(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022190662
(43)【公開日】2022-12-26
(54)【発明の名称】画像形成装置
(51)【国際特許分類】
G03G 15/00 20060101AFI20221219BHJP
【FI】
G03G15/00 303
【審査請求】未請求
【請求項の数】24
【出願形態】OL
(21)【出願番号】P 2022050956
(22)【出願日】2022-03-25
(31)【優先権主張番号】P 2021099072
(32)【優先日】2021-06-14
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000001007
【氏名又は名称】キヤノン株式会社
(74)【代理人】
【識別番号】100169155
【弁理士】
【氏名又は名称】倉橋 健太郎
(74)【代理人】
【識別番号】100075638
【弁理士】
【氏名又は名称】倉橋 暎
(72)【発明者】
【氏名】安 幸治
(72)【発明者】
【氏名】片桐 真史
【テーマコード(参考)】
2H270
【Fターム(参考)】
2H270KA12
2H270KA28
2H270KA32
2H270KA69
2H270LA12
2H270LA24
2H270LA28
2H270LB02
2H270LB08
2H270LD08
2H270LD14
2H270MA06
2H270MA24
2H270MB28
2H270MH09
2H270SC09
2H270ZC01
2H270ZC03
2H270ZC04
2H270ZC06
(57)【要約】
【課題】高温高湿環境などのパッチボソの抑制と強抜けの抑制との両立が難しい環境においても、適切な転写電圧を設定する。
【解決手段】画像形成装置100は、像担持体10と、転写部材20と、印加部21と、制御部210と、を有し、制御部210が、印加部21により転写部材20に印加する電圧が略一定となるように転写電圧を定電圧制御する際に、トナー像に使用されるトナー量が第1のトナー量の場合に転写電圧を第1の電圧とし、上記トナー量が第1のトナー量より大きい第2のトナー量の場合に転写電圧を第1の電圧の絶対値よりも絶対値が小さい第2の電圧とするように制御を行う構成とする。
【選択図】
図1
【特許請求の範囲】
【請求項1】
トナー像を担持する像担持体と、
前記像担持体から記録材に前記トナー像を転写する転写部を形成する転写部材と、
前記転写部材に転写電圧を印加する印加部と、
前記印加部を制御する制御部と、を有し、
前記制御部は、前記印加部により前記転写部材に印加する電圧が略一定となるように前記転写電圧を定電圧制御する際に、前記トナー像に使用されるトナー量が第1のトナー量の場合に前記転写電圧を第1の電圧とし、前記トナー量が前記第1のトナー量より大きい第2のトナー量の場合に前記転写電圧を前記第1の電圧の絶対値よりも絶対値が小さい第2の電圧とするように制御を行うことを特徴とする画像形成装置。
【請求項2】
前記トナー量に関するトナー量情報を取得する取得部と、
前記像担持体、又は前記像担持体に転写するトナーを担持する別の像担持体を、画像情報に応じて露光する露光部と、を有し、
前記取得部は、前記画像情報に応じて前記露光部を発光させるための駆動信号に基づいて前記トナー量情報を取得することを特徴とする請求項1に記載の画像形成装置。
【請求項3】
1枚の記録材に転写するトナー像ごとに前記トナー量に関するトナー量情報が取得されることを特徴とする請求項1又は2に記載の画像形成装置。
【請求項4】
1面目にトナー像が転写されて定着された記録材を前記転写部へと搬送して該記録材の2面目にトナー像を転写する動作を実行可能であり、
前記制御部は、前記2面目へのトナー像の転写時よりも、前記1面目へのトナー像の転写時に、前記第1の電圧と前記第2の電圧との差分の絶対値が大きくなるように、前記第1の電圧又は前記第2の電圧の少なくとも一方を変更することを特徴とする請求項1乃至3のいずれか1項に記載の画像形成装置。
【請求項5】
環境の温度又は湿度の少なくとも一方に関する環境情報を検知する環境検知部を有し、
前記制御部は、前記環境検知部の検知結果が示す環境の絶対水分量が第1の絶対水分量の場合よりも、前記絶対水分量が前記第1の絶対水分量よりも大きい第2の絶対水分量の場合に、前記第1の電圧と前記第2の電圧との差分の絶対値が大きくなるように、前記第1の電圧又は前記第2の電圧の少なくとも一方を変更することを特徴とする請求項1乃至4のいずれか1項に記載の画像形成装置。
【請求項6】
前記制御部は、前記トナー量が最小の場合の前記転写電圧と、前記トナー量が最大の場合の前記転写電圧と、の間で、前記トナー量が増加するにつれて前記転写電圧の絶対値を徐々に小さくするように制御を行うことを特徴とする請求項1乃至5のいずれか1項に記載の画像形成装置。
【請求項7】
前記制御部は、前記トナー量が最小の場合の前記転写電圧と、前記トナー量が最大の場合の前記転写電圧と、の間に、前記トナー量の変化に対して前記転写電圧が略一定であるトナー量の区間を有するように制御を行うことを特徴とする請求項1乃至5のいずれか1項に記載の画像形成装置。
【請求項8】
前記トナー量の値A(0<A)によって定義される0≦X≦Aの区間では、前記トナー量の変化に対して前記転写電圧が略一定であることを特徴とする請求項7に記載の画像形成装置。
【請求項9】
前記トナー量は、記録材に転写可能な1色ごとのトナー量の総量に対する記録材に転写するトナー量の割合であるトナー量X[%]を示し、前記トナー量Xの値A、B、C、D(0<A<B<C<D)によって定義される0≦X≦Aの区間を区間a、A<X<Bの区間を区間b、B≦X≦Cの区間を区間c、C<X<Dの区間を区間d、D≦Xの区間を区間e、前記区間aでの前記転写電圧の絶対値の平均値をVave1、前記区間cでの前記転写電圧の絶対値の平均値をVave2、前記区間eでの前記転写電圧の絶対値の平均値をVave3としたとき、Vave1>Vave2>Vave3を満たすことを特徴とする請求項1乃至5のいずれか1項に記載の画像形成装置。
【請求項10】
前記値Aは3~10[%]、前記値Bは15~25[%]、前記値Cは75~90[%]、前記値Dは95[%]以上であることを特徴とする請求項9に記載の画像形成装置。
【請求項11】
(Vave1-Vave2)>(Vave2-Vave3)を満たすことを特徴とする請求項9又は10に記載の画像形成装置。
【請求項12】
前記区間a、前記区間c及び前記区間eでは、前記トナー量Xの変化に対して前記転写電圧が略一定であることを特徴とする請求項9乃至11のいずれか1項に記載の画像形成装置。
【請求項13】
前記区間b及び前記区間dでは、前記トナー量Xが増加するにつれて前記転写電圧の絶対値が徐々に小さくなることを特徴とする請求項9乃至12のいずれか1項に記載の画像形成装置。
【請求項14】
前記制御部は、前記印加部により前記転写部材に印加する電圧が略一定となるように前記転写電圧を定電圧制御する際に、前記トナー量が第1のトナー量の場合に前記転写電圧を第1の電圧とし、前記トナー量が前記第1のトナー量より大きい第2のトナー量の場合に前記転写電圧を前記第1の電圧の絶対値よりも絶対値が小さい第2の電圧とし、前記トナー量が前記第2のトナー量より大きい第3のトナー量の場合に前記転写電圧を前記第1の電圧の絶対値よりも絶対値が小さくかつ前記第2の電圧の絶対値よりも絶対値が大きい第3の電圧とするように制御を行うことを特徴とする請求項1乃至5のいずれか1項に記載の画像形成装置。
【請求項15】
前記トナー量は、記録材に転写可能な1色ごとのトナー量の総量に対する記録材に転写するトナー量の割合であるトナー量X[%]を示し、前記トナー量Xの値A、B、C、D、E、F(0<A<B<C<D<E<F)によって定義される0≦X≦Aの区間を区間a、A<X<Bの区間を区間b、B≦X≦Cの区間を区間c、C<X<Dの区間を区間d、D≦X≦Eの区間を区間e、E<X<Fの区間を区間f、F≦Xの区間を区間g、前記区間aでの前記転写電圧の絶対値の平均値をVave1、前記区間cでの前記転写電圧の絶対値の平均値をVave2、前記区間eでの前記転写電圧の絶対値の平均値をVave3、前記区間gでの前記転写電圧の絶対値の平均値をVave4としたとき、Vave1>Vave2>Vave3、及びVave1>Vave4>Vave3を満たすことを特徴とする請求項14に記載の画像形成装置。
【請求項16】
前記値Aは3~10[%]、前記値Bは15~25[%]、前記値Cは75~90[%]、前記値Dは95~140[%]、前記値Eは210~240[%]、前記値Fが260「%」以上であることを特徴とする請求項15に記載の画像形成装置。
【請求項17】
前記区間a、前記区間c、前記区間e及び前記区間gでは、前記トナー量Xの変化に対して前記転写電圧が略一定であることを特徴とする請求項15又は16に記載の画像形成装置。
【請求項18】
前記区間b及び前記区間dでは、前記トナー量Xが増加するにつれて前記転写電圧の絶対値が徐々に小さくなることを特徴とする請求項15乃至17のいずれか1項に記載の画像形成装置。
【請求項19】
前記区間fでは、前記トナー量Xが増加するにつれて前記転写電圧の絶対値が徐々に大きくなることを特徴とする請求項15乃至18のいずれか1項に記載の画像形成装置。
【請求項20】
環境の温度又は湿度の少なくとも一方に関する環境情報を検知する環境検知部を有し、
前記制御部は、前記印加部により前記転写部材に供給する電流が略一定となるように前記転写電圧を定電流制御することが可能であり、前記環境検知部の検知結果が示す絶対水分量が所定値以上の場合に前記転写電圧の前記定電圧制御を行い、前記環境検知部の検知結果が示す絶対水分量が前記所定値未満の場合に前記転写電圧の前記定電流制御を行うことを特徴とする請求項1乃至19のいずれか1項に記載の画像形成装置。
【請求項21】
前記転写部の電気抵抗と相関する指標値を検知する抵抗検知部を有し、
前記制御部は、前記印加部により前記転写部材に供給する電流が略一定となるように前記転写電圧を定電流制御することが可能であり、前記抵抗検知部の検知結果が示す前記転写部の電気抵抗が所定値より低い場合に前記転写電圧の前記定電圧制御を行い、前記抵抗検知部の検知結果が示す前記転写部の電気抵抗が前記所定値以上の場合に前記転写電圧の前記定電流制御を行うことを特徴とする請求項1乃至19のいずれか1項に記載の画像形成装置。
【請求項22】
前記制御部は、前記印加部により前記転写部材に供給する電流が略一定となるように前記転写電圧を定電流制御することが可能であり、前記転写電圧の前記定電流制御を行って前記印加部の印加電圧が所定値よりも小さくなる場合に、前記転写電圧の前記定電圧制御を行うことを特徴とする請求項1乃至19のいずれか1項に記載の画像形成装置。
【請求項23】
前記像担持体は、別の像担持体から一次転写されたトナー像を前記転写部で前記記録材に二次転写するために搬送する無端状のベルトで構成されており、前記ベルトは、周方向に電流を流すことが可能であることを特徴とする請求項1乃至22のいずれか1項に記載の画像形成装置。
【請求項24】
前記ベルトの体積抵抗率は、1×109Ω・cm以上、1×1010Ω・cm以下であることを特徴とする請求項23に記載の画像形成装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電子写真方式や静電記録方式を用いたプリンター、複写機、ファクシミリ装置などの画像形成装置に関するものである。
【背景技術】
【0002】
電子写真方式などを用いた画像形成装置では、像担持体上に形成されたトナー像は、像担持体と転写部材との間に形成される転写部を通過する紙などの記録材上に転写される。中間転写方式の画像形成装置では、第1の像担持体としての感光体などの上に形成されたトナー像は、第2の像担持体としての中間転写体上に一次転写された後に、中間転写体と二次転写部材との間に形成される二次転写部を通過する記録材上に二次転写される。
【0003】
像担持体から記録材へのトナー像の転写は、転写部材に転写電圧が印加されることで行われる。高品位の成果物(印刷物)を得るためには、適切な転写電圧を設定することが重要となる。
【0004】
特許文献1には、画像パターンや印字率によらず均一な最終画像を得るために、印字率や画素数に応じて転写電流を変更する構成が開示されている。この構成では、印字率や画素数の増加、すなわち、記録材に転写するトナー量が多くなるにつれて転写電流量を多くする制御を実施して、高印字画像における転写不良を抑制しようとしている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献1の構成のように、記録材に転写するトナー量が増加するにつれて転写電流を大きくする制御を、例えば高温高湿環境において実施すると、以下の2種類の画像不良が発生する可能性がある。
【0007】
(1)孤立パッチパターンなどを含む低印字画像を転写する場合
一般に、高温高湿環境においては、転写ローラなどの転写部材や記録材の電気抵抗値が低下する。そのため、高抵抗である(電気抵抗値が高い)トナーが存在する部分(以下、「トナー部(あるいはパッチ部)」ともいう。)ではなく、低抵抗である(電気抵抗値が低い)トナーが存在しない部分(以下、「白部(あるいは白地部)」ともいう。)に転写電流が選択的に流れやすくなる。そのため、孤立パッチパターンを良好に転写するためには転写電流を多く流す必要がある。ここで、「孤立パッチパターン」とは、記録材の幅(搬送方向と略直交する幅方向の長さ)の中に高印字のトナー像のかたまりが点在している画像パターンのことを意味している。しかしながら、特許文献1の構成では、孤立パッチパターンを含む画像ではトナー量が少ないと判断されるため、転写電圧の絶対値を小さくしてしまうことになる。その結果、トナー部に十分な転写電流を供給できないことにより、記録材に転写されないトナーが生じる画像不良(以下、「パッチボソ」ともいう。)が発生する可能性がある。
