IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ヤンマー株式会社の特許一覧

<>
  • 特開-作業車両用の自動走行システム 図1
  • 特開-作業車両用の自動走行システム 図2
  • 特開-作業車両用の自動走行システム 図3
  • 特開-作業車両用の自動走行システム 図4
  • 特開-作業車両用の自動走行システム 図5
  • 特開-作業車両用の自動走行システム 図6
  • 特開-作業車両用の自動走行システム 図7
  • 特開-作業車両用の自動走行システム 図8
  • 特開-作業車両用の自動走行システム 図9
  • 特開-作業車両用の自動走行システム 図10
  • 特開-作業車両用の自動走行システム 図11
  • 特開-作業車両用の自動走行システム 図12
  • 特開-作業車両用の自動走行システム 図13
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022188155
(43)【公開日】2022-12-20
(54)【発明の名称】作業車両用の自動走行システム
(51)【国際特許分類】
   G05D 1/02 20200101AFI20221213BHJP
   A01B 69/00 20060101ALI20221213BHJP
【FI】
G05D1/02 H
A01B69/00 303M
【審査請求】有
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2022155907
(22)【出願日】2022-09-29
(62)【分割の表示】P 2018159722の分割
【原出願日】2018-08-28
(71)【出願人】
【識別番号】000006781
【氏名又は名称】ヤンマーパワーテクノロジー株式会社
(74)【代理人】
【識別番号】100167302
【弁理士】
【氏名又は名称】種村 一幸
(74)【代理人】
【識別番号】100135817
【弁理士】
【氏名又は名称】華山 浩伸
(74)【代理人】
【識別番号】100167830
【弁理士】
【氏名又は名称】仲石 晴樹
(72)【発明者】
【氏名】小倉 康平
(57)【要約】
【課題】制御装置にかかる負荷の軽減を図りながら、圃場外に存在する他物を障害物として誤検知することに起因した作業効率の低下などを阻止する。
【解決手段】作業車両用の自動走行システムは、自動走行制御部と、検知ユニットとを備える。自動走行制御部は、作業車両1を特定された走行領域A2内で自動走行させる。検知ユニットは、作業車両1の周囲における測定対象物201の存否を検知する。さらに、検知ユニットは、検知した測定対象物201の位置が走行領域A2内か否かを判定する。
【選択図】図8
【特許請求の範囲】
【請求項1】
作業車両を特定された走行領域内で自動走行させる自動走行制御部と、
前記作業車両の周囲における物体の存否を検知する検知ユニットとを備え、
前記検知ユニットは、検知した物体の位置が前記走行領域内か否かを判定する、
作業車両用の自動走行システム。
【請求項2】
前記検知ユニットは、検知した物体が前記走行領域内に位置すると判定した場合に、検知した当該物体を障害物として判定する、
請求項1に記載の作業車両用の自動走行システム。
【請求項3】
前記検知ユニットは、検知した物体が前記走行領域外に位置すると判定した場合に、検知した当該物体を障害物から除外する、
請求項1又は2に記載の作業車両用の自動走行システム。
【請求項4】
前記検知ユニットは、検知した物体が前記走行領域内に位置すると判定した場合に、検知した当該物体と前記作業車両との間に前記走行領域外の一部があると判定すると、検知した当該物体を障害物から除外する、
請求項1~3のいずれか1項に記載の作業車両用の自動走行システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、衛星測位システムを利用して取得した測位情報に基づいて作業車両を走行領域内で自動走行させる自動走行制御部を備えた作業車両用の自動走行システムに関する。
【背景技術】
【0002】
自動走行が可能な作業車両としては、作業車両の周囲における障害物の存否を検知する障害物センサと、障害物センサの検知距離を調節する感度調節手段と、障害物センサが障害物の存在を検知したときに作業車両の走行停止などを行う制御装置とを備えることで、作業車両が障害物に接触することを防止するのに加えて、制御装置が、作業開始前に設定された設定走行経路と、衛星測位システムを利用して取得した作業車両の現在位置とに基づいて、作業車両の現在位置から進行方向の圃場端までの離隔距離を演算し、作業車両が圃場端に近づくに従って障害物センサの検知距離を短くすることで、作業車両が圃場端に近づいたときに、障害物センサが圃場外に存在する他物を障害物として誤検知することを防止し、これにより、その誤検知に基づいて制御装置が作業車両を不必要に走行停止させることなどに起因した作業効率の低下を回避するように構成されたものがある(例えば特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】国際公開第2015/147149号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載の作業車両においては、障害物センサが圃場外に存在する他物を障害物として誤検知することを防止するためには、作業車両が圃場端に向けて自動走行している間、制御装置が、作業車両の現在位置から進行方向の圃場端までの離隔距離を演算する演算処理と、作業車両が圃場端に近づくに従って障害物センサの検知距離を短くする検知制限処理とを行い続ける必要があることから、制御装置にかかる負荷が重くなる。
【0005】
又、作業車両による作業効率の向上を図るために、走行領域内における作業車両の車速が比較的高速に設定されていると、制御装置が、衛星測位システムを利用して作業車両の現在位置を取得してから、この現在位置と設定走行経路とに基づいて作業車両の現在位置から進行方向の圃場端までの離隔距離を演算し、この離隔距離に応じて障害物センサの検知距離を短い距離に変更した時点においては、作業車両が進行方向の圃場端に更に接近していることになる。そのため、前述した離隔距離に応じて障害物センサの検知範囲を短くしても、その検知範囲の一部が圃場外になって圃場外に存在する他物を障害物として誤検知する虞がある。
【0006】
そして、このような誤検出が生じると、作業車両が接触する虞のない圃場外の障害物に対して、制御装置が、作業車両を走行停止させるなどの不必要な接触回避処理を行うようになり、その結果、作業車両の自動走行による作業において作業効率の低下などを招くことになる。
【0007】
又、上記のような誤検出を防止するために、離隔距離に応じて短くされた障害物センサの検知範囲に、作業車両の車速に応じた補正を加えることで、障害物センサの検知範囲を、離隔距離と車速とに応じた適正な短い範囲に変更することが考えられるが、この場合には、制御装置が前述した補正を行うことで制御装置にかかる負荷が更に重くなる。
