求めたフィードフォワードテーブルFFSYNは、フィードフォワードテーブル52として、基板ステージ20の制御ブロックの記憶部に格納される。そして、露光処理におけるレチクルステージ10及び基板ステージ20の駆動中に(同期駆動を行う際に)、基板ステージ20の検出位置25に応じて、基板ステージ20に対してフィードフォワードテーブル52を印加する。なお、レチクルステージ10に対しては、フィードフォワードテーブル18は印加しない。これにより、レチクルステージ10と基板ステージ20との同期誤差41が抑制され、同期誤差41に起因する露光精度の低下を抑制することができる。
【0055】
なお、本実施形態では、
図8に示すように、レチクルステージ10に対してフィードフォワードテーブル18を印加した状態でのレチクルステージ10と基板ステージ20との同期誤差に基づいて、フィードフォワードテーブル52を算出してもよい。
図8は、第1実施形態におけるフィードフォワードテーブル52を算出する処理を説明するためのフローチャートである。
【0056】
S31では、切替スイッチ100及び200をOFFにして、各ステージのフィードフォワードテーブル18及び52を電流ドライバ12及び22の電流指令値に印加しない状態にする。
【0057】
S32では、レチクルステージ10と基板ステージ20とを実際に使用する際(基板6を露光する露光処理の際)と同じ軌道で同期駆動させながら、レチクルステージ10の位置偏差14を計測する。そして、特許文献1に開示された技術と同様にして、レチクルステージ10の位置偏差を抑制したいサンプリング時間区間でデータを抽出し、抽出したレチクルステージ10の位置偏差をERRRSとする。
【0058】
S33では、レチクルステージ10の制御応答を計測する。具体的には、レチクルステージ10が静止している状態(位置指令値16がゼロ)において、
図5に示す操作量FFΔを電流ドライバ12の電流指令値に印加する。そして、レチクルステージ10の制御応答を計測して任意の区間でデータを抽出し、抽出したレチクルステージ10の制御応答をRSP
RSとする。
【0059】
S34では、レチクルステージ10に関するフィードフォワードテーブルを算出する。ここで、レチクルステージ10に関するフィードフォワードテーブルをFFRSとする。具体的には、S32で計測した位置偏差ERRRSと、S33で計測した制御応答RSPRSとから、式(8)に従って、位置偏差ERRRSを抑制する位置偏差に基づいて、フィードフォワードテーブルFFRSを算出する。このようにして求めたフィードフォワードテーブルFFRSは、フィードフォワードテーブル18として、レチクルステージ10の制御ブロックの記憶部に格納される。
【0060】
S35では、切替スイッチ100をONにして、フィードフォワードテーブル18を電流ドライバ12の電流指令値(レチクルステージ10)に印加する状態にする。
【0061】
S36では、レチクルステージ10と基板ステージ20とを実際に使用する際(基板6を露光する露光処理の際)と同じ軌道で同期駆動させながら、各ステージの位置偏差14及び24を計測する。そして、特許文献1に開示された技術と同様にして、各ステージの位置偏差を抑制したいサンプリング時間区間でデータを抽出し、抽出したレチクルステージ10の位置偏差をERRRS’とし、抽出した基板ステージ20の位置偏差をERRWSとする。
【0062】
S37では、S36で計測した位置偏差ERRRS’と位置偏差ERRWSとの差分から同期誤差SYN’を算出する。
【0063】
S38では、基板ステージ20の制御応答を計測する。具体的には、基板ステージ20が静止している状態(位置指令値26がゼロ)において、
図5に示す操作量FFΔを電流ドライバ22の電流指令値に印加する。そして、基板ステージ20の制御応答を計測して任意の区間でデータを抽出し、抽出した基板ステージ20の制御応答をRSP
WSとする。
【0064】
S39では、基板ステージ20に関するフィードフォワードテーブルを算出する。ここで、基板ステージ20に関するフィードフォワードテーブルをFFSYN’とする。具体的には、S37で算出した同期誤差SYN’と、S38で計測した制御応答RSPWSとから、式(10)に従って、同期誤差SYN’を抑制する同期誤差に基づいて、フィードフォワードテーブルFFSYN’を算出する。
【0065】
