IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴの特許一覧

特開2022-189814拡大された光ビームを有する集積光学素子
<>
  • 特開-拡大された光ビームを有する集積光学素子 図1
  • 特開-拡大された光ビームを有する集積光学素子 図2
  • 特開-拡大された光ビームを有する集積光学素子 図3
  • 特開-拡大された光ビームを有する集積光学素子 図4
  • 特開-拡大された光ビームを有する集積光学素子 図5
  • 特開-拡大された光ビームを有する集積光学素子 図6
  • 特開-拡大された光ビームを有する集積光学素子 図7
  • 特開-拡大された光ビームを有する集積光学素子 図8
  • 特開-拡大された光ビームを有する集積光学素子 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022189814
(43)【公開日】2022-12-22
(54)【発明の名称】拡大された光ビームを有する集積光学素子
(51)【国際特許分類】
   G02B 6/26 20060101AFI20221215BHJP
   G02B 6/124 20060101ALI20221215BHJP
   G02B 6/42 20060101ALI20221215BHJP
   G02B 6/34 20060101ALI20221215BHJP
   H01S 5/183 20060101ALI20221215BHJP
   H01S 5/026 20060101ALI20221215BHJP
【FI】
G02B6/26
G02B6/124
G02B6/42
G02B6/34
H01S5/183
H01S5/026 610
【審査請求】未請求
【請求項の数】18
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2022094387
(22)【出願日】2022-06-10
(31)【優先権主張番号】2106181
(32)【優先日】2021-06-11
(33)【優先権主張国・地域又は機関】FR
(71)【出願人】
【識別番号】502124444
【氏名又は名称】コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【弁理士】
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】オリヴィエ・カスタニー
【テーマコード(参考)】
2H137
2H147
5F173
【Fターム(参考)】
2H137AB01
2H137AB05
2H137AB06
2H137BA01
2H137BA34
2H137BA52
2H137BA53
2H137BB03
2H137BB13
2H137BC06
2H137BC10
2H137BC51
2H137BC52
2H137CA15A
2H137CA62
2H137CC02
2H137CC03
2H137EA01
2H137EA04
2H137EA06
2H147AB24
2H147BG04
2H147CA11
2H147CA13
2H147CA15
2H147CB01
2H147CC12
2H147CC13
2H147EA13A
2H147EA13C
2H147EA14B
2H147EA16D
2H147FC01
2H147FC07
2H147FD02
2H147FD15
5F173AC00
5F173MF03
5F173MF28
5F173MF38
(57)【要約】
【課題】従来技術における必要性を満たし、欠点のいくつかを少なくとも部分的に克服する集積光学素子を提案する。
【解決手段】本発明は、基本光学部品の上面に配置された透明パッドを含むことを特徴とする集積光学素子に関し、透明パッドはその上面に平面ミラーを備え、基本光学部品はその上面に収束ミラーを備え、前記平面ミラーおよび収束ミラーは、平面ミラーでの反射によっておよび収束ミラーでの反射によって透明パッドを通過することによって、光ビームが内部光ゲートと外部光ゲートとの間を伝播するように配置される。
【選択図】図1
【特許請求の範囲】
【請求項1】
第1のいわゆる内部光ゲート(21)と第2のいわゆる外部光ゲート(31)との間の光ビーム(F)の伝播を確実にするように構成された集積光学素子(1)であって、
光ビーム(F)は、光軸、内部光ゲート(21)で光ビーム(F)の光軸に対して横方向に決定される第1の表面(S)、および第2の光ゲート(31)で光ビーム(F)の光軸に対して横方向に決定される第2の表面(S’)を有し、第2の表面(S’)の寸法が、第1の表面(S)の寸法よりも厳密に大きく、好ましくは少なくとも3倍大きく、
前記集積光学素子(1)は、前記内部光ゲート(21、21a、21b、21c)を含む基本光学部品(20)を含み、
基本光学部品(20)は、下面(201)と呼ばれる第1の面と、下面(201)とは反対側にある上面(202)と呼ばれる第2の面とを有し、
内部光ゲート(21)は、基本光学部品(20)の上面(202)を通過する軌道に沿って、それぞれ発散または収束する光ビーム(F)を放出または受け取るように構成されており、
集積光学素子(1)は、基本光学部品(20)の上面(202)に配置された透明層(30)をさらに含み、前記透明層(30)は、基本光学部品(20)の上面(202)の反対側に、上面(202)と平行な第3の面(302)を有し、前記透明層(30)は、前記第3の面(302)に外部光ゲート(31)を含み、
透明層(30)は、第3の面(302)に配置され、基本光学部品(20)の上面(202)と向かい合った平面ミラー(32)を含み、基本光学部品(20)は、透明層(30)の第3の面(302)と向かい合った収束ミラー(22、22a、22b)を含み、
前記平面ミラー(32)および収束ミラー(22)は、平面ミラー(32)での反射によっておよび収束ミラー(22)での反射によって透明層(30)を通過することによって、光ビーム(F)が内部光ゲート(21)と外部光ゲート(31)との間を伝播するように配置される、
集積光学素子(1)。
【請求項2】
平面ミラー(32)が、内部光ゲート(21)と収束ミラー(22)との間の光ビーム(F)の軌道上に挿入され、収束ミラー(22)が、外部光ゲート(31)と平面ミラー(32)との間の光ビームの軌道上に挿入される、請求項1に記載の素子。
【請求項3】
内部光ゲート(21)が、光ビーム(F)が、内部光ゲート(21)と平面ミラー(32)との間および平面ミラー(32)と収束ミラー(22)との間で、互いに平行ではない光線を有するように構成される、請求項1または2に記載の素子。
【請求項4】
収束ミラー(22)が、光ビーム(F)が、外部光ゲート(31)と前記収束ミラー(22)との間で互いに平行な光線を有するように構成される、請求項1から3の何れか一項に記載の素子。
【請求項5】
収束ミラー(22)が、0.8.Lから1.2.Lの間の焦点距離fを有し、Lは、内部光ゲート(21)と前記収束ミラーとの間で伝搬される光ビーム(F)の軌道の長さである、請求項1から4の何れか一項に記載の素子。
【請求項6】
内部光ゲート(21)と平面ミラー(32)との間の光ビーム(F)の軌道が、収束ミラー(22)の周辺で第2の面(202)を通過するように構成される、請求項1から5の何れか一項に記載の素子。
【請求項7】
外部光ゲート(31)が、平面ミラー(32)の周辺に配置される、請求項1から6の何れか一項に記載の素子。
【請求項8】
