(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022189855
(43)【公開日】2022-12-22
(54)【発明の名称】無電極単一低電力CWレーザー駆動プラズマランプ
(51)【国際特許分類】
H01J 65/04 20060101AFI20221215BHJP
H01J 61/54 20060101ALN20221215BHJP
【FI】
H01J65/04 Z
H01J61/54 Z
【審査請求】有
【請求項の数】20
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2022161871
(22)【出願日】2022-10-06
(62)【分割の表示】P 2019539210の分割
【原出願日】2018-01-19
(31)【優先権主張番号】15/409,702
(32)【優先日】2017-01-19
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】514156116
【氏名又は名称】エクセリタス テクノロジーズ コーポレイション
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【弁理士】
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【弁理士】
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【弁理士】
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】ブロンディア,ルディ
(57)【要約】
【課題】従来技術のランプの欠点のうちの1つ又は複数に対処する。
【解決手段】着火促進無電極密封高輝度照明機器は、連続波(CW)レーザー光源からレーザービームを受け取るように構成される。密封チャンバは、イオン化可能媒体を収容するように構成される。チャンバは、レーザービームをチャンバに入射させるように構成されたチャンバ内面の壁の内部に配置された入口窓と、プラズマ維持領域と、チャンバから高輝度光を放出するように構成された高輝度光出口窓と、を有する。CWレーザービームは、1100nm未満の波長を生成するように構成された250ワット未満のCWレーザーによって生成可能である。この機器は、レーザービームを、1~15ミクロン
2の半値全幅(FWHM)ビームウエスト及び6ミクロン以下のレイリー長に集束させるように構成され、プラズマは、CWレーザービームによって着火されるように構成される。
【選択図】
図5
【特許請求の範囲】
【請求項1】
連続波(CW)レーザー光源からレーザービームを受け取るように構成された着火促進無電極密封高輝度照明機器であって、
イオン化可能媒体を収容するように構成された密封チャンバを含み、前記チャンバは更に、
前記CWレーザーからのビームを前記チャンバに入射させるように構成されたチャンバ内面の壁内に配置された入口窓と、
プラズマ維持領域と、
前記チャンバから高輝度光を放出するように構成された高輝度光出口窓と、を含み、
前記CWレーザービームは、1100nm未満の波長を生成するように構成された250ワット未満のCWレーザーによって生成可能であり、前記CWレーザー光源から前記入口窓を通って前記チャンバ内の焦点領域に至る前記CWレーザービームの経路は直進的であり、前記CWレーザービームを、半値全幅(FWHM)ビームウエストが1~15ミクロン2で、レイリー長が6ミクロン以下の領域に集束させ、前記プラズマは前記CWレーザービームによって着火されるように構成される、着火促進無電極密封高輝度照明機器。
【請求項2】
完全に前記チャンバ内部に配置された非電極着火剤を更に含み、前記CWレーザービームは550nm未満の波長を生成するように構成された125ワット未満のCWレーザーによって生成可能であり、前記入口窓は、前記CWレーザービームを、半値全幅(FWHM)ビームウエストが0.5~7.5ミクロン2で、レイリー長が4ミクロン以下の領域に集束させるように構成されている、請求項1に記載の密封高輝度照明機器。
【請求項3】
前記CWレーザービームは、460nm未満の波長を生成するように構成された90ワット未満のCWレーザーによって生成可能である、請求項2に記載の密封高輝度照明機器。
【請求項4】
前記CWレーザービームは、460nm未満の波長を生成するように構成された150ワット未満のCWレーザーによって生成可能である、請求項1に記載の密封高輝度照明機器。
【請求項5】
前記入口窓は前記CWレーザービームを前記チャンバ内のレンズ焦点領域に集束させるように構成されたレンズを更に含む、請求項1に記載の密封高輝度照明機器。
【請求項6】
前記CWレーザー光源間の経路内に配置されたレンズを更に含み、前記入口窓は前記CWレーザービームを前記密封チャンバ内部のレンズ焦点領域に集束させるように構成される、請求項1に記載の密封高輝度照明機器。
【請求項7】
一体型反射チャンバ内面は、前記プラズマ維持領域から前記出射窓へ高輝度光を反射するように構成される、請求項1に記載の密封高輝度照明機器。
【請求項8】
イオン化可能媒体は第1の希ガスを含む、請求項1に記載の密封高輝度照明機器。
【請求項9】
イオン化可能媒体は第2の希ガスを更に含む、請求項8に記載の密封高輝度照明機器。
【請求項10】
前記機器は、前記CWレーザービームを用いて前記第1の希ガスを着火させるように構成され、前記着火された第1の希ガスは、前記第2の希ガスを着火させるように構成される、請求項9に記載の密封高輝度照明機器。
【請求項11】
前記チャンバからの出射の際に前記CWレーザーの主要な波長をフィルタリングするように構成されたフィルタ部品を更に含む、請求項1に記載の密封高輝度照明機器。
【請求項12】
密封チャンバを含む、着火電極の無い密封ビームランプを動作させるための方法であって、
前記チャンバの外部に配置された連続波(CW)レーザー光源から前記チャンバ内部の焦点領域へのエネルギーを受け取るように構成された窓を設けるステップと、
前記チャンバの圧力を所定の圧力レベルに設定するステップと、
前記CWレーザー光源を、前記チャンバ内部の200ミクロン3以下の所定の体積を有する前記チャンバ内部の焦点領域に集束させるステップと、
前記CWレーザー光源のみを用いて、前記チャンバ内部のイオン化可能媒体を着火させて、着火剤を使用することなくプラズマを形成するステップと、
前記CWレーザー光源を用いて前記チャンバ内部で前記プラズマを維持するステップと、を含む方法。
【請求項13】
前記所定の圧力レベルは少なくとも300psiであり、前記CWレーザー光源は250ワット以下の電力レベルを有する、請求項12に記載の方法。
【請求項14】
密封チャンバを含む、着火電極の無い密封ビームランプを動作させるための方法であって、
前記チャンバの外部に配置された連続波(CW)レーザー光源から前記チャンバ内部の焦点領域へのエネルギーを受け取るように構成された窓を設けるステップと、
前記チャンバの圧力を所定の圧力レベルに設定するステップと、
完全に前記チャンバ内部に配置された受動非電極着火剤を、前記焦点領域に隣接するように位置決めするステップと、
前記CWレーザー光源を用いて、前記受動非電極着火剤を加熱するステップと、
前記チャンバ内部のイオン化可能媒体を、前記加熱された受動非電極着火剤を用いて着火させてプラズマを形成するステップと、
前記CWレーザー光源を、前記チャンバ内部の200ミクロン3以下の所定の体積を有する前記チャンバ内部の焦点領域に集束させるステップと、
前記CWレーザー光源を用いて前記チャンバ内部で前記プラズマを維持するステップと、を含み、
前記受動非電極着火剤は電気的接続を含まず、前記所定の圧力レベルは少なくとも300psiであり、前記CWレーザー光源は125ワットよりも低い電力レベルを有する、方法。
【請求項15】