【0008】
(2)全面ベタ画像などを含む高印字画像を転写する場合
この場合、転写電流が白地部へ選択的に流れることがなくなるため、トナー部へは十分に転写電流が供給される。上記パッチボソが発生しないように、すなわち、孤立パッチパターンに転写電流を十分に供給できるように転写電圧を設定した場合には、全面ベタ画像に対してはトナーの転写に必要な最低限の電流以上の転写電流が供給される。ここで、「全面ベタ画像(全面ベタパターン)」とは、記録材の幅方向における画像形成可能領域の全域に最高濃度レベルのトナー像が存在する画像パターンのことを意味している。しかしながら、特許文献1の構成では、「全面ベタ画像(全面ベタパターン)」を転写するために必要な転写電圧よりもさらに転写電圧の絶対値を大きくしてしまうことになる。その結果、トナー部へ過剰な転写電流が供給されることにより、放電により帯電極性が反転するなどして記録材に転写されないトナーが生じる画像不良(以下、「強抜け」ともいう。)が発生する可能性がある。
【0009】
したがって、本発明の目的は、高温高湿環境などのパッチボソの抑制と強抜けの抑制との両立が難しい環境においても、適切な転写電圧を設定することを目的とする。
【課題を解決するための手段】
【0010】
上記目的は本発明に係る画像形成装置にて達成される。要約すれば、本発明は、トナー像を担持する像担持体と、前記像担持体から記録材に前記トナー像を転写する転写部を形成する転写部材と、前記転写部材に転写電圧を印加する印加部と、前記印加部を制御する制御部と、を有し、前記制御部は、前記印加部により前記転写部材に印加する電圧が略一定となるように前記転写電圧を定電圧制御する際に、前記トナー像に使用されるトナー量が第1のトナー量の場合に前記転写電圧を第1の電圧とし、前記トナー量が前記第1のトナー量より大きい第2のトナー量の場合に前記転写電圧を前記第1の電圧の絶対値よりも絶対値が小さい第2の電圧とするように制御を行うことを特徴とする画像形成装置である。
【発明の効果】
【0011】
本発明によれば、高温高湿環境などのパッチボソの抑制と強抜けの抑制との両立が難しい環境においても、適切な転写電圧を設定することができる。
【図面の簡単な説明】
【0012】
【
図2】画像形成装置の制御態様を示すブロック図である。
【
図3】トナー量の算出に関する機能ブロック図である。
【
図4】実施例1の二次転写電圧の決定方法を説明するためのグラフ図である。
【
図5】二次転写電圧の制御手順を示すフローチャート図である。
【
図6】実施例の効果を説明するための模式図である。
【
図7】二次転写電圧の制御タイミングを示すタイミングチャート図である。
【
図9】実施例2の二次転写電圧の決定方法を説明するためのグラフ図である。
【
図10】実施例2のその他の構成における二次転写電圧の決定方法を説明するためのグラフ図である。
【
図11】実施例3の二次転写電圧の決定方法を説明するためのグラフ図である。
【
図12】実施例4の画像形成装置の一次転写部周りの構成の模式図である。
【
図13】実施例4における中間転写ベルトの断面構成を示す模式図である。
【
図14】実施例4における二次転写部に関する等価回路図である。
【発明を実施するための形態】
【0013】
以下、本発明に係る画像形成装置を図面に則して更に詳しく説明する。
【0014】
[実施例1]
<画像形成装置の全体的な構成及び動作>
図1は、本実施例の画像形成装置100の概略断面図である。本実施例の画像形成装置100は、インライン方式及び中間転写方式を採用した電子写真方式のフルカラーレーザープリンタである。画像形成装置100は、画像情報に従って、記録材P(例えば、記録用紙、プラスチックシートなど)にフルカラー画像を形成することができる。画像情報は、画像形成装置100に設けられるか又は接続された画像読み取り装置(図示せず)、あるいは画像形成装置100に通信可能に接続されたパーソナルコンピュータなどのホスト機器199(
図2、
図3)から、画像形成装置100に入力される。
【0015】
画像形成装置100は、複数の画像形成部(ステーション)として、それぞれイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の各色の画像を形成するための第1、第2、第3、第4の画像形成部Sa、Sb、Sc、Sdを有する。本実施例では、第1、第2、第3、第4の画像形成部Sa、Sb、Sc、Sdは、鉛直方向と交差する方向に一列に配置されている。なお、本実施例では、第1、第2、第3、第4の画像形成部Sa、Sb、Sc、Sdの構成及び動作は、形成する画像の色が異なることを除いて実質的に同じである。各画像形成部Sa、Sb、Sc、Sdにおける同一又は対応する機能あるいは構成を有する要素については、いずれかの色用の要素であることを示す符号の末尾のa、b、c、dを省略して総括的に説明することがある。画像形成部Sは、後述する感光ドラム1(1a、1b、1c、1d)、帯電ローラ2(2a、2b、2c、2d)、露光装置3(3a、3b、3c、3d)、現像装置4(4a、4b、4c、4d)、一次転写ローラ14(14a、14b、14c、14d)、ドラムクリーニング装置5(5a、5b、5c、5d)などを有して構成される。
【0016】
第1の像担持体としての回転可能なドラム型(円筒形)の感光体(電子写真感光体)である感光ドラム1は、駆動手段(駆動源)としての駆動モーターにより、
図1中の矢印R1方向(反時計回り方向)に所定の周速度(プロセススピード)で回転駆動される。回転する感光ドラム1の表面は、帯電手段としてのローラ型の帯電部材である帯電ローラ2によって、所定の極性(本実施例では負極性)の所定の電位に一様に帯電処理される。帯電処理された感光ドラム1の表面は、露光手段としての露光装置(レーザースキャナーユニット)3によって画像情報に従って走査露光され、感光ドラム1上に画像情報に従う静電潜像(静電像)が形成される。露光装置3は、例えばホスト機器199(
図2、
図3)から入力された画像情報から後述するCPU221(
図3)によって演算された出力に基づいて、感光ドラム1上にレーザー光Lを照射する。感光ドラム1上に形成された静電潜像は、現像手段としての現像装置4によって、現像剤としてのトナーが供給されて現像(可視化)され、感光ドラム1上にトナー像(トナー画像、現像剤像)が形成される。本実施例では、一様に帯電処理された後に露光されることで電位の絶対値が低下した感光ドラム1上の露光部(イメージ部)に、感光ドラム1の帯電極性(本実施例では負極性)と同極性に帯電したトナーが付着する(反転現像)。本実施例では、現像時のトナーの帯電極性であるトナーの正規の帯電極性は負極性である。
【0017】
4個の感光ドラム1a~1dに対向して、第2の像担持体としての無端状のベルトで構成された中間転写体である中間転写ベルト10が配置されている。中間転写ベルト10は、複数の支持部材(張架ローラ)としての駆動ローラ11、テンションローラ12及び二次転写対向ローラ13に掛け渡されて所定の張力で張架されている。中間転写ベルト10は、二次転写対向ローラ13と駆動ローラ11との間に形成された被転写面Mにおいて、4個の感光ドラム1a~1dに当接する。駆動ローラ11は、駆動手段(駆動源)としての駆動モーターにより
図1中の矢印R2方向(時計回り方向)に回転駆動される。これにより、中間転写ベルト10は、
図1中の矢印R3方向(時計回り方向)に、感光ドラム1の周速度に対応する周速度(プロセススピード)で回転(周回移動、循環移動)する。中間転写ベルト10の内周面側には、各感光ドラム1a、1b、1c、1dに対応して、一次転写手段としてのローラ型の一次転写部材である一次転写ローラ14a、14b、14c、14dが配置されている。一次転写ローラ14は、中間転写ベルト10を感光ドラム1に向けて押圧し、感光ドラム1と中間転写ベルト10との接触部である一次転写部(一次転写ニップ部)N1を形成する。感光ドラム1上に形成されたトナー像は、一次転写部N1において、一次転写ローラ14の作用によって、回転している中間転写ベルト10上に転写(一次転写)される。一次転写時に、一次転写ローラ14には、一次転写電圧印加手段(一次転写電圧印加部)としての一次転写電源(高圧電源)15により、トナーの正規の帯電極性とは逆極性(本実施例では正極性)の一次転写電圧(一次転写バイアス)が印加される。本実施例では、一次転写ローラ14には、一例として、+100Vの一次転写電圧が印加される。例えばフルカラー画像の形成時には、各感光ドラム1a、1b、1c、1d上に形成されたイエロー、マゼンタ、シアン、ブラックの各色のトナー像が、中間転写ベルト10上に重ね合わされるようにして順次一次転写される。
【0018】
中間転写ベルト10の外周面側において、二次転写対向ローラ(二次転写内ローラ)13に対向する位置には、二次転写手段としてのローラ型の二次転写部材である二次転写ローラ(二次転写外ローラ)20が配置されている。二次転写ローラ20は、二次転写対向ローラ13に向けて押圧され、中間転写ベルト10を介して二次転写対向ローラ13に当接し、中間転写ベルト10と二次転写ローラ13との接触部である二次転写部(二次転写ニップ部)N2を形成する。中間転写ベルト10上に形成されたトナー像は、二次転写部N2において、二次転写ローラ20の作用によって、中間転写ベルト10と二次転写ローラ20とに挟持されて搬送されている記録材P上に転写(二次転写)される。二次転写時に、二次転写ローラ20には、二次転写電圧印加手段(二次転写電圧印加部)としての二次転写電源(高圧電源)21により、トナーの正規の帯電極性とは逆極性(本実施例では正極性)の二次転写電圧(二次転写バイアス)が印加される。なお、本実施例では、二次転写対向ローラ13は、接地電位に接続されている。例えばフルカラー画像の形成時には、中間転写ベルト10上の4色のトナー像は、二次転写部N2において、記録材P上に一括して転写される。記録材Pは、記録材収容部としてのカセット51に収容されている。記録材Pは、給送手段としての給送ローラ50などによってカセット51から1枚ずつ分離されて送り出され、レジストローラ60まで搬送される。そして、この記録材Pは、レジストローラ60によって、中間転写ベルト10上のトナー像とタイミングが合わされて二次転写部N2へと搬送される。レジストローラ60による記録材Pの搬送タイミングは、記録材Pの搬送方向の先端を検知するレジストセンサ61の検知結果などに基づいて制御される。
【0019】
なお、本実施例における二次転写対向ローラ13に対応する内ローラにトナーの正規の帯電極性と同極性の電圧を印加し、本実施例における二次転写ローラ20に対応する外ローラを接地電位に接続する構成とすることもできる。
【0020】
トナー像が転写された記録材Pは、定着手段としての定着装置30へと搬送される。定着装置30は、熱源を備えた定着ローラ31と、定着ローラ31に圧接する加圧ローラ32と、を有する。定着装置30は、定着ローラ31と加圧ローラ32との接触部である定着ニップ部において、未定着のトナー像を担持した記録材Pに熱及び圧力が加えることで、記録材P上にトナー像を定着(溶融、固着)させる。例えばフルカラー画像の形成時には、記録材P上の4色のトナー像は、定着ニップ部において加熱及び加圧されることにより溶融混色されて、記録材P上に固定される。トナー像が定着された記録材Pは、画像形成装置100の装置本体から排出(出力)される。
【0021】
本実施例の画像形成装置100は、1面目にトナー像が転写され定着された記録材Pを二次転写部N2に再度搬送し、該記録材Pの2面目にトナー像を転写して定着させた後に装置本体の外部に排出する、両面印刷(自動両面印刷)を実行可能である。画像形成装置100は、両面印刷を実行するために、1面目にトナー像が定着された記録材Pを二次転写部N2に再度搬送するための両面搬送機構(図示せず)を有している。片面印刷の場合は、1面目にトナー像が定着された記録材Pは、直接装置本体の外部に排出される。
【0022】
一方、一次転写後に感光ドラム1上に残留したトナー(一次転写残トナー)などの付着物は、感光体クリーニング手段としてのドラムクリーニング装置5によって感光ドラム1上から除去されて回収される。また、二次転写後に中間転写ベルト10上に残留したトナー(二次転写残トナー)などの付着物は、中間転写体クリーニング手段としてのベルトクリーニング装置16によって中間転写ベルト10上から除去されて回収される。
【0023】
なお、画像形成装置100は、一つの画像形成部S又は幾つか(全てではない)の画像形成部Sのみを用いて、単色又はマルチカラーの画像を形成することもできる。
【0024】
また、各画像形成部Sにおいて、感光ドラム1と、感光ドラム1に作用するプロセス手段としての帯電ローラ2、現像装置4及びドラムクリーニング装置5とは、一体的に画像形成装置100の装置本体に着脱可能なプロセスカートリッジ6を構成している。プロセスカートリッジ6は、装置本体に設けられた装着ガイド、位置決め部材などの装着手段を介して、装置本体に着脱可能となっている。
【0025】
また、本実施例の画像形成装置100は、プロセススピード148mm/secで、A5サイズ紙、A4サイズ紙、LTRサイズ紙などに画像を形成して出力することができる。
【0026】