このようにして求めたフィードフォワードテーブルFFSYN’は、フィードフォワードテーブル52として、基板ステージ20の制御ブロックの記憶部に格納される。そして、露光処理におけるレチクルステージ10及び基板ステージ20の駆動中に、各ステージの検出位置15及び25に応じて、各ステージに対してフィードフォワードテーブル18及び52を印加する。これにより、レチクルステージ10の位置偏差14及びレチクルステージ10と基板ステージ20との同期誤差41が抑制され、基板ステージ20のみにフィードフォワードテーブル52を印加する場合よりも露光精度を向上させることができる。
【0066】
本実施形態では、レチクルステージ10をマスターとし、基板ステージ20をスレーブとして説明したが、マスターとスレーブとの関係は逆でもよい。また、本実施形態は、露光装置に限定されず、マスタースレーブ方式の移動体を有する装置に適用可能である。
【0067】
<第2実施形態>
本実施形態では、基板ステージ20の駆動軸の干渉関係を考慮してフィードフォワードテーブルを算出する場合について説明する。基板ステージ20は、複数の駆動軸を含む移動体であって、本実施形態では、
図9に示すように、6つの駆動軸(駆動方向X、Y、Z、wX、wY、wX)を有する。
【0068】
図10は、基板ステージ20の駆動、具体的には、駆動軸wZ及びXに関する駆動を制御する制御部9の制御ブロック線図である。
図10を参照するに、基板ステージ20の駆動軸wZに関する駆動(第1制御対象)を制御するために、制御器71と、電流ドライバ72と、リニアモータ73とが構成されている。同様に、基板ステージ20の駆動軸Xに関する駆動(第2制御対象)を制御するために、制御器81と、電流ドライバ82と、リニアモータ83とが構成されている。なお、
図10に示す点線矢印は、駆動軸wZが駆動軸Xに干渉している(wZ→X)ことを表している。これは、基板ステージ20を駆動軸wZに関してのみ駆動したにも関わらず、駆動していない駆動軸Xに関する位置偏差が生じることを意味している。
【0069】
図10に示すように、基板ステージ20の駆動軸wZ及び駆動軸Xのそれぞれの制御ブロックにはフィードバック制御ループ(フィードバック制御系)FB
wZ及びFB
Xが構成されている。フィードバック制御ループFB
wZ及びFB
Xは、基板ステージ20の駆動軸wZ及び駆動軸Xのそれぞれの駆動に対して、目標位置からの位置偏差を低減するようにフィードバック制御を行う。基板ステージ20の駆動軸wZに関するフィードバック制御ループFB
wZでは、駆動軸wZに関する基板ステージ20の検出位置75と位置指令値76との差である位置偏差74に基づいて制御器71で決定(算出)した電流指令値を電流ドライバ72に与える。電流ドライバ72は、電流指令値に対応する電流値をリニアモータ73に与えることで基板ステージ20が駆動軸wZに関して駆動される。同様に、基板ステージ20の駆動軸Xに関するフィードバック制御ループFB
Xでは、駆動軸Xに関する基板ステージ20の検出位置85と位置指令値86との差である位置偏差84に基づいて制御器81で決定(算出)した電流指令値を電流ドライバ82に与える。電流ドライバ82は、電流指令値に対応する電流値をリニアモータ83に与えることで基板ステージ20が駆動軸Xに関して駆動される。
【0070】
図11は、特許文献1に開示された技術を適用した場合における基板ステージ20の駆動軸wZ及びXに関する駆動を制御する制御部9の制御ブロック線図である。
図11を参照するに、基板ステージ20の駆動軸wZに関する制御ブロックに対して、算出器77と、フィードフォワードテーブル78と、切替スイッチ700とが追加されている。換言すれば、基板ステージ20の駆動軸wZに関する制御ブロックに対して、目標位置からの位置偏差を低減するようにフィードフォワード制御を行うフィードフォワード制御系FC
wZが構成されている。算出器77は、基板ステージ20の駆動軸wZに関する位置偏差74に基づいて、フィードフォワードテーブル78を算出(生成)する。切替スイッチ700は、フィードフォワードテーブル78を電流ドライバ72への電流指令値に印加するかどうかを切り替えるためのスイッチである。同様に、基板ステージ20の駆動軸Xに関する制御ブロックに対して、算出器87と、フィードフォワードテーブル88と、切替スイッチ800とが追加されている。換言すれば、基板ステージ20の駆動軸Xに関する制御ブロックに対して、目標位置からの位置偏差を低減するようにフィードフォワード制御を行うフィードフォワード制御系FC
Xが構成されている。算出器87は、基板ステージ20の駆動軸Xに関する位置偏差24に基づいて、フィードフォワードテーブル88を算出(生成)する。切替スイッチ800は、フィードフォワードテーブル88を電流ドライバ82への電流指令値に印加するかどうかを切り替えるためのスイッチである。