内部光ゲート(21)が、第2の面および第3の面(202、302)の法線方向に関して5°から20°の間、典型的には8°の角度θを有する光軸に沿って光ビーム(F)を放出または受け取るように構成される、請求項1から7の何れか一項に記載の素子。
【請求項9】
収束ミラー(22)が、球面または放物線状の曲面ミラー(22a)、フレネルミラー、回折ミラー(22b)の中から選択される、請求項1から8の何れか一項に記載の素子。
【請求項10】
内部光ゲート(21)が、回折ネットワーク(21a)、導波路(21b)の端部に関連付けられたデフレクタミラー、光検出器(21c)、垂直共振器面発光レーザーの中から選択される、請求項1から9の何れか一項に記載の素子。
【請求項11】
透明層(30)が、第3の面(302)に垂直な方向に沿って決定された、50μmから300μmの間の高さhを有する、請求項1から10の何れか一項に記載の素子。
【請求項12】
光ビームの第2の表面(S’)の寸法は、第1の表面(S)の寸法よりも少なくとも3倍、好ましくは少なくとも5倍大きい、請求項1から11の何れか一項に記載の素子。
【請求項13】
透明層(30)と基本光学部品(20)との間にポリマー介在層(203)を含む、請求項1から12の何れか一項に記載の素子。
【請求項14】
透明層(30)および基本光学部品(20)が、屈折率nを有するシリカ系であり、ポリマー介在層(203)が、0.9.n≦n≦1.1.nであるような屈折率nを有する透明ポリマー系である、請求項13に記載の素子。
【請求項15】
ポリマー介在層(203)が、基本光学部品(20)の収束ミラー(22)および透明層(30)の間の空間(E)を満たす、請求項13または14に記載の素子。
【請求項16】
透明層(30)が、基本光学部品(20)および収束ミラー(22)と直接接触している、請求項1から12の何れか一項に記載の素子。
【請求項17】
請求項1から16の何れか一項に記載の少なくとも1つの集積光学素子(1)と、外部光ゲート(31)と結合された光コネクタ(2)とを含むシステム。
【請求項18】
請求項13から15の何れか一項に記載の素子の製造方法であって、
第1の基板上に基本光学部品(20)および収束ミラー(22)を形成すること、および第2の基板上に透明層(30)および平面ミラー(32)を形成することを含み、基本光学部品(20)上での前記透明層(30)の追加および取付けを含み、前記取付けは、ポリマー介在層(203)を使用して行われる、製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の分野は、オンチップ集積フォトニクスの分野である。本発明は、より詳細には、フォトニックチップと外部デバイス、例えば、別のフォトニックチップ、光ファイバ、または一組の光ファイバとの光結合に関する。
【背景技術】
【0002】
集積光学素子、特にオンシリコンフォトニック部品は、PIC(フォトニック集積回路)とも呼ばれ、1つの同じチップ上に多数の機能を組み合わせることができる。これらの部品において、光は、PIC内に密に分散された機能ブロック間で、典型的には1マイクロメートル未満の幅の小さな光ガイドに送られる。
【0003】
これらの集積光学素子は、光結合によって光を交換することによって外部システムと通信することを目的としている。光結合に関連する課題は、光損失を制限することである。シングルモードの光ビームの場合、例えば光ファイバにおける結合を目的としたとき、作用する光ビームの直径が小さいことに起因して、結合は特に困難である。
【0004】
オンシリコンフォトニクスでは、PICの平面内を輸送される光は、例えば回折ネットワークなどの専用の機能要素によって平面の外側に向けられ、典型的には垂直方向と約8°の角度をなす切断または研磨されたシングルモードファイバと結合される。
【0005】
これらの光学部品から来るシングルモード光ビームは、一般的に、10マイクロメートルに近い直径を有する。シングルモード光ファイバとの直接結合は可能であるが、しかしながら、光ファイバを十分な結合比で配置し、光損失を制限する必要があるため、困難である。
【0006】
この配置精度を実現することは困難であり、高価かつ低速である専用の機械を使用する必要がある。結合を容易にし、位置決めの許容範囲を大きくするための解決策は、集積光学素子から出る光ビームの直径を数十ミクロンまで拡大することである。例えば、直径50μmの光ビームを使用すると、位置決めの許容範囲を±10μmに増やすことができる。位置合わせおよび位置決めの制約が緩和され、もはや高精度の機械を使用する必要がない。組み立ては、より安価でより高速な機械で続けて行うことができる。
【0007】
仏国特許出願公開第3066617号明細書は、集積光学素子が製造される基板の厚さから利益を得ることによってビームを広げることを可能にする解決策を開示している。基板はSOI(シリコン・オン・インシュレーター)タイプであり、BOX(埋め込み酸化物)と呼ばれる埋め込みシリカ層で構成されている。基板の裏の反対側のミラーは、光コネクタにより結合が与えられる前面の方向に光ビームを反射することを可能にする。ビームの自然な回折は、これが基板を通って伝播するときにビームの拡大をもたらす。したがって、基板内のビームの軌道の長さは、前面で得られるビームの寸法を決定する。その結果、前面におけるビームの直径は大幅に増加する。
【0008】
実際には、この解決策には製造が複雑であるという欠点があり、比較的高いコストが発生する。そのような集積光学素子を最適化する必要性が存在する。
【0009】
米国特許出願公開第2021/165165号明細書および米国特許出願公開第2019/265421号明細書は、PICおよび光ファイバを平面および収束ミラーを介して結合するための解決策を開示する。このタイプの解決策では、PICと光ファイバの組み立ての精度が非常に重要である。
【0010】
本発明の目的は、この必要性を満たし、上記の欠点のいくつかを少なくとも部分的に克服する集積光学素子を提案することである。
【0011】
本発明の他の目的、特徴および利点は、以下の説明および添付の図面を検討すると明らかになるであろう。他の利点を組み込むことができることが理解される。特に、集積光学素子の特定の特徴および特定の利点は、必要な変更を加えて、光学システムおよび/またはこの部品を製造するための方法に、およびその逆に適用することができる。
【先行技術文献】
【特許文献】
【0012】
【特許文献1】仏国特許出願公開第3066617号明細書
【特許文献2】米国特許出願公開第2021/165165号明細書
【特許文献3】米国特許出願公開第2019/265421号明細書
【発明の概要】
【課題を解決するための手段】
【0013】
この目的を達成するために、一実施形態によれば、集積光学素子が提供され、内部と呼ばれる第1の光ゲートと外部と呼ばれる第2の光ゲートとの間の光ビームの伝播を確実にするように構成される。光ビームは、典型的には、光軸、第1の光ゲートで光軸に対して横方向に決定される第1の切断面、および第2の光ゲートで光軸に対して横方向に決定される第2の切断面を有し、第2の切断面の寸法が、第1の切断面の寸法よりも厳密に大きく、好ましくは少なくとも3倍大きい。この集積光学素子は、前記内部光ゲートを含む基本光学部品を含む。
【0014】
基本光学部品は、下面と呼ばれる第1の面と、下面とは反対側にある上面と呼ばれる第2の面とを有する。内部光ゲートは、上面を通過する軌道に沿って、それぞれ発散または収束する光ビームを放出または受け取るように構成されている。
【0015】