【0008】
この実情に鑑み、本発明の主たる課題は、制御装置にかかる負荷の軽減を図りながら、圃場外に存在する他物を障害物として誤検知する虞を回避して、誤検知に起因した作業効率の低下などを阻止する点にある。
【課題を解決するための手段】
【0009】
本発明の一態様に係る作業車両用の自動走行システムは、自動走行制御部と、検知ユニットとを備える。前記自動走行制御部は、作業車両を特定された走行領域内で自動走行させる。前記検知ユニットは、前記作業車両の周囲における物体の存否を検知する。さらに、前記検知ユニットは、検知した物体の位置が前記走行領域内か否かを判定する。
【図面の簡単な説明】
【0010】
図1】作業車両用の自動走行システムの概略構成を示す図
図2】作業車両用の自動走行システムの概略構成を示すブロック図
図3】目標経路生成部により生成される目標経路の一例を示す図
図4】側面視における各ライダーセンサの測定範囲などを示す図
図5】平面視における各ライダーセンサの測定範囲などを示す図
図6】測定対象物の車体座標系での位置(座標)を示す図
図7】測定対象物の圃場座標系での位置(座標)を示す図
図8】矩形の走行領域での測定対象物に対する障害物判定を示す図
図9】U字状の走行領域での測定対象物に対する障害物判定を示す図
図10】障害物判定制御のフローチャート
図11】測定対象物の位置判定に使用する基準位置が走行領域内に設定された別実施形態での測定対象物に対する障害物判定を示す図
図12】別実施形態における障害物判定制御のフローチャート
図13】測定対象物の位置判定に使用する基準位置が走行領域外に設定された別実施形態での測定対象物に対する障害物判定を示す図
【発明を実施するための形態】
【0011】
以下、本発明を実施するための形態の一例として、本発明に係る作業車両用の自動走行システムを、作業車両の一例であるトラクタに適用した実施形態を図面に基づいて説明する。
なお、本発明に係る作業車両用の自動走行システムは、トラクタ以外の、例えば乗用草刈機、乗用田植機、コンバイン、ホイールローダ、除雪車、などの乗用作業車両、及び、無人草刈機などの無人作業車両に適用することができる。
【0012】
図3に示すように、この実施形態で例示するトラクタ1は、作業車両用の自動走行システムによって作業地の一例である圃場Aなどにおいて自動走行することが可能に構成されている。図1~2に示すように、自動走行システムは、トラクタ1に搭載された自動走行ユニット2、及び、自動走行ユニット2と無線通信可能に通信設定された無線通信機器の一例である携帯通信端末3、などを備えている。携帯通信端末3には、自動走行に関する各種の情報表示や入力操作などを可能にするマルチタッチ式の表示部(例えば液晶パネル)4などを有するタブレット型のパーソナルコンピュータやスマートフォンなどを採用することができる。
【0013】
図1に示すように、トラクタ1は、その後部に3点リンク機構5を介して、作業装置の一例であるロータリ耕耘装置6が昇降可能かつローリング可能に連結されている。これにより、このトラクタ1はロータリ耕耘仕様に構成されている。
なお、トラクタ1の後部には、ロータリ耕耘装置6に代えて、プラウ、ディスクハロー、カルチベータ、サブソイラ、播種装置、散布装置、草刈装置、などの各種の作業装置を連結することができる。
【0014】
図1~2に示すように、トラクタ1には、駆動可能で操舵可能な左右の前輪10、駆動可能な左右の後輪11、搭乗式の運転部12を形成するキャビン13、コモンレールシステムを有する電子制御式のディーゼルエンジン(以下、エンジンと称する)14、エンジン14からの動力を変速する変速ユニット15、左右の前輪10を操舵する全油圧式のパワーステアリングユニット16、左右の後輪11を制動するブレーキユニット17、ロータリ耕耘装置6への伝動を断続する電子油圧制御式の作業クラッチユニット19、ロータリ耕耘装置6を昇降駆動する電子油圧制御式の昇降駆動ユニット20、ロータリ耕耘装置6をロール方向に駆動する電子油圧制御式のローリング駆動ユニット21、トラクタ1における各種の設定状態や各部の動作状態などを検出する各種のセンサやスイッチなどを含む車両状態検出機器23、トラクタ1の現在位置や現在方位などを測定する測位ユニット24、及び、各種の制御部を有する車載制御ユニット40、などが備えられている。
なお、エンジン14には、電子ガバナを有する電子制御式のガソリンエンジンなどを採用してもよい。パワーステアリングユニット16は電動モータを備えた電動式であってもよい。
【0015】
運転部12には、アクセルレバーや変速レバーなどの操作レバー類、及び、アクセルペダルやクラッチペダルなどの操作ペダル類、などとともに、図1に示す手動操舵用のステアリングホイール30と、搭乗者用の座席31と、各種の情報表示や入力操作などを可能にするマルチタッチ式の液晶モニタ32とが備えられている。
【0016】
図示は省略するが、変速ユニット15には、エンジン14からの動力を変速する電子制御式の無段変速装置、及び、無段変速装置による変速後の動力を前進用と後進用とに切り換える電子油圧制御式の前後進切換装置、などが含まれている。無段変速装置には、静油圧式無段変速装置(HST:Hydro Static Transmission)よりも伝動効率が高い油圧機械式無段変速装置の一例であるI-HMT(Integrated Hydro-static Mechanical Transmission)が採用されている。前後進切換装置には、前進動力断続用の油圧クラッチと、後進動力断続用の油圧クラッチと、それらに対するオイルの流れを制御する電磁バルブとが含まれている。
なお、無段変速装置には、I-HMTの代わりに、油圧機械式無段変速装置の一例であるHMT(Hydraulic Mechanical Transmission)、静油圧式無段変速装置、又は、ベルト式無段変速装置、などを採用してもよい。又、変速ユニット15には、無段変速装置の代わりに、複数の変速用の油圧クラッチとそれらに対するオイルの流れを制御する複数の電磁バルブとを有する電子油圧制御式の有段変速装置が含まれていてもよい。
【0017】
図示は省略するが、ブレーキユニット17には、左右の後輪11を個別に制動する左右のブレーキ、運転部12に備えられた左右のブレーキペダルの踏み込み操作に連動して左右のブレーキを作動させるフットブレーキ系、運転部12に備えられたパーキングレバーの操作に連動して左右のブレーキを作動させるパーキングブレーキ系、及び、左右の前輪10の設定角度以上の操舵に連動して旋回内側のブレーキを作動させる旋回ブレーキ系、などが含まれている。
【0018】