前記CWレーザー光源を用いた前記受動非電極着火剤の前記加熱は間接的である、請求項14に記載の方法。
【請求項16】
前記CWレーザー光源を前記受動非電極着火剤に集束させるステップを更に含み、前記CWレーザー光源を用いた前記受動非電極着火剤の前記加熱は直接的である、請求項14に記載の方法。
【請求項17】
前記受動非電極着火剤はトリア入りタングステンを含む、請求項14に記載の方法。
【請求項18】
前記受動非電極着火剤はKr-85を含む、請求項14に記載の方法。
【請求項19】
高輝度光を生成するためのシステムであって、
700nm以下の波長を有するCWレーザービームを生成するように構成された連続波(CW)レーザー光源、及び
着火促進無電極密封高輝度照明機器であって、
イオン化可能媒体を収容するように構成された密封チャンバであって、
前記CWレーザービームを前記チャンバに入射させるように構成されたチャンバ内面の壁内に配置された入口窓と、
プラズマ維持領域と、
前記チャンバから高輝度光を放出するように構成された高輝度光出口窓と、を更に含む密封チャンバを含む、着火促進無電極密封高輝度照明機器を含み、
前記CWレーザー光源から前記入口窓を通って前記チャンバ内の焦点領域に至る前記CWレーザービームの経路は直進的であり、前記CWレーザービームを、半値全幅(FWHM)ビームウエストが1~10ミクロン2で、レイリー長が6ミクロン以下の領域に集束させ、前記プラズマは前記CWレーザービームによって着火されるように構成される、システム。
【請求項20】
前記CWレーザー光源は、250ワット未満を生成するように構成される、請求項19に記載のシステム。
【請求項21】
前記着火促進無電極密封高輝度照明機器は、非電極着火剤を更に含み、前記CWレーザー光源は、125ワット未満を生成するように構成される、請求項19に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2017年1月19日に出願された、「Electrodeless Single Low Power CW Laser Driven Plasma Lamp」と題された米国特許出願第15/409,702号の優先権を主張するものであり、この出願は、その全体が参照により本明細書に組み込まれる。
【0002】
発明の分野
本発明は照明機器に関し、より具体的には高輝度ランプに関する。
【背景技術】
【0003】
発明の背景
高輝度アークランプは、高輝度ビームを放射する機器である。ランプは一般的に、ガス収容チャンバ、例えば、ガラスバルブを含み、チャンバ内にはガスを励起させるのに使用されるアノード及びカソードがある。アノードとカソードとの間で放電が発生して、励起した(例えば、イオン化した)ガスに電力が供給され、光源の動作中にイオン化したガスによって放射される光が維持される。
【0004】
図1は、低ワット数の放物線状の従来技術によるキセノンランプ100の絵画図及び断面を示す。このランプは一般的に、金属及びセラミックから作製される。充填ガス、キセノンは、不活性で無毒である。ランプのサブアセンブリは、アセンブリを厳格な寸法公差に抑える固定具に高温?付けすることにより作製されることがある。
図2は、?付け後のこれらのランプサブアセンブリ及び固定具の一部を示す。
【0005】
従来技術によるランプ100には3つの主要なサブアセンブリがある、即ち、カソード、アノード、及び反射器である。カソードアセンブリ3aは、ランプカソード3b、カソード3bをウィンドウフランジ3cに保持する複数の支柱、ウィンドウ3d、及びゲッター3eを含む。ランプカソード3bは、例えば、トリア(酸化トリウム)入りタングステンから作製される、小型の鉛筆状の部品である。動作中、カソード3bはランプアークギャップを横切って移動しアノード3gに衝突する電子を放出する。電子は、カソード3bから熱電子的に放出されるので、カソードの先端は機能するために高温及び低電子放出を維持しなくてはならない。
【0006】
カソード支柱3cはカソード3bを所定の位置に強固に保持し、カソード3bに電流を伝導する。ランプウィンドウ3dは、研削され且つ研磨された単結晶サファイア(AlO2)であり得る。サファイアにより、ウィンドウ3dの熱膨張がフランジ3cのフランジ熱膨張と調和することが可能になり、その結果、広い動作温度範囲に渡って気密シールが維持される。サファイアの熱伝導性によりランプのフランジ3cに熱が運ばれ、その熱は均等に分配されてウィンドウ3dが割れるのが回避される。ゲッター3eは、カソード3bの周りに巻かれて、支柱に接して配置される。ゲッター3eは、動作中にランプ内で放出される汚染ガスを吸収し、汚染物質がカソード3bの作用を損なわせるのを防止することにより、且つ、望ましくない物質を反射器3k及びウィンドウ3dに運ぶことにより、ランプの寿命を延ばす。
【0007】
アノードアセンブリ3fは、アノード3g、基部3h、及び管状部3iから構成される。アノード3gは一般的に、純タングステンから構成され、カソード3bよりもはるかに太い形状をしている。この形状は、主として、アークをその正の電気的付着点で広げる放電物理学の結果である。アークは典型的には幾分か円錐形の形状をしており、円錐の先端部はカソード3bに接触し、円錐の底面はアノード3g上に載っている。アノード3gは、より多くの熱を伝導するために、カソード3bよりも大きくなっている。ランプ内で伝導される廃熱の約80%はアノード3gを通じて外部に伝導され、20%がカソード3bを通じて伝導される。アノードは一般的に、ランプのヒートシンクに至るより低い熱抵抗の経路を有するように構成されるので、ランプの基部3hは比較的に大きくて重い。基部3hは、ランプのアノード3gから熱負荷を伝導するために、鉄又は他の熱伝導性材料から構成される。
【0008】
管状部3iは、ランプ100を排気し、キセノンガスで充填するためのポートである。充填後、管状部3iは密封される、例えば、液圧式工具で挟んで締め付けられるか又は冷間圧接されるので、ランプ100は、密封され、同時に充填及び処理ステーションから切り離される。反射器アセンブリ3jは、反射器3k及び2つのスリーブ3lから構成される。反射器3kは、反射器に鏡面を与えるために高温材料で艶出し被覆された、ほぼ純粋な多結晶アルミナ体であり得る。次いで、反射器3kをスリーブ3lに封止し、艶出しされた内面に反射コーティングを施す。
【0009】
動作中、アノードとカソードとの間に配置されたイオン化されたガスに与えられる放電に起因して、アノード及びカソードは非常に高温になる。例えば、着火されたキセノンプラズマは15,000C以上で燃焼することがあり、タングステンのアノード/カソードは3600C度以上で溶けることがある。アノード及び/又はカソードは、摩耗して粒子を放出することがある。そのような粒子は、ランプの動作を損ない、アノード及び/又はカソードの劣化を引き起こすことがある。
【0010】
従来技術による密封ランプの1つは、バブルランプとして知られており、これは、2つのアームを有するガラスランプである。このランプは、湾曲した表面を有するガラスバブルを有し、これは、イオン化可能媒体を保持する。外部レーザーが、2つの電極間に焦点を当てて、ランプに向けてビームを発射する。イオン化可能媒体は、例えば、紫外線着火源、容量性着火源、誘導性着火源、フラッシュランプ、又はパルスランプを使用して、着火される。着火後、レーザーはプラズマを生成し、プラズマの熱/エネルギーレベルを維持する。あいにく、湾曲したランプの表面はレーザーのビームを歪ませる。ビームの歪みは、鮮明に画定されていない焦点領域をもたらす。この歪みは、レーザーとランプの湾曲した表面との間に光学系を挿入することにより、部分的に補正することができるが、そのような光学系はランプの費用及び複雑さを増大させ、それでもなお正確に集束されたビームをもたらすことはない。
【0011】
