IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本碍子株式会社の特許一覧

特開2022-191094熱交換器、熱交換システム及び熱交換器の制御方法
<>
  • 特開-熱交換器、熱交換システム及び熱交換器の制御方法 図1
  • 特開-熱交換器、熱交換システム及び熱交換器の制御方法 図2
  • 特開-熱交換器、熱交換システム及び熱交換器の制御方法 図3
  • 特開-熱交換器、熱交換システム及び熱交換器の制御方法 図4
  • 特開-熱交換器、熱交換システム及び熱交換器の制御方法 図5
  • 特開-熱交換器、熱交換システム及び熱交換器の制御方法 図6
  • 特開-熱交換器、熱交換システム及び熱交換器の制御方法 図7
  • 特開-熱交換器、熱交換システム及び熱交換器の制御方法 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022191094
(43)【公開日】2022-12-27
(54)【発明の名称】熱交換器、熱交換システム及び熱交換器の制御方法
(51)【国際特許分類】
   F01N 5/02 20060101AFI20221220BHJP
   F02M 26/14 20160101ALI20221220BHJP
   F02M 26/23 20160101ALI20221220BHJP
   F01N 3/24 20060101ALI20221220BHJP
   F01N 13/08 20100101ALI20221220BHJP
   F02D 21/08 20060101ALI20221220BHJP
   F28D 7/10 20060101ALI20221220BHJP
   F28D 7/12 20060101ALI20221220BHJP
【FI】
F01N5/02 B
F02M26/14 ZAB
F02M26/23
F01N5/02 G
F01N3/24 C
F01N13/08 B
F01N13/08 A
F02D21/08 301Z
F28D7/10 A
F28D7/12
【審査請求】未請求
【請求項の数】15
【出願形態】OL
(21)【出願番号】P 2021099738
(22)【出願日】2021-06-15
(71)【出願人】
【識別番号】000004064
【氏名又は名称】日本碍子株式会社
(74)【代理人】
【識別番号】110000523
【氏名又は名称】アクシス国際弁理士法人
(72)【発明者】
【氏名】木村 大輔
(72)【発明者】
【氏名】近藤 隆弘
(72)【発明者】
【氏名】吉原 誠
(72)【発明者】
【氏名】赤石 龍士郎
【テーマコード(参考)】
3G004
3G062
3G091
3G092
3L103
【Fターム(参考)】
3G004AA01
3G004BA03
3G004DA01
3G004DA14
3G004DA24
3G004EA01
3G062ED01
3G062ED10
3G091AA02
3G091AA11
3G091BA38
3G091GA06
3G091GB01W
3G091GB03W
3G091GB04W
3G091GB05W
3G091GB06W
3G091GB07W
3G091HB03
3G091HB05
3G092AA17
3G092FB03
3L103AA32
3L103BB39
3L103CC02
3L103CC27
3L103DD03
3L103DD37
3L103DD38
3L103DD64
(57)【要約】      (修正有)
【課題】排気ガスのような第1流体の冷却性能及び第1流体からの熱回収性能が高く、第1流体の逆流及び圧力損失の増大を抑制する、熱交換(排熱回収)機能とEGRクーラー機能とを兼ね備える熱交換器を提供する。
【解決手段】内周壁と、外周壁と、内周壁と外周壁との間に配設され、複数のセルを有する中空型のハニカム構造体10と、熱遮断時に第1流体がハニカム構造体10の内周壁内を流通可能な第1流路20と、熱交換時に第1流体がハニカム構造体10のセル内を流通可能な第2流路30と、第2流路30に隣接し、第1流体と熱交換を行う第2流体が流通可能な第3流路40と、ハニカム構造体10よりも下流側に配置され、第1流路20内及び第2流路30内の流通を制御可能な流路バルブ50とを備える。第2流路30は、ハニカム構造体10の第2端面14bと流路バルブ50との間で、第1流体をエンジンの吸気系に還流するEGR管60と接続する。
【選択図】図1
【特許請求の範囲】
【請求項1】
内周壁と、外周壁と、前記内周壁と前記外周壁との間に配設され、第1端面から第2端面まで延びる複数のセルを区画形成する隔壁とを有する中空型のハニカム構造体と、
熱遮断時に第1流体が前記ハニカム構造体の前記内周壁内を流通可能な第1流路と、
熱交換時に前記第1流体が前記ハニカム構造体の前記セル内を流通可能な第2流路と、
前記第2流路に隣接して配置され、前記第1流体と熱交換を行う第2流体が流通可能な第3流路と、
前記ハニカム構造体よりも下流側に配置され、前記第1流路内及び前記第2流路内の前記第1流体の流通を制御可能な1つ又は2つの流路バルブと
を備え、
前記第2流路は、前記ハニカム構造体の第2端面と前記流路バルブとの間に、前記第1流体をエンジンの吸気系に還流するEGR管と接続可能な接続口を有する熱交換器。
【請求項2】
前記接続口に接続された前記EGR管を更に備え、前記EGR管の途中に前記第1流体の前記エンジンの吸気系への流通を制御可能なEGRバルブが配置されている、請求項1に記載の熱交換器。
【請求項3】
前記第1流路は、前記ハニカム構造体の前記内周壁に設けられた内筒部材の内側領域を含む、請求項1又は2に記載の熱交換器。
【請求項4】
前記第2流路は、前記内筒部材と、前記ハニカム構造体の前記外周壁に嵌合される第1外筒部材と、前記第1外筒部材の下流側端部に接続される下流側筒状部材とによって囲まれる領域を含み、前記接続口が前記第1外筒部材及び/又は前記下流側筒状部材に設けられている、請求項3に記載の熱交換器。
【請求項5】
前記第3流路は、前記第1外筒部材と、前記第1外筒部材の径方向外側に少なくとも一部が間隔をもって配置される第2外筒部材とによって囲まれる領域を含む、請求項4に記載の熱交換器。
【請求項6】
前記流路バルブは、前記内筒部材の下流側端部に配置され、前記第1流路及び前記第2流路の一方を閉鎖することにより他方を開放する制御機構を有する1つの流路バルブである、請求項3~5のいずれか一項に記載の熱交換器。
【請求項7】
エンジンからの排気管に配置される請求項1~6のいずれか一項に記載の熱交換器と、
前記熱交換器の上流側の前記排気管に配置される第1触媒ユニットと
を備える熱交換システム。
【請求項8】
前記熱交換器の下流側の前記排気管に配置される第2触媒ユニットを更に備える、請求項7に記載の熱交換システム。
【請求項9】