図2に示すように、車載制御ユニット40には、エンジン14に関する制御を行うエンジン制御部41、トラクタ1の車速や前後進の切り換えに関する制御を行う車速制御部42、ステアリングに関する制御を行うステアリング制御部43、ロータリ耕耘装置6などの作業装置に関する制御を行う作業装置制御部44、液晶モニタ32などによる表示や報知に関する制御を行う表示制御部45、自動走行に関する制御を行う自動走行制御部46、及び、作業地内に区分けされた走行領域に応じて生成された自動走行用の目標経路などを記憶する不揮発性の車載記憶部47、などが含まれている。各制御部41~46は、マイクロコントローラなどが集積された電子制御ユニットや各種の制御プログラムなどによって構築されている。各制御部41~46は、CAN(Controller Area Network)を介して相互通信可能に接続されている。
【0019】
車両状態検出機器23は、トラクタ1の各部に備えられた各種のセンサやスイッチなどの総称である。車両状態検出機器23には、アクセルレバーの操作位置を検出するアクセルセンサ、変速レバーの操作位置を検出する変速用の第1位置センサ、前後進切り換え用のリバーサレバーの操作位置を検出する前後進切り換え用の第2位置センサ、エンジン14の出力回転数を検出する回転センサ、トラクタ1の車速を検出する車速センサ、及び、前輪10の操舵角を検出する舵角センサ、などが含まれている。
【0020】
エンジン制御部41は、アクセルセンサからの検出情報と回転センサからの検出情報とに基づいて、エンジン回転数をアクセルレバーの操作位置に応じた回転数に維持するエンジン回転数維持制御、などを実行する。
【0021】
車速制御部42は、第1位置センサからの検出情報と車速センサからの検出情報などに基づいて、トラクタ1の車速が変速レバーの操作位置に応じた速度に変更されるように無段変速装置の作動を制御する車速制御、及び、第2位置センサからの検出情報に基づいて前後進切換装置の伝動状態を切り換える前後進切り換え制御、などを実行する。車速制御には、変速レバーが零速位置に操作された場合に、無段変速装置を零速状態まで減速制御してトラクタ1の走行を停止させる減速停止処理が含まれている。
【0022】
測位ユニット24は、衛星測位システム(NSS:Navigation Satellite System)の一例であるGPS(Global Positioning System)を利用してトラクタ1の現在位置と現在方位とを測定する衛星航法装置25、及び、3軸のジャイロスコープ及び3方向の加速度センサなどを有してトラクタ1の姿勢や方位などを測定する慣性計測装置(IMU:Inertial Measurement Unit)26、などを有している。GPSを利用した測位方法には、DGPS(Differential GPS:相対測位方式)やRTK-GPS(Real Time Kinematic GPS:干渉測位方式)などがある。本実施形態においては、移動体の測位に適したRTK-GPSが採用されている。そのため、図1に示すように、圃場周辺の既知位置には、RTK-GPSによる測位を可能にする基準局73が設置されている。
【0023】
図1~2に示すように、トラクタ1と基準局73とのそれぞれには、GPS衛星74(図1参照)から送信された電波を受信するGPSアンテナ75,76、及び、トラクタ1と基準局73との間における測位情報を含む各情報の無線通信を可能にする通信モジュール77,78、などが備えられている。これにより、測位ユニット24の衛星航法装置25は、トラクタ側のGPSアンテナ75がGPS衛星74からの電波を受信して得た測位情報と、基地局側のGPSアンテナ76がGPS衛星74からの電波を受信して得た測位情報とに基づいて、トラクタ1の現在位置及び現在方位を高い精度で測定することができる。又、測位ユニット24は、衛星航法装置25と慣性計測装置26とを有することにより、トラクタ1の現在位置、現在方位、姿勢角(ヨー角、ロール角、ピッチ角)を高精度に測定することができる。
【0024】
このトラクタ1において、測位ユニット24の慣性計測装置26、GPSアンテナ75、及び、通信モジュール77は、図1に示すアンテナユニット79に含まれている。アンテナユニット79は、キャビン13の前面側における上部の左右中央箇所に配置されている。そして、トラクタ1におけるGPSアンテナ75の取り付け位置が、GPSを利用してトラクタ1の現在位置などを測定するときの測位対象位置p0となっている(図3参照)。
【0025】
図2に示すように、携帯通信端末3には、マイクロコントローラなどが集積された電子制御ユニットや各種の制御プログラムなどを有する端末制御ユニット80、及び、トラクタ側の通信モジュール77との間における測位情報を含む各情報の無線通信を可能にする通信モジュール90、などが備えられている。端末制御ユニット80には、表示部4の作動を制御する表示制御部81、自動走行用の目標経路Pを生成する目標経路生成部82、及び、目標経路生成部82が生成した目標経路Pなどを記憶する不揮発性の端末記憶部83、などが含まれている。端末記憶部83には、目標経路Pの生成に使用する各種の情報として、トラクタ1の旋回半径や作業幅などの車体情報、及び、前述した測位情報から得られる圃場情報、などが記憶されている。図3に示すように、圃場情報には、圃場Aの形状や大きさなどを特定するために、トラクタ1を圃場Aの外周縁に沿って走行させたときにGPSを利用して取得した圃場Aにおける複数の形状特定地点(形状特定座標)となる4つの角部地点Ap1~Ap4、及び、それらの角部地点Ap1~Ap4を繋いで圃場Aの形状や大きさなどを特定する矩形状の形状特定線AL、などが含まれている。
【0026】
図3に示すように、目標経路生成部82は、車体情報に含まれたトラクタ1の旋回半径や作業幅、及び、圃場情報に含まれた圃場Aの形状や大きさ、などに基づいて、目標経路Pを生成する。
具体的には、図3に示すように、例えば矩形状の圃場Aにおいて、自動走行の開始地点p1と終了地点p2とが設定され、トラクタ1の作業走行方向が圃場Aの短辺に沿う方向に設定されている場合は、目標経路生成部82は、先ず、圃場Aを、前述した4つの角部地点Ap1~Ap4と矩形状の形状特定線ALとに基づいて、圃場Aの外周縁に隣接するマージン領域A1と、マージン領域A1の内側に位置する走行領域A2とに区分けする。
つまり、図3に示す矩形状の圃場Aにおいて、4つの角部地点Ap1~Ap4は走行領域A2の特定に使用する領域特定地点を兼ねており、又、矩形状の形状特定線ALは走行領域A2を特定する領域特定線を兼ねている。
次に、目標経路生成部82は、トラクタ1の旋回半径や作業幅などに基づいて、走行領域A2に、圃場Aの長辺に沿う方向に作業幅に応じた一定間隔をあけて並列に配置される複数の並列経路P1を生成するとともに、走行領域A2における各長辺側の外縁部に配置されて複数の並列経路P1を走行順に接続する複数の旋回経路P2を生成する。
そして、走行領域A2を、走行領域A2における各長辺側の外縁部に設定される一対の非作業領域A2aと、一対の非作業領域A2aの間に設定される作業領域A2bとに区分けするとともに、各並列経路P1を、一対の非作業領域A2aに含まれる非作業経路P1aと、作業領域A2bに含まれる作業経路P1bとに区分けする。