他のランプは、高エネルギーパルスレーザーの使用によるプラズマの着火に頼っている。一旦プラズマが着火されると、低エネルギー連続波(CW)レーザーを使用してプラズマを維持する。しかしながら、高エネルギーパルスレーザーと低エネルギーCWレーザーの両方を使用することにより、ランプの費用、かさ、及び複雑さが増す。従って、上述した欠点のうちの1つ又は複数に対処することが必要である。
【発明の概要】
【課題を解決するための手段】
【0012】
発明の概要
本発明の実施形態は、無電極単一低電力連続波(CW)レーザー駆動ランプを提供する。簡単に説明すると、本発明は、連続波(CW)レーザー光源からレーザービームを受け取るように構成された着火促進無電極密封高輝度照明機器に関する。密封チャンバは、イオン化可能媒体を収容するように構成される。チャンバは、レーザービームをチャンバに入射させるように構成されたチャンバ内面の壁の内部に配置された入口窓と、プラズマ維持領域と、チャンバから高輝度光を放出するように構成された高輝度光出口窓と、を有する。CWレーザービームは、1100nm未満の波長を生成するように構成された250ワット未満のCWレーザーによって生成可能である。この機器は、レーザービームを、1~15ミクロン2の半値全幅(FWHM)ビームウエスト及び6ミクロン以下のレイリー長に集束させるように構成され、プラズマは、CWレーザービームによって着火されるように構成される。
【0013】
本発明の他のシステム、方法、及び特徴が、以降の図面及び詳細な説明を検討することで、当業者には明らかになるであろう。全てのそのような追加のシステム、方法、及び特徴は、本明細書の中に含まれ、本発明の範囲内であり、添付の特許請求の範囲によって保護されることが意図されている。
【0014】
図面の簡単な説明
添付の図面は、本発明の更なる理解をもたらすために含まれ、本明細書に組み込まれ、本明細書の一部を構成する。図面中の構成要素は必ずしも正確な縮尺ではなく、その代わりに、本発明の原理を明確に示すことに重点が置かれている。図面は本発明の実施形態を示しており、説明文と共に、本発明の主役を説明するのに役立つ。
【図面の簡単な説明】
【0015】
【
図1】従来技術による高輝度ランプの概略図を分解図で示す図である。
【
図2】従来技術による高輝度ランプの概略図を断面図で示す図である。
【
図3】レーザー駆動無電極密封ビームランプの第1の例示的な実施形態の概略図である。
【
図4】レーザー駆動無電極密封ビームランプの第2の例示的な実施形態の概略図である。
【
図5】レーザー駆動無電極密封ビームランプの第3の例示的な実施形態の概略図である。
【
図6】レーザー駆動無電極密封ビームランプの第4の例示的な実施形態の概略図である。
【
図7】レーザー駆動無電極密封ビームランプを動作させるための第1の例示的な方法の流れ図である。
【
図8】レーザー駆動無電極密封ビームランプを動作させるための第2の例示的な方法の流れ図である。
【発明を実施するための形態】
【0016】
詳細な説明
以下の定義は、本明細書で開示する実施形態の特徴に当てはまる用語を解釈するのに有用であり、本開示内の要素を定義することだけを意図している。それによって、特許請求の範囲内で使用される用語を制限することは意図されておらず、また、導き出されるべきではない。添付の特許請求の範囲内で使用される用語は、応用可能な技術分野内でのそれらの用語の慣例的な意味によってのみ限定されるべきである。
【0017】
ここで、本発明の実施形態を詳細に参照するが、それらの実施形態の例が、添付の図面に示されている。可能な限り、同じ又は同様の部品を指すために、図面及び説明において同じ参照番号が使用されている。
【0018】
上述したように、以前の密封プラズマランプは、プラズマチャンバに電極を挿入することによる、又は高エネルギーパルスレーザーによる着火に頼っていた。対照的に、以下に説明する実施形態は、特定の条件下で単一のCWレーザーを使用することによる複数の構成のキセノンランプ内でプラズマを着火させることに関する。一般的に、着火のためのこれらの条件としては、基礎として、約200ワット以上で開始するレーザー出力、チャンバ内部のレーザー光の最小焦点サイズ、例えば350psi以上で開始する最小のランプ充填圧力、が挙げられる。幾つかの実施形態は、100ワット未満で開始するレーザー出力での着火を可能にする。
【0019】
一般的に、これらの実施形態の各々は、レーザー光をチャンバに入れる入口窓を含んでおり、入口窓は平坦であるか、又は集束レンズを組み込んでいる。以下で説明する実施形態における自動着火を可能にするための高充填圧力は、従来技術による石英バブルランプでは実現不可能であることに留意することが重要である。
【0020】
図3は、無電極レーザー駆動密封ビームランプ300の第1の例示的な実施形態を示す。ランプ300は、イオン化可能媒体、例えばキセノン、アルゴン、又はクリプトンガスを収容するように構成された密封チャンバ320を含む。チャンバ320は一般的に、例えば290~1150psiの範囲内の圧力レベルに加圧されている。対照的に、キセノン石英「バブル」ランプは典型的に、250~300psiである。圧力がより高いと、プラズマスポットがより小さくなることがあり、レーザーエネルギーの光子への変換効率が改善される。より高い圧力でのより小さなスポットサイズは、小さな開口部、例えば、ランプの焦点とファイバー開口部との間で1:1の反射が使用される場合のファイバー開口部、への結合に有利であることがある。チャンバ320は、高輝度出射光329を放出するための出口窓328を有する。出口窓328は、適切な透明材料、例えば石英ガラス又はサファイアで形成されることがあり、特定の波長を反射するために反射材料で被覆されることがある。反射被覆は、レーザービーム波長がランプ300から出射するのを妨げることがあるか、又は、可視光などの特定の範囲の波長を通過させるように、若しくは紫外線エネルギーがランプ300から出ていくのを防止するように構成されることがある。出口窓328はまた、反射防止被覆を有して、意図した波長の光線の透過を高めることもある。これは、例えば、ランプ300によって放出される出射光329から望ましくない波長をフィルタリングするための、部分反射又はスペクトル反射であり得る。入射レーザー光365の波長を反射してチャンバ320に戻す出口窓328被覆は、チャンバ320内でプラズマを維持するのに必要なエネルギーの量を低減することがある。
【0021】
チャンバ320は、金属、サファイア、又はガラス、例えば石英ガラスで形成された本体を有することがある。チャンバ320は、高輝度光を出口窓328に向けて反射するように構成された一体型反射チャンバ内面324を有する。内面324は、出口窓328に向けて反射される高輝度光の量を最大化させるのに適切な形状、例えば、他の可能な形状の中でも特に、放物線状又は楕円形の形状に従って、形成されることがある。一般的に、内面324は焦点322を有し、高輝度光は、内面324が高輝度光の適切な量を反射するように配置される。
【0022】
ランプ300によって出力される高輝度出射光329は、チャンバ320内部の着火され励起されたイオン化可能媒体から形成されたプラズマによって、放出される。イオン化可能媒体は、以下で更に説明するように、チャンバ320内部の幾つかの手段のうちの1つによって、チャンバ320内で着火される。プラズマは、ランプ300内部で且つチャンバ320の外部に配置されたレーザー光源360によって生成された入射レーザー光365によって提供されるエネルギーによって、チャンバ320内部のプラズマ生成及び/又は維持領域326で連続的に生成され維持される。第1の実施形態では、プラズマ維持領域326は、固定位置で内面324の焦点322と同じ場所に配置される。代替的な実施形態では、レーザー光源360は、ランプ300の外部にあることがある。
【0023】