【0071】
図12を参照して、特許文献1に開示された技術におけるフィードフォワードテーブル78及び88を算出する処理について説明する。かかる処理では、算出器87及び87のそれぞれにおいて、基板ステージ20の駆動軸wZ及びXのそれぞれの位置偏差に基づいて、フィードフォワードテーブル78及び88が算出される。
【0072】
S41では、切替スイッチ700及び800をOFFにして、基板ステージ20の各駆動軸に関するフィードフォワードテーブル78及び88を電流ドライバ72及び82の電流指令値に印加しない状態にする。
【0073】
S42では、基板ステージ20を駆動軸wZ及びXに関して同時に駆動させながら、基板ステージ20の駆動軸wZ及びXのそれぞれに関する位置偏差74及び84を計測する。そして、基板ステージ20の各駆動軸に関する位置偏差を抑制したいサンプリング時間区間でデータを抽出する。抽出した基板ステージ20の駆動軸wZに関する位置偏差をERRwZ→wZとし、抽出した基板ステージ20の駆動軸Xに関する位置偏差をERRX→Xとする。
【0074】
S43では、基板ステージ20の各駆動軸に関する制御応答を計測する。具体的には、基板ステージ20が全ての駆動軸に関して静止している状態(位置指令値76及び86がゼロ)において、駆動軸wZに関する駆動の操作量として、
図5に示す操作量FFΔを電流ドライバ72の電流指令値に印加する。そして、基板ステージ20の駆動軸wZに関する制御応答r
wZtを計測して任意の区間でデータを抽出し、抽出した基板ステージ20の駆動軸wZに関する制御応答をRSP
wZ→wZとする。同様に、基板ステージ20が全ての駆動軸に関して静止している状態(位置指令値76及び86がゼロ)において、駆動軸Xに関する駆動の操作量として、
図5に示す操作量FFΔを電流ドライバ82の電流指令値に印加する。そして、基板ステージ20の駆動軸Xに関する制御応答r
Xtを計測して任意の区間でデータを抽出し、抽出した基板ステージ20の駆動軸Xに関する制御応答をRSP
X→Xとする。
【0075】
S44では、基板ステージ20の各駆動軸に関するフィードフォワードテーブルを算出する。ここで、基板ステージ20の駆動軸wZに関するフィードフォワードテーブルをFFwZ→wZとし、基板ステージ20の駆動軸Xに関するフィードフォワードテーブルをFFX→Xとする。基板ステージ20の駆動軸wZに関しては、まず、S42で計測した位置偏差ERRwZ→wZと、S43で計測した制御応答RSPwZ→wZとから、式(8)を用いて、ゲインgwZ→wZNを求める。そして、ゲインgwZ→wZNと、基板ステージ20の駆動軸wZに関する位置偏差をERRwZ→wZを抑制する位置偏差とに基づいて、基板ステージ20の駆動軸wZに関するフィードフォワードテーブルFFwZ→wZを算出する。同様に、基板ステージ20の駆動軸Xに関しては、まず、S42で計測した位置偏差ERRX→Xと、S43で計測した制御応答RSPX→Xとから、式(8)を用いて、ゲインgX→XNを求める。そして、ゲインgX→XNと、基板ステージ20の駆動軸Xに関する位置偏差をERRX→Xを抑制する位置偏差とに基づいて、基板ステージ20の駆動軸Xに関するフィードフォワードテーブルFFX→Xを算出する。
【0076】
このようにして求めたフィードフォワードテーブルFFwZ→wZ及びFFX→Xのそれぞれは、フィードフォワードテーブル78及び88として、基板ステージ20の各駆動軸の制御ブロックの記憶部に格納される。そして、基板ステージ20を駆動軸wZ及びXに関して同時に駆動しているときに、各駆動軸に関する検出位置75及び85に応じて、基板ステージ20の各駆動軸に対してフィードフォワードテーブルFFwZ→wZ及びFFX→Xを印加する。これにより、基板ステージ20の駆動軸wZ及びXのそれぞれに関する位置偏差ERRwZ→wZ及びERRX→Xを抑制することができる。但し、フィードフォワードテーブルFFwZ→wZは、基板ステージ20の駆動軸Xに干渉するため、かかる干渉に起因して位置偏差ERRwZ→Xが駆動軸Xに生じ、駆動軸Xに関する位置偏差が大きくなる。
【0077】
そこで、本実施形態では、基板ステージ20の駆動軸Xに関する制御ブロックに対して、
図13に示すように、算出器87に代えて算出器801を設けている。換言すれば、基板ステージ20の駆動軸Xに関する制御ブロックに対して、フィードフォワード制御を行うフィードフォワード制御系FCC
Xが構成されている。フィードフォワード制御系FCC
Xは、後述するように、フィードフォワード制御系FC