これにより、目標経路生成部82は、図3に示す圃場Aにおいてトラクタ1を自動走行させるのに適した目標経路Pを生成することができる。
【0027】
図3に示す圃場Aにおいて、マージン領域A1は、トラクタ1が走行領域A2の外周部を自動走行するときに、ロータリ耕耘装置6などが圃場Aに隣接する畦などの他物に接触することを防止するために、圃場Aの外周縁と走行領域A2との間に確保された領域である。各非作業領域A2aは、トラクタ1が圃場Aの畦際において現在の作業経路P1bから次の作業経路P1bに旋回移動するための畦際旋回領域である。
【0028】
図3に示す目標経路Pにおいて、各非作業経路P1aと各旋回経路P2は、トラクタ1が耕耘作業を行わずに自動走行する経路であり、前述した各作業経路P1bは、トラクタ1が耕耘作業を行いながら自動走行する経路である。各作業経路P1bの始端地点p3は、トラクタ1が耕耘作業を開始する作業開始地点であり、各作業経路P1bの終端地点p4は、トラクタ1が耕耘作業を停止する作業停止地点である。各非作業経路P1aは、トラクタ1が旋回経路P2にて旋回走行する前の作業停止地点p4と、トラクタ1が旋回経路P2にて旋回走行した後の作業開始地点p3とを、トラクタ1の作業走行方向で揃えるための位置合せ経路である。各並列経路P1と各旋回経路P2との各接続地点p5,p6のうち、各並列経路P1における終端側の接続地点p5はトラクタ1の旋回開始地点であり、各並列経路P1における始端側の接続地点p6はトラクタ1の旋回終了地点である。
【0029】
なお、図3に示す目標経路Pはあくまでも一例であり、目標経路生成部82は、トラクタ1の機種や作業の種類などに応じて異なる車体情報、及び、圃場Aに応じて異なる圃場Aの形状や大きさなどの圃場情報、などに基づいて、それらに適した種々の目標経路Pを生成することができる。
【0030】
目標経路Pは、車体情報や圃場情報などに関連付けされた状態で端末記憶部83に記憶されており、携帯通信端末3の表示部4にて表示することができる。目標経路Pには、各並列経路P3におけるトラクタ1の目標車速、各旋回経路P2bにおけるトラクタ1の目標車速、各並列経路P1における前輪操舵角、及び、各旋回経路P2bにおける前輪操舵角、などが含まれている。
【0031】
端末制御ユニット80は、車載制御ユニット40からの送信要求指令に応じて、端末記憶部83に記憶されている車体情報と圃場情報と目標経路Pなどを車載制御ユニット40に送信する。車載制御ユニット40は、受信した車体情報と圃場情報と目標経路Pなどを車載記憶部47に記憶する。目標経路Pの送信に関しては、例えば、端末制御ユニット80が、トラクタ1が自動走行を開始する前の段階において、目標経路Pの全てを端末記憶部83から車載制御ユニット40に一挙に送信するようにしてもよい。又、例えば、端末制御ユニット80が、目標経路Pを所定距離ごとの複数の分割経路情報に分割して、トラクタ1が自動走行を開始する前の段階からトラクタ1の走行距離が所定距離に達するごとに、トラクタ1の走行順位に応じた所定数の分割経路情報を端末記憶部83から車載制御ユニット40に逐次送信するようにしてもよい。
【0032】
車載制御ユニット40において、自動走行制御部46には、車両状態検出機器23に含まれた各種のセンサやスイッチなどからの検出情報が、車速制御部42やステアリング制御部43などを介して入力されている。これにより、自動走行制御部46は、トラクタ1における各種の設定状態や各部の動作状態などを監視することができる。
【0033】
自動走行制御部46は、トラクタ1の走行モードが自動走行モードに切り換えられた状態において、搭乗者や車外の管理者などのユーザによって携帯通信端末3の表示部4が操作されて自動走行の開始が指令された場合に、測位ユニット24にてトラクタ1の現在位置や現在方位などを取得しながら目標経路Pに従ってトラクタ1を自動走行させる自動走行制御を開始する。
【0034】
自動走行制御部46による自動走行制御には、エンジン14に関する自動走行用の制御指令をエンジン制御部41に送信するエンジン用自動制御処理、トラクタ1の車速や前後進の切り換えに関する自動走行用の制御指令を車速制御部42に送信する車速用自動制御処理、ステアリングに関する自動走行用の制御指令をステアリング制御部43に送信するステアリング用自動制御処理、及び、ロータリ耕耘装置6などの作業装置に関する自動走行用の制御指令を作業装置制御部44に送信する作業用自動制御処理、などが含まれている。
【0035】
自動走行制御部46は、エンジン用自動制御処理においては、目標経路Pに含まれた設定回転数などに基づいてエンジン回転数の変更を指示するエンジン回転数変更指令、などをエンジン制御部41に送信する。エンジン制御部41は、自動走行制御部46から送信されたエンジン14に関する各種の制御指令に応じてエンジン回転数を自動で変更するエンジン回転数変更制御、などを実行する。
【0036】
自動走行制御部46は、車速用自動制御処理においては、目標経路Pに含まれた目標車速に基づいて無段変速装置の変速操作を指示する変速操作指令、及び、目標経路Pに含まれたトラクタ1の進行方向などに基づいて前後進切換装置の前後進切り換え操作を指示する前後進切り換え指令、などを車速制御部42に送信する。車速制御部42は、自動走行制御部46から送信された無段変速装置や前後進切換装置などに関する各種の制御指令に応じて、無段変速装置の作動を自動で制御する自動車速制御、及び、前後進切換装置の作動を自動で制御する自動前後進切り換え制御、などを実行する。自動車速制御には、例えば、目標経路Pに含まれた目標車速が零速である場合に、無段変速装置を零速状態まで減速制御してトラクタ1の走行を停止させる自動減速停止処理などが含まれている。
【0037】
自動走行制御部46は、ステアリング用自動制御処理においては、目標経路Pに含まれた前輪操舵角などに基づいて左右の前輪10の操舵を指示する操舵指令、などをステアリング制御部43に送信する。ステアリング制御部43は、自動走行制御部46から送信された操舵指令に応じて、パワーステアリングユニット16の作動を制御して左右の前輪10を操舵する自動操舵制御、及び、左右の前輪10が設定角度以上に操舵された場合に、ブレーキユニット17を作動させて旋回内側のブレーキを作動させる自動ブレーキ旋回制御、などを実行する。
【0038】