チャンバ320は、内面324の壁内に配置された実質的に平坦な入口窓330を有する。実質的に平坦な入口窓330は、特に1つ又は2つの湾曲した表面を有するチャンバ窓を介した光の伝達と比べて、最小の歪み又は損失で、入射レーザー光365をチャンバ320に伝達する。入口窓330は、適切な透明材料、例えば石英ガラス又はサファイアから形成されることがある。
【0024】
レンズ370は、レーザー光源360と入口窓330との間の経路内に配置され、入射レーザー光365をチャンバ内部のレンズ焦点領域372に集束させるように構成される。例えば、レンズ370は、レーザー光源360によって放出されたコリメートされたレーザー光362をチャンバ320内部のレンズ焦点領域372に向けるように構成されることがある。或いは、レーザー光源360は、集束された光を提供することがあり、例えば、レーザー光源360内部の光学系を使用して入射レーザー光365をレンズ焦点領域372に集束させるなど、レーザー光源360と入口窓330との間のレンズ370無しで、集束された入射レーザー光365を、入口窓330を介してチャンバ320に直接的に伝達することがある。第1の実施形態では、レンズ焦点領域372は、チャンバ320の内面324の焦点322と同じ場所に配置される。
【0025】
入口窓330の内面及び/又は外面は、プラズマによって生成される高輝度出射光329を反射するように扱われることがあり、同時に、入射レーザー光365のチャンバ320への透過を許す。レーザー光がチャンバに入るチャンバ320の部分はチャンバ320の近位端と呼ばれ、高輝度光がチャンバを出てゆくチャンバ320の部分はチャンバ320の遠位端と呼ばれる。例えば、第1の実施形態では、入口窓330はチャンバ320の近位端に配置され、出口窓328はチャンバ320の遠位端に配置される。
【0026】
凸状双曲線反射器380は、チャンバ320内部に任意選択的に配置されることがある。反射器380は、プラズマ維持領域326においてプラズマによって放出された高輝度出射光329の一部又は全部を反射して内面324に向けて戻し、これに加えて、入射レーザー光365の吸収されていない部分を反射して内面324に戻す。反射器380は、内面324の形状に従って成形されて、出口窓328から所望のパターンの高輝度出射光329を提供することがある。例えば、放物線状の内面324が、双曲線状の反射器380と対になっていることがある。反射器380は、チャンバ320の壁によって支持される支柱(図示せず)によってチャンバ320内部に固定されることがあり、或いは、支柱(図示せず)は、出口窓328の構造によって支持されることがある。反射器380は、高輝度出射光329が出口窓328を通って直接的に出てゆくのを防止する。焦点プラズマ点を通り越すレーザービームの多重反射により、反射器380、内面324、及び出口窓328上の適切に選択された被覆を通じて、レーザー波長を減衰させるのに十分な機会が提供される。そのため、高輝度出射光329のレーザーエネルギーを最小限に抑えることができ、レーザー360に戻るように反射されるレーザー光も同様である。後者は、レーザービームがチャンバ320内部で干渉する場合の不安定性を最小にする。
【0027】
内面324の好ましくは逆の輪郭をした反射器380を使用することにより、波長に関わりなく、光子が直接的な線放射を通じて出口窓328を出てゆくことがないことが確実になる。代わりに、全ての光子は、波長に関わりなく、内面324から跳ね返って出口窓328を出てゆく。これは、全ての光子が、反射器光学系の開口数(NA)内に含まれ、そのため、出口窓328を通って出て行った後で最も適切なように収集され得ることを確実にする。吸収されなかったIRエネルギーは内面324に向けて分散され、このエネルギーは、最小の熱衝撃で広い表面に渡って吸収されるか、又は、内面324による吸収若しくは反射のために内面324に向けて反射されるか、又は、通過するように出口窓328に向けて反射され、反射光学系若しくは吸収光学系のいずれかを用いてラインの下方で更に処理されることがある。
【0028】
レーザー光源360は、パルスレーザーではなく、連続波(CW)レーザーである。レーザー光源360は、単一レーザー、例えば単一赤外(IR)レーザーダイオードであることがあり、又は、2つ以上のレーザー、例えばIRレーザーダイオードのスタックを含むことがある。レーザー光源360の波長は、利用可能な市販のレーザーを用いてキセノンガスを最適且つ経済的にポンピングするように、近赤外から中間赤外領域にあるように選択されるのが好ましい。しかしながら、レーザー光源360は、遠赤外線波長、例えば、10.6umのCO2レーザーを代替的に生成することがある。複数のIR波長が、キセノンガスの吸収帯域との結合を改善するために、適用されることがある。当然ながら、他のレーザー光の解決策も可能であるが、とりわけ、原価要素、熱放射、寸法、又はエネルギー要件に起因して、望ましくないことがある。
【0029】
なお、一般的に、強い吸収線の10nm以内でイオン化ガスを励起することが好ましいとされているが、これは蛍光プラズマの代わりに熱プラズマを生成する場合には必須ではない。従って、フランク-コンドンの原理は、必ずしも当てはまらない。例えば、イオン化ガスは、1070nmでの励起CWであることがあり、これは、非常に弱い吸収線から14nm(1%ポイント離れており、例えば、吸収線を20%ポイントで979.9nmに有する980nmの放射で、蛍光プラズマを使用したランプよりも概ね20倍弱い。しかしながら、10.6μmのレーザーは、この波長の近傍に既知の吸収線がなくても、キセノンプラズマを着火させることができる。特に、CO2レーザーを使用して、キセノンのレーザープラズマを着火させ維持することができる。例えば、米国特許第3,900,803号を参照されたい。
【0030】
レーザー光源360からレンズ370及び入口窓330を通ってチャンバ320内部のレンズ焦点領域372に至るレーザー光362、365の経路は直進的である。レンズ370は、チャンバ320内部のレンズ焦点領域372の位置を変えるように調節することができる。例えば、電子又は電気/機械的制御システムなどの制御システム(図示せず)を使用してレンズ焦点領域372を調節し、レンズ焦点領域372が内面324の焦点322と確実に一致するようにすることができ、その結果、プラズマ維持領域326は安定し、最適に配置される。例えば、コントローラは、重力及び/又は磁場などの力の存在下で、レンズ焦点領域372の所望の位置を維持することができる。コントローラは、フィードバック機構を組み込んで、焦点領域及び/又はプラズマアークを安定化した状態に維持して、変化を補償することができる。コントローラを使用して、1軸、2軸、又は3軸で焦点範囲の位置を調節することができる。
【0031】
図4は、無電極高輝度ランプ500の第2の例示的な実施形態の断面図を示す。第1の実施形態とは対照的に、密封されたチャンバ520は、2つの窓の円筒形のハウジングによって密閉されている。
【0032】
チャンバ520は、チャンバ520の第1の壁として機能する、実質的に平坦な入口窓530を有する。実質的に平坦な入口窓530は、特に湾曲したチャンバ表面を介した光の伝達と比べて、最小の歪み又は損失で、入射レーザー光365をチャンバ520に伝達する。入口窓530は、適切な透明材料、例えば石英ガラス又はサファイアから形成されることがある。
【0033】
レンズ370は、第1の実施形態と同様の態様で、レーザー光源360と入口窓530との間の経路内に配置され、入射レーザー光365をチャンバ520内部のレンズ焦点領域372に集束させるように構成される。第1の実施形態と同様に、レンズ焦点領域372は、プラズマ維持領域326、及び密封チャンバ520の焦点322と同じ場所に配置される。
【0034】
チャンバ520内部のプラズマ維持領域326の位置は可変であることがある、というのも、円筒形ハウジングは反射器を必要としないので、光学焦点が無いからである。しかしながら、円筒形の本体を観察すると、プラズマを中心から外れて、例えばランプの底部よりランプの上部の近くで動作させることによって、イオン化されたガスの内部乱気流が影響を受け、その結果、安定性に影響を及ぼすことがあることが、分かる。