Xとは異なり、フィードバック制御が行われている状態における駆動軸wZに関する駆動が駆動軸Xに関する駆動に与える影響を低減するようにフィードフォワード制御を行う。
図13は、本実施形態における基板ステージ20の駆動軸wZ及びXに関する駆動を制御する制御部9の制御ブロック線図である。
【0078】
算出器801は、基板ステージ20の駆動軸wZと駆動軸Xとの干渉関係を考慮したフィードフォワードテーブル802を算出する。そして、基板ステージ20の駆動軸Xに関する制御ブロックに対して、フィードフォワードテーブル802を印加する。これにより、駆動軸wZからの干渉に起因する駆動軸Xに関する位置偏差ERRwZ→Xを抑制し、且つ、駆動軸Xに関する位置偏差ERRX→Xも抑制することが可能となる。
【0079】
図14を参照して、第2実施形態におけるフィードフォワードテーブル802を算出する処理について説明する。まず、S41乃至S44を実施して、位置偏差ERR
wZ→wZを抑制する位置偏差に基づいたフィードフォワードテーブルFF
wZ→wZと、位置偏差ERR
X→Xを抑制する位置偏差に基づいたフィードフォワードテーブルFF
X→Xとを算出する。なお、フィードフォワードテーブルFF
wZ→wZを算出する際に求めたゲインg
wZ→wZNを、
図13に示すように、ゲイン91として基板ステージ20の制御ブロックの記憶部に格納する。
【0080】
S55では、基板ステージ20の駆動軸wZ(干渉元の駆動軸)に操作量を入力したときの駆動軸X(干渉先の駆動軸)に関する制御応答を計測する。具体的には、基板ステージ20が全ての駆動軸に関して静止している状態において、切替スイッチ700をONにして、基板ステージ20の駆動軸wZに対してフィードフォワードテーブルFF
wZ→wZを印加する。かかる状態において、基板ステージ20の駆動軸wZに関する駆動の操作量として、
図5に示す操作量FFΔを電流ドライバ72の電流指令値に印加する。そして、基板ステージ20の駆動軸Xに関する制御応答r
wZ→Xtを計測して任意の区間でデータを抽出し、抽出した基板ステージ20の駆動軸Xに関する制御応答92をRSP
wZ→Xとする。
【0081】
S56では、基板ステージ20の駆動軸wZに対してフィードフォワードテーブルFFwZ→wZを印加している状態における駆動軸Xに関する位置偏差ERRwZ→Xを求める。具体的には、S55で計測した制御応答RSPwZ→Xと、ゲインgwZ→wZNとから、以下の式(11)に従って、基板ステージ20の駆動軸Xに関する位置偏差ERRwZ→Xを求める。
【0082】
【0083】
S57では、基板ステージ20の駆動軸の干渉により生じた位置偏差に基づいて、フィードフォワードテーブルFFwZ→Xを作成する。具体的には、S56で求めた位置偏差ERRwZ→Xと、S43で計測した制御応答RSPX→Xとから、位置偏差ERRwZ→Xを抑制する位置偏差に基づいて、フィードフォワードテーブルFFwZ→Xを算出する。本実施形態では、以下の式(12)に従って、ゲインgwZ→Xを求めることで、フィードフォワードテーブルFFwZ→Xを算出する。
【0084】
【0085】
S58では、基板ステージ20の駆動軸の干渉関係に基づいたフィードフォワードテーブルFFXを算出する。具体的には、以下の式(13)に示すように、S44で算出したフィードフォワードテーブルFFX→Xと、S57で算出したフィードフォワードテーブルFFwZ→Xとを加算する。これにより、基板ステージ20の駆動軸Xに関するフィードフォワードテーブルFFXを算出する。
【0086】
【0087】
このようにして求めたフィードフォワードテーブルFFX→Xは、フィードフォワードテーブル802として、基板ステージ20の駆動軸Xの制御ブロックの記憶部に格納される。そして、基板ステージ20を駆動軸wZ及びXに関して同時に駆動しているときに、各駆動軸に関する検出位置75及び85に応じて、基板ステージ20の各駆動軸に対してフィードフォワードテーブルFFwZ→wZ及びFFX→Xを印加する。これにより、基板ステージ20の駆動軸wZに対してフィードフォワードテーブルFFwZ→wZを印加したときに生じる駆動軸Xにおける位置偏差ERRwZ→Xを抑制し、且つ、駆動軸Xにおける位置偏差ERRX→Xも抑制することができる。
【0088】
本実施形態では、基板ステージ20の駆動軸の干渉関係として、駆動軸wZと駆動軸Xとの干渉関係を例に説明したが、他の駆動軸の組み合わせについても同様な効果を得ることができる。
【0089】