自動走行制御部46は、作業用自動制御処理においては、目標経路Pに含まれた作業開始地点p3に基づいてロータリ耕耘装置6の作業状態への切り換えを指示する作業開始指令、及び、目標経路Pに含まれた作業停止地点p4に基づいてロータリ耕耘装置6の非作業状態への切り換えを指示する作業停止指令、などを作業装置制御部44に送信する。作業装置制御部44は、自動走行制御部46から送信されたロータリ耕耘装置6に関する各種の制御指令に応じて、昇降駆動ユニット20と作業クラッチユニット19の作動を制御して、ロータリ耕耘装置6を作業高さまで下降させて作動させる自動作業開始制御、及び、ロータリ耕耘装置6を停止させて非作業高さまで上昇させる自動作業停止制御、などを実行する。又、作業装置制御部44は、ロータリ耕耘装置6を作業高さまで下降させて作動させた作業状態においては、ロータリ耕耘装置6による耕耘深さを検出する耕深センサの検出に基づいて、昇降駆動ユニット20の作動を制御してロータリ耕耘装置6による耕耘深さを設定深さに維持する自動耕深維持制御、及び、トラクタ1のロール角を検出する傾斜センサと慣性計測装置26の加速度センサの検出とに基づいて、ローリング駆動ユニット21の作動を制御してロータリ耕耘装置6のロール方向での傾斜姿勢を設定姿勢(例えば水平姿勢)に維持する自動ロール角維持制御を実行する。
【0039】
つまり、前述した自動走行ユニット2には、パワーステアリングユニット16、ブレーキユニット17、作業クラッチユニット19、昇降駆動ユニット20、ローリング駆動ユニット21、車両状態検出機器23、測位ユニット24、車載制御ユニット40、及び、通信モジュール77、などが含まれている。そして、これらが適正に作動することにより、トラクタ1を目標経路Pに従って精度よく自動走行させることができるとともに、ロータリ耕耘装置6による耕耘を適正に行うことができる。
【0040】
図2に示すように、トラクタ1には、その周囲における障害物200(図8~9参照)の存否を検知する障害物検知ユニット50が備えられている。障害物検知ユニット50が検知する障害物200には、圃場Aの走行領域A2内で作業する作業者などの人物や他の作業車両、及び、圃場Aの走行領域A2内に既存の電柱や樹木などの物体が含まれている。
【0041】
自動走行制御部46は、障害物検知ユニット50が障害物200の存在を検知したときに、障害物200に対するトラクタ1の接触を回避する接触回避処理を行う。接触回避処理には、トラクタ1及び携帯通信端末3に備えられた報知装置を作動させる報知処理、トラクタ1の車速を自動で低下させる自動減速処理、トラクタ1の車速を零速まで低下させてトラクタ1を停止させる自動減速停止処理、及び、左右の前輪10を自動で操舵して障害物200を避けるようにトラクタ1を迂回させる自動操舵処理、などが含まれている。そして、これらの各処理は、トラクタ1の車速、トラクタ1から障害物200までの距離、及び、トラクタ1と障害物200との位置関係、などに応じて、自動走行制御部46が適宜行うように構成されている。
【0042】
図1~2、図4~5に示すように、障害物検知ユニット50は、トラクタ1の前後に位置する測定対象物201(図6~9参照)の相対位置を測定する相対位置測定部の一例である前後2台のライダーセンサ(LiDAR Sensor:Light Detection and Ranging Sensor)101,102と、トラクタ1からその左右に位置する測定対象物201までの距離を測定する左右2組のソナーユニット103,104とを有している。
【0043】
図4~5に示すように、各ライダーセンサ101,102は、レーザを用いて測定対象物201までの距離などを3次元で測定して3次元画像を生成する。各ライダーセンサ101,102は、レーザ光(例えば、パルス状の近赤外レーザ光)が測定対象物201に当たって跳ね返ってくるまでの往復時間から測定対象物201までの距離を測定するTOF(Time Of Flight)方式によって測定対象物201までの距離を測定する。各ライダーセンサ101,102は、レーザ光を上下方向及び左右方向に高速で走査し、各走査角における測定対象物201までの距離を順次測定することで、測定対象物201までの距離を3次元で測定する。各ライダーセンサ101,102は、それらの測定範囲C,D内における測定対象物201までの距離をリアルタイムで繰り返し測定する。各ライダーセンサ101,102は、それぞれの測定結果に含まれている測定対象物201までの直線距離や測定対象物201に対する照射角度などから、測定対象物201の相対位置を取得するとともに3次元画像を生成して車載制御ユニット40に出力する。各ライダーセンサ101,102からの3次元画像は、トラクタ1の液晶モニタ32や携帯通信端末3の表示部4などにおいて表示させることができ、これにより、ユーザなどにトラクタ1の前方側の状況と後方側の状況とを視認させることができる。ちなみに、3次元画像では、例えば、色などを用いて遠近方向での距離を示すことができる。
【0044】
図1図4~5に示すように、前後のライダーセンサ101,102のうち、前ライダーセンサ101は、前述したアンテナユニット79が配置されているキャビン13の前面側における上部の左右中央箇所に、トラクタ1の前方側を斜め上方側から見下ろす前下がり姿勢で配置されている。これにより、前ライダーセンサ101は、トラクタ1の前方側が測定範囲Cとなるように設定されている。後ライダーセンサ102は、キャビン13の後端側における上部の左右中央箇所に、トラクタ1の後方側を斜め上方側から見下ろす後下がり姿勢で配置されている。これにより、後ライダーセンサ102は、トラクタ1の後方側が測定範囲Dとなるように設定されている。
【0045】
各ライダーセンサ101,102の測定範囲C,Dにおいて、トラクタ1の一部やロータリ耕耘装置6の一部が入り込む領域には、それらの領域に入り込んだトラクタ1の一部やロータリ耕耘装置6の一部を各ライダーセンサ101,102が測定対象物201としないように、それらの領域を覆い隠すマスキング処理が施されている。
【0046】
なお、各ライダーセンサ101,102の測定範囲C,Dに関しては、それらの左右方向の範囲をロータリ耕耘装置6の作業幅に応じた設定範囲に制限するカット処理を施すようにしてもよい。
【0047】
前後のライダーセンサ101,102は、変速ユニット15の前後進切換装置が前進伝動状態に切り換えられたトラクタ1の前進走行時には、前ライダーセンサ101が測定状態になり、後ライダーセンサ102が測定停止状態になる。又、変速ユニット15の前後進切換装置が後進伝動状態に切り換えられたトラクタ1の後進走行時には、前ライダーセンサ101が測定停止状態になり、後ライダーセンサ102が測定状態になる。前後のライダーセンサ101,102は、それらの測定範囲C,D内に複数の測定対象物201が存在する場合は、各測定対象物201までの距離などを個別に測定する。
【0048】
図1図4~5に示すように、各ソナーユニット103,104は超音波を用いて測定対象物201までの距離を測定する。各ソナーユニット103,104は、発信した超音波が測定対象物201に当たって跳ね返ってくるまでの往復時間から測定対象物201までの距離を測定するTOF(Time Of Flight)方式によって測定対象物201までの距離を測定する。左右のソナーユニット103,104のうち、右ソナーユニット103は、キャビン13の右側下方に配置された右乗降ステップ13Aに、小さい俯角を有する右下向き姿勢で取り付けられている。これにより、右ソナーユニット103は、トラクタ1の右外方側が測定範囲Nとなるように設定された状態で右側の前輪10と右側の後輪11との間の比較的高い位置に配置されている。左ソナーユニット104は、キャビン13の左側下方に配置された左乗降ステップ13Aに、小さい俯角を有する左下向き姿勢で取り付けられている。これにより、左ソナーユニット104は、トラクタ1の左外方側が測定範囲Nとなるように設定された状態で左側の前輪10と左側の後輪11との間の比較的高い位置に配置されている。