【0035】
チャンバ520は、高輝度出射光529を放出するための出口窓528を有する。出口窓528は、適切な透明材料、例えば石英ガラス又はサファイアから形成されることがある。
【0036】
レーザー光がチャンバに入るチャンバ520の部分はチャンバ520の近位端と呼ばれ、高輝度光がチャンバを出てゆくチャンバ520の部分はチャンバ520の遠位端と呼ばれる。例えば、第3の実施形態では、入口窓530はチャンバ520の近位端に配置され、出口窓528はチャンバ520の遠位端に配置される。
【0037】
任意選択的に、第3の実施形態は、密封チャンバ520の圧力レベルを調節するための要素を含むことがある。密封ランプ500は、外部キセノンガス源をガス進入充填/放出弁594に接続する充填ライン592を介して、外部キセノンガス源を密封チャンバ520に接続するポンプシステム596を含むことがある。
【0038】
チャンバ520内のキセノンガス/プラズマの着火方法は、とりわけ、チャンバ520内部の圧力量及び/又は温度に応じて、変化することがある。325psi未満の充填圧力及び/又は200ワット未満の低レーザー動作電力では、電極、例えば背景技術の章で考察したような二重カソード電気着火システムを用いた電気着火が好ましいことがある。しかしながら、チャンバ内への電極の装備、及び電極の電気的接続を提供することにより、ランプの設計の複雑さが増す。従って、例示的な実施形態の目的は、電極を省いたチャンバ内のガス/プラズマの着火を提供することである。
【0039】
第1及び第2の実施形態の下では、チャンバ520内部の十分に高い圧力/温度により、CWレーザーを使用して、電極又は受動非電極着火剤のいずれも存在することなく、チャンバ内部のキセノンガスを熱的に着火させることができる。
【0040】
例えば、250ワット(+/-15%)で自動着火させるために、0.31NAの集束光学系を通じて1070nmレーザーを用いて動作する、500psiで充填された、平坦な入口窓を有するキセノンランプを考える。450psiの充填圧力では、同じ装置は、いかなる着火剤も使用することなく自己着火させるために、265ワット(+/-15%)のレーザー電力を必要とする。300psiの充填圧力では、同じ装置は自己着火させるために、450ワット(+/-15%)を必要とする。対照的に、300psiで充填された石英バブルランプは、露出時間に関わりなく500ワットに曝されても自己着火しない。典型的に湾曲した容器の壁のレンズ効果により、封入されたキセノンガスを首尾よく自動着火させるために、十分に小さなレーザー集束ビームウエストを得ることが妨げられる。
【0041】
数分の1秒以内でイオン化可能媒体の自己着火を達成するために、ビームウエストにおいて1×1010W/cm2程度の電力密度が一般的に必要とされる。これは、上述した条件の下で達成することができる。プラズマを着火させるのに必要な電力は、ガスの充填圧力及び励起レーザー波長によって影響を受ける。後者は、ビームウエストの直径に影響を与え、より長い波長のレーザーは、より多くの電力を必要とする。前者は、原子間の距離に影響を与え、イオン化プロセスを開始するのに必要なエネルギーに影響を及ぼす。
【0042】
集束レンズの開口数(NA)は、自己着火に必要な電力に同様に影響を与える。NAが高くなると、典型的には、より小さな断面のビームウエストがもたらされ、結果として電力密度がより高くなる。この着火が成功するために、CWレーザー光源360は、チャンバ内部のレンズ焦点領域372において十分に小さな断面のビームウエスト、例えば、およそ1~15ミクロン2の断面に集束される。この狭い焦点を達成するために、チャンバ520の入口窓530は、好ましくは平坦な表面であるべきである。対照的に、入口窓が凹状又は凸状の湾曲表面、例えば、バブルチャンバの側面を有する場合、入射レーザー光365をCWレーザー光源360から十分に小さなレンズ焦点領域372に集束させて、チャンバ520内部のプラズマを首尾よく着火させることは、困難であるか又は不可能であることがある。或いは、入口窓530は、焦点領域372に入射レーザー光365を集束させるように構成された平坦な窓の代わりのレンズとして、作製されることがある。
【0043】
第3の実施形態600の下では、
図5に示すように、受動非電極着火剤610がチャンバ520に導入される。本開示で使用される場合、受動非電極着火剤610は、CWレーザー光源360の刺激によって、外部誘導電流なしに、電荷キャリアの流れを生成するように励起されることができる、チャンバ520の内部に導入された材料である。対照的に、電極は、能動着火源と呼ばれる、というのも電極は、外部電流を電極に能動的に印加することによってイオン化可能媒体を着火させるからである。受動非電極着火剤610は、例えば、イオン化着火源、とりわけ、2%トリア入りタングステン又はKr-85などを含むことがある。受動非電極着火剤610への温度伝達を伴うキセノンガスの自己発熱により、第1及び第2の実施形態のトリア入りではない解決策の場合に必要であった電力のおよそ半分の電力で、キセノンランプを自己着火させるのに十分な電荷キャリアを受動非電極着火剤610が生成するようになる。例えば、着火は、中間の圧力/温度範囲で引き起こされることがあり、例えば、450psiで充填されたキセノンランプは、ランプチャンバ520の内部にトリア入りタングステンなどの受動非電極着火剤610を導入することによって、175ワット(+/-15%)で自己着火する。
【0044】
第3の実施形態600は、第1の実施形態のランプ300(
図3)、特に一体型の放物線状又は楕円状反射器を有するセラミック又は金属ボディのCermaxランプなどの密封ビームキセノンランプ、の要素を有する反射型チャンバ520と、受動非電極着火剤610とを含む。受動非電極着火剤610は、能動電極ではない、というのも、外部電圧/電流は印加されないからである。しかしながら、固体CWレーザー光源360を介したキセノンガスの自己発熱により、受動非電極着火剤610、例えばトリア入り材料へ温度が伝達され、トリア入りではない解決策の場合に必要であった電力のおよそ半分の電力で、キセノンランプを自己着火させるのに十分な電荷キャリアがチャンバ内部で生成される。好ましくは、CWレーザー光源360は、加熱及び熱的着火を速めるために、トリア入りタングステン610の比較的に近くの、チャンバ520内部の固定位置に集束される。トリア入りタングステン610は、単一の受動素子、又は、例えば互いに向き合った幾何学的構成での多数の受動素子、又はチャンバ520内部のリングとして構成されることがあり、その結果、CWレーザー光源360は、受動素子の近くの位置に集束されるか、又は、リングの中心などのトリア入りタングステン610のリングの内部に集束される。例えば、トリア入りタングステンリング610は、リングの中心が、チャンバ520内部のレンズ焦点領域372と同じ場所に配置され、更に、プラズマ維持領域326、及び密封チャンバ520の焦点322と同じ場所に配置されるように、位置決めされることがある。受動非電極着火剤610は、リングとして構成されないことがあり、例えば、受動非電極着火剤610は、ロッド、ディスク、又は他の形状として構成されることがあり、その結果、受動非電極着火剤610の少なくとも一部が、チャンバ焦点領域372と実質的に隣接する。例えば、受動非電極着火剤610の少なくとも一部が、焦点領域372から1~5mmの範囲内にあり得ることが望ましいことがある。なお、焦点領域372からの受動非電極着火剤610の適切な距離は、他のパラメータ、例えばチャンバ320の圧力、又はCWレーザー360の出力などに依存することがある。
【0045】