前記熱交換器と前記第1触媒ユニットと前記第2触媒ユニットとが同軸に配置されている、請求項8に記載の熱交換システム。
【請求項10】
熱交換時に、前記第1流路を閉鎖するとともに前記第2流路を開放するように前記流路バルブを制御し、熱遮断時に、前記第1流路を開放するとともに前記第2流路を閉鎖するように前記流路バルブを制御可能な制御部を更に備える、請求項7~9のいずれか一項に記載の熱交換システム。
【請求項11】
前記制御部は、前記EGR管を介して前記エンジンの吸気系に前記第1流体を供給するように前記EGRバルブを開放可能である、請求項10に記載の熱交換システム。
【請求項12】
前記制御部は、下記(1)~(4)の制御モード:
(1)前記第1流路を閉鎖するとともに前記第2流路を開放するように前記流路バルブを制御し、且つ前記EGRバルブを開放して、熱回収及びEGRクーラー処理の両方を実行する第1の制御モード
(2)前記第1流路を閉鎖するとともに前記第2流路を開放するように前記流路バルブを制御し、且つ前記EGRバルブを閉鎖して、熱回収のみを実行する第2の制御モード
(3)前記第1流路を開放するとともに前記第2流路を閉鎖するように前記流路バルブを制御し、且つ前記EGRバルブを開放して、EGRクーラー処理のみを実行する第3の制御モード
(4)前記第1流路を開放するとともに前記第2流路を閉鎖するように前記流路バルブを制御し、且つ前記EGRバルブを閉鎖して、熱回収及びEGRクーラー処理の両方を実行しない第4の制御モード
を指示可能である、請求項10又は11に記載の熱交換システム。
【請求項13】
エンジンの排気管に配置される請求項1~6のいずれか一項に記載の熱交換器を用いる熱交換器の制御方法であって、
前記第1流路を閉鎖するとともに前記第2流路を開放するように前記流路バルブを制御して、熱交換を行う工程と、
前記第1流路を開放するとともに前記第2流路を閉鎖するように前記流路バルブを制御して、熱遮断を行う工程と
を含む、熱交換器の制御方法。
【請求項14】
EGRバルブを開放して、前記EGR管を介して前記エンジンの吸気系に前記第1流体を供給する工程を更に含む、請求項13に記載の熱交換器の制御方法。
【請求項15】
エンジンの排気管に配置される請求項2~6のいずれか一項に記載の熱交換器を用いる熱交換器の制御方法であって、下記(1)~(4)の制御工程:
(1)前記第1流路を閉鎖するとともに前記第2流路を開放するように前記流路バルブを制御し、且つ前記EGRバルブを開放して、熱回収及びEGRクーラー処理の両方を実行する第1の制御工程
(2)前記第1流路を閉鎖するとともに前記第2流路を開放するように前記流路バルブを制御し、且つ前記EGRバルブを閉鎖して、熱回収のみを実行する第2の制御工程
(3)前記第1流路を開放するとともに前記第2流路を閉鎖するように前記流路バルブを制御し、且つ前記EGRバルブを開放して、EGRクーラー処理のみを実行する第3の制御工程
(4)前記第1流路を開放するとともに前記第2流路を閉鎖するように前記流路バルブを制御し、且つ前記EGRバルブを閉鎖して、熱回収及びEGRクーラー処理の両方を実行しない第4の制御工程
を含む、熱交換器の制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱交換器、熱交換システム及び熱交換器の制御方法に関する。
【背景技術】
【0002】
エンジンの排気から熱を回収する排熱回収機能と、排気の一部をエンジンの吸気系に再循環させる排気を冷却するEGR(Exhaust Gas Recirculation)クーラー機能とを兼ね備える技術が知られている。
このような技術として、特許文献1には、エンジンで生じた排気ガスを排出するための主流路を有する排気マニホルド本体と、排気ガスの少なくとも一部を主流路から取り出すべく排気マニホルド本体に設けた分岐部と、分岐部に取り出された排気ガスを排気マニホルド本体から流出する流出口とを備え、排気マニホルド本体のうち流出口の設置箇所よりも排気ガスの流通方向に沿った上流側に、排気ガスの熱を回収する熱交換器を設けることで、EGRクーラーの機能を有する排気マニホルドが知られている。この排気マニホルドでは、排気ガスの一部又は全部が熱交換器に供給され、熱回収及び排気ガスの冷却が行われる。冷却された排気ガスの一部は、第1分岐路を介して吸気マニホルドに還流され、その残りが第2分岐路を介してセンターパイプに合流して系外に排出される。
【0003】
しかしながら、特許文献1に記載の排気マニホルドは、第2分岐路がセンターパイプに合流する合流点において、センターパイプから第2分岐路への流れを妨げるような障害物がない。そのため、センターパイプから第2分岐路へ排気ガスが逆流してしまい、EGRクーラー機能が損なわれるという問題があった。
【0004】
そこで、この問題を解決するために、特許文献2には、内燃機関からの排気が内周側へ流入する第一排気管と、第一排気管よりも排気の流通方向下流側にある第二排気管と、第一排気管から流入する排気と加熱対象となる流体との間で熱交換を行う熱交換器と、第一排気管から熱交換器を経ることなく第二排気管へ流出する排気の流量と第一排気管から熱交換器へ流入する排気の流量との流量比を変更可能なバルブと、熱交換器において流体との熱交換が行われた排気の一部又は全部を、内燃機関の吸気系へ再循環させる排気再循環流路へと分岐させる分岐部とを備える排気熱回収装置が提案されている。熱交換器は、複数のプレートと、複数のプレートを収容するシェルを有し、シェルの内部は複数の分割領域に区画され、当該分割領域それぞれの内部には少なくとも一つのプレートが配置されている。また、シェルの内部における排気の流路は、排気流入路から流入する排気が少なくとも一つの分割領域においてプレートに接触してから分岐部に到達し、かつ、分岐部において排気再循環流路へ分岐しなかった排気が少なくとも一つの分割領域においてプレートに接触してから第二排気管へ流出するように構成されている。このような構成とすることにより、第二排気管からシェルの内部へ高温の排気が逆流したとしても、そのような排気は、少なくとも一つの分割領域においてプレートとの接触に伴って熱交換が行われて冷却された後に分岐路に到達することとなる。そのため、高温の排気の逆流によってEGRクーラー機能が損なわれることを抑制することができる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2008-163773号公報
【特許文献2】特許第6499325号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献2の排気熱回収装置は、逆流した排気ガスを冷却するために熱交換器を複数の分割領域に区画しているため、順流の排気ガスを熱交換器全体で冷却することができず、順流の排気ガスの冷却や、排気ガスからの熱回収が不足する恐れがある。また、特許文献2の排気熱回収装置は、熱交換器及びその下流域における順流の排気ガスの流路が狭くなっているため、圧力損失が高く、エンジンへの負荷が増大することも懸念される。