【0049】
図2に示すように、障害物検知ユニット50は、前後のライダーセンサ101,102が測定した測定対象物201が障害物200か否かを判定する障害物判定部48を有している。障害物判定部48は、車載制御ユニット40に含まれており、マイクロコントローラなどが集積された電子制御ユニットや各種の制御プログラムなどによって構築されている。車載制御ユニット40は、各ライダーセンサ101,102と各ソナーユニット103,104とにCANを介して相互通信可能に接続されている。
【0050】
障害物判定部48は、前後のライダーセンサ101,102からの位置情報などに基づいて、前後のライダーセンサ101,102によって測定された測定対象物201が障害物200か否かを判定する障害物判定制御を実行する。障害物判定部48には、障害物判定制御を実行するにあたって、トラクタ1におけるGPSの測位対象位置p0であるGPSアンテナ75の取り付け位置が測定対象物201の位置判定に使用する基準位置として登録されている。
【0051】
以下、図10に示すフローチャートなどに基づいて、障害物判定制御における障害物判定部48の処理手順について説明する。
なお、トラクタ1の前進走行時と後進走行時とでは、測定状態になるライダーセンサ101,102が異なるだけで、障害物判定制御における障害物判定部48の処理手順は同じであることから、ここでは、図6~8に示すように、前ライダーセンサ101が測定状態になり、後ライダーセンサ102が測定停止状態になるトラクタ1の前進走行時を例示して説明する。
【0052】
障害物判定制御において、障害物判定部48は、先ず、前ライダーセンサ101からの位置情報などに基づいて走行領域A2に対する測定対象物201の位置を特定する物体位置特定処理を行う(ステップ#1)。物体位置特定処理においては、前ライダーセンサ101により測定された測定対象物201の相対位置と、車体情報に含まれたトラクタ1におけるGPSアンテナ75の取り付け位置などから、トラクタ1におけるGPSの測位対象位置p0を原点(0,0)とする車体座標系での測定対象物201の座標(x,y)を求める(図6参照)。そして、測定対象物201の車体座標系での座標(x,y)を、各領域特定地点Ap1~Ap4の座標などを特定する圃場座標系(NED座標系)に座標変換して、圃場座標系での測定対象物201の座標(X,Y)を特定する(図7参照)。
次に、図8に示すように、障害物判定部48に登録された基準位置(トラクタ1におけるGPSの測位対象位置p0)と、特定した測定対象物201の位置とにわたる判定基準線Lを生成する判定基準線生成処理を行う(ステップ#2)。
そして、各領域特定地点Ap1~Ap4を繋ぐ矩形状の領域特定線ALと前述した判定基準線Lとの交点の有無を判定する交点判定処理を行い(ステップ#3)、その後、この交点判定処理にて交点があると判定された測定対象物201を障害物200から除外する障害物判定処理を行う(ステップ#4)。
【0053】
これにより、障害物判定部48は、例えば、図8に示すように、物体位置特定処理による測定対象物201の特定位置が、領域特定線ALに対する第1特定位置sp1であれば、領域特定線ALと判定基準線Lとの交点がないことから、この測定対象物201を走行領域A2内に位置する障害物200として判定する。又、物体位置特定処理による測定対象物201の特定位置が、領域特定線ALに対する第2特定位置sp2であれば、領域特定線ALと判定基準線Lとの交点があることから、この測定対象物201が走行領域A2外に位置していると判定して、この測定対象物201を障害物200から除外する。
【0054】
これに加えて、障害物判定部48は、例えば、図9に示すように、走行領域A2の形状が、走行領域A2外の一部(以下、非走行部と称する)が走行領域A2の中央側に向けて入り込むU字状などである場合において、物体位置特定処理による測定対象物201の特定位置が、領域特定線ALに対する第1特定位置sp1であれば、領域特定線ALと判定基準線Lとの交点がないことから、この測定対象物201を、トラクタ1が自動走行している部分領域A2cと同じ部分領域A2c内に位置する障害物200として判定する。又、物体位置特定処理による測定対象物201の特定位置が、領域特定線ALに対する第2特定位置sp2又は第3特定位置sp3であれば、領域特定線ALと判定基準線Lとの交点があることから、この測定対象物201が走行領域A2外、又は、トラクタ1が自動走行している部分領域A2cとは異なる部分領域A2dに位置していると判定して、この測定対象物201を障害物200から除外する。
ちなみに、図9に示すU字状の走行領域A2は、その形状や大きさなどが8つの領域特定地点Ap1~Ap8を繋ぐ領域特定線ALによって特定されている。
【0055】
つまり、障害物判定部48は、前述した物体位置特定処理と判定基準線生成処理と交点判定処理と障害物判定処理とを行うことにより、走行領域A2外に位置する測定対象物201を障害物200から除外することができるだけでなく、例えば、走行領域A2の形状が前述したU字状などの複雑な形状である場合は、トラクタ1が自動走行している部分領域A2cと異なる部分領域A2dに位置する測定対象物201をも障害物200から除外することができる。
【0056】
これにより、走行領域A2の形状にかかわらず、トラクタ1が走行領域A2において自動走行しているときには、障害物検知ユニット50が、走行領域A2外に位置する測定対象物201やトラクタ1が自動走行している部分領域A2cと異なる部分領域A2dに位置する測定対象物201を障害物200として誤検知する虞を回避することができ、この誤検知に起因して自動走行制御部46が不必要な接触回避処理を行うことによる作業効率の低下などを阻止することができる。
【0057】
自動走行制御部46は、前後いずれかのライダーセンサ101,102が複数の測定対象物201を測定し、障害物判定部48が複数の測定対象物201を障害物200として判定した場合は、トラクタ1から最も近い障害物200に基づいて接触回避処理を行う。これにより、トラクタ1が障害物200に接触する虞をより好適に回避することができる。
【0058】