有利には、集積光学素子は、基本光学部品の上面に配置された透明層をさらに含む。この透明層は、基本光学部品の上面の反対側に、上面と平行な第3の面を有する。透明層は、前記第3の面に外部光ゲートを含む。
【0016】
有利には、透明層はまた、第3の面上または第3の面に配置され、基本光学部品の上面と向かい合った平面ミラーを含む。基本光学部品は、例えば、上面上または上面に配置され、透明層の前記第3の面と向かい合った収束ミラーを含む。
【0017】
有利には、平面ミラーおよび収束ミラーは、平面ミラーでの反射によっておよび収束ミラーでの反射によって透明層を通過することによって、光ビームが内部光ゲートと外部光ゲートとの間を伝播するように配置される。
【0018】
したがって、内部光ゲートが発散光ビームを放出する場合、この光ビームは、基本光学部品において上面の方向に伝播され、次に透明層に伝播される。次に、光ビームは、平面ミラーによって収束ミラーの方向に反射され、その後収束ミラーによって外部光ゲートの方向に再び反射される。光ビームは、内部ゲートと平面ミラーとの間、次に平面ミラーと収束ミラーとの間の軌道の間に、特に透明層内で拡大される。収束ミラーは典型的には、コリメータとして機能して平行光ビームを形成する。これにより、外部光ゲートでの寸法が大きくなるように光ビームを広げることができる。円形断面ビームの場合、これは、外部ゲートでの直径が内部光ゲートでの初期直径よりも大幅に大きいことを意味する。したがって、光ビームは、透明層内の通過の間、有利に拡大される。以下、この透明層は「透明パッド」とも呼ばれる。
【0019】
集積光学素子は、内部光ゲートが収束光ビームを受け取るように構成されている場合にも動作する。光の可逆性の原理によれば、外部光ゲートに入射する光ビーム、好ましくは平行ビームは、収束ミラーの方向に伝搬され、次に内部光ゲートの方向に平面ミラーに向かって反射される。この軌道を進むビームは、内部光ゲートでの最小直径が、外部光ゲートでの初期直径よりも大幅に小さくなるように狭くなる。
【0020】
本発明の展開の範囲において、仏国特許出願公開第3066617号明細書で提案された解決策は、光ビームがシリカとシリコンとの間の界面を数回通過しなければならないことを意味するように思われる。これらの材料間の強い屈折率の差は、光のかなりの部分、約15%が反射され、その結果失われるという結果をもたらす。界面に反射防止層を導入することで、この解決策を改善できる可能性がある。ただし、技術的な理由から、この仏国特許出願公開第3066617号明細書で提案されている集積光学素子構造では、シリカとシリコンとの間の界面にこのような反射防止層を配置することは困難でありかつ費用がかかると思われる。本発明の展開の範囲で特定されたこの既知の解決策の別の欠点は、基板の背面におけるミラーの実現に関連している。これには、特に、背面においてこのミラーを製造する間、前面を保護し、その後この保護を解除することが含まれる。これにより、製造コストが増加する。本発明の展開の範囲においても特定された別の不利な点は、仏国特許出願公開第3066617号明細書によって開示される集積光学素子における基板の厚さが、所望のビーム直径とは無関係に選択できないことである。これにより、さらなる寸法の制約が生じる。
【0021】
本発明では、光ビームは基板を通過せず、それにより不都合な干渉反射を回避する。これによって、光損失を制限することができる。さらに、基板の厚さは、例えば、熱放散または電気的接続に関連する制約に従って、所望のビーム広がりとは独立して選択することができる。
【0022】
平面ミラーでの反射は、平面ミラーの横方向の平行移動、すなわち平面ミラーの平面内の平行移動の影響を受けない。したがって、基本光学部品上の透明パッドの横方向の位置決めは、2μmを超える、さらには5μmを超える、さらには10μmを超える位置決めの不正確さを許容する。その結果、透明パッドは、標準的な産業用チップ配置装置(「ピックアンドプレース」と呼ばれる装置)を使用して基本光学部品に取り付けることができ、典型的には±10μmの精度を提供する。これにより、このような集積光学素子の製造コストを抑えることができる。
【0023】
さらに、外部光ゲートは典型的には非標準的であり、様々な標準光コネクタと結合できる。外部光ゲートは、典型的には、第3の面の好ましくは平坦な部分の形態で示される。したがって、本発明による集積光学素子は、拡大ビームを備えた様々な光コネクタと結合することができる。その結果、集積光学素子と様々な光コネクタとの互換性が向上する。
【0024】
本発明の別の態様は、上記のような少なくとも1つの集積光学素子と、外部光ゲートと結合された光コネクタとを含むシステムに関する。本発明の別の態様は、集積光学素子の製造方法に関し、該方法は、第1の基板上に基本光学部品を形成すること、および第2の基板上に透明層および平面ミラーを形成することを含み、基本光学部品上での前記透明層の追加および取付けを含み、前記取付けは、ポリマー介在層を使用して行われる。集積光学素子の構造により、十分に隆起した基本光学部品上の透明パッドの位置決めの許容範囲が可能になる。したがって、コストおよび工業生産に関する課題については、例えば第1の生産ライン内で基本光学部品を、例えば第2の生産ライン内でそれぞれが平面ミラーを含む透明層またはパッドを、別々に製造し、次いで、典型的には接着性ポリマー層を使用してそれらを組み立てることが有利である。このような集積光学素子は、第3の生産ラインからの光コネクタと容易に結合することもできる。
【0025】
本発明の目的、対象、ならびに特徴および利点は、以下の添付の図面によって示される後者の実施形態の詳細な説明から最もよく明らかになるであろう。
【図面の簡単な説明】
【0026】
図1】本発明の実施形態による集積光学素子を概略的に示す。
図2】本発明の実施形態による光ビームの伝搬を概略的に示す。
図3】本発明の実施形態による基本光学部品を概略的に示す。
図4】本発明の別の実施形態による集積光学素子を概略的に示す。
図5】本発明の別の実施形態による集積光学素子を概略的に示す。
図6】本発明の別の実施形態による集積光学素子を概略的に示す。
図7】本発明の実施形態による光相互接続システムを概略的に示す。
図8】本発明の別の実施形態による光相互接続システムを概略的に示す。
図9】本発明の別の実施形態による光相互接続システムを概略的に示す。
【発明を実施するための形態】
【0027】
図面は例として与えられており、本発明を限定するものではない。それらは、本発明の理解を容易にすることを意図した主要な概略図を構成し、必ずしも実際の用途の縮尺に一致するものではない。特に、原理図では、様々な要素(部品、パッド、ミラー、コネクタなど)の寸法が必ずしも現実を表すとは限らない。
【0028】
本発明の実施形態の詳細なレビューを開始する前に、任意の特徴を以下に述べる。これは、関連して、または代替的に使用することができる可能性がある。
【0029】
一例によれば、前記平面ミラーおよび前記収束ミラーは、光ビームが、内部光ゲートを含む層を完全に通過することなく、好ましくは侵入することなく、平面ミラーと収束ミラーとの間を伝搬するように配置される。
【0030】
一例によれば、前記平面ミラーおよび前記収束ミラーは、光ビームが、透明パッドおよび場合によっては透明介在層を通過することによってのみ平面ミラーと収束ミラーとの間で伝搬されるように配置される。
【0031】
一例によれば、平面ミラーに垂直な軸に沿って突出して、収束ミラーは、内部光ゲートと外部光ゲートとの間に配置される。
【0032】