【0007】
本発明は、上記のような課題を解決するためになされたものであり、排気ガスのような第1流体の冷却性能及び第1流体からの熱回収性能が高く、第1流体の逆流及び圧力損失の増大を抑制することが可能な、熱交換(排熱回収)機能とEGRクーラー機能とを兼ね備える熱交換器、熱交換システム及び熱交換器の制御方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明者らは、熱交換器の構造について鋭意研究を行った結果、特定の構造を有する熱交換器とすることにより、上記の課題を解決し得ることを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明は、内周壁と、外周壁と、前記内周壁と前記外周壁との間に配設され、第1端面から第2端面まで延びる複数のセルを区画形成する隔壁とを有する中空型のハニカム構造体と、
熱遮断時に第1流体が前記ハニカム構造体の前記内周壁内を流通可能な第1流路と、
熱交換時に前記第1流体が前記ハニカム構造体の前記セル内を流通可能な第2流路と、
前記第2流路に隣接して配置され、前記第1流体と熱交換を行う第2流体が流通可能な第3流路と、
前記ハニカム構造体よりも下流側に配置され、前記第1流路内及び前記第2流路内の前記第1流体の流通を制御可能な1つ又は2つの流路バルブと
を備え、
前記第2流路は、前記ハニカム構造体の第2端面と前記流路バルブとの間に、前記第1流体をエンジンの吸気系に還流するEGR管と接続可能な接続口を有する熱交換器である。
【0010】
また、本発明は、エンジンからの排気管に配置される前記熱交換器と、
前記熱交換器の上流側の前記排気管に配置される第1触媒ユニットと
を備える熱交換システムである。
【0011】
また、本発明は、エンジンの排気管に配置される前記熱交換器を用いる熱交換器の制御方法であって、
前記第1流路を閉鎖するとともに前記第2流路を開放するように前記流路バルブを制御して、熱交換を行う工程と、
前記第1流路を開放するとともに前記第2流路を閉鎖するように前記流路バルブを制御して、熱遮断を行う工程と
を含む、熱交換器の制御方法である。
【0012】
さらに、本発明は、エンジンの排気管に配置される前記熱交換器を用いる熱交換器の制御方法であって、下記(1)~(4)の制御工程:
(1)前記第1流路を閉鎖するとともに前記第2流路を開放するように前記流路バルブを制御し、且つ前記EGRバルブを開放して、熱回収及びEGRクーラー処理の両方を実行する第1の制御工程
(2)前記第1流路を閉鎖するとともに前記第2流路を開放するように前記流路バルブを制御し、且つ前記EGRバルブを閉鎖して、熱回収のみを実行する第2の制御工程
(3)前記第1流路を開放するとともに前記第2流路を閉鎖するように前記流路バルブを制御し、且つ前記EGRバルブを開放して、EGRクーラー処理のみを実行する第3の制御工程
(4)前記第1流路を開放するとともに前記第2流路を閉鎖するように前記流路バルブを制御し、且つ前記EGRバルブを閉鎖して、熱回収及びEGRクーラー処理の両方を実行しない第4の制御工程
を含む、熱交換器の制御方法である。
【発明の効果】
【0013】
本発明によれば、排気ガスのような第1流体の冷却性能及び第1流体からの熱回収性能が高く、第1流体の逆流及び圧力損失の増大を抑制することが可能な、熱交換(排熱回収)機能とEGRクーラー機能とを兼ね備える熱交換器、熱交換システム及び熱交換器の制御方法を提供することができる。
【図面の簡単な説明】
【0014】
図1】本発明の実施形態に係る熱交換器の模式的な断面図である。
図2図1の熱交換器におけるa-a’線の断面図である。
図3】本発明の実施形態に係る別の熱交換器の模式的な断面図である。
図4】ハニカム構造体及び内筒部材の部分を拡大して示した斜視図である。
図5図1の熱交換器の熱遮断時における流路バルブを下流側から見た図である。
図6図1の熱交換器の熱交換時における流路バルブを下流側から見た図である。
図7】本発明の実施形態に係る熱交換システムの模式図である。
図8】本発明の実施形態に係る熱交換システムにおける制御モード、及び本発明の実施形態に係る熱交換器の制御方法における制御工程を説明するための模式図である。
【発明を実施するための形態】
【0015】
以下、本発明の具体的な実施形態について、図面を参照しながら具体的に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対し変更、改良などが適宜加えられたものも本発明の範囲に入ることが理解されるべきである。
【0016】
(1.熱交換器)
本発明の実施形態に係る熱交換器は、内周壁と、外周壁と、内周壁と外周壁との間に配設され、第1端面から第2端面まで延びる複数のセルを区画形成する隔壁とを有する中空型のハニカム構造体(以下、「ハニカム構造体」と略すことがある)と;熱遮断時に第1流体がハニカム構造体の内周壁内を流通可能な第1流路と;熱交換時に第1流体がハニカム構造体のセル内を流通可能な第2流路と;第2流路に隣接して配置され、第1流体と熱交換を行う第2流体が流通可能な第3流路と;ハニカム構造体よりも下流側に配置され、第1流路内及び第2流路内の第1流体の流通を制御可能な1つ又は2つの流路バルブを備える。また、この熱交換器は、第2流路が、ハニカム構造体の第2端面と流路バルブとの間に、第1流体をエンジンの吸気系に還流するEGR管と接続可能な接続口を有する。このような構成とすることにより、熱交換時に熱交換部(ハニカム構造体)全体で第1流体(排気ガス)を冷却することができるため、第1流体の冷却効果を高めることができる。同様に、熱交換時に熱交換部全体で第1流体から熱回収することができるため、熱回収性能を高めることができる。また、1つ又は2つの流路バルブによって第1流路内及び第2流路内の第1流体の流通を制御しているため、第1流体の逆流が生じ難い。また、第1流体の逆流を抑制するために流路を狭くする必要もないため、圧力損失の増大を抑制することもできる。
なお、本明細書において、「熱交換時」とは、「熱回収時」及び「EGRクーラー処理時」の両方を含む概念であり、「熱回収時」、「EGRクーラー処理時」、又はこれらの両方を意味する。また、「熱遮断時」とは、熱交換を行わない場合(熱回収を抑制する場合)のことを意味する。
【0017】
図1は、本発明の実施形態に係る熱交換器の模式的な断面図(中型のハニカム構造体のセルが延びる方向に平行な断面図)を示す。また、図2は、図1の熱交換器におけるa-a’線の断面図を示す。さらに、図3は、本発明の実施形態に係る別の熱交換器の模式的な断面図(中型のハニカム構造体のセルが延びる方向に平行な断面図)を示す。