図1~2、図4に示すように、トラクタ1には、その前方側と後方側とを撮像範囲とする前後2台のカメラ108,109が備えられている。前カメラ108は、前ライダーセンサ101と同様に、キャビン13の前面側における上部の左右中央箇所に、トラクタ1の前方側を斜め上方側から見下ろす前下がり姿勢で配置されている。後カメラ109は、後ライダーセンサ102と同様に、キャビン13の後端側における上部の左右中央箇所に、トラクタ1の後方側を斜め上方側から見下ろす後下がり姿勢で配置されている。各カメラ108,109の撮像画像は、トラクタ1の液晶モニタ32や携帯通信端末3の表示部4などにおいて表示させることができ、これにより、ユーザなどにトラクタ1の周囲の状況を視認させることができる。
【0059】
〔別実施形態〕
本発明の別実施形態について説明する。
なお、以下に説明する各別実施形態の構成は、それぞれ単独で適用することに限らず、他の別実施形態の構成と組み合わせて適用することも可能である。
【0060】
(1)作業車両1の構成に関する代表的な別実施形態は以下の通りである。
例えば、作業車両1は、左右の後輪11に代えて左右のクローラを備えるセミクローラ仕様に構成されていてもよい。
例えば、作業車両1は、左右の前輪10及び左右の後輪11に代えて左右のクローラを備えるフルクローラ仕様に構成されていてもよい。
例えば、作業車両1は、エンジン14の代わりに電動モータを備える電動仕様に構成されていてもよい。
例えば、作業車両1は、エンジン14と電動モータとを備えるハイブリッド仕様に構成されていてもよい。
【0061】
(2)例えば、作業車両1からその左右に位置する測定対象物201までの距離を測定する左右2組のソナーユニット103,104を相対位置測定部とし、障害物判定部48が、左右2組のソナーユニット103,104からの測距情報と、衛星測位システムを利用して取得した測位情報とに基づいて、測定対象物201の位置が走行領域A2内か否かを判定して走行領域A2外に位置する測定対象物201を障害物200から除外するように構成されていてもよい。
【0062】
(3)例えば、相対位置測定部101~104としてステレオカメラなどを採用してもよい。
【0063】
(4)図11に示すように、障害物判定部48には、測定対象物201の位置判定に使用するために走行領域A2内に設定された基準位置p0iが登録され、障害物判定部48が、障害物判定制御においては、図12のフローチャートに示すように、相対位置測定部(前後のライダーセンサ)101,102からの位置情報と衛星測位システムを利用して取得した測位情報とに基づいて測定対象物201の位置を特定する物体位置特定処理(ステップ#1)と、その特定した測定対象物201の位置と基準位置p0iとにわたる判定基準線Lを生成する判定基準線生成処理(ステップ#2)と、領域特定線ALと判定基準線Lとの交点の数量を算出する交点数算出処理(ステップ#3)と、この交点数算出処理で得られた交点の数量に基づいて測定対象物201の位置が走行領域A2内か否かを判定する内外判定処理(ステップ#4)と、内外判定処理で走行領域A2外と判定された測定対象物201を障害物200から除外する障害物判定処理(ステップ#5)とを行うように構成されていてもよい。
この構成において、例えば、図11に示すように、物体位置特定処理による測定対象物201の特定位置が、領域特定線ALに対する第1特定位置sp1であれば、領域特定線ALと判定基準線Lとの交点の数量が零になることから、障害物判定部48は、この測定対象物201を走行領域A2内に位置する障害物200として判定する。又、物体位置特定処理による測定対象物201の特定位置が、領域特定線ALに対する第2特定位置sp2であれば、領域特定線ALと判定基準線Lとの交点の数量が奇数になることから、障害物判定部48は、この測定対象物201が走行領域A2外に位置していると判定して、この測定対象物201を障害物200から除外する。
例えば、走行領域A2の形状が図9に示すU字状などである場合は、障害物判定部48は、領域特定線ALと判定基準線Lとの交点の数量が零又は偶数になる測定対象物201に対しては、走行領域A2内に位置する障害物200として判定する。又、障害物判定部48は、領域特定線ALと判定基準線Lとの交点の数量が奇数になる測定対象物201に対しては、走行領域A2外に位置していると判定して、この測定対象物201を障害物200から除外する。
【0064】
(5)図13に示すように、障害物判定部48には、測定対象物201の位置判定に使用するために走行領域A2外に設定された基準位置p0oが登録され、障害物判定部48が、障害物判定制御においては、相対位置測定部(前後のライダーセンサ)101,102からの位置情報と衛星測位システムを利用して取得した測位情報とに基づいて測定対象物201の位置を特定する物体位置特定処理と、その特定した測定対象物201の位置と基準位置p0oとにわたる判定基準線Lを生成する判定基準線生成処理と、領域特定線ALと判定基準線Lとの交点の数量を算出する交点数算出処理と、この交点数算出処理で得られた交点の数量に基づいて測定対象物201の位置が走行領域A2内か否かを判定する内外判定処理と、内外判定処理で走行領域A2外と判定された測定対象物201を障害物200から除外する障害物判定処理とを行うように構成されていてもよい。
この構成において、例えば、図13に示すように、物体位置特定処理による測定対象物201の特定位置が、領域特定線ALに対する第1特定位置sp1であれば、領域特定線ALと判定基準線Lとの交点の数量が零になることから、障害物判定部48は、この測定対象物201が走行領域A2外に位置していると判定して、この測定対象物201を障害物200から除外する。又、物体位置特定処理による測定対象物201の特定位置が、領域特定線ALに対する第2特定位置sp2であれば、領域特定線ALと判定基準線Lとの交点の数量が奇数になることから、障害物判定部48は、この測定対象物201を走行領域A2内に位置する障害物200として判定する。
例えば、走行領域A2の形状が図9に示すU字状などである場合は、障害物判定部48は、領域特定線ALと判定基準線Lとの交点の数量が零又は偶数になる測定対象物201に対しては、走行領域A2外に位置していると判定して、この測定対象物201を障害物200から除外する。又、障害物判定部48は、領域特定線ALと判定基準線Lとの交点の数量が奇数になる測定対象物201に対しては、走行領域A2内に位置する障害物200として判定する。
【0065】
<発明の付記>
本発明の第1特徴構成は、作業車両用の自動走行システムにおいて、
走行領域の特定に使用する領域特定情報を記憶する記憶部と、
衛星測位システムを利用して取得した測位情報に基づいて作業車両を特定された走行領域内で自動走行させる自動走行制御部と、
前記作業車両の周囲における障害物の存否を検知する障害物検知ユニットとを備え、
前記自動走行制御部は、前記障害物検知ユニットが前記障害物の存在を検知したときに、前記障害物に対する前記作業車両の接触を回避する接触回避処理を行い、
前記障害物検知ユニットは、前記作業車両に備えられて測定対象物の相対位置を測定する相対位置測定部と、前記相対位置測定部からの位置情報と前記測位情報と前記領域特定情報とに基づいて前記測定対象物の位置が前記走行領域内か否かを判定して走行領域外に位置する前記測定対象物を前記障害物から除外する障害物判定部とを有している点にある。