一例によれば、集積光学素子は基板を含み、基本光学部品は下面で基板によって支持される。
【0033】
一例によれば、平面ミラーは、内部光ゲートと収束ミラーとの間の光ビームの軌道上に挿入される。平面ミラーは、特に基本光学部品の上面に平行である。平面ミラーが平面でありかつ上面に平行であるため、内部光ゲートに関する配置の許容範囲を大きくすることができる。
【0034】
一例によれば、収束ミラーは、外部光ゲートと平面ミラーとの間の光ビームの軌道上に挿入される。これにより、例えば、平行光線を有する光ビームを外部光ゲートに戻すことができる。一例によれば、収束ミラーは、平行光線を有する光ビームを外部光ゲートに戻すように構成された焦点距離を有する。一例によれば、収束ミラーは、基本光学部品の上面に配置される。
【0035】
一例によれば、内部光ゲートは、光ビームが、内部光ゲートと平面ミラーとの間、および平面ミラーと収束ミラーとの間で、互いに平行ではない光線を有するように構成される。したがって、光ビームは、光ビームの伝搬方向に応じて、内部光ゲートと収束ミラーとの間の全軌道にわたって拡大または狭小化することができる。ビームは、特に、内部光ゲートから平面ミラーへの伝搬中、および平面ミラーから収束ミラーへの伝搬中に拡大することができる。
【0036】
一例によれば、収束ミラーは、光ビームが外部光ゲートと前記収束ミラーとの間で互いに平行な光線を有するように構成される。したがって、外部光ゲートから出る光ビームは平行になる。これにより、集積光学素子と他の要素、典型的には標準の光コネクタとの互換性を向上させることができる。一例によれば、収束ミラーは、0.8.Lから1.2.Lの間の焦点距離fを有し、Lは、内部光ゲートと収束ミラーとの間で伝搬される光ビームの軌道の長さである。
【0037】
一例によれば、集積光学素子は、内部光ゲートと平面ミラーとの間の光ビームの軌道が、収束ミラーの周辺にある基本光学部品の上面を通過するように構成される。その結果、部品が小型化される。
【0038】
一例によれば、外部光ゲートは平面ミラーの周辺に配置される。その結果、部品が小型化される。
【0039】
一例によれば、内部光ゲートは、第2の面および第3の面の法線方向に関して5°から20°の間、典型的には8°の角度θを有する光軸に沿って光ビームを放出または受け取るように構成された垂直カプラである。例えば、垂直カプラは回折ネットワークにより実現され、「垂直グレーティングカプラ」とも呼ばれる回折ネットワークを有する垂直カプラを形成する。回折ネットワークは、必ずしも光軸に直交しているとは限らない。回折ネットワークは、長方形であってよく、または実質的に三角形の形状を有するか、または他のものであってよい。ネットワークからの光ビームは、必ずしもネットワークと同じ形状の断面を持っているとは限らない。光ビームは、実質的にガウス光学系で形成されており、すなわち、断面にガウス強度の分布がある。光軸は、界面での反射および/または界面通過の間、例えば部品の出口界面で、方向を変える。
【0040】
一例によれば、収束ミラーは、球面または放物線状の曲面ミラー、またはフレネルミラー、または回折ミラーの中から選択される。一例によれば、典型的には、回折収束ミラーの場合、収束ミラーは、内部光ゲートと平面ミラーとの間の中間平面に配置される。一例によれば、収束ミラーは、内部光ゲートと上面との間の中間平面に配置される。したがって、内部光ゲートは、方向zに垂直な第1の平面にあり、上面は方向zに垂直な第2の平面に沿って伸び、内部光ゲートは方向zに垂直な第3の平面にあり、収束ミラーは第1の平面と第3の平面との間、好ましくは第1の平面と第2の平面との間に位置する、方向zに垂直な中間平面にある。
【0041】
一例によれば、内部光ゲートは、回折ネットワーク、導波路の端部に関連付けられたデフレクタミラー、光検出器、垂直共振器面発光レーザー(VCSEL)の中から選択される。このリストは網羅的なものではないため、様々な内部光ゲートが考えられる。これらの内部光ゲートは、VCSELのように純粋に発光するか、光検出器またはフォトダイオードのように純粋に受容することができるか、または、発光または受容で動作する双方向の内部光ゲートであってもよい。
【0042】
一例によれば、透明パッドは、第3の面に垂直な方向の高さhが50μmから300μmの間である。
【0043】
一例によれば、光ビームの第2の表面の寸法は、第1の表面の寸法よりも少なくとも3倍、好ましくは少なくとも5倍大きい。
【0044】
一例によれば、集積光学素子は、透明パッドと基本光学部品との間にポリマー介在層を含む。これにより、例えば、基本光学部品に適用された透明なパッドを接着することが可能になる。したがって、透明パッドは別個に製造することができる。
【0045】
一例によれば、透明パッドおよび基本光学部品はシリカ系であり、屈折率nを有する。
【0046】
一例によれば、ポリマー介在層は、0.9.n≦n≦1.1.nであるような屈折率nを有する透明ポリマー系である。これにより、光ビームがポリマー介在層を通過する際の干渉反射を回避することが可能になる。別の例によれば、ポリマー介在層は、1.2≦n≦1.7であるような屈折率nを有する透明ポリマー系である。
【0047】
一例によれば、ポリマー介在層は、基本光学部品の収束ミラーおよび透明パッドの間の空間を満たす。これにより、例えば、透明パッドと収束ミラーとの間で様々な形状に対応することが可能になる。したがって、ポリマー介在層は、収束ミラーと透明パッドとの間の材料の連続性を保証する。透明パッドは、互いに平行な平坦な面を有してよい。これにより、透明パッドの設計が簡素化される。
【0048】
一例によれば、透明パッドは、基本光学部品および収束ミラーと直接接触している。透明パッドは、例えば、ホットラミネートされた透明ポリマーの堆積によって、基本光学部品上に直接製造することができる。この場合、透明パッドは収束ミラーの形状を成形することができる。
【0049】
非互換性を除いて、所与の実施形態について詳細に説明された技術的特徴は、必ずしも図示または説明されていない別の実施形態を形成するために、例として、かつ非限定的に説明された他の実施形態の文脈で説明された技術的特徴と組み合わせることができる。そのような実施形態は、明らかに本発明から除外されない。
【0050】
本発明の範囲において、「第1の光ゲートと第2の光ゲートとの間の光ビームの伝播を確実にする」という表現は、ビームを第1の光ゲートから第2の光ゲートに、またはその逆に、光ビームを第2の光ゲートから第1の光ゲートに送ることができることができることを意味する。光ビームは、典型的には、光の軌道または経路に沿って伝搬される。
【0051】
本発明の範囲において、「透明な」物体または材料は、物体または材料が、光ビームからの光強度の少なくとも90%を通過させることを意味する。
【0052】
透明な層は様々な形状をとることができる。この層が有することができる形状を制限するこの表現なしで、それは透明パッドとして適したものとすることができる。したがって、透明パッドは必ずしも直方体の形状に限定されない。例えば、円柱に類似する場合、または中空または突出した凹凸がある場合が可能である。
【0053】
「反射」またはその同等物という用語は、入射光ビームの表面から、入射方向と反対の方向を有する1つまたは複数の方向に再放出する現象を指す。現行の説明では、表面は、入射光ビームの強度の少なくとも85%を再放出すれば、反射性であるとみなされる。反射は、鏡面反射性(反射方向)または散乱性(いくつかの反射方向)であり得る。
【0054】