プラズマを着火させるのに使用されたのと同じCWレーザー光源360が、着火後にプラズマを維持するために使用される。トリア入りタングステンリング610は、?付けされるか、又は浮いていることがある。なお、
図5及び
図6の概略図では、トリア入りタングステンリング610及び/又はプラズマ維持領域326及び密封チャンバ520の焦点322は、必ずしも正確な縮尺で描かれてはいない。
【0046】
図6は、無電極高輝度ランプ700の第4の例示的な実施形態の断面図を示す。第3の実施形態とは対照的に、密封されたチャンバ520は、2つの窓の円筒形のハウジングによって密閉されている。第4の実施形態700は、第2の実施形態のランプ500(
図4)の要素を含み、且つ受動非電極着火剤610を含む、円筒形チャンバ520を含む。
【0047】
上記の実施形態において電極が無いことは、従来技術に勝る複数の利点を提供する。例えば、ランプ内に電極が無いことは、壁へのタングステンの付着を解消し、ランプの窓は、ランプ内の光出力の劣化又は低下の主な原因を排除する。ランプ内に電極が無いことにより、ランプ本体を通る電極用の出口シールを設ける必要がなく、より安価な構築が可能になる。出口シールは、寿命を通して劣化し、潜在的にランプの寿命の終わりの原因となることが知られている。ランプ内にトリア入りの電極が無いことにより、イオン化放射汚染の可能性を低くすることができる。ランプのチャンバの壁を通る電極が無いことにより、より小型のランプ構造が可能になり、次いでそれにより内部充填圧力を増加させることができ、次いで、ランプの変換効率を高めることができる。これにより、より堅牢なランプがもたらされる。更に、電極が無いことにより、ランプ内のセラミック絶縁材料の必要性がなくなる。セラミック絶縁材料は、ランプの動作中にガス放出することがあり、光出力の劣化に寄与することがあるので、これは有利である。
【0048】
無電極ランプの他の利点には、ランプを電気的に着火させるための電源の必要性がないことが含まれる。充填圧力がより高くなると、より小型のランプの使用が促進され、これは、費用を削減し、エネルギーから光子への変換効率を高めることができる。電極を無くすことにより、電極がランプ内のガス乱気流に干渉するなどの、電極の望ましくない副作用が更に排除され、それによって光出力の安定性が改善される。更に、電極が無いことにより、高輝度光によって生じる影の原因が取り除かれる。
【0049】
図7は、レーザー駆動無電極密封ビームランプを動作させるための第1の例示的な方法の流れ図である。なお、流れ図中のいかなるプロセスの説明又はブロックも、そのプロセスの特定の論理機能を実装するための1つ又は複数の命令を含む、モジュール、セグメント、コード部分、又はステップを表すものとして理解されるべきであり、代替的な実装は、本発明の範囲内に含まれ、この中では、本発明の技術分野の当業者によって理解されるように、機能は、含まれる機能に応じて、実質的に同時に、又は逆の順序を含めて、図示した又は考察したのとは異なる順序で実行されることがある。
【0050】
図7の流れ図に関しては、
図3及び
図4を参照する。窓、例えば入口窓530が設けられる。ブロック710によって示されるように、この窓は、密封ランプチャンバ320の外側に配置されたCWレーザー光源360からチャンバ320内部の焦点領域372へのエネルギーを受け取るように構成される。ブロック720によって示されるように、チャンバ320の圧力レベルは、チャンバ320内部のイオン化可能媒体を着火させるのに適切な所定の圧力レベルに設定される。例えば、CWレーザー光源が(250~500W)の範囲内にある場合、(300~600psi)の圧力レベルが、CWレーザーエネルギーのみを用いてイオン化可能媒体を着火させるのに適していることがある。レーザー光源360からの入射レーザー光365は、ブロック730によって示されるように、所定の体積を有するチャンバ320内部の焦点領域372に集束され、例えば、6~18ミクロンのレイリー長を有する1~15ミクロン
2の断面ビームウエストになる。ブロック740によって示されるように、チャンバ320内部のイオン化可能媒体は、レーザー光源を用いて着火されてプラズマを形成する。ブロック750によって示されるように、プラズマは、連続波レーザー光源360によってチャンバ320内部で維持される。
【0051】
図8は、レーザー駆動無電極密封ビームランプを動作させるための第2の例示的な方法の流れ
図800である。
図8の流れ図に関しては、
図5及び
図6を参照する。ブロック810によって示されるように、窓は、密封ランプチャンバ320の外側に配置された連続波レーザー光源360からチャンバ320内部の焦点領域372へのエネルギーを受け取るように構成される。ブロック820によって示されるように、チャンバ320の圧力レベルは、チャンバ320内部のイオン化可能媒体を着火させるのに適切な所定の圧力レベルに設定される。レーザー光源360からの入射レーザー光365は、ブロック830によって示されるように、所定の体積を有するチャンバ320内部の焦点領域372に集束され、例えば、6~18ミクロンのレイリー長を有する1~15ミクロン
2の断面FWHM(その最大強度の半分におけるビームの全幅)ビームウエストになる。
【0052】
ブロック840によって示されるように、完全にチャンバ320内部に配置された受動非電極着火剤610は、焦点領域372に隣接して位置決めされる。受動非電極着火剤610は、直接的又は間接的に加熱されることができる。受動非電極着火剤610は、レーザー光をトリアに集束させることにより、また、一旦熱くなると、レーザーをランプ空洞の所望の焦点に向け直すことにより、直接的に加熱される。ブロック850によって示されるように、レーザー光源360を用いたイオン化ガスの熱対流を通じて、トリアの間接的な加熱がおこる。ブロック860によって示されるように、チャンバ320内部のイオン化可能媒体は、加熱された受動非電極着火剤610によって着火されてプラズマを形成する。例えば、CWレーザー光源が125~200ワットの範囲内にある場合、300~600psiの圧力レベルが、CWレーザー360からのエネルギーを用いて加熱された受動非電極着火剤610によりイオン化可能媒体を着火させるのに適していることがある。ブロック870によって示されるように、チャンバ320内部のプラズマは、連続波レーザー光源360からのエネルギーを用いて維持される。
【0053】
本明細書で使用する場合、「自己着火」とは、受動非電極着火剤610の有無に関わりなく、定常状態(CW)レーザー360のみによる、密封され加圧されたチャンバ320の内部での、不活性ガス、例えばキセノン、又はガスの組み合わせ、例えばキセノン及びクリプトンの着火を指す。
【0054】
定常状態レーザーを用いたプラズマの自己着火に必要な電力レベルに関する上記の考察は、規定されたビームウエスト基準を有する1070nmのファイバーレーザーに一般的に関し、チャンバ320はキセノンガス(純度99.995%)で充填され、約350psiでの充填圧力を有する。これは一般的に、非電極着火剤610を使用することなく、例えばIPGフォトニクス社のCWファイバーレーザーを使用した、400ワット未満のレーザー出力を用いた自己着火をもたらす。チャンバ320に非電極着火剤610を含めることにより、自己着火は200ワット以下という低さで観察されることがある。以降の開示の中では
図3(第1の実施形態)及び
図5(第3の実施形態)を参照するが、この考察は一般的に、他の開示された実施形態にも同様に当てはまる。
【0055】