図1~3に示されるように、本発明の実施形態に係る熱交換器100は、中空型のハニカム構造体10と、第1流体が流通可能な第1流路20及び第2流路30と、第2流体が流通可能な第3流路40と、第1流路20内及び第2流路30内の第1流体の流通を制御可能な流路バルブ50とを備える。第2流路30は、第1流体をエンジンの吸気系に還流するEGR管60と接続可能な接続口31を有する。
また、熱交換器100は、接続口31に接続されたEGR管60を更に有することができ、EGR管60の途中に第1流体のエンジンの吸気系への流通を制御可能なEGRバルブ61を設けることができる。EGR管60を設けることにより、熱交換器100をEGRクーラーとして使用することが可能となる。したがって、熱交換器100を車両に用いることでEGRクーラーを別途設けることが不要となるため、車両の軽量化などを図ることができる。また、EGR管60は、ハニカム構造体10によって熱交換されて冷却された第1流体が流れることで、高温にならないため、周りの部品へ熱害を及ぼすことを抑制することができる。
【0018】
<中空型のハニカム構造体10>
中空型のハニカム構造体10は、内周壁11と、外周壁12と、内周壁11と外周壁12との間に配設され、第1端面14aから第2端面14bまで延びる複数のセル15を区画形成する隔壁13とを有する。
ここで、本明細書において「中空型のハニカム構造体10」とは、セル15が延びる方向に直交する中空型のハニカム構造体10の断面において、中心部に中空領域を有するハニカム構造体10を意味する。
中空型のハニカム構造体10の外形としては、特に限定されず、例えば、円柱、楕円柱、四角柱又はその他の多角柱などの柱状とすることができる。
また、中空型のハニカム構造体10における中空領域の形状についても、特に限定されず、例えば、円柱、楕円柱、四角柱又はその他の多角柱などとすることができる。
なお、中空型のハニカム構造体10の形状と、中空領域の形状とは同一であっても異なっていてもよいが、外部からの衝撃、熱応力などに対する耐性の観点から、同一であることが好ましい。
【0019】
セル15の形状としては、特に限定されず、セル15が延びる方向に直交する断面において、円形、楕円形、三角形、四角形、六角形、又はその他の多角形などとすることができる。また、セル15は、セル15が延びる方向に直交する断面において、放射状に設けられていることが好ましい。このような構成とすることにより、セル15を流通する第1流体の熱をハニカム構造体10の外部に効率良く伝達することができる。
【0020】
隔壁13の厚みは、特に限定されないが、好ましくは0.05~1.0mm、より好ましくは0.2~0.6mmである。隔壁13の厚みを0.05mm以上とすることにより、ハニカム構造体10の機械的強度を十分なものとすることができる。また、隔壁13の厚さを1.0mm以下とすることにより、開口面積の低下によって圧力損失が大きくなったり、第1流体との接触面積の低下によって熱回収効率が低下したりするなどの問題を抑制することができる。
【0021】
内周壁11及び外周壁12の厚みは、特に限定されないが、隔壁13の厚みよりも大きいことが好ましい。このような構成とすることにより、外部からの衝撃、第1流体と第2流体との間の温度差による熱応力などによって破壊(例えば、ひび、割れなど)が起こり易い内周壁11及び外周壁12の強度を高めることができる。
なお、内周壁11及び外周壁12の厚みは、特に限定されず、用途などに応じて適宜調整すればよい。例えば、内周壁11及び外周壁12の厚みは、好ましくは0.3mm~10mm、より好ましくは0.5mm~5mm、更に好ましくは1mm~3mmである。
【0022】
内周壁11、外周壁12及び隔壁13は、セラミックスを主成分とする。「セラミックスを主成分とする」とは、全成分の質量に占めるセラミックスの質量比率が50質量%以上であることをいう。セラミックスを用いることにより、錆びや変形を抑制しつつ、軽量化を図ることができる。
【0023】
内周壁11、外周壁12及び隔壁13の気孔率は、特に限定されないが、好ましくは10%以下、より好ましくは5%以下、更に好ましくは3%以下である。また、内周壁11、外周壁12及び隔壁13の気孔率は0%であってもよい。内周壁11、外周壁12及び隔壁13の気孔率を10%以下とすることにより、熱伝導率を向上させることができる。
【0024】
内周壁11、外周壁12及び隔壁13は、熱伝導性が高いSiC(炭化珪素)を主成分として含むことが好ましい。このような材料としては、Si含浸SiC、(Si+Al)含浸SiC、金属複合SiC、再結晶SiC、Si34、及びSiCなどが挙げられる。これらの中でも、安価に製造でき、高熱伝導であることからSi含浸SiC、(Si+Al)含浸SiCを用いることが好ましい。
【0025】
セル15が延びる方向に直交する断面における中空型のハニカム構造体10のセル密度(すなわち、単位面積当たりのセル15の数)は、特に限定されないが、好ましくは4~320セル/cm2である。セル密度を4セル/cm2以上とすることにより、隔壁13の強度、ひいてはハニカム構造体10自体の強度及び有効GSA(幾何学的表面積)を十分に確保することができる。また、セル密度を320セル/cm2以下とすることにより、第1流体が流れる際の圧力損失の増大を抑制することができる。
【0026】
中空型のハニカム構造体10のアイソスタティック強度は、特に限定されないが、好ましくは100MPa以上、より好ましくは150MPa以上、更に好ましくは200MPa以上である。ハニカム構造体10のアイソスタティック強度を100MPa以上とすることにより、ハニカム構造体10の耐久性を向上させることができる。ハニカム構造体10のアイソスタティック強度は、公益社団法人自動車技術会発行の自動車規格であるJASO規格M505-87に規定されているアイソスタティック強度の測定方法に準じて測定することができる。
【0027】
セル15が延びる方向に直交する断面における中空型のハニカム構造体10の外周壁12の直径(外径)は、特に限定されないが、好ましくは20~200mm、より好ましくは30~100mmである。このような直径とすることにより、熱回収効率を向上させることができる。外周壁12が円形でない場合には、外周壁12の断面形状に内接する最大内接円の直径を、外周壁12の直径とする。
また、セル15が延びる方向に直交する断面における中空型のハニカム構造体10の内周壁11の直径は、特に限定されないが、好ましくは1~60mm、より好ましくは1~50mm、更に好ましくは2~30mmである。内周壁11の断面形状が円形でない場合には、内周壁11の断面形状に内接する最大内接円の直径を、内周壁11の直径とする。
【0028】