本発明の範囲において、「上(on)」、「上(surmounts)」、「下(underlying)」、「反対(opposite)」という用語およびそれらの同等物は、必ずしも「接触している」ことを意味するわけではないことが明記される。その結果、例えば、第2の層への第1の層の堆積は、2つの層が互いに直接接触していることを強制的に意味するのではなく、第1の層が、第2の層と接触するか、または少なくとも1つの他の層または少なくとも1つの他の要素によって第2の層から分離されることによって、第1の層が少なくとも部分的に第2の層を覆うことを意味する。
【0055】
さらに、層は、1つの同じ材料または異なる材料の複数の副層で構成することができる。
【0056】
材料A「系」基板、要素、層とは、基板、要素、層が、この材料Aのみ、またはこの材料Aおよび場合によっては他の材料、例えば合金元素および/またはドーピング元素を含むことを意味する。
【0057】
軸x、y、zを含む、好ましくは正規直交マーカーが、添付の図に示されている。1つのマーカーが1つの同じ図の組で表されている場合、このマーカーはこの組のすべての図に適用される。
【0058】
本願では、高さおよび深さはzに沿って取られている。ビームは光軸に沿って伝播し、伝播するにつれてその形状が発達する。光軸を横切る平面では、この平面内のビームの輪郭を考慮して、ビームの形状および寸法が評価される。光軸を横切る平面内のビームの輪郭は、強度が光軸上のビームの中心に対して1/eの係数で減少するこの平面の点の位置として定義される。eはオイラー定数であり、約2.71828に相当する。したがって、ビームの形状は、例えば、円形であり、直径によって定義され得るか、または、例えば、楕円形であり、長径および短径によって定義され得る。一般的な場合、所定の横断面におけるビームの寸法は、この平面におけるビームの輪郭の任意の2点間の最大直線寸法として構成される。所定の横断面について、ビームの「断面」または「表面」は、ビームの輪郭の内側に位置する横断面の表面として定義される。この断面または表面の「寸法」は、考慮される横断面におけるビームの寸法として定義される。
【0059】
可能性に応じて、ビームの寸法またはビームの寸法特性は、光軸に直交する平面、例えば図2の表面Sの寸法dとして、内部光ゲートで測定される。外部光ゲートでのビームの屈折は、典型的には、透明層と外部媒体との間の界面で、光軸の方向における変化を引き起こす。この界面は「第3の表面」と呼ばれる。したがって、外部光ゲートでビームの寸法を測定するためのいくつかの可能性が存在する。ビームの寸法またはビームの寸法特性は、外部光ゲートで、集積光学素子の外側の光軸に直交する平面内で測定することができ、例えば、図2の表面S’の寸法d’であり、または、集積光学素子の透明層内の光軸に直交する平面内で測定することができ、例えば、図2の表面Sの寸法dである。別の可能性によれば、ビームの寸法またはビームの寸法特性は、外部光ゲートで、第3の表面の平面内で測定される。したがって、「断面」または「横断面」は、必ずしもこの断面または表面が光軸に直交していることを意味するわけではない。
【0060】
「上(on)」、「上(surmounts)」、「下(under)」、「下(underlying)」、「上(above)」、「下(below)」などの相対的な用語は、z方向に取られる位置を指す。この用語のリストは網羅的ではない。その他の関連する用語は、添付の図面を参照することにより、必要に応じて容易に特定することができる。
【0061】
別の要素「に(で)(at)」配置された要素とは、この要素をこの別の要素の上またはすぐ近くに配置することを意味する。典型的には、第3の面に配置された平面ミラーとは、平面ミラーがこの第3の面に直接あるか、または例えば第3の面の下の透明層中に、前記透明層の厚さの最大20%の深さで封入されることによって、この第3の面に対してわずかにずれることを意味する。「at」は、位置決めの許容誤差が許されることを示す。この許容範囲は、図面に示されている理想的な位置に関して約20%である。
【0062】
「垂直(vertical、vertically)」という用語は、zに沿った方向を指す。「水平(horizontal、horizontally)」という用語は、平面xyの方向を指す。用語「横方向」という用語は、これが動きまたは位置決めに関連する場合、平面xy内の方向も指す。
【0063】
別の要素の「垂直方向に位置合わせされて」または「の右側に」配置された要素は、これら2つの要素が両方とも図において垂直方向に向けられた1つの同じ線上に配置されていることを意味する。
【0064】
集積光学素子の様々な実施形態を以下に説明し、図1~9に示す。この光学部品の原理は、内部光ゲート(ビームの寸法特性が縮小される)と外部光ゲート(ビームの寸法特性が拡大される)との間の光ビームの寸法を変更することである。拡大された特性寸法は、好ましくは、縮小された特性寸法の3倍よりも大きく、好ましくは5倍よりも大きい。ビームの寸法特性は、典型的には、直径、または楕円の長い軸または短い軸である場合がある。以下では、わかりやすくするために、「直径」を単に参照して、この特徴的な寸法を意味する。光ビームの波長λは典型的には、約1.3μmまたは1.5μmである。
【0065】
本発明による集積光学素子1の第1の例を図1に示す。
【0066】
集積光学素子1は、基板10によって運ばれる基本光学部品20を含む。基本光学部品20は、内部光ゲート21を備える。それは、下面201および上面202を有する。
【0067】
この基本光学部品20は、典型的には、シリコンオンインシュレータ(SOI)タイプの基板から形成されたチップまたはオンシリコンフォトニック部品であり得る。このようなSOI基板は、典型的には、zに沿ったスタックとして、いわゆる「バルク」シリコン固体基板上の、例えば厚さ800nmのいわゆる埋め込み酸化物(BOX)層上に、例えば厚さ300nmのtopSiと呼ばれる薄いシリコン層を含む。ここでバルクシリコンは、基本光学部品20の支持基板10を形成する。BOXとバルクとの間の界面は、基本光学部品20の下面201に対応する。
【0068】
topSi層は、典型的には、フォトニック要素、例えば1つまたは複数の導波路21’を形成するように構造化される。基本光学部品20は、光電気光学変調器、例えばシリコンゲルマニウム(on-silicon germanium)で作られたフォトダイオード、フィルタリングまたはルーティング機能、および様々なフォトニック要素を制御するための金属導電体25などの様々な機能を含むことができる。
【0069】
すべてのフォトニック要素および電気要素は、典型的には、シリカのような絶縁性かつ透明な誘電物質系の封入層23に封入される。以下では、封入層23はシリカで形成されており、屈折率としてn=1.45を有するとみなす。
【0070】
図示されていない可能性によれば、他のタイプの基本光学部品20、例えば、材料III-VまたはII-VIから製造された回路も考慮することができる。
【0071】
図1に示される例では、topSi層は、回折ネットワーク21aを形成するために、導波路21’の端部に構造化されている。この回折ネットワーク21aは、ここで内部光ゲート21を形成する。それは上向きに配向され、すなわち、上面202を通して光ビームFを放出または受信する垂直カプラとして構成される。回折ネットワーク21aは、光の方向において出力ゲートとしてまたは入力ゲートとして見ることができる。ここで、それは双方向の内部光ゲート21を形成する。
【0072】