チャンバ320内部の圧力を変えることなく低電力での自己着火プラズマを伴うランプ300、600を生成するために、1つの方式は、ビームウエスト、特に、レンズ焦点領域372におけるビームウエストをより小さくすることであり、レンズ焦点領域372は一般的に、プラズマ維持領域326と同じ場所に配置される。しかしながら、光学系、例えばレンズ370を使用してビームウエストサイズを縮小することには、実用上の且つ費用的な限界があることがある。例えば、光学系370のNAを0.38から0.5以上に変えることにより、ビームウエスト体積の減少に基づくレーザー光源360の明らかにより低い出力で予期される自己着火は、幾つかの理由により、実際には起こらないことがあり、この理由には、光学系370の研削の精度の限界、並びにレーザー光源360のパラメータ、例えば発散の調節の難しさ、等が含まれる。これらの及び他の実際の製造上の限界及び公差の積み重ねは、光学系370を使用したウエストサイズの縮小を、あまり望ましくないものにする。
【0056】
光学製造上の制限に影響を与えることなくビームウエストを縮小するように調節することができる第1のパラメータは、レーザー光源360の波長である。一般的に、波長がより高くなると、ビームウエストがより小さくなりレイリー長がより短くなる。例えば、1070nmレーザー光源360から532nmポンピングレーザー光源360(周波数2倍Nd:YAGレーザー、また約535nmの周波数2倍Nd:YLFレーザー)に切り替えると、4倍程度のビームウエストの体積の減少が生じることがある。従って、ビームウエストの直径及び長さは両方とも、2分の1低減する。実際的な不完全な光学系370の場合でさえ、例えば、1064~1070nmのレーザー光源360と比較して、全ての他の設計パラメータ(ランプ圧力等など)を変更しないで、532~535nmのポンプレーザー光源360を使用して、約半分(又はそれ以下)の電力を引き出すレーザー光源360を使用して、自己着火は起こり得る。
【0057】
多くの実用的なランプ300、600の用途について、レーザー光源360の波長は、特に可視光用途に対して、ランプ300、600によって放出される出射光329から除去されることが望ましいことがある。可視光用途は典型的に、レーザー光源360の波長を、その用途に望まれる黒体放射スペクトルの外側になるように強制する。従って、レーザー光源360は、通常、400~700nmの範囲内の可視光の生成のために、700~2000nmの中から選択されるか、又は、400~900nmの範囲内のアプリケーションスペクトルの生成のために1064~1070nmを使用する。
【0058】
焦点が500nmから近赤外(NIR)にある用途については、532~535nmの波長をレーザー光源360に対して使用することがあり、この場合には、余分なエネルギーが、チャンバ320の出口窓328及び/又は入口窓330において除去されることがある。半導体ウェハ計測測定については、一般的に、550~400nmの測定よりも、現在のウェハに対する500~900nmの測定において、より実用的な情報がある。従って、500~900nmの限定された光源は、1064~1070nmのレーザー光源360でポンピングされる400~900nmのシステムと比べて、より低い電力532~535nmのレーザー光源360でポンピングされた場合に、自己着火することがあり、また、熱/重力の条件に基づいて、より小さなプラズマサイズを実現することもある。例えば、532~535nmのポンプレーザーは、1064~1070nmのレーザー光源360に必要とされる電力の約半分の電力で、全ての他の境界条件は同じままであると仮定して、キセノンを自己着火させることができる。
【0059】
レーザー光源360の波長を短くすることにより、より正確な光学系370を用いることなく、ビームウエストをより小さくすることができる。レーザー光源360、例えばIPGファイバーレーザーの波長を、1000nm以上から例えば532nm~535nmの範囲に短くすることにより、ビームウエスト体積を、より高い帯域幅のレーザー光源360を使用した場合よりも約4倍小さくすることができる。これにより、例えば、非電極着火剤610なしでランプ300、600について200ワット未満を引き出すレーザー光源360を用いたキセノンベースのイオン化可能媒体の自己着火がもたらされ、且つ、光学系370を最適化することなく、1つ又は複数の非電極着火剤610を用いたランプ300、600について100ワット未満の自己着火がもたらされることがある。
【0060】
1000nm未満の波長を有するレーザー光源360を使用すると、例えば、プラズマにレーザー駆動電力の約20%が流出することがあり得る。この流出は、吸収されなかったレーザー電力を含み、1070nmのレーザー光源360を使用した場合と同様に、ランプ300、600の出力に現れる。いずれにせよ、このレーザー波長は、例えばレーザーラインフィルタを使用して、出射光329から取り除かれることがある。これは、当業者には一般的に知られている技術であり、本明細書では更には説明しない。レーザー光源360の出力から532nmのレーザー波長を除去又は減衰させることは、一般的に、照明用途に悪影響を及ぼすことはない。
【0061】
プラズマを着火させ維持するのに使用されるレーザー光源360の波長を変えることによって、ビームウエストのサイズは、より高い波長のウエストサイズから縮小される。例えば、IPGからの450nmのダイオードレーザーは、非電極着火剤610が使用される場合には、75ワットを大きく下回って自己着火プラズマを生成することができ、一方、電極が存在しない場合には、自己着火は125ワット範囲で生じることがある。
【0062】
より低いレーザー出力でランプ300、600を動作させることの利点は、より小さなプラズマサイズが結果として得られることを含む。プラズマサイズは、熱(重力)性能によって左右されるので、より低い電力は、より小さなプラズマサイズをもたらし、これは、高輝度光用のより小さな出口開口部328と結合することができる。これは、例えば、光子出力に対して小さな開口部が好まれる用途にとって、望ましいことがある。
【0063】
上記の考察は全般的に、チャンバ320内の圧力が一定であると仮定しているが、ガス圧の変動も考慮されることがある。例えば、チャンバ320内部の充填圧力を増加させると、自己着火が容易になるが、動作中により大きなプラズマが生成されることもある。光学製造上の制限に影響を与えることなくビームウエストを縮小するように調節することができる別のパラメータは、より低いエネルギーでイオン化するガスを選択することである。ラドンは、キセノンよりも低いエネルギーで活性化するが、放射能を含むので、多くの用途で使用するには実用的ではないことがある。キセノンは最もイオン化が容易な希ガスであり、これにクリプトンが続く。2種以上の希ガスでチャンバ320を充填することも、有利であることがある。例えば、クリプトンガスは一般的に、純粋な形態ではキセノンガスよりも自己着火しにくいが、クリプトンガスに加えてチャンバ320に幾らかのキセノンガスを加えることにより、キセノンガスはより低い電力/圧力/波長で自己着火することができ、それによって、例えば、体積で約10%のXeから90%Krを有するチャンバを使用して、クリプトンガスを着火させる。当然ながら、用途に応じて、他のXe/Kr比率が望ましいことがある。
【0064】
キセノン充填ランプ300、600を用いて黒体プラズマを生成しようとすると、黒体スペクトルにおいて約885nmを中心として、ディップ(減少)が起こることがある。従って、出射光329が黒体スペクトルを示すことはなく、用途によっては、この波長における出力の低下が問題になる。885nmでのディップは、軸上の細長い「葉巻状の」プラズマ円錐体の端部として、高密度キセノンガスにより生成された光子の再吸収によって、引き起こされることがある。そのため、プラズマ軸に沿っている観測器は、約885nmでスペクトル性能が低下する。この特性を低減又は解消するプラズマを生成するための1つの方法は、キセノンの代わりにクリプトンを使用するか又は、クリプトンとキセノンの組み合わせを使用することである。90%Xeと10%Krとの混合物を伴うランプ300、600は、依然として885nmでディップを示すものの、着火の問題を全く示さず、且つ、効率損失を殆ど示さないことがある。このディップは、Kr/Xe比率が増加するにつれて、小さくなる。