ここで、本実施例では、一次転写ローラ14は、外径6mmの円筒形状の金属ローラであり、素材にはニッケルメッキのSUSが用いられている。一次転写ローラ14は、感光ドラム1の中心位置に対して、中間転写ベルト10の移動方向の下流側に8mmオフセットされた位置に配置されており、中間転写ベルト10が感光ドラム1に巻き付くような構成になっている。一次転写ローラ14は、感光ドラム1への中間転写ベルト10の巻き付き量を確保できるように、感光ドラム1と中間転写ベルト10とで形成される水平面に対して中間転写ベルト10を感光ドラム1側に1mm持ち上げた位置に配置される。一次転写ローラ14は、中間転写ベルト10を約200gfの力で感光ドラム1側に押圧している。また、一次転写ローラ14は、中間転写ベルト10の回転に伴い従動して回転する。
【0027】
また、本実施例では、二次転写ローラ20は、中間転写ベルト10に対して、50Nの加圧力で当接し、二次転写部N2を形成する。二次転写ローラ20は、中間転写ベルト10の回転に伴い従動して回転する。紙などの記録材Pは、二次転写部N2において、中間転写ベルト10と二次転写ローラ20とに挟持されて搬送される。二次転写ローラ20は、芯金としての外径8mmのニッケルメッキ鋼棒の周囲を、弾性層としての体積抵抗率108Ω・cmに調整したNBRとエピクロルヒドリンゴムとを主成分とする厚さ5mmの発泡スポンジ体で覆った、外径18mmのローラである。なお、本実施例では、二次転写電源21は、100V~5000Vの範囲の出力が可能である。なお、本明細書において、「~」を用いて示す数値範囲は、「~」の前後の数値を含む範囲であることを意味する。
【0028】
また、本実施例では、定着部材としての定着ローラ31は、金属素管の周囲に絶縁シリコーンゴムの弾性層を形成し、更に弾性層の外周を絶縁PFAチューブで被膜した、外径18mmのローラである。この定着ローラ31は、加熱手段としてハロゲンヒータ(図示せず)を内包している。ハロゲンヒータは、定着ローラ31とは非接触で、電源(図示せず)により電圧を供給されることで発熱する。また、本実施例では、加圧部材としての加圧ローラ32は、芯金の周囲に、導電性シリコーンゴムの弾性層を形成し、更に弾性層の外周を導電性PFAチューブで被膜した、外径18mmのローラである。定着ローラ31と加圧ローラ32とは、10kgfの加圧力で押圧されることで定着ニップ部を形成している。加圧ローラ32は、駆動手段(駆動源)としての駆動モーターにより回転駆動される。定着ローラ31は、加圧ローラ32の回転に伴い従動して回転する。記録材Pは、定着ニップ部において、加熱ローラ31と加圧ローラ32とに挟持されて搬送される。加圧ローラ32は、芯金から1000MΩの抵抗素子(図示せず)を介してグラウンド(接地電位)に接続されている。加圧ローラ32と抵抗素子を介して定着ローラ31や加圧ローラ32上の電荷をグランドに逃がすことで、定着ローラ31や加圧ローラ32の表面が帯電することを抑制することができる。
【0029】
図2は、本実施例の画像形成装置100の全体の制御を行うエンジン制御部210の構成を説明するためのブロック図である。エンジン制御部210は、CPU回路部150、ROM151及びRAM152を内蔵する。CPU回路部150は、ROM151に格納されている制御プログラムに従って、一次転写制御部201、二次転写制御部202、現像制御部203、露光制御部204、帯電制御部205などを統括的に制御する。後述する二次転写電圧の制御に関する制御テーブル(環境テーブル、記録材幅/記録材厚さ対応テーブルなど)は、ROM151に格納されており、CPU回路部150に実装されたCPU221(
図3)が呼び出して制御に反映する。RAM152は、制御データを一時的に保持し、また制御に伴う演算処理の作業領域として用いられる。
【0030】
一次転写制御部201、二次転写制御部202は、それぞれ一次転写電源15、二次転写電源21を制御する。一次転写制御部201、二次転写制御部202は、それぞれの電流検知部(電流検知回路)が検知する電流値などに基づいて、一次転写電源15、二次転写電源21から出力する電圧をそれぞれ制御する。二次転写電圧の制御に関しては後述して詳しく説明する。
【0031】
エンジン制御部210には、画像形成装置100の内部又は外部の少なくとも一方の温度又は湿度の少なくとも一方を検知する環境検知手段(環境検知部)としての環境センサ300が接続されている。本実施例では、環境センサ300は、温度検知手段(温度検知部)としての温度センサ301と、湿度検知手段(湿度検知部)としての湿度センサ302と、を内蔵しており、画像形成装置100の周囲の温度及び湿度を検知する。環境センサ300は、温度センサ301による温度の検知結果を示す信号(温度情報)及び湿度センサ302による湿度(相対湿度)の検知結果を示す信号(湿度情報)をエンジン制御部210に入力する。
【0032】
また、エンジン制御部210には、コントローラ200が接続されている。コントローラ200は、外部装置であるホスト機器199から印刷情報(画像情報、各種設定情報)と印刷命令(プリントジョブの開始指示)を受信する。すると、エンジン制御部210は、各制御部(一次転写制御部201、二次転写制御部202、現像制御部203、露光制御部204、帯電制御部205など)を制御してプリントジョブの動作を実行する。なお、本実施例では、エンジン制御部210は、後述する二次転写電圧の制御のために、環境情報は環境センサ300の検知結果から取得し、記録材Pの情報はホスト機器199からの印刷情報から取得する。なお、印刷情報は、ホスト機器199にインストールされたプリンタドライバなどを介して、ホスト機器199からコントローラ200に入力される。
【0033】
ここで、画像形成装置100は、一つの開始指示により開始される、単一又は複数の記録材Pに画像を形成して出力する一連の動作であるプリントジョブ(印刷ジョブ、画像出力動作)を実行する。プリントジョブは、一般に、画像形成工程、前回転工程、複数の記録材Pに画像を形成する場合の紙間工程、及び後回転工程を有する。画像形成工程は、実際に記録材Pに形成して出力する画像の静電潜像の形成、トナー像の形成、トナー像の一次転写、二次転写を行う期間であり、画像形成時(画像形成期間)とはこの期間のことをいう。より詳細には、これら静電潜像の形成、トナー像の形成、トナー像の一次転写、二次転写の各工程を行う位置で、画像形成時のタイミングは異なる。前回転工程は、開始指示が入力されてから実際に画像を形成し始めるまでの、画像形成工程の前の準備動作を行う期間である。紙間工程(記録材間工程)は、複数の記録材Pに対する画像形成を連続して行う際(連続画像形成)の記録材Pと記録材Pとの間に対応する期間である。後回転工程は、画像形成工程の後の整理動作(準備動作)を行う期間である。非画像形成時(非画像形成期間)とは、画像形成時以外の期間であって、上記前回転工程、紙間工程、後回転工程、更には画像形成装置100の電源投入時又はスリープ状態からの復帰時の準備動作である前多回転工程などが含まれる。
【0034】
<二次転写電圧の制御の概要>
次に、本実施例における二次転写電圧の制御の概要について説明する。
【0035】
図1に示すように、二次転写電源21は、二次転写ローラ20に接続されており、二次転写電源21から出力された二次転写電圧が二次転写ローラ20に供給される。二次転写電源21から二次転写ローラ20に二次転写電圧が印加されることで、二次転写ローラ20とその対向部に設置された二次転写対向ローラ13との間に電界が形成される。これにより、中間転写ベルト10と記録材Pとの間に誘導分極が発生されて、両者に静電吸着力が生じる。
【0036】
図2に示すように、二次転写制御部202は、二次転写電源21が二次転写ローラ20に電圧を印加することで二次転写部N2(二次転写ローラ20)に流れる電流を検知する電流検知手段としての電流検知部(電流計)241を有する。二次転写制御部202は、二次転写部N2に流れる電流が目標電流値で略一定となる(目標値に近づく)ように二次転写電源21が出力する電圧値を制御することができる。画像形成時(二次転写時)には、二次転写部N2に流れる電流が、電流検知部241によって所定の周期(電流検知周期)で検知される。そして、二次転写制御部202において、次の電流検知周期で二次転写ローラ20に印加する二次転写電圧の電圧値が決定される。二次転写制御部202は、予め設定された目標電流値と、実際の出力値である電流検知部241により検知される検知電流値と、の差分を二次転写電源21にフィードバックすることで、上記次の電流検知周期での二次転写電圧の電圧値を決定する。つまり、検知電流値が目標電流値に近づくように、次の電流検知周期で二次転写ローラ20に印加する二次転写電圧の電圧値が調整される。これにより、二次転写電源21から二次転写ローラ20に印加される二次転写電圧は、二次転写部N2に流れる電流が略一定になるように制御される。ここでは、このように電流検知部241により検知される電流値が予め設定された所定の電流値で略一定となるように二次転写電源21から二次転写ローラ20に二次転写電圧を印加する制御を「定電流制御」という。
【0037】
一方、
図2に示すように、二次転写制御部202は、二次転写電源21が二次転写ローラ20に印加する電圧値を検知する電圧検知手段としての電圧検知部242を有する。二次転写制御部202は、二次転写電源21が出力する電圧値が目標電圧値で略一定となる(目標値に近づく)ように制御することができる。なお、電圧検知部242は、二次転写電源21に対する出力電圧値の指示値から電圧値を検知(認識)するようになっていてよい。高温高湿(高温多湿)環境などでは、記録材P、二次転写ローラ20、中間転写ベルト10などは、吸湿の影響で電気抵抗値が低下する。そのような状態で二次転写電圧の「定電流制御」を実施すると、目標電流値を出力するのに必要な二次転写電圧の絶対値が小さくなるため、トナーを記録材Pに転写するのに必要な電界が形成されず転写不良が発生する可能性がある。そのため、二次転写電圧の電圧値の設定には下限値が設けられており、高温高湿環境などで定電流制御を行った場合に二次転写電圧がその下限値を下回る場合には、電圧値がその下限値に相当する目標電圧値で略一定となるように二次転写電圧を制御する。これにより、トナーを記録材Pに転写するのに最低必要な電圧を確保して二次転写を行うことができる。ここでは、このように二次転写電源21から二次転写ローラ20に予め設定された所定の電圧値で略一定の二次転写電圧を印加する制御(電流値に関係なく印加する電圧を略一定にする制御)を「定電圧制御」という。
【0038】
本実施例では、エンジン制御部210のCPU221(
図3)は、環境センサ300の温度センサ301、湿度センサ302の検知結果に基づいて画像形成装置100の設置された環境の絶対水分量を算出する。そして、CPU221は、その算出した絶対水分量に応じて、二次転写制御部202による二次転写電圧の制御を「定電流制御」にするか、「定電圧制御」にするか決定し、二次転写制御部202に命令する。本実施例では、絶対水分量が21.7g/m
3以上の場合には二次転写電圧の「定電圧制御」を実施し、絶対水分量が21.7g/m
3未満の場合には二次転写電圧の「定電流制御」を実施する。
【0039】
<本実施例における二次転写電圧の制御の詳細>
本実施例の特徴の一つは、二次転写電圧の定電圧制御において、記録材Pに転写するトナー量を画像情報に基づいて算出し、その算出結果に基づいて予め設定された基準の二次転写電圧値に補正を加えることにある。特に、その際に、トナー量が増加するにつれて二次転写電圧の絶対値を小さくすること(トナー量が減少するにつれて二次転写電圧の絶対値を大きくすること)が、本実施例の特徴の一つである。
【0040】
(トナー量の算出について)
図3を参照して、本実施例における記録材Pに転写するトナー量の算出方法について説明する。
図3は、本実施例の画像形成装置100における記録材Pに転写するトナー量の算出に関する機能ブロック図である。ここでは、本実施例の二次転写電圧の制御で用いる記録材Pに転写するトナー量に関するトナー量情報、すなわち、1ページ中のトナー量Xの算出方法及び物理的な意味について説明する。
【0041】
コントローラ部200は、ホスト機器199、エンジン制御部210と相互に通信が可能となっている。コントローラ部200は、ホスト機器199から入力される印刷情報を受信すると、印刷情報を展開し、画像を形成するための画像データへ変換する。そして、コントローラ部200は、その画像データに基づいて、4つの画像形成部Sにおいて露光装置3が感光ドラム1を露光するための4色分の露光用のビデオ信号を生成する。コントローラ部200は、ビデオ信号の生成が完了すると、エンジン制御部210のビデオインターフェイス部220に対し、プリントジョブの開始指示を入力する。その後、エンジン制御部210のCPU221は、ビデオインターフェイス部220からプリントジョブの開始指示を受信すると、各種アクチュエータを起動し、画像形成の準備を開始する。CPU221は、画像形成の準備が整うと、ビデオインターフェイス部220を介して画像形成準備完了をコントローラ200に通知する。コントローラ200は、画像形成準備完了を示す信号を受信すると、ビデオインターフェイス部220にビデオ信号を送信する。
【0042】