光ビームFの光軸に沿って、ビームの形状および寸法が変化する。以下の説明では、ビームの形状は対称面xzを持つ円形または楕円形であるとみなされる。楕円ビームの場合、「直径」という用語は、対称面xzに位置する楕円の直径を意味する。
【0073】
光ビームFは、典型的には、Sで参照される内部光ゲート21に縮小された寸法の第1の断面を有する。この断面は、円形または楕円形の場合、典型的には、図2で参照される平面xz内の直径dを有する。この縮小直径dは、内部光ゲート21でのものである。この縮小直径dは、例えば約9μmである。図1に示されるように、光ビームFは、典型的には、垂直に対して約8°の角度θで上向きに向けられる。
【0074】
基本光学部品20はまた、その上面202において、上向きであり、このレベルでのビームの幅D以上の直径の収束ミラー22を含み、ビームの幅は、水平方向xにおいて測定される。幅Dは、図2において参照されている。
【0075】
集積光学素子1はまた、基本光学部品20の表面に配置された、透明パッド30とも呼ばれる、透明層30を含む。この透明パッド30は、様々な形状、例えば、直方体形状を有することができるが、この特定の形状に制限されない。この透明パッド30は、内部光ゲート21および収束ミラー22の上に配置される。透明パッド30は、その上面302上に、平坦な反射ゾーンまたは平面ミラー32を有する。透明パッド30は、典型的には、平面xyに平行な、平坦面301、302を有することができる。平面ミラー32は、透明パッド30内で光ビームFを反射して、内部光ゲート21と収束ミラー22との間に光軌道を確立することを可能にする。したがって、内部光ゲート21によって放出された光ビームは、基本光学部品20内を、次に透明パッド30を上方に伝播され、一方で拡大される。次に、光ビームFは、平面ミラー32によって収束ミラー22の方向に反射される。光ビームFは、このようにして、拡大しながら、収束ミラー22によって平行にされる前に、透明パッド30内に戻る。次に、平行にされた光ビームFは、外部光ゲート31の方向に上向きに向けられる。結果的に、光ビームFは、集積光学素子1から出る。
【0076】
パッド30の厚さhは、十分な経路長を提供するように選択され、光ビームFが、収束ミラー22での反射後、直径dに達するまで、その軌道の間に拡大されるようにする。dが大きいほど、不整合に対する許容誤差は良好である。収束ミラーの厚さhおよび焦点距離は、特に、相互に応じて選択または決定することができる。
【0077】
図2に示されるように、一般にPが示され、これは内部光ゲート21と結合された光ビームのネックの中心に位置する点であり、dはこのネックでのビームの直径である。放出角度θは、光軸と呼ばれる光ビームの中心半径とzに沿った垂直線との間で測定される。収束ミラー22と外部光ゲート31との間のビームの断面はSと参照する。この断面は、それが円形または楕円形である場合、典型的には、dで参照される直径を有する。外部光ゲート31を出ることによって、光ビームは、角度θとは異なる角度θ’、および断面S’または直径d’を有し得る。これは、典型的には、面302での光屈折の現象に起因する。したがって、光ビームFは、外部光ゲート31で拡大された寸法の第2の断面を有する。この第2の断面は、集積光学素子の内側の表面S、または集積光学素子の外側の表面S’を持つことができる。
【0078】
したがって、光ビームFの拡大された断面は、内部ゲート21で測定される第1の表面Sの寸法と比較して、厳密に大きい寸法、好ましくは少なくとも3倍大きい、より好ましくは少なくとも5倍大きい寸法の第2の表面SまたはS’を有する。
【0079】
一般に「光の可逆性の原理」と呼ばれる光学の法則は、ある方向に進む光の軌跡が反対方向にも進む可能性があることを示していることに注意されたい。これは、「出力」光ゲートの場合、すなわち光ビームを放出する場合に設定された推論を、「入力」光ゲートの場合、すなわち光ビームを受け取る場合に、光路の方向を逆にすることによって書き換えることができることを意味する。したがって、第1の光ゲートと第2の光ゲートとの間の光ビームの伝播を確実にすることは、ビームが第1の光ゲートから第2の光ゲートに伝播できること、または逆に、ビームが第2の光ゲートから第1の光ゲートに伝播できることを意味する。
【0080】
図3は、基本光学部品20の実施形態をより詳細に示している。この例では、中心Oおよび焦点距離fの湾曲した収束ミラー22aが、部品20の上面202で製造される。この収束ミラー22aは、直径dのビームを反射するのに十分な直径を有する。ミラーの直径D22は、例えば、30から100ミクロンの間であり、典型的には約70μmである。収束ミラー22aは、0.5から3ミクロンの間、例えば、約1.2ミクロンの高さh22aを有することができる。
【0081】
このような曲面ミラーは、グレースケールフォトリソグラフィーにより実現することができる。次いで、このグレースケールフォトリソグラフィーによって得られたパターンは、シリカ封入層23でのエッチングによって転写される。反射層、例えば、厚さ約200nmのAlSi層のアルミニウム層の堆積が、転写されたパターンで行われる。このようにして、曲面ミラー22aが得られる。好ましくは、しかし任意選択で、保護透明層24(例えば、窒化ケイ素層)が、ミラー22a上および基本光学部品20の上面202上に形成される。有利には、窒化ケイ素系保護層24の厚さは、反射防止層を形成するように選択することができる。
【0082】
別の可能性によれば、封入層23はポリマー材料系であり、曲面ミラー22aは、型を使用してポリマー材料をエンボス加工することによって製造される(「ナノインプリントリソグラフィー」)。このようにして得られた曲面は、次に、例えばアルミニウム堆積によって反射層で覆われる。
【0083】
他のタイプの収束ミラーを検討することができる。図4は、例えば、フレネルミラーまたは回折ミラータイプの収束ミラー22bを示している。このような回折ミラーは、二層または多層にもすることができる。これは、典型的には、光の波長よりも小さい可能性のある細かさで定義される(「サブ波長回折ミラー」)。
【0084】
収束ミラー22は上向きに向けられている。すなわち、収束ミラー22は、上から下に向かう光ビームに対して反射性かつ収束性である。中心Oのミラー軸は典型的には垂直であるが、反射後のビームの向きを変更するために、ミラーの軸が含まれるようにミラーを設計することもできる。
【0085】
図5は、内部光ゲート21が「サイドカプラ」タイプである、集積光学素子1の別の実施形態を示している。この例では、導波路21’は、デフレクタミラー212に関連付けられたモードコンバータ211と結合されている。したがって、内部光ゲート21は、ここでは、モードコンバータ211およびデフレクタミラー212から構成される複合光ゲートである。
【0086】
シリコン導波路21’によって導かれる光学モードの寸法は一般に1ミクロン未満であり、例えば窒化ケイ素で作られたモードコンバータ211を使用して、より広い直径、例えばd=6μmのビームF1を生成することが有利である。次に、このビームF1は、平面ミラー32の方向の角度θに従ってミラー212によって戻される。図1に示される結合ネットワーク21aの場合のように、光ゲート21bは、双方向ゲートである。本発明の範囲において、この複合ゲートの組成および製造の詳細については触れず、それは、上記の2つのパラメータθおよびdのみによって特徴付けられるものであるとみなされる。
【0087】