【0066】
本構成によれば、障害物判定部が、衛星測位システムを利用して取得した測位情報に含まれる作業車両の現在位置や、相対位置測定部により測定される測定対象物の相対位置、などに基づいて、相対位置測定部により測定された測定対象物の位置が走行領域内か否かを判定し、走行領域外に位置する測定対象物を障害物から除外することから、障害物検知ユニットが走行領域外に位置する測定対象物を障害物として誤検知する虞を回避することができる。
【0067】
これにより、作業車両が走行領域内において自動走行しているときに、自動走行制御部が、障害物として誤検知された走行領域外の測定対象物に基づいて接触回避処理を行うことに起因した作業効率の低下などを阻止することができる。
【0068】
そして、障害物検知ユニットは、前述した誤検知を回避する上において、作業車両が圃場端に向けて自動走行している間、作業車両の現在位置から進行方向の圃場端までの離隔距離を演算する演算処理や、作業車両が圃場端に近づくに従って相対位置測定部の測定距離を制限する測距制限処理などを行い続ける必要がないことから、障害物検知ユニットにかかる負荷の軽減を図ることができる。
【0069】
その結果、障害物検知ユニットにかかる負荷の軽減を図りながら、障害物検知ユニットが走行領域外に存在する他物を障害物として誤検知する虞を回避することができ、この誤検知に起因した作業効率の低下などを阻止することができる。
【0070】
本発明の第2特徴構成は、
前記領域特定情報には、前記走行領域が特定される作業地の角部地点や変曲点を含む複数の領域特定地点と、前記複数の領域特定地点を繋いで前記走行領域を特定する領域特定線とが含まれており、
前記障害物判定部には、前記作業車両における前記衛星測位システムの測位対象位置が前記測定対象物の位置判定に使用する基準位置として登録され、
前記障害物判定部は、前記相対位置測定部からの位置情報と前記測位情報とに基づいて前記測定対象物の位置を特定する物体位置特定処理と、その特定した前記測定対象物の位置と前記基準位置とにわたる判定基準線を生成する判定基準線生成処理と、前記領域特定線と前記判定基準線との交点の有無を判定する交点判定処理と、この交点判定処理にて交点があると判定された前記測定対象物を前記障害物から除外する障害物判定処理とを行う点にある。
【0071】
本構成によれば、障害物判定部は、前述した物体位置特定処理と判定基準線生成処理と交点判定処理と障害物判定処理とを行うことにより、走行領域外に位置する測定対象物を障害物から除外することができるだけでなく、例えば、走行領域の形状が、走行領域外の一部(以下、非走行部と称する)が走行領域の中央側に向けて入り込むU字状などである場合において、作業車両が非走行部を挟んで隣接する一方の部分領域において非走行部に向けて自動走行しているときに、相対位置測定部が非走行部を挟んだ反対側の部分領域に位置する測定対象物を測定したとしても、この測定対象物、つまり、作業車両が自動走行している部分領域と異なる部分領域に位置する測定対象物を障害物から除外することができる。
【0072】
これにより、前述したU字状などの走行領域内において作業車両が自動走行しているときに、障害物検知ユニットが、走行領域外に位置する測定対象物や作業車両が自動走行している部分領域と異なる部分領域に位置する測定対象物を障害物として誤検知する虞を回避することができ、この誤検知に起因した作業効率の低下などを阻止することができる。
【0073】
本発明の第3特徴構成は、
前記領域特定情報には、前記走行領域が特定される作業地の角部地点や変曲点を含む複数の領域特定地点と、前記複数の領域特定地点を繋いで前記走行領域を特定する領域特定線とが含まれており、
前記障害物判定部には、前記測定対象物の位置判定に使用するために前記走行領域内又は前記走行領域外に設定された基準位置が登録され、
前記障害物判定部は、前記相対位置測定部からの位置情報と前記測位情報とに基づいて前記測定対象物の位置を特定する物体位置特定処理と、その特定した前記測定対象物の位置と前記基準位置とにわたる判定基準線を生成する判定基準線生成処理と、前記領域特定線と前記判定基準線との交点の数量を算出する交点数算出処理と、この交点数算出処理で得られた交点の数量に基づいて前記測定対象物の位置が前記走行領域内か否かを判定する内外判定処理と、前記内外判定処理で前記走行領域外と判定された前記測定対象物を前記障害物から除外する障害物判定処理とを行う点にある。
【0074】
本構成によれば、障害物判定部は、前述した物体位置特定処理と判定基準線生成処理と交点数算出処理と内外判定処理と障害物判定処理とを行うことにより、走行領域の形状が単純な矩形状の場合だけでなく、例えば前述したU字状などの複雑な形状である場合においても、相対位置測定部により測定された測定対象物の位置が走行領域外か否かを容易に判定することができ、走行領域外に位置する測定対象物を障害物から除外することができる。
【0075】
具体的には、障害物判定部に登録された基準位置が走行領域内に設定されている場合は、交点の数量が零又は偶数になる測定対象物が走行領域内に位置すると判定されて障害物として判定され、かつ、交点の数量が奇数になる測定対象物が走行領域外に位置すると判定されて障害物から除外される。
又、障害物判定部に登録された基準位置が走行領域外に設定されている場合は、交点の数量が零又は偶数になる測定対象物が走行領域外に位置すると判定されて障害物から除外され、かつ、交点の数量が奇数になる測定対象物が走行領域内に位置すると判定されて障害物として判定される。
【0076】
つまり、走行領域の形状が矩形状などの単純な形状である場合と前述したU字状などの複雑な形状である場合とにかかわらず、障害物判定部により、走行領域外に位置する測定対象物を障害物から簡単かつ確実に除外することができる。
【0077】
その結果、走行領域の形状にかかわらず、作業車両が走行領域内において自動走行しているときに、障害物検知ユニットが、走行領域外に位置する測定対象物を障害物として誤検知する虞を回避することができ、この誤検知に起因した作業効率の低下などを阻止することができる。
【符号の説明】
【0078】
1 作業車両
46 自動走行制御部
47 記憶部(車載記憶部)
48 障害物判定部
50 障害物検知ユニット
101 相対位置測定部(前ライダーセンサ)
102 相対位置測定部(後ライダーセンサ)
103 相対位置測定部(右ソナーユニット)
104 相対位置測定部(左ソナーユニット)
200 障害物
201 測定対象物
Ap1 領域特定地点
Ap2 領域特定地点
Ap3 領域特定地点
Ap4 領域特定地点
A2 走行領域
AL 領域特定線
L 判定基準線
p0 測位対象位置
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13