ビデオインターフェイス部220は、受信したビデオ信号をエンジン制御部210の画像処理GA222に送信する。画像処理GA222は、ビデオインターフェイス部220からビデオ信号を受信し、レーザー駆動信号に変換し、レーザー駆動信号を露光装置3のレーザー駆動部230に送信する。レーザー駆動部230は、レーザー駆動信号に応じて、露光装置3の光源としてのレーザーダイオード231に供給する電流を制御して、レーザーダイオード231の発光を制御する。また、エンジン制御部210の画像データカウント部223は、レーザー駆動信号をサンプリングし、信号がHigh(発光)(以下、「H」と表記する。)となった回数をカウントする。画像データカウント部223は、レーザー駆動信号をサンプリングした際に、信号がLow(消灯)(以下、「L」と表記する。)であった場合はカウントしない。なお、本実施例では、ビデオインターフェイス部220、画像処理GA、画像データカウント部223は、エンジン制御部210のCPU回路部150に実装されたASICにより実現されている。
【0043】
CPU221は、画像データカウント部223による、Y、M、C、Kの4色のそれぞれに関してレーザー駆動信号が「H」となった回数である各色のピクセルカウント値ny、nm、nc、nkを、それぞれ1ページ分カウントする。続いて、CPU221は、各色のピクセルカウント値を足し合わせた総量であるピクセルカウント値n(=ny+nm+nc+nk)を算出する。1ページ分の1色当たりのサンプリング総数をNとすると、1ページ中のトナー量X[%]は、下記式(1)により算出される。なお、本実施例では、1ページ中のトナー量Xの計算は、エンジン制御部210のCPU回路部150に実装されたCPU211によって実現されるトナー量算出部224において行われる。
1ページ中のトナー量X[%]
={(ピクセルカウント値n)/(1色当たりのサンプリング総数N)}×100
・・・(1)
【0044】
1色当たりのサンプリング総数N分のサンプリングは、各色別々のタイミングでレーザー駆動を行うため、別々のタイミングで行われる。本実施例では、サンプリング周期は、1ページ中の全画素数をカウントできるように短い周期(100MHz)にした。したがって、Y、M、C、Kの4色のそれぞれのサンプリング総数Ny、Nm、Nc、Nkは、Ny=Nm=Nc=Nk=Nとなった。本実施例では、各色のピクセルカウント値ny、nm、nc、nkの最大値は、1色当たりのサンプリング総数Nになるため、Xは0~400[%]の値をとり得る(1色当たり0~100[%]の値をとり得る)。つまり、本実施例では、記録材Pに転写するトナー量に関するトナー量情報は、記録材Pに転写可能な1色ごとのトナー量の総量に対する記録材Pに転写するトナー量の割合であるトナー量X[%]を示す。
【0045】
以上のように、1ページ中のトナー量Xとは、1枚の記録材P(より詳細にはその画像形成可能領域)に転写するトナーの総量(より詳細にはその予測値)のことである。1ページ中のトナー量Xが100%未満とは、1枚の記録材P内がどれくらいトナーで被覆されているかをおおよそ表している。このとき、1ページ中のトナー量Xの数値が小さいほど白部が多い状態であることを意味している。特に、1ページ中のトナー量Xが10%未満とは、1枚の記録材P内のほぼ全面にわたる白部の中にテキストや後述する孤立パッチパターンがいくつか存在しているような状態をおおよそ表している。1ページ中のトナー量Xが100%以上とは、1枚の記録材P内のほぼ全面がトナーで被覆されている状態で、かつ、高さ方向に4色分のトナー量がどれくらいであるかをおおよそ表している。このとき、1ページ中のトナー量Xの数値が大きいほど高さ方向にトナーが多く存在することを意味している。1ページ中のトナー量Xが10~100%の状態は、1枚の記録材P内の比較的広い面積が、後述する孤立パッチパターンや後述するハーフトーン画像のトナーによって被覆されている状態が混在している可能性がある状態である。
【0046】
本実施例において1ページ中のトナー量Xを算出する目的は、この1枚の記録材P内がトナーでどのように被覆されているかを予測することである。そして、本実施例では、この予測した1枚の記録材P内のトナーの被覆状態に基づいて、二次転写電圧の補正量(補正値)ΔVを決定する。
【0047】
(二次転写電圧の決定方法について)
本実施例における二次転写電圧の定電圧制御を実行する際の基準の二次転写電圧の決定方法、及び1ページ中のトナー量Xに基づく二次転写電圧の補正方法(二次転写電圧の決定方法)について説明する。
【0048】
まず、二次転写電圧の定電圧制御を実行する際の基準の二次転写電圧である電圧V1(基準値)の決定方法について説明する。本実施例では、電圧V1は、CPU221によって、ホスト機器199から入力された印刷情報から取得される記録材Pの情報、及び環境センサ300の検知結果から取得される環境情報に基づいて決定される。本実施例では、記録材Pの情報は、記録材Pの搬送方向と略直交する幅方向の長さ(ここでは、単に「幅」ともいう。)の情報を含む記録材Pのサイズ(以下、「紙サイズ」ともいう。)の情報、記録材Pの厚さと関連する指標(厚さ、坪量など)の情報、記録材Pのカテゴリー(普通紙、厚紙、光沢紙など。以下、「紙質」ともいう。)の情報を含む。また、本実施例では、環境情報は、環境センサ300の温度センサ301及び湿度センサ302の検知結果に基づいてCPU221が算出する環境の絶対水分量の情報を含む。なお、記録材Pの情報とは、普通紙、上質紙、光沢紙、グロス紙、コート紙、エンボス紙、厚紙、薄紙などの一般的な特徴に基づく属性(所謂、カテゴリー(紙質))、坪量、厚さ、サイズ、剛性などの数値や数値範囲、あるいは銘柄(メーカー、商品名、品番などを含む。)などの、記録材Pを区別することのできる任意の情報を包含するものである。記録材Pの情報によって区別される記録材Pごとに、記録材Pの種類を構成するものと見ることができる。記録材Pの情報は、例えば、直接的に指定されてもよいし、例えば「普通紙モード」、「厚紙モード」といった、画像形成装置100の動作設定を指定するプリントモードの情報に含まれていたり、プリントモードの情報で代替されたりしてもよい。すなわち、本実施例では、記録材Pの種類ごとに、紙サイズ、坪量、紙質及び絶対水分量と、電圧V1と、の関係を示す情報が、予め設定されてテーブルとしてROM151に格納されている。そして、CPU221が、取得した記録材Pの情報及び環境情報に基づいて、上記テーブルから必要な情報を呼び出して、紙サイズ、坪量、紙質、絶対水分量に対応する電圧V1を決定する。
【0049】
次に、本実施例における二次転写電圧の補正量ΔVの決定方法(二次転写電圧の決定方法)について説明する。
図4は、本実施例における二次転写電圧の補正量ΔVの決定方法を説明するためのグラフ図である。
図4において、横軸は1ページ中のトナー量Xを示し、縦軸は実際に印加される二次転写電圧Vを示す。横軸の1ページ中のトナー量Xは、0~400[%]の値をとり得る。1ページ中のトナー量X=0[%]における電圧値を本実施例における二次転写電圧の基準値である電圧V1としている。また、1ページ中のトナー量X=400[%]における電圧値をV2としている。なお、本実施例では、電圧V2は、電圧V1と同様に、記録材Pの情報及び環境情報に基づいて決定される。すなわち、本実施例では、記録材Pの種類ごとに、紙サイズ、坪量、紙質及び絶対水分量と、電圧V2と、の関係を示す情報が、予め設定されてテーブルとしてROM151に格納されている。そして、CPU221が、取得した記録材Pの情報及び環境情報に基づいて、上記テーブルから必要な情報を呼び出して、紙サイズ、坪量、紙質、絶対水分量に対応する電圧V2を決定する。
【0050】
図4に示すように、本実施例では、1ページ中のトナー量X=0[%]における電圧V1に対して、1ページ中のトナー量Xが増えるにつれて、実際に印加される二次転写電圧Vの絶対値を単調減少させている。すなわち、補正量ΔVは、電圧V1と実際に印加される二次転写電圧Vとの差分であり、下記式(2)により決定(算出)される。なお、本実施例では、二次転写電圧の補正量ΔVの決定(計算)は、エンジン制御部210のCPU回路部150に実装されたCPU221によって実現される二次転写電圧補正量算出部225において行われる。
ΔV={(V1-V2)/400}×X[V] (0≦X≦400) ・・・(2)
【0051】
そして、1ページ中のトナー量Xが増えるにつれて二次転写電圧の絶対値を小さくするように、二次転写電圧Vが、下記式(3)により決定(算出)される。なお、本実施例では、補正量ΔVを用いた二次転写電圧Vの決定(計算)は、エンジン制御部210のCPU回路部150に実装されたCPU221において行われる。
V=V1-ΔV ・・・(3)
【0052】
表1に、一例として、普通紙に対する電圧V1、電圧V2のテーブルを示す。表1に示す例では、テーブルには、トナー像が転写される記録材Pの面(1面目又は2面目)、絶対水分量及び紙サイズに対して、電圧V1、電圧V2が設定されている。なお、紙サイズは、記録材Pの幅を示している。
【0053】
【0054】
なお、表1中に記載のない紙サイズや絶対水分量に対する電圧V1、電圧V2は、表1に記載される紙サイズ及び絶対水分量の間で線形補間されて決定される。紙サイズに関しては、LTR幅(215.9mm)以上はLTRの設定、A5幅(148.0mm)以下はA5の設定が選択される。また、A4幅は210.0mmである。絶対水分量に関しては、27.1g/m3以上は27.1g/m3の設定が選択され、21.7g/m3未満の場合は前述のように二次転写電圧の定電流制御が実行される。
【0055】
続いて、表1中の電圧V1と電圧V2との差分(絶対値)を、絶対水分量、1面目と2面目、及び記録材Pの幅で変えている理由について説明する。
【0056】
第一に、電圧V1と電圧V2との差分は、絶対水分量が大きいほど大きくすることが好ましい。つまり、記録材Pは、吸湿度合いが大きいほど低抵抗化する。そのため、本実施例では、パッチボソ及び強抜けを抑制する観点から、絶対水分量が大きいほど電圧V1と電圧V2との差分を大きくしている。
【0057】
第二に、電圧V1と電圧V2との差分は、2面目に比べて1面目を大きくすることが好ましい。2面目は、一度定着工程を経ることによって記録材Pに熱が加えられ記録材Pの水分が蒸発し電気抵抗値が上昇している。その結果、2面目は、1面目と比較するとパッチボソ及び強抜けが発生しにくい。そのため、本実施例では、電圧V1と電圧V2との差分は、2面目に比べて1面目を大きくしている。
【0058】
第三に、電圧V1と電圧V2との差分は、記録材Pの幅が大きいほど大きくすることが好ましい。これは後述する孤立パッチパターンの大きさが同じ場合、記録材Pの幅が小さいほど白部に占めるトナーの面積比率が大きくなり、パッチボソが発生しにくくなるからである。そのため、本実施例では、記録材Pの幅が大きいほど電圧V1と電圧V2との差分を大きくしている。
【0059】
なお、表1のテーブルは、普通紙に対する一例であり、記録材Pの種類によって吸湿具合や記録材Pそのものの電気抵抗値が変わる。そのため、記録材Pの種類に応じて適宜テーブルを設定することができる。なお、記録材Pの坪量が小さいほど電気抵抗が低い傾向がある。そのため、パッチボソ及び強抜けを抑制する観点から、記録材Pの坪量が小さいほど電圧V1と電圧V2との差分を大きくすることが好ましい。また、電圧V1と電圧V2との差分(絶対値)を大きくするには、電圧V1の絶対値を大きくする、電圧V2の絶対値を小さくする、又はこれらの両方を行うことができる。つまり、電圧V1と電圧V2との差分の絶対値が大きくなるように、電圧V1又は電圧V2の少なくとも一方を変更することができる。
【0060】
二次転写電圧の決定方法(計算方法)の具体例を示す。例えば、絶対水分量24.4g/m3の環境において、普通紙(幅179mm)に1ページ中のトナー量Xが160[%]の画像を片面印刷する場合を考える。
【0061】
まず、絶対水分量24.4g/m3の環境におけるA5サイズ(幅148mm)以下及びA4サイズ(幅210mm)の1面目の電圧V1、電圧V2を、絶対水分量27.1g/m3と絶対水分量21.7g/m3の間を線形補間して求める。
・A5サイズのV1=1000+(1100-1000)×(24.4-21.7)/(27.1-21.7)=1050V
・A4サイズのV1=1200+(1300-1200)×(24.4-21.7)/(27.1-21.7)=1250V
・A5サイズのV2=900+(900-900)×(24.4-21.7)/(27.1-21.7)=900V
・A4サイズのV2=800+(850-800)×(24.4-21.7)/(27.1-21.7)=825V
【0062】
次に、幅179mmの記録材Pの電圧V1、電圧V2を、幅148mmと幅210mmの間を線形補間して求める。
・幅179mmのV1=1050+(1250-1050)×(179-148)/(210-148)=1150V
・幅179mmのV2=825+(900-825)×(179-148)/(210-148)=862.5V
【0063】
続いて、1ページ中のトナー量X=160[%]の補正量ΔVを、1ページ中のトナー量X=0[%]と1ページ中のトナー量X=400[%]の間を線形補間することで求める。
ΔV={(1150-862.5)/400}×160=115[V]
【0064】
最後に、電圧V1を上で求めた補正量ΔVを用いて補正して、実際に印加する二次転写電圧Vを求める。
V=V1-ΔV=1150-115=1035[V]
【0065】
CPU221は、以上のようにして決定した二次転写電圧Vを二次転写電源21から二次転写ローラ20に印加するように二次転写制御部202に命令して二次転写を実施する。
【0066】
(制御手順)
図5は、これまで説明してきた本実施例における二次転写電圧の制御の手順の概略を示すフローチャート図である。
【0067】