図6に示される別の実施形態によれば、内部光ゲート21はまた、ゲルマニウムフォトダイオードのような受光器21cであってもよい。このようなフォトダイオードは、例えば、直径dが9μmであるシリコンキャビティ内に製造することができる。したがって、この内部光ゲート21、21cは、光入力ゲートにすぎない。垂直共振器型面発光レーザー(VCSEL)のような他のタイプの内部光ゲート21を考慮することができ、これは結果的に光出力ゲートとなる。
【0088】
集積光学素子1において、透明パッド30は、基本光学部品20に関連付けられている。この透明パッド30は、その面302に平面ミラー32および外部光ゲート31を備える。このような透明パッド30は、いくつかの方法で製造することができる。
【0089】
第1の実施形態では、この透明パッド30は、基本光学部品20とは別に製造される。透明パッド30は、ここでは、典型的には、フォトリソグラフィーによって例えばアルミニウム系の層の形態で平面ミラー32が準備されるシリカ基板33から、製造される。この平面ミラー32を保護するために、例えば窒化ケイ素系の透明封入ミラー34が、好ましくは、ミラー32上および透明パッド30の面302上に形成される。有利には、窒化ケイ素系の封入層34の厚さは、反射防止層を形成するように選択することができる。
【0090】
次に、透明パッド30は、様々な図1から9に示されるように、内部光ゲート21および収束ミラー22の上方で、基本光学部品20に接着することができる。透明パッド30の平面ミラー32は、基本構成要素20の内部光ゲート21から来る光を、光を遮断することなく反射し、次いで収束ミラー22によって反射するように配置されなければならない。平面ミラー32および透明パッド30の面301、302の平坦性に起因して、位置決めの精度は重要ではない。したがって、数ミクロン、さらには数十ミクロンの水平移動が許容される。その結果、限られた精度を有しかつ高速である配置機械を使用して、基本光学部品20上に透明パッド30を追加するこの操作を実施することができる。このことは、集積光学素子1を工業的に製造する状況において有利である。
【0091】
接着は、ポリマー介在層とも呼ばれる、透明なポリマー系の接着剤層203を使用して行うことができる。これは、典型的には曲面ミラー22aの場合に、収束ミラー22の上に存在するキャビティまたは空間Eを充填することを有利に可能にする。基本光学部品20と透明パッド30との間の干渉反射を制限することができる屈折率を有する接着剤層203が選択されることが好ましい。基本光学部品20の封入層23がシリカでできており、透明パッド30の基板33もシリカでできている場合、典型的には、シリカの屈折率に近い屈折率を有する接着剤層203が選択される。特に、紫外線照射下での重合接着剤層203を使用して、その実施中に透明パッド30の位置を固定することができる。さらに、「二重硬化」タイプの接着剤層203を使用することは有利であり得、これは、例えば、すべての透明パッド30が、互いの集合的追加の範囲内で、基本光学部品20上に配置される場合、最初の短い紫外線照射によって透明パッド30を急速に固定し、続いて接着剤層203の重合が終了するまで全体的な熱アニーリングを進めることを可能にする。
【0092】
接着の間、部品20から上面202のミラー32を分離する距離hを正確に定義するために、スペーサ(図示せず)、例えば、透明パッド30の下面301上に製造された平坦な接触端子、または較正されたシム、または接着剤層203に分散された較正されたボールを使用することが可能である。
【0093】
部品20の上面202が平坦であり、直接接着と互換性のある平坦性および粗さを有する場合、透明パッド30を接着するための他の手段、例えば直接接着(「分子接着」とも呼ばれる)を考慮することができる。
【0094】
有利なことに、透明パッド30は、集合的追加方法(collective extension method)の有効性から利益を得るために、基本光学部品20ウェハ上に集合的に実装される。透明パッド30を追加した後、ウェハは典型的には、製造の最後に切断されて、個々の集積光学素子1を製造する。
【0095】
別の実施形態では、透明パッド30は、透明なポリマー材料を堆積することによって、基本光学部品20上に直接形成される。透明パッド30は、この場合、例えば、基本光学部品20上にホットラミネートポリマーフィルムから形成することができ、次いで、平面ミラー32がフォトリソグラフィーによって形成される。例えば、次に、透明ポリマーワニス系保護層がポリマーフィルムおよび平面ミラー32の上に与えられてよい。
【0096】
以下に、サイジングおよび許容範囲の例が詳しく説明される。計算に使用されるモデリングおよび表記法を図2に示す。ここで、計算は波長λが1.310μm(真空中)として行われる。これらの計算は任意の他の波長で置き換えることができる。物事を単純にするために、通過される物質はすべてシリカの屈折率、n=1.447を有する状況であるとみなされる。垂直軸を有する中心Oの収束ミラー22が検討される。内部光ゲート21は、概して、ミラー22の中心Oの高さより、典型的には数ミクロン、例えばz=4μm低い距離zにある。内部光ゲート21がミラー22の中心よりも高い高さにあるというあまり一般的ではないケースは、負の高さ値zに相当する。しかしながら、zのこの値は、透明パッド30の厚さhの前では小さく、一般的には、計算では無視され得る。
【0097】
光ビームFは、ガウスシングルモードビームとみなされ、これは、現実の良い近似である。ガウスビームの発散はΔθ≒4λ/(πnd)である。収束ミラー22上での反射に応じた直径のビームを得るために、それを長さL=d/Δθにわたって広げるようにしておかなければならない。したがって、必要な透明パッドの厚さはh=L/2cos(θ)である。平行化されたビームFを生成するために、収束ミラー22の焦点距離fは、好ましくはLに等しい。この状況は、典型的には、集積光学素子1に対して求められる。
【0098】
第1の近似では、ミラー22は、曲げ半径R=2fの球形であり得る。しかしながら、角度θの斜め入射を考慮すると、入射面(図2の平面xz)において半径R1=2f/cos(θ)、矢状面(入射面に垂直)においてR2=2fcos(θ)の楕円表面を考慮することができる。一般的に、当業者は、光学設計ソフトウェア、例えば、Zemax、OsloまたはCODE Vを使用することによって理想的な表面を決定する。ミラー22の表面は、内部光ゲートの表面よりも大きい寸法を有する。
【0099】
光ビームFは、外部光ゲート31によって透明パッド30から出て、直径d’を有して、角度θ’の方向に、屈折率n’の媒体中に伝搬される。光ビームFの出口が空気中にある典型的な場合、すなわち、n’=1の場合が検討される。
【0100】
屈折の関係は、nsin(θ)=n’sin(θ’)と記述することができ、これにより、出力角度θ’=arcsin(nsin(θ)/n’)がθの関数として得られる。幾何学的関係は、d/cos(θ)=d’/cos(θ’)と記述することができ、これにより、収束ミラー22でのビームの直径が得られる:d’の関数として、d=d’cos(θ)/cos(θ’)である。
【0101】
収束ミラー22でのビームの水平直径Dは、D=d/cos(θ)である。収束ミラー22は、D以上の直径を有さなければならない。
【0102】