中空型のハニカム構造体10の熱伝導率は、特に限定されないが、25℃において、好ましくは50W/(m・K)以上、より好ましくは100~300W/(m・K)、更に好ましくは120~300W/(m・K)である。ハニカム構造体10の熱伝導率を、このような範囲とすることにより、熱伝導性が良好となり、ハニカム構造体10内の熱を外部に効率良く伝達させることができる。なお、熱伝導率の値は、レーザーフラッシュ法(JIS R1611:1997)により測定した値を意味する。
【0029】
中空型のハニカム構造体10は、隔壁13に触媒を担持していてもよい。隔壁13に触媒を担持させると、排気ガス中のCO、NOx、HCなどを触媒反応によって無害な物質にすることが可能になるとともに、触媒反応の際に生じる反応熱を熱交換に用いることも可能になる。触媒としては、貴金属(白金、ロジウム、パラジウム、ルテニウム、インジウム、銀、及び金)、アルミニウム、ニッケル、ジルコニウム、チタン、セリウム、コバルト、マンガン、亜鉛、銅、スズ、鉄、ニオブ、マグネシウム、ランタン、サマリウム、ビスマス、及びバリウムからなる群から選択された元素を少なくとも一種含有するものであることが好ましい。上記元素は、金属単体、金属酸化物、又はそれ以外の金属化合物として含有されていてもよい。
【0030】
<第1流路20>
第1流路20は、熱遮断時に第1流体がハニカム構造体10の内周壁11内(内周壁11の径方向内側)を流通可能な流路である。
第1流路20としては、特に限定されないが、ハニカム構造体10の内周壁11に設けられた内筒部材21の内側領域を含むことができる。
例えば、第1流路20は、一態様において、図1及び2に示されるように、ハニカム構造体10の内周壁11に設けられた内筒部材21を用いて構成することができる。この場合、第1流路20は、内筒部材21の内側領域を含む。また、内筒部材21は、第1流体をハニカム構造体10のセル15に導入するための貫通孔22を有しており、貫通孔22によって第1流体の流れを2つ(内筒部材21の内側領域内を流通する流れと、貫通孔22を介してハニカム構造体10のセル15及び内筒部材21の外側領域を流通する流れと)に分岐させることができる。
ここで、内筒部材21に設けられる貫通孔22の例を図4に示す。図4は、ハニカム構造体10及び内筒部材21の部分を拡大して示した斜視図である。図4(a)~(f)に示すように、貫通孔22は、内筒部材21の全周に形成されていてもよいし、内筒部材21の部分的な位置(例えば、上部、中央部又は下部のみ)に形成されていてもよい。また、貫通孔22の形状も、円形、楕円形、四角形などの各種形状とすることができる。
【0031】
内筒部材21は、外周面の一部がハニカム構造体10の内周壁11に嵌合する筒状部材である。内筒部材21の外周面の一部とハニカム構造体10の内周壁11とは直接的に接していてもよく、他の部材(例えば、マット材又はメッシュ材、ハニカム構造体10の位置ずれを抑制するリング部材など)を介して間接的に接していてもよい。
なお、本明細書において、「嵌合」とは、ハニカム構造体10の内周壁11面と内筒部材21とが、相互に嵌まり合った状態で固定されていることをいう。したがって、ハニカム構造体10の内周壁11面と内筒部材21との嵌合においては、すきま嵌め、締まり嵌め、焼き嵌めなどの嵌め合いによる固定方法の他、ろう付け、溶接、拡散接合などにより、ハニカム構造体10の内周壁11と内筒部材21とが相互に固定されている場合なども含まれる。
また、内筒部材21の径(外径及び内径)は、軸方向にわたって一様であってよいが、少なくとも一部(例えば、軸方向両端部など)が縮径又は拡径していてもよい。
【0032】
内筒部材21の材料としては、特に限定されず、製造性の観点から金属であることが好ましい。内筒部材21の材料としては、例えば、ステンレス、チタン合金、銅合金、アルミ合金、真鍮などを用いることができる。その中でも、耐久信頼性が高く、安価という理由により、ステンレスが好ましい。
【0033】
内筒部材21の厚みは、特に限定されないが、好ましくは0.1mm以上、より好ましくは0.3mm以上、更に好ましくは0.5mm以上である。内筒部材21の厚みを0.1mm以上とすることにより、耐久信頼性を確保することができる。また、内筒部材21の厚みは、好ましくは10mm以下、より好ましくは5mm以下、更に好ましくは3mm以下である。内筒部材21の厚みを10mm以下とすることにより、熱抵抗を低減して熱伝導性を高めることができる。
【0034】
また、第1流路20は、別の態様において、図3に示されるように、ハニカム構造体10の内周壁11に設けられた内筒部材21と、内筒部材21の径方向内側に第1流体の流路を構成するように間隔をもって配置される上流側筒状部材23とを用いて構成してもよい。この場合、第1流路20は、内筒部材21及び上流側筒状部材23の内側領域を含む。このような構造とすることにより、内筒部材21に貫通孔22を設けなくても、第1流体の流れを2つ(上流側筒状部材23及び内筒部材21の内側領域を流通する流れと、上流側筒状部材23の外側領域と内筒部材21の内側領域との間を介してハニカム構造体10のセル15及び内筒部材21の外側領域を流通する流れ)に分岐させることができる。
【0035】
上流側筒状部材23は、接続される他の部品(例えば、配管など)の形状に応じて上流側端部の形状を適宜調整することができる。例えば、他の部品の径が上流側筒状部材23の上流側端部の径に比べて大きい場合、上流側端部を拡径することができる。
上流側筒状部材23の固定方法としては、特に限定されないが、例えば、後述する筒状接続部材33を介して第1外筒部材32又は第2外筒部材41などに嵌合すればよい。嵌合方法としては、特に限定されず、上記の方法を用いることができる。
【0036】
上流側筒状部材23の材料としては、特に限定されず、上記の内筒部材21と同様の材料とすることができる。
上流側筒状部材23の厚みとしては、特に限定されず、上記の内筒部材21と同様の厚みとすることができる。
【0037】
<第2流路30>
第2流路30は、熱交換時に第1流体がハニカム構造体10のセル15内を流通可能な流路である。
また、第2流路は、ハニカム構造体10の第2端面14bと流路バルブ50との間に、第1流体をエンジンの吸気系に還流するEGR管60と接続可能な接続口31を有する。このような位置にEGR管60と接続可能な接続口31を設けることにより、熱交換時にハニカム構造体10全体で第1流体を冷却することができるため、第1流体の冷却効果を高めることができる。同様に、熱交換時にハニカム構造体10全体で第1流体から熱回収することができるため、熱回収性能を高めることができる。また、流路バルブ50の上流側に接続口31を設けているため、下流側から第1流体が逆流することも抑制することができる。
【0038】
第2流路30としては、特に限定されないが、内筒部材21と、ハニカム構造体10の外周壁12に嵌合される第1外筒部材32と、第1外筒部材32の下流側端部に接続される下流側筒状部材34とによって囲まれる領域を含み、接続口31を第1外筒部材32及び/又は下流側筒状部材34に設けることができる。