CPU221は、プリントジョブの開始指示が入力されると、画像形成の準備を開始する(S101)。本実施例の二次転写電圧の制御はプリントジョブの開始(プリントスタート(i=1))から始まる。CPU221は、ホスト機器199からのiページ目の印刷情報を取得するとともに(S102)、環境センサ300の検知結果から絶対水分量の情報を取得する(S103)。CPU221は、絶対水分量の情報に基づいて、二次転写電圧の制御を定電圧制御にするか、定電流制御にするか判断する(S104)。本実施例では、CPU221は、絶対水分量が21.7g/m3以上の場合には定電圧制御を実行することとし(S105)、絶対水分量が絶対水分量が21.7g/m3未満の場合には定電流制御を実行することとする(S106)。本実施例は、二次転写電圧の定電圧制御を実行する際の制御に特徴を有するため、二次転写電圧の定電圧制御を実行する際の制御について説明する。
【0068】
CPU221は、上記二次転写電圧の制御方法の決定を行う一方で、ホスト機器199からの印刷情報に基づいて、前述の方法によりiページ目のトナー量X(0~400%)を計測する(S107)。つまり、コントローラ200からのビデオ信号がビデオインターフェイス部220を介して画像処理GA222に送信され、レーザー駆動信号に変換されて、iページ目のトナー量X(0~400%)が計測される。CPU221は、計測したiページ目のトナー量X(0~400%)をRAM152に記憶させておく(S108)。CPU221は、RAM152に記憶させたiページ目のトナー量Xと、iページ目の印刷情報及び環境センサ300の検知結果から取得した絶対水分量の情報(S109)と、に基づいて、電圧V1及びトナー量Xに対応した補正量ΔVを算出する(S110)。また、それと並行して、CPU221は、次のページのプリントがある場合は、i+1ページ目のトナー量Xを計測して、RAM152に記憶させ、iページ目と同様にi+1ページ目の電圧V1及び補正量ΔVを決定することを繰り返しておく(S111、S112、S113)。
【0069】
CPU221は、iページ目の電圧V1及びトナー量Xに対応した補正量ΔVを決定した後に、記録材Pが二次転写部N2を通過しているタイミングで、V=V1-ΔVの二次転写電圧を印加して(S114)、iページのプリントを終了する。CPU221は、続いてプリントがある場合は、上述のように事前に決定しておいたi+1ページ目のV=V1-ΔVを上記同様に印加することを繰り返して、プリントジョブを終了する(S115、S116、S117)。
【0070】
<作用効果>
次に、二次転写電圧の定電圧制御において、1ページ中のトナー量Xが多いほど二次転写電圧の絶対値を小さくする(1ページ中のトナー量Xが少ないほど二次転写電圧の絶対値を大きくする)制御の作用効果について説明する。
図6(a)は、孤立パッチパターンを含む画像の例を示す模式図、
図6(b)は、全面ベタ画像(例えば全面ベタ黒画像)の例を示す模式図である。また、
図6(c)は、孤立パッチパターンを含む画像の二次転写時の二次転写部N2の断面の模式図、
図6(d)は、全面ベタ画像(例えば全面ベタ黒画像)の二次転写時の二次転写部N2の断面の模式図である。
図6(c)、(d)において、矢印は転写電流の経路を表しており、太さは電流の大きさを模式的に表している。なお、前述のように、「孤立パッチパターン」とは、記録材Pの幅の中に高印字のトナー像のかたまりが点在している画像パターンのことを意味している。また、「全面ベタ画像(全面ベタパターン)」とは、記録材Pの幅方向における画像形成可能領域の全域に最高濃度レベルのトナー像が存在する画像パターンのことを意味している。
【0071】
本実施例では、二次転写電圧の定電圧制御は、高温高湿環境において実行される。そして、高温高湿環境では、記録材P、二次転写ローラ20、中間転写ベルト10などは、吸湿することで電気抵抗値が低下する。
【0072】
したがって、
図6(a)に示すような、1ページ中のトナー量Xが少なくなる、孤立パッチパターンなどを含む低印字画像を転写する場合、次のようになる。つまり、
図6(c)に示すように高抵抗であるトナー部(パッチ部)Tではなく、低抵抗である白部に転写電流が選択的に流れやすくなり、トナー部(パッチ部)Tには転写電流が流れにくくなる。このとき、本実施例の制御によれば、1ページ中のトナー量Xが少ないほど二次転写電圧の絶対値を大きくすることができるため、二次転写電流の総電流量を増やすことができる。すなわち、白部への電流も増えるが、同時にトナー部(パッチ部)Tへの電流も増加するため、トナー部(パッチ部)Tに二次転写のために十分な電流を流すことが可能になり、その結果、「パッチボソ」を抑制することができる。
【0073】
逆に、
図6(b)に示すような、1ページ中のトナー量Xが多くなる、全面ベタ画像などを含む高印字画像を転写する場合、次のようになる。つまり、
図6(d)に示すように転写電流の逃げ道がなくなるため、「パッチボソ」を抑制するために白部への逃げ電流を考慮した絶対値の大きい電圧値で定電圧制御を実施すると、トナー部Tへの電流供給が過剰になってしまう。このとき、本実施例の制御によれば、1ページ中のトナー量Xが多いほど二次転写電圧の絶対値を小さくすることができるため、トナー部Tへ電流が過剰に供給されることを抑制することができ、その結果、「強抜け」を抑制することができる。
【0074】
上記メカニズムに即すると、理想的には、二次転写部N2に存在するトナー量やトナー部の面積に応じて二次転写電圧の補正量ΔVを変更することが好ましい。すなわち、二次転写部N2に存在するトナー量やトナー部の面積被覆率が大きい場合は二次転写電圧の絶対値を小さくし、該トナー量やトナー部の面積被覆率が小さい場合は二次転写電圧の絶対値を大きくすることが好ましい。しかしながら、定電圧制御の実行時に1ページ中に頻繁に電圧を上げ下げする制御を行うと、二次転写電源21の応答性の限界から制御に対して二次転写電圧が追従せず、結果的に画像パターンに応じた最適な二次転写電圧を印加できなくなる可能性がある。したがって、本実施例では、平均的に画像品質を向上させるために1ページ中のトナー量Xに応じて二次転写電圧を補正している。
【0075】
ここで、二次転写電圧の印加(変更)タイミングについて更に説明する。
図7は、二次転写電圧の印加タイミングを説明するためのタイミングチャート図である。
図7において、横軸は時間を示し、縦軸は電圧を示す。なお、二次転写部N2に記録材P(より詳細にはその画像形成可能領域)が存在する期間を「紙中」ともいう。紙中は、二次転写部N2における画像形成時(二次転写時)に相当する期間である。また、先行する記録材Pと該記録材Pの次に続く記録材Pとの間の期間を「紙間」ともいう。「紙間」は、二次転写部N2における前述の紙間工程に相当する期間である。また、
図7においては、1ページ目の「紙中」より前の非画像形成時(前述の前回転工程に相当)も便宜上「紙間」という。
【0076】
図7(a)は、本実施例における二次転写電圧の印加タイミングを示す。本実施例では、記録材Pが二次転写部N2を通過しているタイミング(紙中)においてのみV=V1-ΔVの二次転写電圧を印加している。そして、本実施例では、その他のタイミング(紙間)では、上記V=V1-ΔVの二次転写電圧よりも絶対値が小さい紙間電圧を印加している。これには、以下の二つの理由がある。一つ目は、
図5で説明したiページ目の二次転写電圧Viを実際にどのタイミングで決定できるかが、ホスト機器199とコントローラ200との間の通信条件や、画像形成装置100のプロセススピードなどに左右されるためである。つまり、どのタイミングで二次転写電圧Viが決定できるか分からないため、iページ目の二次転写電圧印加の直前までは紙間電圧を印加することで、紙中の二次転写電圧Viの決定に備えることができる。二つ目は、記録材Pが二次転写部N2に存在しない状態で絶対値の大きい二次転写電圧を印加すると、二次転写電源21に対して負荷が重くなるため、場合によっては発振する可能性があるためである。
【0077】
これらの理由により、本実施例では、二次転写部N2に記録材Pが存在しないタイミング(紙間)では紙中の二次転写電圧よりも絶対値が小さい紙間電圧を印加している。ただし、二次転写電圧の決定タイミングが十分早く、制御に対する二次転写電源21の応答性が十分速い場合などには、例えば
図7(b)に示すように、紙間においてiページ目の二次転写電圧を印加して紙中に備えてもよい。
【0078】
また、トナー量に応じた二次転写電圧を印加するタイミングについてより詳細に説明する。本実施例では、トナーが存在する可能性がある期間(記録材Pの搬送方向における画像形成可能領域が二次転写部N2を通過しているタイミング)に印加する二次転写電圧を、パッチボソ及び強抜けの抑制の観点でトナー量に応じて変更する制御を行っている。そして、本実施例では、トナーが存在しない記録材Pの先端や後端の余白部が二次転写部N2を通過しているタイミングに印加する電圧については、上記トナー量に応じて変更する制御は行っていない。なお、記録材Pの先端、後端は、それぞれ記録材Pの搬送方向における先端、後端である。本実施例では、記録材Pの先端及び後端が二次転写部N2を通過しているタイミングでは、上記V=V1-ΔVの二次転写電圧とは異なる先端・後端電圧を印加している。これは、以下の理由によるものである。つまり、記録材Pの先端では、二次転写部N2に記録材Pが存在しないインピーダンスの低い状態から急に二次転写部N2に記録材Pが突入してインピーダンスが高い状態になる。そのため、記録材Pの先端では、転写電圧が不足しないような先端電圧を印加している。また、記録材Pの後端では、上記とは逆に、記録材Pが存在するインピーダンスの高い状態から徐々に記録材Pが二次転写部N2を抜けてインピーダンスが低下する。そのため、記録材Pの後端では、転写電流が不足しないような後端電圧を印加している。しかしながら、余白の存在しない、あるいは余白が狭く、記録材Pの先端や後端付近までトナーが存在する可能性がある場合などには、記録材Pの先端や後端に対して印加する二次転写電圧についても、本実施例に従うトナー量に応じた二次転写電圧の補正を行ってもよい。なお、先端電圧、後端電圧は、それぞれ上記観点から予め設定された所定の電圧とされる。この電圧は、例えば、前述の電圧V1、電圧V2と同様に、記録材Pの情報及び環境情報に基づいて決定される。すなわち、例えば、記録材Pの種類ごとに、紙サイズ、坪量、紙質及び絶対水分量と、先端電圧、後端電圧と、の関係を示す情報が、予め設定されてテーブルとしてROM151に格納されている。そして、CPU221が、取得した記録材Pの情報及び環境情報に基づいて、上記テーブルから必要な情報を呼び出して、紙サイズ、坪量、紙質、絶対水分量に対応する先端電圧、後端電圧を決定する。典型的には、先端電圧、後端電圧は、上記V=V1-ΔVの二次転写電圧よりも絶対値が大きい。ただし、上述のようにして設定された先端電圧又は後端電圧の少なくとも一方が、上記V=V1-ΔVの二次転写電圧と略同一となる場合があってもよい。
【0079】
なお、本実施例では、絶対水分量が21.7g/m
3未満の環境では、記録材Pの電気抵抗値が白部への逃げ電流が発生しない程度には高いため、二次転写電圧の「定電流制御」を実行している。この環境では、
図6(a)、(b)に示すような画像パターンであっても、「定電流制御」によって適切な二次転写電圧になるように記録材Pの幅方向で略均一に転写電流を供給することができる。
【0080】
このように、本実施例では、画像形成装置100は、トナー像を担持する像担持体10と、像担持体10から記録材Pにトナー像を転写する転写部N2を形成する転写部材20と、転写部材20に転写電圧を印加する印加部21と、印加部21を制御する制御部(エンジン制御部)210と、を有する。そして、本実施例では、制御部210は、印加部21により転写部材20に印加する電圧が略一定となるように転写電圧を定電圧制御する際に、トナー像に使用されるトナー量が第1のトナー量の場合に転写電圧を第1の電圧とし、上記トナー量が第1のトナー量より大きい第2のトナー量の場合に転写電圧を第1の電圧の絶対値よりも絶対値が小さい第2の電圧とするように制御を行う。本実施例では、画像形成装置100は、上記トナー量に関するトナー量情報を取得する取得部(CPU)221と、像担持体10に転写するトナーを担持する別の像担持体1を画像情報に応じて露光する露光部3と、を有し、取得部221は、画像情報に応じて露光部3を発光させるための駆動信号に基づいてトナー量情報を取得する。また、本実施例では、1枚の記録材Pに転写するトナー像ごとに上記トナー量に関するトナー量情報が取得される。
【0081】
ここで、制御部210は、トナー像を転写する記録材Pの坪量が第1の坪量の場合よりも、該坪量が第1の坪量よりも小さい第2の坪量の場合に、第1の電圧と第2の電圧との差分の絶対値が大きくなるように、第1の電圧又は第2の電圧の少なくとも一方を変更することができる。また、制御部210は、トナー像を転写する記録材Pの搬送方向と略直交する方向の幅が第1の幅の場合よりも、該幅が第1の幅よりも大きい第2の幅の場合に、第1の電圧と第2の電圧との差分の絶対値が大きくなるように、第1の電圧又は第2の電圧の少なくとも一方を変更することができる。また、画像形成装置100は、1面目にトナー像が転写されて定着された記録材Pを転写部N2へと搬送して該記録材Pの2面目にトナー像を転写する動作を実行可能であってよく、この場合、制御部210は、2面目へのトナー像の転写時よりも、1面目へのトナー像の転写時に、第1の電圧と第2の電圧との差分の絶対値が大きくなるように、第1の電圧又は第2の電圧の少なくとも一方を変更することができる。また、画像形成装置100は、環境の温度又は湿度の少なくとも一方に関する環境情報を検知する環境検知部300を有していてよく、この場合、制御部210は、環境検知部300の検知結果が示す環境の絶対水分量が第1の絶対水分量の場合よりも、該絶対水分量が第1の絶対水分量よりも大きい第2の絶対水分量の場合に、第1の電圧と第2の電圧との差分の絶対値が大きくなるように、第1の電圧又は第2の電圧の少なくとも一方を変更することができる。