透明パッド30の上面302上の平面ミラー32で、ビームの水平直径は、D=L/2・Δθ/cos(θ)である。平面ミラー32は、D以上の直径を有さなければならない。この形状が実際に実現されるように、平面ミラー32でのビームの端部と外部光ゲート31で現れるビームの端部との間の縁部xは、収束ミラー22での反射後に決定されなければならない。これによって、平面ミラー32の端部が、出て行くビームの一部を打ち消す危険がないことを確認することが可能である。縁部xは、x=Lsin(θ)-(D+D)/2に従って計算できる。
【0103】
このモデリングのもう1つの課題は、幾何学的変化に対する光学システムの許容範囲に関連する。特に、透明パッド30の高さhの変化に応じて、または同様に、透明パッド30の下のポリマー接着剤層203の厚さの変化に応じて、内部および外部光ゲート21、31の間の結合の感度を決定することが可能である。内部光ゲート21と収束ミラー22の中心Oとの間の距離xは、dx/dh=2tan(θ)に従って変化する。内部光ゲートの平面内のビームの位置xの変化は、δx=δx・cos(θ)によってxの変化に関連付けられる。したがって、dx/dh=dx/dh cos(θ)=2sin(θ)が得られる。結果的に、差δxを生成する厚さδhの変化は、δh=δx/(2sin(θ))である。光ゲート21の中心に対する差δxによると、ガウスと仮定した光ゲート21の透過率は、T=exp(-4(δx/d)である。透過率Tは、例えば、差δx=d/5の場合T=85%に等しい。この状況に対応する高さの変化をδh(85%)と呼ぶ。この高さの変化は、δh(85%)=(d/5)/(2sin(θ))=d/(10sin(θ))に等しい。
【0104】
補足として、屈折率n’=1の媒体中に出るビームの角度および空間許容範囲が示される。出力ビームの角度幅はΔθ’≒4λ/(πn’d’)である。ビームの角度差δθ’に関して、外部光ゲート31の透過率は、T=exp(-4(δθ’/Δθ’))に従って変化し、例えば、δθ’=Δθ’/5の場合、T=85%に等しく、値はδθ’(85%)と記載される。入射ビームの理想的な位置に対する差δx’に関して、外部光ゲートにおける透過率はT=exp(-4(δx’/d’))に従って変化する。T=85%に減少した透過率に対応する差の値は、δx’(85%)と呼ばれる。
【0105】
以下の表1は、出口モードの直径d’が50μmの場合に3つの構成で行われた計算を示している。左側の3つの列は、他のパラメータが推定される入力パラメータである。
【0106】
【表1】
【0107】
表2は、出口モードの直径d’が70μmの場合に3つの構成で行われた計算を示している。
【0108】
【表2】
【0109】
提示されたすべての構成において、縁部xは10μmよりも大きく、これは、平面ミラー32の端部の位置に対して十分な許容誤差を残す。透明パッド30が、追加により基本光学部品20に取り付けられる場合、結果的に、この追加は、産業機器で一般的な、±10μmの精度を提供するチップ配置機器(「ピックアンドプレース」機器)を使用して行うことができる。この配置の許容範囲は、より繊細な配置(典型的には±2μm)を必要とする既知の手法と比較して、十分かつ有利である。さらに、本発明による集積光学素子と光コネクタとの間の不整合に対する許容範囲は、ビームの拡大とともに増加する。
【0110】
透明パッド30の厚さの許容範囲δh(85%)は、構成に応じて1.4から6.5μmまで変化する。透明パッドの製造の間、適切な研磨および測定方法を使用することにより、基板33の厚さを±1μm以上に制御することができる。スペーサを使用することで、同じ精度で接着を最適化することもできる。したがって、ここで説明する構成は実際に実現することができる。好ましくは、可能な限り広い直径dの内部光ゲート21が選択され、これは例えば6または9μmである。これは、厚さhに対して最も広い許容範囲を提供するのがこの状況であるためである。
【0111】
図7、8、および9に示されるように、本発明による透明パッド30を含む集積光学素子1は、拡大されたビームと結合されるように構成されたファイバ光コネクタ2と共に使用することができる。
【0112】
このようなコネクタ2は、典型的には、光ファイバ40の端部に1つまたは複数のマイクロレンズ42を備える。このタイプのコネクタは、特にセンコー(Senko)社で商品化されている。コネクタ2はまた、デフレクタミラーおよびマイクロレンズ、または湾曲したデフレクタミラーを使用して光ファイバ40からの光を偏向させるスリーブまたは金環41を備えることができる。これにより、ビームの方向を変更したり、拡大したり、平行化したりすることができる。このタイプのコネクタは、特にUSConec社で商品化されている。
【0113】
考慮される光コネクタ2の形状に応じて、集積光学素子1に対するその配向は、光軸が正しく位置合わせされるように適合されなければならない。図7および8は、集積光学素子1に関して、コネクタ2に関連する2つの位置決めおよび位置合わせの可能性を有する。
【0114】
図9に示されるように、機械的基部3もまた、上記の許容範囲に従って再現可能な位置決めを確実にするために提供され得る。特に、10μm以上の横方向許容範囲δx’(85%)により、この位置合わせの精度を確保するために、機械的基部3上の光コネクタ2の単純な機械的連結を検討することができる。これは、従来の集積光学素子の内部光ゲートの上に直接接着されたそのままの光ファイバの接続に典型的に必要とされる±2μmの精度と比較して緩和された許容誤差である。したがって、この機械的基部3は、単純な突起43を介してコネクタ2と係合することができる。
【0115】
本発明による集積光学素子1は、多種多様な光コネクタを使用することを可能にする。透明パッドおよび収束ミラーは、特に、考慮される光コネクタ2の公称モード直径に等しい直径d’で集積光学素子から出る拡大ビームを生成するために、上記の式を用いて製造することができる。基本光学部品20で使用される収束ミラー22の焦点距離、ならびに内部光ゲート21の直径dは、最先端技術から知られている手法とは反対に、コネクタ2の選択によって制約されない。
【0116】
さらに、本発明では、ビームは基板10を通過せず、したがって、不都合な干渉反射がない。シリカのような透明な材料を使用し、容易に利用可能な面202、302に反射防止層を実装することにより、光損失を大幅に制限する解決策を提案することができる。さらに、ビームの拡大は基板10に依存しないので、基板10の厚さは、求められるモードの直径d、d’の選択によって制約されないであろう。したがって、この基板10の厚さは、他の制約に対応するために(例えば、光学熱放散を確実にするために、または貫通ビアTSVの使用を可能にするために)独立して選択することができる。これにより、集積光学素子1の設計におけるより大きな多様性を考慮することが可能になる。
【0117】
上記の説明から、本発明による集積光学素子1は、光学損失が小さく、組み立てが容易であり(10ミクロンの精度で透明パッドを配置するだけで十分)、市販の様々なコネクタに関連付けることができる(設計時に特定のコネクタに関係づけられていない)ことが明らかである。
【0118】
本発明は、上記の実施形態に限定されない。
【符号の説明】
【0119】
1 集積光学素子
10 基板
20 基本光学部品
21、21a、21b、21c 内部光ゲート
22、22a、22b 収束ミラー
25 金属導電体
30 透明層
31 外部光ゲート
32 平面ミラー
33 基板
34 封入層
201 下面
202 上面
203 ポリマー介在層
302 第3の面
F 光ビーム
第1の表面
S’ 第2の表面
E 空間
図1
図2
図3
図4
図5
図6
図7
図8
図9
【外国語明細書】