例えば、第2流路30は、一態様において、図1及び2に示されるように、内筒部材21と、第1外筒部材32と、筒状接続部材33と、下流側筒状部材34とを用いて構成することができる。この場合、第2流路30は、これらの部材によって囲まれる領域を含む。なお、図1では、接続口31を下流側筒状部材34に設けた例を示しているが、第1外筒部材32を延伸させて下流側筒状部材34と接続し、第1外筒部材32、又は第1外筒部材32及び下流側筒状部材34の両方に接続口31を設けてもよい。
【0039】
第1外筒部材32は、内周面の一部がハニカム構造体10の外周壁12に嵌合する筒状部材である。第1外筒部材32の内周面の一部とハニカム構造体10の外周壁12とは直接的又は間接的に接していてもよいが、熱交換効率(熱回収効率)の観点から直接的であることが好ましい。したがって、第1外筒部材32は、ハニカム構造体10の外周壁12に対応した内周面形状を有することが好ましい。第1外筒部材32の内周面がハニカム構造体10の外周壁12に直接接触することで、熱伝導性が良好となり、ハニカム構造体10内の熱を第1外筒部材32に効率良く伝達することができる。
【0040】
熱回収効率を高めるという観点からは、ハニカム構造体10の外周壁12の全周面積に対する、第1外筒部材32によって周回被覆されるハニカム構造体10の外周壁12の部分の周面積の割合は高い方が好ましい。具体的には、当該周面積の割合は、好ましくは80%以上、より好ましくは90%以上、更に好ましくは100%(すなわち、ハニカム構造体10の外周壁12の全部が第1外筒部材32によって周回被覆される。)である。
なお、ここでいう「外周壁12」とは、ハニカム構造体10のセル15が延びる方向に平行な面を指し、ハニカム構造体10のセル15が延びる方向に直交する面(第1端面14a及び第2端面14b)を示すものではない。
【0041】
第1外筒部材32の径(外径及び内径)は、軸方向にわたって一様であってよいが、少なくとも一部(例えば、軸方向両端部など)が縮径又は拡径していてもよい。
第1外筒部材32の材料としては、特に限定されず、上記の内筒部材21と同様の材料とすることができる。
第1外筒部材32の厚みとしては、特に限定されず、上記の内筒部材21と同様の厚みとすることができる。
【0042】
筒状接続部材33は、第1流体の流路を構成するように、第1外筒部材32の上流端部側と内筒部材21の上流端部側との間を接続する筒状部材である。接続は、直接的又は間接的のいずれであってもよい。間接的な接続の場合、例えば、第1外筒部材32の上流端部側と内筒部材21の上流端部側との間に、後述する第2外筒部材41の上流端部側が配置されていてもよい。
また、筒状接続部材33の形状及び設置方法は、コスト、外観、車両搭載時の搭載スペース、部品の加工性、耐熱性、耐腐食性、第1流体の整流性、及び内筒部材21と第1外筒部材32及び/又は第2外筒部材41との間を接続する際の機械的強度などの観点を考慮し、これらの1つ又は複数の観点によって導かれる性能を満足するものであれば、特に限定されない。
【0043】
筒状接続部材33の材料としては、特に限定されず、上記の内筒部材21と同様の材料とすることができる。
筒状接続部材33の厚みとしては、特に限定されず、上記の内筒部材21と同様の厚みとすることができる。
【0044】
下流側筒状部材34は、第1外筒部材32の下流端部側に接続され、内筒部材21の径方向外側に第1流体の流路を構成するように間隔をもって配置される部分を有する。接続は、直接的又は間接的のいずれであってもよい。間接的な接続の場合、例えば、下流側筒状部材34の上流端部側と第1外筒部材32の下流端部側との間に、後述する第2外筒部材41の下流端部側が配置されていてもよい。
下流側筒状部材34の径(外径及び内径)は、軸方向にわたって一様であってよいが、少なくとも一部が縮径又は拡径していてもよい。
【0045】
また、下流側筒状部材34の形状及び設置方法は、コスト、外観、車両搭載時の搭載スペース、部品の加工性、耐熱性、耐腐食性、第1流体の整流性、及び第1外筒部材32及び/又は第2外筒部材41と接続する際の機械的強度などの観点を考慮し、これら1つ又は複数の観点によって導かれる性能を満足するものであれば、特に限定されない。
【0046】
下流側筒状部材34の材料としては、特に限定されず、上記の内筒部材21と同様の材料とすることができる。
下流側筒状部材34の厚みとしては、特に限定されず、上記の内筒部材21と同様の厚みとすることができる。
【0047】
また、第2流路30は、別の態様において、図3に示されるように、内筒部材21と、第1外筒部材32と、上流側筒状部材23と、筒状接続部材33と、下流側筒状部材34とを用いて構成してもよい。この場合、第2流路30は、これらの部材によって囲まれる領域を含む。なお、図3では、接続口31を下流側筒状部材34に設けた例を示しているが、第1外筒部材32を延伸させて下流側筒状部材34と接続し、第1外筒部材32、又は第1外筒部材32及び下流側筒状部材34の両方に接続口31を設けてもよい。
【0048】
<第3流路40>
第3流路40は、第2流路30に隣接して配置され、第1流体と熱交換を行う第2流体が流通可能な流路である。また、特に限定されないが、第3流路40は、ハニカム構造体10の外周壁12の径方向外側に配置することができる。
第3流路40としては、特に限定されないが、第1外筒部材32と、第1外筒部材32の径方向外側に少なくとも一部が間隔をもって配置される第2外筒部材41とによって囲まれる領域を含むことができる。
例えば、第3流路40は、図1~3に示されるように、第1外筒部材32及び第2外筒部材41を用いて構成することができる。
【0049】
第2外筒部材41は、上流側端部が、ハニカム構造体10の第1端面14aを超えて上流側に延在していることが好ましい。このような構成とすることにより、熱交換効率(熱回収効率)を高めることができる。
【0050】
第2外筒部材41は、第2流体を第2外筒部材41と第1外筒部材32との間の領域に供給するための供給管42、及び第2流体を第2外筒部材41と第1外筒部材32との間の領域から排出するための排出管43に接続されていることが好ましい。供給管42及び排出管43は、ハニカム構造体10の軸方向両端部に対応する位置に設けられていることが好ましい。
また、供給管42及び排出管43は、同じ方向に向けて延出されていても、異なる方向に向けて延出されていてもよい。
【0051】
第2外筒部材41は、上流端部側及び下流端部側の内周面が第1外筒部材32の外周面と直接的又は間接的に接するように配置されていることが好ましい。