【0082】
また、本実施例では、制御部210は、上記トナー量が最小の場合の転写電圧と、上記トナー量が最大の場合の転写電圧と、の間で、上記トナー量が増加するにつれて転写電圧の絶対値を徐々に小さくするように制御を行う。また、本実施例では、制御部210は、印加部21により転写部材20に供給する電流が略一定となるように転写電圧を定電流制御することが可能であり、環境検知部300の検知結果が示す絶対水分量が所定値以上の場合に転写電圧の定電圧制御を行い、環境検知部300の検知結果が示す絶対水分量が上記所定値未満の場合に転写電圧の定電流制御を行う。
【0083】
以上のように、本実施例によれば、高温高湿環境などのパッチボソの抑制と強抜けの抑制との両立が難しい環境において二次転写電圧を定電圧制御する際にも、適切な二次転写電圧を設定することができる。また、上述のように、本実施例では、高温高湿環境以外の環境においても、二次転写電圧の定電流制御により適切な二次転写電圧を供給することができる。したがって、本実施例によれば、画像形成装置100が使用可能範囲のいかなる環境で使用されようとも、良好な二次転写を行うことが可能である。
【0084】
<効果確認>
本実施例の効果を確認するために、高温高湿環境(温度30℃/相対湿度80%/絶対水分量21.7/m3)において、画像不良の有無について検証する試験を行った。記録材Pとして、XEROX Business 4200 LETTERサイズ(Xerox、商品名)を用いた。試験は、本実施例の構成と、比較例1、2の構成と、について行った。本実施例の構成において、電圧V1は1400V、1ページ中のトナー量X=400[%]における電圧V2は1000Vであった。
【0085】
比較例1、2の構成では、1ページ中のトナー量Xによらず略一定の二次転写電圧を印加した。比較例1の構成では、二次転写電圧として本実施例における電圧V1と同じ1400Vを印加した。また、比較例2の構成では、二次転写電圧として本実施例における電圧V2と同じ1000Vを印加した。比較例1、2の構成は、上記の点が異なることを除いて、本実施例の構成と実質的に同じである。
【0086】
表2に評価結果を示す。表2には、低印字画像(X=5[%])と高印字画像(X=300[%])とにおける印加電圧V、及びそれぞれの場合の画像のレベル(低印字画像におけるパッチボソ、高印字画像における強抜け)を示している。画像のレベルは、上からGood(良い)、Fair(少し悪い)、Poor(悪い)の3段階評価でレベル分けしている。また、Fair(少し悪い)、Poor(悪い)を画像不良の発生と判断している。
【0087】
【0088】
比較例1の構成では、孤立パッチパターンを含む低印字画像において、トナー部(パッチ部)に十分な電流を供給できるため「パッチボソ」は発生しなかった。しかしながら、比較例1の構成では、ベタ画像を含む高印字画像において、二次転写電圧の絶対値が大きくなり電流が過剰に供給されてしまい、「強抜け」が発生した。
【0089】
比較例2の構成では、ベタ画像を含む高印字画像において電流が過剰に供給されない二次転写電圧の設定であったため、「強抜け」は発生なかった。しかしながら、比較例2の構成では、孤立パッチパターンを含む低印字画像において、トナー部(パッチ部)に十分な電流を供給できなかったため、「パッチボソ」が発生した。
【0090】
一方、本実施例の構成では、孤立パッチパターンを含む低印字画像において、二次転写電圧の絶対値を大きくでき、トナー部(パッチ部)へも十分な電流を供給できたため、「パッチボソ」は発生せず良好な転写性が得られた。また、本実施例の構成では、ベタ画像を含む高印字画像において、二次転写電圧の絶対値を小さくすることができ、必要以上に電流が流れることを抑制できたため、「強抜け」は発生せず良好な転写性が得られた。
【0091】
なお、本実施例、比較例1、2のいずれにおいても、絶対水分量が21.7g/m3未満の環境では、二次転写電圧の「定電流制御」を実行しているため、同等の転写性であった。
【0092】
<その他の構成>
本実施例では、トナー量の算出及び二次転写電圧の補正を1ページごとに行ったが、本発明は斯かる態様に限定されるものではない。例えば、二次転写ローラ20の所定の回転量(例えば1周)ごと、感光ドラム1の所定の回転量(例えば1周)ごとなどの任意の周期で、トナー量の算出及び二次転写電圧の補正を行ってもよい。あるいは、前述のように、理想的には、二次転写部N2におけるトナー量に応じて二次転写電圧を変えることが好ましい。そのため、例えば二次転写電源の応答性が十分速い構成などにおいては、二次転写部N2におけるトナー量に応じて二次転写電圧を変更してもよい。
【0093】
本実施例では、エンジン制御部210において、レーザー駆動信号をサンプリングし、ピクセルカウント値n(「H」の回数)を測定して、トナー量の算出を行ったが、本発明は斯かる態様に限定されるものではない。例えば、コントローラ200からビデオ信号とともに画像情報(トナー量の情報)をエンジン制御部210に送信して、エンジン制御部210においてその情報に基づいて二次転写電圧の補正量を決定してもよい。また、本実施例では、1色当たりのサンプリング総数に対する4色分のピクセルカウント値でトナー量を算出したが、本発明は斯かる態様に限定されるものではない。例えば、紙サイズごとに全面ベタ画像(例えば全面ベタ黒画像)相当のピクセルカウント値を予め定数としてRAM152に格納しておき、その数と実際のピクセルカウント値との比率からトナー量を算出してもよい。
【0094】
本実施例では、環境センサ300による絶対水分量の検知結果に基づいて、二次転写電圧の「定電圧制御」を実行するか、二次転写電圧の「定電流制御」を実行するかを決定したが、本発明は斯かる態様に限定されるものではない。例えば、画像形成前に二次転写部N2(二次転写ローラ20及び中間転写ベルト10)のインピーダンスを測定することで、二次転写電圧の「定電流制御」と「定電圧制御」とのいずれを実行するかを判断してもよい。具体的には、プリントジョブの画像形成工程の前の非画像形成時(前回転工程や前多回転工程)において、二次転写部Nに所定の電流を流してそのときに印加される電圧値を測定することでインピーダンスを測定する。なお、所定の電圧を印加してそのときに流れる電流値を測定することでインピーダンスを測定してもよい。そして、測定されたインピーダンスが小さい場合は、二次転写ローラ20や中間転写ベルト10の電気抵抗値が低下しているため、同様に記録材Pの電気抵抗値も低下していると考えられる。したがって、インピーダンスが所定の閾値よりも低い場合に二次転写電圧の「定電圧制御」を実行して、本実施例に従う二次転写電圧の補正を行えばよい。なお、上記インピーダンス自体の他、上記所定の電流を流した際の電圧値や上記所定の電圧を印加した際の電流値を、インピーダンスと相関する指標値として制御に用いてもよい。あるいは、例えば、記録材Pの種類ごとに、紙サイズ、坪量、紙質及び絶対水分量と二次転写電圧の下限電圧値との関係と、紙サイズ、坪量、紙質及び絶対水分量と二次転写時の目標電流値との関係と、の両方を示す情報を予め設定してテーブルとしてROM151に格納させておく。そして、二次転写時に目標電流値の転写電流を流して、その際の電圧値が下限電圧値を下回る場合には、下限電圧値での「定電圧制御」を実行するようにしてもよい。つまり、画像形成装置100は、転写部N2の電気抵抗と相関する指標値を検知する抵抗検知部(電流検知部、電圧検知部)241、242を有していてよく、この場合、制御部210は、抵抗検知部241、242の検知結果が示す転写部N2の電気抵抗が所定値より低い場合に転写電圧の定電圧制御を行い、抵抗検知部241、242の検知結果が示す転写部N2の電気抵抗が上記所定値以上の場合に転写電圧の定電流制御を行うことができる。あるいは、制御部210は、転写電圧の定電流制御を行って印加部21の印加電圧が所定値よりも小さくなる場合に、転写電圧の定電圧制御を行うようになっていてもよい。
【0095】
本実施例では、二次転写電圧Vは、電圧V1と補正量ΔVとからV=V1-ΔVとして算出したが、本発明は斯かる態様に限定されるものではない。例えば、
図8の画像形成装置100のように、二次転写電源21から一次転写電流を供給できる構成がある。このような構成の場合には、二次転写電圧Vの決定には更なる補正が必要になる。なお、
図8の画像形成装置100において、
図1の画像形成装置100のものと同一又は対応する機能あるいは構成を有する要素については
図1と同一の符号を付している。
図8の画像形成装置100では、二次転写対向ローラ13(更には駆動ローラ11及びテンションローラ12)と各一次転写ローラ14とは、電圧維持素子(電圧安定化素子)としてのツェナーダイオード17を介して接地電位に接続されている。これにより、二次転写電源21から所定の値以上の電圧を供給することで、各一次転写ローラ14(及び二次転写対向ローラ13)の電位を所定の電位に維持して各一次転写部N1に一次転写電流を供給することできる。なお、一次転写電圧Vt1を安定化させるための電圧安定化素子(電圧維持素子)としては、ツェナーダイオード17に限らず、同様の効果を得られる素子であれば、例えばバリスタなどの他の電圧安定化素子を用いてもよい。
図8のような構成においては、一次転写電圧Vt1が二次転写対向ローラ13に印加されている。そのため、二次転写のための実行電圧は、二次転写ローラ20に印加された電圧と二次転写対向ローラ13に印加された電圧との差になる。したがって、実際に印加すべき二次転写電圧は、一次転写電圧Vt1を考慮して、下記式(4)で算出される値にする必要がある。
V=(V1-ΔV)+Vt1 ・・・(4)
【0096】
本実施例では、トナー量Xの変化に対して二次転写電圧の補正量を線形に変えたが、本発明は斯かる態様に限定されるものではなく、二次転写電圧の補正量は任意の曲線で変えてもよい。
【0097】
本実施例では、トナーの正規の帯電極性は負極性であったが、本発明は斯かる態様に限定されるものではなく、トナーの正規の帯電極性は正極性であってもよい。その場合、二次転写電圧などのバイアスの極性は本実施例とは逆極性になる。また、その場合、二次転写電圧の制御における符号を含めた二次転写電圧値の増減関係は本実施例とは逆となるが、二次転写電圧の絶対値の増減関係は本実施例と同じとなる。
【0098】
また、本実施例では、画像形成装置100は、Y、M、C、Kの4色のトナーを用いる構成であったが、本発明は斯かる態様に限定されるものではない。画像形成装置100は、Y、M、C、Kに加えて又はこれらのうちいずれか1色に代えて、透明トナーや金属色トナーなどを用いる構成であってもよい。その場合、トナー量Xの最大値は、本実施例における400[%]に限定されるものではなく、使用するトナーの種類の総量に合わせて変えてもよい。
【0099】
[実施例2]
次に、本発明の他の実施例について説明する。本実施例の画像形成装置の基本的な構成及び動作は、実施例1の画像形成装置のものと同じである。したがって、本実施例の画像形成装置において、実施例1の画像形成装置のものと同一又は対応する機能あるいは構成を有する要素については、実施例1と同一の符号を付して、詳しい説明は省略する。
【0100】
実施例1では、基準の二次転写電圧V1に対して、1ページ中のトナー量Xが増えるにつれて二次転写電圧の絶対値を単調減少させる補正を行った。本実施例では、1ページ中のトナー量Xの変化に対して二次転写電圧の絶対値を略一定にするトナー量Xの区間がある。
【0101】
本実施例における二次転写電圧の補正量ΔVの決定方法について説明する。
図9は、本実施例における二次転写電圧の補正量ΔVの決定方法を説明するためのグラフ図である。
図9において、横軸は1ページ中のトナー量Xを示し、縦軸は実際に印加される二次転写電圧Vを示す。横軸の1ページ中のトナー量Xは、0~400[%]の値をとり得る。1ページ中のトナー量Xが0≦X≦A[%]の区間(区間a)における電圧値をV1としている。また、1ページ中のトナー量XがB≦X≦Cの区間(区間c)における電圧値をV2としている。また、1ページ中のトナー量XがD≦X(D≦X≦400)[%]の区間(区間e)における電圧値をV3としている。ここで、電圧V1、V2、V3の関係はV1>V2>V3である。また、A<X<Bの区間(区間b)の電圧は、電圧V1と電圧V2とを線形補間して決定される。また、C<X<Dの区間(区間d)の電圧値は、電圧V2と電圧V3とを線形補間して決定される。
【0102】
すなわち、二次転写電圧の補正量ΔVは、下記式(5)のようになる。
ΔV=0 (0≦X≦A)
ΔV=V1-{(V2-V1)/(B-A)×(X-B)+V2} (A<X<B)
ΔV=V1-V2 (B≦X≦C)
ΔV=V1-{(V3-V2)/(D-C)×(X-D)+V3} (C<X<D)
ΔV=V1-V3 (D≦X≦400)
・・・(5)
【0103】
このように、本実施例では、電圧V1であるトナー量Xの区間よりもトナー量Xが多い場合に二次転写電圧の絶対値を小さくする補正を行う。また、言い換えると、本実施例では、電圧V2であるトナー量Xの区間よりもトナー量Xが少ない場合に二次転写電圧の絶対値を大きくし、電圧V2であるトナー量Xの区間よりもトナー量Xが多い場合に二次転写電圧の絶対値を小さくする補正を行う。本実施例では、電圧V1、電圧V2を二次転写電圧の基準値と考えることができる。