図15を参照して、基板ステージ20において、干渉関係を有する駆動軸が多対1である場合におけるフィードフォワードテーブル802を算出する処理について説明する。基板ステージ20の駆動軸Ai(i=1~n)が駆動軸Xに干渉している場合、干渉関係に基づいたフィードフォワードテーブルFF
Xは、以下の式(14)で表される。
【0090】
【0091】
式(14)において、右辺の第1項は、基板ステージ20の干渉先の駆動軸Xにおける位置偏差ERRX→Xを抑制する位置偏差に基づいたフィードフォワードテーブルFFX→Xである。右辺の第2項は、基板ステージ20の干渉元の駆動軸AiにフィードフォワードテーブルFFAi→Aiを印加したときに生じる駆動先の駆動軸Xにおける位置偏差ERRAi→Xを抑制する位置偏差に基づいたフィードフォワードテーブルFFAi→Xである。
【0092】
図16を参照して、基板ステージ20において、複数の駆動軸Ai(i=1~n)が互いに干渉する場合における多対多の干渉関係に基づいたフィードフォワードテーブルを算出する処理について説明する。この場合、基板ステージ20の各駆動軸について、多対1の干渉関係とみなして、式(14)を用いることで、フィードフォワードテーブルを算出することができる。これは、式(14)に示すフィードフォワードテーブルFF
Xを算出するための制御応答RSP
X→X、RSP
wZ→wZ及びRSP
Ai→Xと、位置偏差ERR
wZ→wZ及びERR
Ai→Xとは、駆動軸が互いに干渉した状態で計測しているからである。
【0093】
本実施形態では、基板ステージ20の駆動軸の干渉関係に基づいたフィードフォワードテーブルについて説明したが、レチクルステージ10と基板ステージ20との同期誤差に基づいたフィードフォワードテーブル(第1実施形態)と組み合わせてもよい。この場合、レチクルステージ10と基板ステージ20との同期誤差を抑制することができるだけでなく、各ステージの駆動軸間の干渉による位置偏差も抑制することができるため、露光精度を更に向上させることができる。
【0094】
また、
図17に示すように、第1実施形態及び第2実施形態のそれぞれで説明したフィードフォワードテーブルは更新してもよい。ここでは、第1実施形態及び第2実施形態のそれぞれで説明したフィードフォワードテーブルをFFとする。
【0095】
S61では、フィードフォワードテーブルFFを印加したときに生じる基板ステージ20の各駆動軸における位置偏差、又は、レチクルステージ10と基板ステージ20との同期誤差を計測する。そして、位置偏差又は同期誤差を抑制したいサンプリング時間区間でデータを抽出する。
【0096】
S62では、第1実施形態又は第2実施形態で説明した手順に従って、S61で計測した位置偏差又は同期誤差を抑制するためのフィードフォワードテーブルFF’を算出する。
【0097】
S63では、S62で算出したフィードフォワードテーブルFF’をフィードフォワードテーブルFFに加算して、新たなフィードフォワードテーブルFFとして更新する。
【0098】
なお、基板ステージ20の各駆動軸における位置偏差やレチクルステージ10と基板ステージ20との同期誤差が許容範囲に収まるまで、S61乃至S63を繰り返してもよい。
【0099】
<第3実施形態>
本発明の実施形態における物品の製造方法は、例えば、デバイス(半導体素子、磁気記憶媒体、液晶表示素子など)、カラーフィルタ、光学部品、MEMSなどの物品を製造するのに好適である。かかる製造方法は、上述した露光装置1を用いて感光剤が塗布された基板を露光する工程と、露光された感光剤を現像する工程とを含む。また、現像された感光剤のパターンをマスクとして基板に対してエッチング工程やイオン注入工程などを行い、基板上に回路パターンが形成される。これらの露光、現像、エッチングなどの工程を繰り返して、基板上に複数の層からなる回路パターンを形成する。後工程で、回路パターンが形成された基板に対してダイシング(加工)を行い、チップのマウンティング、ボンディング、検査工程を行う。また、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、レジスト剥離など)を含みうる。本実施形態における物品の製造方法は、従来に比べて、物品の性能、品質、生産性及び生産コストの少なくとも1つにおいて有利である。
【0100】
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。例えば、本実施形態では、露光装置の基板ステージを例に説明したが、例えば、露光装置のレチクルステージや他の移動体を有する装置にも適用可能である。
【符号の説明】
【0101】
1:露光装置 9:制御部 10:レチクルステージ 20:基板ステージ