第2外筒部材41の上流端部側及び下流端部側の内周面を第1外筒部材32の外周面に固定する方法としては、特に限定されないが、すきま嵌め、締まり嵌め、焼き嵌めなどの嵌め合いによる固定方法の他、ろう付け、溶接、拡散接合などを用いることができる。
【0052】
第2外筒部材41の径(外径及び内径)は、軸方向にわたって一様であってよいが、少なくとも一部(例えば、軸方向中央部、軸方向両端部など)が縮径又は拡径していてもよい。例えば、第2外筒部材41の軸方向中央部を縮径させることにより、供給管42及び排出管43側の第2外筒部材41内で第2流体を第1外筒部材32の外周方向全体に行き渡らせることができる。そのため、軸方向中央部で熱交換に寄与しない第2流体が低減するため、熱交換効率を向上させることができる。
【0053】
第2外筒部材41の材料としては、特に限定されず、上記の内筒部材21と同様の材料とすることができる。
第2外筒部材41の厚みとしては、特に限定されず、上記の内筒部材21と同様の厚みとすることができる。
【0054】
<流路バルブ50>
流路バルブ50は、ハニカム構造体10よりも下流側に配置される。
流路バルブ50としては、第1流路20内及び第2流路30内の第1流体の流通を制御可能な機構を有していれば特に限定されない。流路バルブ50は、例えば、第1流路20内及び第2流路30内にそれぞれ配置された2つの流路バルブ50とすることができる。2つの流路バルブの制御機構は、特に限定されず、公知の制御機構を用いることができる。
また、流路バルブ50は、図1及び3に示されるように、内筒部材21の下流側端部に配置し、第1流路20及び第2流路30の一方を閉鎖することにより他方を開放する制御機構を有する1つの流路バルブ50とすることもできる。流路バルブ50を1つとすることにより、流路バルブ50を設置するための構造を簡素化することができる。
【0055】
ここで、図1に示される流路バルブ50を下流側から見た図を図5及び6に示す。図5は熱遮断時、図6は熱交換時の流路バルブ50の開閉状態をそれぞれ表す。
流路バルブ50は、第1流路20(内筒部材21内の流路)における第1流体の流れを遮断する第1流路バルブ50aと、第2流路30(ハニカム構造体10のセル15側の流路)における第1流体の流れを遮断する第2流路バルブ50bとを有する。第2流路バルブ50bは、第1流路バルブ50aが開となった場合に閉となり、第1流路バルブ50aが閉となった場合に開となるように構成されている。ただし、第1流路バルブ50a及び第2流路バルブ50bは、このような制御機構に限られず、それらの開閉が独立に制御可能に構成される形態であってもよい。また、第1流路バルブ50a及び第2流路バルブ50bの開度を調節して、第1流路20内及び第2流路30内の第1流体の流通を制御することにより、熱交換と熱遮断とを行ってもよい。また、ハニカム構造体10の第2流路30には、第1流体の流れを遮断する遮断壁51が設けられている。第2流路バルブ50b及び遮断壁51は、セル15が延びる方向に直交する断面において、内筒部材21と下流側筒状部材34との間の第2流路30の半分の領域を遮断することができるような半ドーナツ状(半リング状)となっており、第2流路バルブ50bが閉となった場合に、第2流路バルブ50bと遮断壁51とが一体となって第1流体の流れを遮断する。
なお、図5及び6では、第2流路バルブ50b及び遮断壁51を半ドーナツ状にした例を示したが、第2流路バルブ50b及び遮断壁51が一体となって第1流体の流れを遮断するよう構成されていれば、それらの形状は特に限定されない。例えば、遮断壁51を中心角が270°の環状扇形、第2流路バルブ50bを中心角が90°の環状扇形としてもよい。また、第1流路バルブ50a及び第2流路バルブ50bは、シャフト(回転軸)に接続されており、シャフトを駆動(回転)させることによって制御することができる。
【0056】
第1流路バルブ50a及び第2流路バルブ50bを有する流路バルブ50は、熱遮断時に、第1流路バルブ50aを開及び第2流路バルブ50bを閉とすることにより、第2流路30の流れが遮断されるため、第1流路20に第1流体を選択的に流入させることができる。一方、熱交換時には、第1流路バルブ50aを閉及び第2流路バルブ50bを開とすることにより、第1流路20における第1流体の流れが遮断されるため、第2流路30に第1流体を選択的に流入させることができる。
【0057】
また、流路バルブ50は、図3に示されるように第1流路20及び第2流路30を構成する部材を拡径又は縮径などすることにより、その構造を簡素化してもよい。具体的には、内筒部材21及び下流側筒状部材34の下流側端部を縮径し、第1流路20及び第2流路30の流路断面の形状が同一となるような構造とすることにより、当該流路断面に対応する形状の流路バルブ50を配置することが可能となる。流路バルブ50は、上記と同様にシャフト(回転軸)に接続されており、シャフトを駆動(回転)させることによって制御すればよい。
上記のような構造を有する流路バルブ50は、熱遮断時に、第2流路30を遮断するようにシャフトを回転させることにより、第1流路20に第1流体を選択的に流入させることができる。一方、熱交換時には、第1流路20を遮断するようにシャフトを回転させることにより、第2流路30に第1流体を選択的に流入させることができる。
【0058】
<EGR管60>
EGR管60は、一端が接続口31に接続され、他端がエンジンの吸気系に接続される。EGR管60は、第2流路30の上流側(ハニカム構造体10)で冷却された第1流体をエンジンの吸気系に還流する。
EGR管60の形状は、特に限定されず、接続される部材(接続口31やエンジンの吸気系の接続部)に応じて適宜調整することができる。
【0059】
EGR管60の材料としては、特に限定されず、上記の内筒部材21と同様の材料とすることができる。
EGR管60の厚みとしては、特に限定されず、上記の内筒部材21と同様の材料とすることができる。
EGR管60の途中にはEGRバルブ61が設けられている。EGRバルブ61は、第1流体のエンジンの吸気系への流通を制御することができる。EGRバルブ61としては、特に限定されず、公知のものを用いることができる。
【0060】
<第1流体及び第2流体>
熱交換器100に用いられる第1流体及び第2流体としては、特に限定されず、種々の液体及び気体を利用することができる。例えば、熱交換器100が自動車に搭載される場合、第1流体として排気ガスを用いることができ、第2流体として水又は不凍液(JIS K2234:2006で規定されるLLC)を用いることができる。また、第1流体は、第2流体よりも高温の流体とすることができる。
【0061】
<熱交換器100の製造方法>
本発明の実施形態に係る熱交換器100は、当該技術分野において公知の方法に準じて製造することができる。例えば、熱交換器100は、以下に説明する方法に従って製造することができる。