【0104】
なお、本実施例では、電圧V1、V2、V3及びトナー量A、B、C、Dは、記録材Pの情報及び環境情報に基づいて決定される。すなわち、本実施例では、記録材Pの種類ごとに、紙サイズ、坪量、紙質及び絶対水分量と、電圧V1、V2、V3及びトナー量A、B、C、Dと、の関係を示す情報が、予め設定されてテーブルとしてROM151に格納されている。そして、CPU221が、取得した記録材Pの情報及び環境情報に基づいて、上記テーブルから必要な情報を呼び出して、紙サイズ、坪量、紙質、絶対水分量に対応する電圧V1、V2、V3及びトナー量A、B、C、Dを決定する。
【0105】
次に、本実施例の作用効果について説明する。一般的に、「パッチボソ」は極低印字で発生しやすいのに対して、「強抜け」は
図6(b)に示すような全面ベタ画像に限らず、全面ハーフトーン画像などの場合でも発生する可能性がある。ここで、全面ハーフトーン画像とは、
図6(b)に示すような全面ベタ画像と比べてトナーの量が平均的に少ない画像である。ハーフトーン画像は、典型的には、トナー量Xが20~100%の画像である。全面ハーフトーン画像は、実施例1において説明したのと同様のメカニズムで「強抜け」が発生しやすい。すなわち、「パッチボソ」はトナー量が非常に少ない極低印字の狭い印字量の区間で発生しやすいのに対して、「強抜け」は中程度以上のトナー量の比較的広い印字量の区間で発生しやすい。
【0106】
発明者の鋭意検討の結果、「パッチボソ」は0~20%程度のトナー量Xで発生しやすく、「強抜け」は100%以上程度のトナー量Xで発生しやすいことが判明した。また、全面ハーフトーン画像の場合、20%以上程度のトナー量Xでも「強抜け」が発生しやすく、またページ内の広い面積がトナーで被覆されていて一部だけ孤立パッチパターンが存在するような画像では20%以上程度のトナー量Xでも「パッチボソ」が発生する場合があることが判明した。つまり、20~100%程度のトナー量Xの区間は、画像パターンによって「強抜け」と「パッチボソ」のどちらも発生する可能性があることが判明した。したがって、低印字、中程度の印字量、高印字のそれぞれのトナー量Xの区間ごとに適切な転写電圧が異なり、各区間であまり転写電圧を変えることは好ましくない場合がある。また、極低印字に関しては後述の二次転写電源21の負荷の観点からも、転写電圧を変えることが好ましくない場合がある。
【0107】
以上を踏まえて、極低印字におけるパッチボソを抑制するための電圧V1を印加するトナー量Xの区間0%~A、中程度の印字量における強抜けとパッチボソの両方を抑制するための電圧V2を印加するトナー量Xの区間B~C、高印字における強抜けを抑制するための電圧V3を印加するトナー量Xの区間D以上(D~400%)、をそれぞれ決定するA、B、C、Dの値は、以下の値の範囲が好ましいことが判明した。つまり、Aはパッチボソを抑制するために3~10%、Bは15~25%、Cは強抜けとパッチボソを抑制するために75~90%、Dは強抜けを抑制するために95%以上(典型的には150%以下)とすることが好ましいことが判明した。
【0108】
そこで、本実施例では、極低印字におけるパッチボソを抑制するために、トナー量Xが0≦X≦A=5[%]の区間の電圧V1(パッチボソが発生しない絶対値の大きい電圧)を設定した。また、全面ハーフトーン画像などのページ内の広い面積がトナーで被覆された画像や一部に孤立パッチパターンが存在する場合の強抜けとパッチボソを抑制するために、トナー量XがB=20≦X≦C=80[%]の区間の電圧V2(パッチボソ、強抜けともに発生しにくい電圧)を設定した。また、高印字における強抜けを抑制するために、トナー量XがX≧D=100[%]の区間の電圧V3(単色以上のベタ画像の強抜けが発生しない電圧)を設定した。その結果、実施例1の制御と比較して、各画像不良に対してより適した電圧値を設定することが可能になり、実施例1と比較してより良好な転写性を得ることができた。
【0109】
以下に、一例として、本実施例における普通紙の1面目に対する絶対水分量が21.7g/m3の場合の電圧V1、V2、V3の設定値を下記式(6)に示す。
V=V1=1400V (0≦X≦5%)
V=(V2-V1)/(B-A)×(X-B)+V2 (5%<X<20%)
V=V2=1000V (20%≦X≦80%)
V=(V3-V2)/(D-C)×(X-D)+V3 (80%<X<100%)
V=V3=900V (100%≦X≦400%)
・・・(6)
【0110】
パッチボソは、孤立パッチパターンなどの低印字画像で発生し、転写電流が白部へ逃げてしまうことで発生する現象である。そのため、式(6)に示すように、トナー部に適切な転写電流を供給するために、逃げ電流分を考慮して、電圧V2と電圧V3との差分(絶対値)に比べて、電圧V1と電圧V2との差分(絶対値)を大きくしている。電圧V2と電圧V3との差分を電圧V1と電圧V2の差分に比べて小さくしているのは、次の理由によるものである。つまり、強抜けは、パッチボソの場合と異なり、白部への逃げ電流は無く、トナー部の全面に電流が供給される状況において発生する現象であり、二次転写電圧の増減がそのままトナー部への電流の増減になるためである。なお、AからBの区間やCからDの区間で徐々に二次転写電圧を変更しているのは、トナー量に対して二次転写電圧が不連続に変化してしまうと、その不連続なトナー量において適切な二次転写電圧を印加できない可能性があるためである。
【0111】
このように、本実施例では、制御部210は、トナー像に使用されるトナー量が最小の場合の転写電圧と、上記トナー量が最大の場合の転写電圧と、の間に、上記トナー量の変化に対して転写電圧が略一定であるトナー量の区間を有するように制御を行う。本実施例では、上記トナー量の値A(0<A)によって定義される0≦X≦Aの区間では、上記トナー量の変化に対して転写電圧が略一定である。特に、本実施例では、上記トナー量は、記録材Pに転写可能な1色ごとのトナー量の総量に対する記録材Pに転写するトナー量の割合であるトナー量X[%]を示し、トナー量Xの値A、B、C、D(0<A<B<C<D)によって定義される0≦X≦Aの区間を区間a、A<X<Bの区間を区間b、B≦X≦Cの区間を区間c、C<X<Dの区間を区間d、D≦Xの区間を区間e、区間aでの転写電圧の絶対値の平均値をVave1、区間cでの転写電圧の絶対値の平均値をVave2、区間eでの転写電圧の絶対値の平均値をVave3としたとき、Vave1>Vave2>Vave3を満たす。また、本実施例では、値Aは3~10[%]、値Bは15~25[%]、値Cは75~90[%]、値Dは95[%]以上である。また、本実施例では、(Vave1-Vave2)>(Vave2-Vave3)を満たす。また、本実施例では、区間a、区間c及び区間eでは、トナー量Xの変化に対して転写電圧が略一定である。また、本実施例では、区間b及び区間dでは、トナー量Xが増加するにつれて転写電圧の絶対値が徐々に小さくなる。なお、上記平均値Vave1、Vave2、Vave3としているのは、後述するように、区間a、区間c、区間eで転写電圧の絶対値を変化させることも可能であるからである。
【0112】
以上のように、本実施例によれば、高温高湿環境などのパッチボソの抑制と強抜けの抑制との両立が難しい環境において、実施例1と比較してより適切に二次転写電圧を設定してより良好な転写性を得ることが可能となる。また、実施例1と同様に、本実施例では、高温高湿環境以外の環境においても、二次転写電圧の定電流制御により適切な二次転写電圧を供給することができる。したがって、本実施例によれば、画像形成装置100が使用可能範囲のいかなる環境で使用されようとも、良好な二次転写を行うことが可能である。
【0113】
<その他の構成>
本実施例では、トナー量Xの閾値をA、B、C、Dの4つ設けて、トナー量Xが0≦X≦A、B≦X≦C、D≦X(D≦X≦400)のそれぞれの区間において電圧V1、V2、V3で二次転写電圧が略一定になるようにしたが、本発明は斯かる態様に限定されるものではない。例えば、
図10に示すように、トナー量Xが0≦X≦Aの区間(区間a)、B≦X≦Cの区間(区間c)、D≦X(D≦X≦400)の区間(区間e)で、トナー量Xの変化に対する二次転写電圧の補正量を変えてもよい。これら区間a、区間c及び区間eのうち少なくとも一つの区間で、トナー量Xの変化に対する二次転写電圧の補正量を変えるようにすることができる。なお、本構成では、電圧V1の他、トナー量Cにおける電圧V4、トナー量Dにおける電圧V5、トナー量XがC≦X≦Dの区間の電圧を二次転写電圧の基準値と考えることができる。
【0114】
まず、低印字に関しては、極低印字になるほどパッチボソが発生しやすくなるため、トナー量Xが少なくなるにつれて二次転写電圧の絶対値を大きくすることでパッチボソを抑制しやすくなる。しかしながら、トナー量Xが少ない(電気抵抗値が低い)と転写電流も多くなり、二次転写電源21の負荷が重くなる。そのため、本実施例では、二次転写電源21の負荷も鑑みて、
図9に示すようにトナー量Xが0≦X≦Aの区間では二次転写電圧を電圧V1で略一定にした。ただし、二次転写電源21の容量に余裕があれば、トナー量XがAから全面白画像の0%にかけて徐々に二次転写電圧の絶対値を大きくする制御を行ってもよい。
【0115】
また、B≦X≦Cの区間は、孤立パッチパターンやトナーによる被覆面積が大きいパターンなどが混在する可能性があるものの、トナー量が増えるに従いトナーがページ中を被覆する可能性が高くなる。そのため、トナー量XがBからCにかけて徐々に二次転写電圧の絶対値を小さくする制御を行ってもよい。同様に、D≦X(D≦X≦400)の区間は、トナー量が増えるほどページ全面を被覆するようなベタ画像の存在する可能性がより高くなり、強抜けが発生しやすくなる。そのため、トナー量XがD≦X(D≦X≦400)の区間では、トナー量Xが増えるにつれて二次転写電圧の絶対値を徐々に小さくしてもよい。
【0116】
なお、
図10における電圧V1、V2、V3、V4、V5、V6及びトナー量A、B、C、Dは、上記本実施例の場合と同様に、記録材Pの情報及び環境情報に基づいて決定されるようになっていてよい。
【0117】
本実施例では、トナー量Xの変化に対して二次転写電圧を変える区間においては線形に二次転写電圧を単調減少させているが、本発明は斯かる態様に限定されるものではなく、曲線状に変化させるなど任意の変化率の補正を行ってもよい。
【0118】
また、実施例1のその他の構成を、上記本実施例、上記本実施例のその他の構成、あるいはこれらの組み合わせに対して適用してもよい。
【0119】
[実施例3]
次に、本発明の他の実施例について説明する。本実施例の画像形成装置の基本的な構成及び動作は、実施例1、2の画像形成装置のものと同じである。したがって、本実施例の画像形成装置において、実施例1、2の画像形成装置のものと同一又は対応する機能あるいは構成を有する要素については、実施例1、2と同一の符号を付して、詳しい説明は省略する。
【0120】
本実施例は、実施例2の変形例である。本実施例では、1ページ中のトナー量Xの変化に対して二次転写電圧の絶対値を大きくするトナー量Xの区間がある。
【0121】
図11は、本実施例における二次転写電圧の補正量ΔVの決定方法を説明するためのグラフ図である。
図11において、横軸は1ページ中のトナー量Xを示し、縦軸は実際に印加される二次転写電圧Vを示す。横軸の1ページ中のトナー量Xは、0~400[%]の値をとり得る。1ページ中のトナー量Xが0≦X≦A[%]の区間(区間a)における電圧値をV1としている。また、1ページ中のトナー量XがB≦X≦Cの区間(区間c)における電圧値をV2としている。また、トナー量XがD≦X≦Eの区間(区間e)における電圧値をV3としている。また、トナー量XがF≦X(F≦X≦400)[%]の区間(区間g)における電圧値をV4としている。ここで、電圧V1、V2、V3、V4の関係はV1>V2>V3、V1>V4>V3である。本実施例は、このような関係の電圧V4を設けている点が実施例2と異なる。
【0122】
すなわち、本実施例では、V<V1の関係を維持しつつ、一部のトナー量Xの区間では二次転写電圧の絶対値を大きくする。なお、本実施例では、電圧V1を二次転写電圧の基準値と考えることができる。
【0123】
電圧V1、V2、V3は、実施例2で説明したのと同様の目的で設定される。つまり、電圧V1は、極低印字における孤立パッチパターンのパッチボソを抑制することが目的の設定である。また、電圧V2は、中程度の印字量における強抜けとパッチボソの両方を抑制することが目的の設定である。また、電圧V3は、ページ全面が被覆された単色ベタ画像から二次色ベタ画像の強抜けを抑制することが目的の設定である。
【0124】
そして、F≦X(F≦X≦400)の区間で印加する電圧V4は、ページ内が二次色以上の多次色ベタ画像で被覆された場合の転写不良を抑制することが目的の設定である。この転写不良は、被転写トナーの重量に対して転写電流が不足することで発生するため、トナーの重量が増加するほど発生しやすくなる。そのため、多次色などのトナー量が増加した場合は、転写不良を抑制するために、強抜けを抑制するための二次転写電圧V3よりも二次転写電圧の絶対値を大きくしている。
【0125】
また、A<X<Bの区間(区間b)の電圧は、電圧V1と電圧V2とを線形補間して決定される。また、C<X<Dの区間(区間d)の電圧は、電圧V2と電圧V3とを線形補間して決定される。また、E<X<Fの区間(区間f)の電圧は、電圧V3と電圧V4とを線形補間して決定される。
【0126】