【0065】
要約すると、本発明の範囲又は趣旨から逸脱することなく、本発明の構造に様々な修正及び変更を加えることができることが、当業者には明らかである。前述の事柄を考慮して、本発明は、本発明の修正例及び変更例が以下の特許請求の範囲及びそれらの均等物の範囲内に該当するようであれば、それらの修正例及び変更例を包含することが意図されている。
【手続補正書】
【提出日】2022-11-04
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
連続波(CW)ダイオードレーザー光源からレーザービームを受け取るように構成された着火促進無電極密封高輝度照明機器であって、
イオン化可能媒体を収容するように構成された密封チャンバを含み、前記チャンバは更に、
前記CWレーザーからのビームを前記チャンバに入射させるように構成されたチャンバ内面の壁内に配置された入口窓と、
プラズマ維持領域と、
前記チャンバから高輝度光を放出するように構成された高輝度光出口窓と、を含み、
前記CWレーザービームは、1000nm未満の波長を生成するように構成された250ワット未満のCWレーザーによって生成可能であり、前記CWレーザー光源から前記入口窓を通って前記チャンバ内の焦点領域に至る前記CWレーザービームの経路は直進的であり、前記CWレーザービームを、半値全幅(FWHM)ビームウエストが1~15ミクロン2で、前記CWレーザー光源は、レイリー長が6ミクロン以下の領域に集束させるように構成され、前記プラズマは前記CWレーザービームによって着火されるように構成される、着火促進無電極密封高輝度照明機器。
【請求項2】
完全に前記チャンバ内部に配置された非電極着火剤を更に含み、前記CWレーザービームは550nm未満の波長を生成するように構成された125ワット未満のCWレーザーによって生成可能であり、前記入口窓は、前記CWレーザービームを、半値全幅(FWHM)ビームウエストが0.5~7.5ミクロン2で、レイリー長が4ミクロン以下の領域に集束させるように構成されている、請求項1に記載の密封高輝度照明機器。
【請求項3】
前記CWレーザービームは、460nm未満の波長を生成するように構成された90ワット未満のCWレーザーによって生成可能である、請求項2に記載の密封高輝度照明機器。
【請求項4】
前記CWレーザービームは、460nm未満の波長を生成するように構成された150ワット未満のCWレーザーによって生成可能である、請求項1に記載の密封高輝度照明機器。
【請求項5】
前記入口窓は前記CWレーザービームを前記チャンバ内のレンズ焦点領域に集束させるように構成されたレンズを更に含む、請求項1に記載の密封高輝度照明機器。
【請求項6】
前記CWレーザー光源間の経路内に配置されたレンズを更に含み、前記入口窓は前記CWレーザービームを前記密封チャンバ内部のレンズ焦点領域に集束させるように構成される、請求項1に記載の密封高輝度照明機器。
【請求項7】
一体型反射チャンバ内面は、前記プラズマ維持領域から前記出射窓へ高輝度光を反射するように構成される、請求項1に記載の密封高輝度照明機器。
【請求項8】
イオン化可能媒体は第1の希ガスを含む、請求項1に記載の密封高輝度照明機器。
【請求項9】
イオン化可能媒体は第2の希ガスを更に含む、請求項8に記載の密封高輝度照明機器。
【請求項10】
前記機器は、前記CWレーザービームを用いて前記第1の希ガスを着火させるように構成され、前記着火された第1の希ガスは、前記第2の希ガスを着火させるように構成される、請求項9に記載の密封高輝度照明機器。
【請求項11】
前記チャンバからの出射の際に前記CWレーザーの主要な波長をフィルタリングするように構成されたフィルタ部品を更に含む、請求項1に記載の密封高輝度照明機器。
【請求項12】
密封チャンバを含む、着火電極の無い密封ビームランプを動作させるための方法であって、
前記チャンバの外部に配置された1000nmより小さい波長のレーザー光を放出する連続波(CW)ダイオードレーザー光源から前記チャンバ内部の焦点領域へのエネルギーを受け取るように構成された窓を設けるステップと、
前記チャンバの圧力を所定の圧力レベルに設定するステップと、
前記CWレーザー光源を、前記チャンバ内部の200ミクロン3以下の所定の体積を有する前記チャンバ内部の焦点領域に集束させるステップと、
前記CWレーザー光源のみを用いて、前記チャンバ内部のイオン化可能媒体を着火させて、着火剤を使用することなくプラズマを形成するステップと、
前記CWレーザー光源を用いて前記チャンバ内部で前記プラズマを維持するステップと、を含み、
前記所定の圧力レベルは少なくとも300psiであり、前記CWレーザー光源は250ワット以下の電力レベルを有する、方法。
【請求項13】
密封チャンバを含む、着火電極の無い密封ビームランプを動作させるための方法であって、
前記チャンバの外部に配置された1000nm未満の波長のレーザー光を放出する連続波(CW)レーザー光源から前記チャンバ内部の焦点領域へのエネルギーを受け取るように構成された窓を設けるステップと、
前記チャンバの圧力を所定の圧力レベルに設定するステップと、
完全に前記チャンバ内部に配置された受動非電極着火剤を、前記焦点領域に隣接するように位置決めするステップと、
前記CWレーザー光源を用いて、前記受動非電極着火剤を加熱するステップと、
前記チャンバ内部のイオン化可能媒体を、前記加熱された受動非電極着火剤を用いて着火させてプラズマを形成するステップと、
前記CWレーザー光源を、前記チャンバ内部の200ミクロン3以下の所定の体積を有する前記チャンバ内部の焦点領域に集束させるステップと、
前記CWレーザー光源を用いて前記チャンバ内部で前記プラズマを維持するステップと、を含み、
前記受動非電極着火剤は電気的接続を含まず、前記所定の圧力レベルは少なくとも300psiであり、前記CWレーザー光源は125ワットよりも低い電力レベルを有する、方法。
【請求項14】
前記CWレーザー光源を用いた前記受動非電極着火剤の前記加熱は間接的である、請求項13に記載の方法。
【請求項15】
前記CWレーザー光源を前記受動非電極着火剤に集束させるステップを更に含み、前記CWレーザー光源を用いた前記受動非電極着火剤の前記加熱は直接的である、請求項13に記載の方法。
【請求項16】
前記受動非電極着火剤はトリア入りタングステンを含む、請求項13に記載の方法。
【請求項17】
前記受動非電極着火剤はKr-85を含む、請求項13に記載の方法。
【請求項18】
高輝度光を生成するためのシステムであって、
1000nm以下の波長を有するCWレーザービームを生成するように構成され、且つ、250ワット未満を生成するように構成された連続波(CW)レーザー光源、及び
着火促進無電極密封高輝度照明機器であって、
イオン化可能媒体を収容するように構成された密封チャンバであって、
前記CWレーザービームを前記チャンバに入射させるように構成されたチャンバ内面の壁内に配置された入口窓と、
プラズマ維持領域と、
前記チャンバから高輝度光を放出するように構成された高輝度光出口窓と、を更に含む密封チャンバを含む、着火促進無電極密封高輝度照明機器を含み、
前記CWレーザー光源から前記入口窓を通って前記チャンバ内の焦点領域に至る前記CWレーザービームの経路は直進的であり、前記CWレーザービームを、半値全幅(FWHM)ビームウエストが1~10ミクロン2で、レイリー長が6ミクロン以下の領域に集束させ、前記プラズマは前記CWレーザービームによって着火されるように構成される、システム。
【請求項19】
前記CWレーザー光源は、250ワット未満を生成するように構成される、請求項18に記載のシステム。
【請求項20】
前記着火促進無電極密封高輝度照明機器は、非電極着火剤を更に含み、前記CWレーザー光源は、125ワット未満を生成するように構成される、請求項18に記載のシステム。
【外国語明細書】