図11における電圧V1、V2、V3,V4及びトナー量A、B、C、D、E、Fは、実施例2の場合と同様に、記録材Pの情報及び環境情報に基づいて決定されるようになっていてよい。
【0127】
なお、A、B、C、D、E、Fの値は、以下の値の範囲が好ましい。A、B、Cは、実施例2と同様に、Aはパッチボソを抑制するために3~10%、Bは15~25%、Cは強抜けとパッチボソを抑制するために75~90%、Dは強抜けを抑制するために95%~140%とすることが好ましいことが判明した。また、転写不良に対応するためのE、Fは、Eが210~240%、Fが260%以上(400%未満)であることが好ましいことが判明した。
【0128】
また、実施例2のその他の構成で説明したのと同様、区間a、区間c、区間e、区間gにおいて、二次転写電圧の絶対値を変化させることも可能である。区間gでは、トナー量Xが増えるにつれて二次転写電圧の絶対値を徐々に大きくすることができる。多次色などのトナー量が増加するにつれて二次転写電圧の絶対値を大きくして転写不良を抑制するためである。
【0129】
このように、本実施例では、制御部210は、印加部21により転写部材20に印加する電圧が略一定となるように転写電圧を定電圧制御する際に、トナー像に使用されるトナー量が第1のトナー量の場合に転写電圧を第1の電圧とし、上記トナー量が第1のトナー量より大きい第2のトナー量の場合に転写電圧を第1の電圧の絶対値よりも絶対値が小さい第2の電圧とし、上記トナー量が第2のトナー量より大きい第3のトナー量の場合に転写電圧を第1の電圧の絶対値よりも絶対値が小さくかつ第2の電圧の絶対値よりも絶対値が大きい第3の電圧とするように制御を行う。より詳細には、本実施例では、上記トナー量は、記録材Pに転写可能な1色ごとのトナー量の総量に対する記録材Pに転写するトナー量の割合であるトナー量X[%]を示し、トナー量Xの値A、B、C、D、E、F(0<A<B<C<D<E<F)によって定義される0≦X≦Aの区間を区間a、A<X<Bの区間を区間b、B≦X≦Cの区間を区間c、C<X<Dの区間を区間d、D≦X≦Eの区間を区間e、E<X<Fの区間を区間f、F≦Xの区間を区間g、区間aでの転写電圧の絶対値の平均値をVave1、区間cでの転写電圧の絶対値の平均値をVave2、区間eでの転写電圧の絶対値の平均値をVave3、区間gでの転写電圧の絶対値の平均値をVave4としたとき、Vave1>Vave2>Vave3、及びVave1>Vave4>Vave3を満たす。また、本実施例では、値Aは3~10[%]、値Bは15~25[%]、値Cは75~90[%]、値Dは95~140[%]、値Eは210~240[%]、値Fが260「%」以上である。また、本実施例では、区間a、区間c、区間e及び区間gでは、トナー量Xの変化に対して転写電圧が略一定である。また、本実施例では、区間b及び区間dでは、トナー量Xが増加するにつれて転写電圧の絶対値が徐々に小さくなる。また、本実施例では、区間fでは、トナー量Xが増加するにつれて転写電圧の絶対値が徐々に大きくなる。なお、上記平均値Vave1、Vave2、Vave3、Vave4としているのは、上述のように、区間a、区間c、区間e、区間gで転写電圧の絶対値を変化させることも可能であるからである。
【0130】
以上のように、極低印字の場合はパッチボソを抑制するための電圧V1を印加する。また、ページ全面を被覆する画像の場合は強抜けを抑制するための電圧V3を印加する。また、低印字でも高印字でもない20~100%程度の印字量では強抜けとパッチボソの両方のバランスを取った電圧V2を印加する。これにより、各画像不良を抑制することができる。さらに、ページ全面が被覆され、かつ、高さ方向にトナーが多くなった場合の多次色高印字画像の場合の電圧V4を印加することで、高印字における転写電流不足による転写不良を抑制することができる。このように、印字量に応じて発生し得る画像不良のそれぞれに合わせた適切な電圧値を選択して画像不良を抑制できる。
【0131】
なお、本実施例では、トナー量Xの変化に対して二次転写電圧を増加させる区間においては線形に二次転写電圧を単調増加させているが、本発明は斯かる態様に限定されるものではなく、曲線状に変化させるなど任意の変化率の補正を行ってもよい。
【0132】
また、実施例1のその他の構成を、上記本実施例の構成に対して適用してもよい。
【0133】
[実施例4]
次に、本発明の他の実施例について説明する。本実施例の画像形成装置において、実施例1、2、3の画像形成装置のものと同一又は対応する機能あるいは構成を有する要素については、実施例1、2、3と同一の符号を付して、詳しい説明は省略する。
【0134】
本実施例の画像形成装置は、一次転写電源を持たない構成の画像形成装置である。一次転写電源を持たない構成として、一次転写部材がグラウンドに接続されている後述するドラム電圧構成が一例として考えられる。本実施例では、一次転写部材がグラウンドに接続されているドラム電圧構成、ドラム電圧構成において用いられる中間転写ベルト、及びドラム電圧構成に本発明を適用した場合の作用効果について説明する。
【0135】
まず、ドラム電圧構成について説明する。一次転写部材がグラウンドに接続されているドラム電圧構成の画像形成装置とは、
図12に示すような高圧電源構成を有する画像形成装置のことである。
図12は、本実施例の画像形成装置100における一次転写部N1周りの各部の高圧電源の接続状態や接地状態を示す模式図である。本実施例では、一次転写部材としての一次転写ローラ14は、グラウンド(0V)に接続(電気的に接地)されている。また、本実施例では、画像形成時に、感光ドラム1の芯金(図示せず)には、高圧電源200からドラム電圧(基準電圧)としての-300Vの電圧が印加される。感光ドラム1の表面には、ドラム電圧の絶対値よりも絶対値が大きい画像形成電位Vl(-400V)が形成される。そして、一次転写ローラ14の電位(0V)と、感光ドラム1の表面の画像形成電位Vl(-400V)と、の差分(一次転写コントラスト)によって、感光ドラム1の画像部(画像形成電位Vlの部分)上のトナーが中間転写ベルト10上に一次転写される。
【0136】
次に、ドラム電圧構成において用いられる中間転写ベルト10について説明する。本実施例のように一次転写電源を持たない構成では、一次転写コントラストを大きくすることが難しい。一次転写コントラストを大きくするためにはドラム電圧の絶対値を大きくする必要があり、装置の大型化や装置のコストアップを招く場合がある。そのため、小さな一次転写コントラストでも十分な一次転写電流を流すために、中間転写ベルト10の電気抵抗値が低いことが好ましい。
【0137】
図13は、本実施例における中間転写ベルト10の断面構成を示す模式図である。本実施例では、中間転写ベルト10として、周長700mm、厚さ65μmの無端状のベルトを用いた。また、
図13に示すように、本実施例では、中間転写ベルト10は、厚さ64μmの基層10eと、厚さ1μmの内面層10fと、の2層からなる。基層10e側(外周面側)が感光ドラム1に当接し、内面層10f側(内周面側)が一次転写ローラ14と接触する。本実施例では、基層10eの材料には、導電剤としてイオン導電剤を混合したポリエチレンテレフタレート(PET)樹脂を用いた。また、本実施例では、内面層10fの材料には、導電剤として電子導電剤であるカーボンを混合したポリエステル樹脂を用いた。内面層10fは、基層10eの内側に形成され、駆動ローラ11、テンションローラ12、二次転写対向ローラ13に接触する。なお、本実施例では、基層10eの材料としてポリエチレンテレフタレート(PET)樹脂を用いたが、他の材料を用いることも可能である。基層10eの材料としては、例えば、ポリエステル、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)などの材料及びこれらの混合樹脂を使用することができる。また、本実施例では、内面層10fの材料としてポリエステル樹脂を用いたが、他の材料を用いることも可能であり、例えばアクリル樹脂などを用いてもよい。
【0138】
本実施例では、中間転写ベルト10の基層10eの電気抵抗に比べて内面層10fの電気抵抗を低くしている。本実施例では、中間転写ベルト10体積抵抗率は、1×1010Ω・cmである。また、本実施例では、中間転写ベルト10の内面の表面抵抗率は、1.0×106Ω/□である。本実施例では、中間転写ベルト10の電気特性の測定環境は、室内温度23℃、室内湿度50%である。本実施例では、基層10eと内面層10fとの間での、電気抵抗及び厚みの関係から、実際に中間転写ベルト10について測定される体積抵抗率は、基層10eの電気抵抗値が反映されている。一方、本実施例では、実際に中間転写ベルト10について測定される内面の表面抵抗率は、内面層10fの電気抵抗値が反映されている。
【0139】
なお、体積抵抗率は、測定器としての三菱化学株式会社のHiresta-UP(MCP-HT450)において、リングプローブのタイプUR(型式MCP-HTP12)を使用して測定した。また、表面抵抗率は、体積抵抗率の測定の場合と同じ測定器において、リングプローブのタイプUR100(型式MCP-HTP16)を使用して測定した。体積抵抗率の測定は、中間転写ベルト10の表面側(基層10e側)からプローブを当て、印加電圧100V、測定時間10秒の条件で行った。また、表面抵抗率の測定は、中間転写ベルト10の内面側(内面層10f側)からプローブを当て、印加電圧10V、測定時間10秒の条件で行った。本実施例では、中間転写ベルト10の体積抵抗率は、1×109Ω・cm以上、1×1010Ω・cm以下の範囲が好ましく、中間転写ベルト10の内面の表面抵抗率は、4.0×106Ω/□以下(典型的には1.0×105Ω/□以上)が好ましい。
【0140】
上述のような電気抵抗域の中間転写ベルト10は、中間転写ベルト10の周方向に電流を流せる程度に電気抵抗が低いため、一次転写コントラストが小さくても十分に一次転写電流を流すことができる。そのため、本実施例のように一次転写電源を持たないドラム電圧構成においては、上述のような電気抵抗値を有する低抵抗の中間転写ベルト10を用いることが好ましい。
【0141】
次に、ドラム電圧構成に本発明を適用した場合の作用効果について説明する。高温高湿環境下では、本実施例のように中間転写ベルト10の電気抵抗値が低いほど、トナー部(パッチ部)ではなく、白地部へと二次転写電流が流れやすくなる。例えば、前述した
図6(a)、(c)に示すような画像をプリントする場合、二次転写部N2に関して
図14に示すような等価回路を考えることができる。
図14中の各記号はそれぞれ次のものを表す。
・Rr:二次転写ローラ20の電気抵抗値
・Rp:記録材Pの電気抵抗値
・Rt:孤立パッチパターンのトナーの電気抵抗値
・Ri:中間転写ベルト10の電気抵抗値
・I1:白地部を通る電流
・I2:トナー部(パッチ部)を通る電流
【0142】
I1とI2との比率は、下記式(7)の通りになる。
I1/I2
=(Ri+Rt+Rp)/(Ri+Rp)
=1+Rt/(Ri+Rp) ・・・式(7)
【0143】
式(7)の通り、Riが小さくなるほど、I2に比べてI1の比率が大きくなる。すなわち、中間転写ベルト10の電気抵抗値Riが小さいほど二次転写電流がトナー部(パッチ部)ではなく白地部へと流れやすい。そのため、上述のような低抵抗の中間転写ベルト10を用いた構成では、トナー量が少ない画像においてパッチボソが発生しやすくなる場合がある。
【0144】
そこで、本実施例では、上述のような低抵抗の中間転写ベルト10を用いた構成において本発明を適用する。これにより、上述の実施例と同様に、パッチボソが発生するようなトナー量が少ない画像に対しては、トナー量が少ないほど二次転写電圧の絶対値を大きくする制御を適用することができる。その結果、低抵抗の中間転写ベルト10を用いた構成であっても、パッチボソのような画像不良を抑制することが可能になる。また、上述の実施例で説明したように、強抜けを抑制することもできる。これにより、本実施例のような、一次転写電源を持たない、シンプルな構成が実現できる。なお、本実施例における二次転写電圧の制御方法としては、実施例1、2、3のいずれの方法を適用してもよい。
【0145】
このように、本実施例では、像担持体10は、別の像担持体1から一次転写されたトナー像を転写部N2で記録材Pに二次転写するために搬送する無端状のベルトで構成されており、該ベルトは、周方向に電流を流すことが可能である。また、本実施例では、該ベルトの体積抵抗率は、1×109Ω・cm以上、1×1010Ω・cm以下である。
【0146】
以上説明した通り、本実施例によれば、低抵抗の中間転写ベルト10を使用した場合であっても、トナー量が少ないほど二次転写電圧の絶対値を大きくする制御を適用することで、パッチボソ、強い抜けを抑制することができる。したがって、本実施例によれば、一次転写電源を持たないシンプルな構成を実現しつつ、パッチボソ、強抜けを抑制することができる。
【0147】
[その他]
以上、本発明を具体的な実施例に即して説明したが、本発明は上述の実施例に限定されるものではない。
【0148】
例えば、上述の実施例では、画像形成装置は複数の画像形成部を有するカラー画像形成装置であったが、本発明はこれに限定されるものではなく、画像形成装置は画像形成部を一つのみ有するモノクロ画像形成装置であってもよい。この場合、本発明は、像担持体としての感光体などから記録材に直接トナー像を転写する転写部に関して適用すればよい。
【符号の説明】
【0149】
1 感光ドラム(感光体)
3 露光装置
10 中間転写ベルト
20 二次転写ローラ
21 二次転写電源
100 画像形成装置
P 記録材