まず、セラミックス粉末を含む坏土を所望の形状に押し出し、ハニカム成形体を作製する。このとき、適切な形態の口金及び治具を選択することにより、セル15の形状及び密度、内周壁11、外周壁12及び隔壁13の形状及び厚さなどを制御することができる。また、ハニカム成形体の材料としては、前述のセラミックスを用いることができる。例えば、Si含浸SiC複合材料を主成分とするハニカム成形体を製造する場合、所定量のSiC粉末に、バインダーと、水及び/又は有機溶媒とを加え、得られた混合物を混練して坏土とし、成形して所望形状のハニカム成形体を得ることができる。そして、得られたハニカム成形体を乾燥し、減圧の不活性ガス又は真空中で、ハニカム成形体中に金属Siを含浸焼成することによって、隔壁13により区画形成されたセル15を有する中空型のハニカム構造体10を得ることができる。
【0062】
次に、中空型のハニカム構造体10を第1外筒部材32内に挿入し、中空型のハニカム構造体10の外周壁12に第1外筒部材32を嵌合させる。次に、中空型のハニカム構造体10の中空領域に内筒部材21を挿入し、中空型のハニカム構造体10の内周壁11に内筒部材21を嵌合させる。次に、第1外筒部材32の径方向外側に第2外筒部材41を配置して固定する。なお、供給管42及び排出管43は、第2外筒部材41に予め固定しておいてもよいが、適切な段階で第2外筒部材41に固定してもよい。次に、図1及び2の構造の場合、内筒部材21の上流端部側と第2外筒部材41の上流端部側との間を筒状接続部材33で接続するとともに、第2外筒部材41の下流端部側に下流側筒状部材34の上流端部側を接続する。一方、図3の構造の場合、内筒部材21の径方向内側に上流側筒状部材23を配置し、筒状接続部材33によって第2外筒部材41の上流端部側と上流側筒状部材23の上流端部側との間を接続する。また、第2外筒部材41の下流端部側に下流側筒状部材34の上流端部側を接続するとともに、下流側筒状部材34の下流端部側の一部を内筒部材の下流端部側に接続する。次に、下流側筒状部材34に形成された接続口31に、EGRバルブ61を有するEGR管60を接続する。その後、所定の位置に流路バルブ50を取り付ける。
なお、各部材の配置及び固定(嵌合)の順番は上記に限定されず、製造可能な範囲で適宜変更してもよい。また、固定(嵌合)方法は、上述した方法を用いればよい。
【0063】
(2.熱交換システム)
本発明の実施形態に係る熱交換システムは、エンジンからの排気管に配置される上記の熱交換器と、熱交換器の上流側の排気管に配置される第1触媒ユニットとを備える。この熱交換システムでは、上記の熱交換器100が用いられる。熱交換器100は、上記したように、熱交換時に熱交換部(ハニカム構造体10)全体で第1流体(排気ガス)を冷却することができるため、第1流体の冷却効果を高めることができる。同様に、熱交換時に熱交換部全体で第1流体から熱回収することができるため、熱回収性能を高めることができる。また、1つ又は2つの流路バルブ50によって第1流路20内及び第2流路30内の第1流体の流通を制御しているため、第1流体の逆流が生じないとともに、第1流体の逆流を抑制するために流路を狭くする必要もないため、圧力損失の増大を抑制することもできる。したがって、この熱交換器100を備える熱交換システムは、排気ガスのような第1流体の冷却性能及び第1流体からの熱回収性能が高く、第1流体の逆流及び圧力損失の増大を抑制することができる。
なお、本明細書において、エンジンからの排気管とは、エンジンの排気系に直接的又は間接的に接続された管のことを意味する。
【0064】
図7は、本発明の実施形態に係る熱交換システムの模式図である。なお、図7において、理解し易くする観点から、熱交換器100の構造を簡略化するとともに第3流路40を省略している点に留意すべきである。
図7に示されるように、本発明の実施形態に係る熱交換システム1000は、エンジン300からの排気管350に配置される熱交換器100と、熱交換器100の上流側の排気管350に配置される第1触媒ユニット400とを備える。
また、熱交換システム1000は、熱交換器100の下流側の排気管350に配置される第2触媒ユニット500を更に備えることができる。熱交換器100を第1触媒ユニット400と第2触媒ユニット500との間に設けることにより、熱交換器100を第2触媒ユニット500の下流側に設ける形態に比べて、熱回収量やEGRさせるガス量を増加させることができる。また、第1触媒ユニット400と第2触媒ユニット500とを組み合わせて用いることにより、排気ガスの処理効果を高めることができる。
さらに、熱交換システム1000は、流路バルブ50、EGRバルブ61を制御可能な制御部600を更に備えることができる。制御部600を設けることにより、熱交換システム1000の制御が容易になる。
【0065】
第1触媒ユニット400としては、特に限定されないが、CC(Close-Coupled)触媒を含むユニットであることが好ましい。CC触媒としては、特に限定されず、当該技術分野において公知のものを用いることができる。
第2触媒ユニット500としては、特に限定されないが、UF(UnderFloor)触媒を含むユニットであることが好ましい。UF触媒としては、特に限定されず、当該技術分野において公知のものを用いることができる。
【0066】
熱交換システム1000において、熱交換器100と第1触媒ユニット400と第2触媒ユニット500とは同軸に配置されていることが好ましい。これらの部材を同軸に配置することにより、重心を排気管350の中心に位置させ易くすることができるため、熱交換システム1000を備える車両を安定化させることができる。
【0067】
制御部600は、熱交換時に、第1流路20を閉鎖するとともに第2流路30を開放するように流路バルブ50を制御し、熱遮断時に、第1流路20を開放するとともに第2流路30を閉鎖するように流路バルブ50を制御することが好ましい。このような構成とすることにより、熱交換システム1000において熱回収及び熱遮断の制御が容易になる。
【0068】
制御部600は、EGR管60を介してエンジン300の吸気系に第1流体を供給するためにEGRバルブ61を開放するように制御することが好ましい。このような構成とすることにより、熱交換システム1000においてEGRクーラー処理の制御が容易になる。
【0069】
制御部600は、図8に示されるような、下記(1)~(4)の制御モードを指示可能であることが好ましい。なお、図8において、点線矢印が第1流体の流れを表す。また、図8において、理解し易くする観点から、熱交換器100の構造を簡略化するとともに第3流路40を省略している点に留意すべきである。
(1)第1流路20を閉鎖するとともに第2流路30を開放するように流路バルブ50を制御し、且つEGRバルブ61を開放して、熱回収及びEGRクーラー処理の両方を実行する第1の制御モード。すなわち、この制御モードでは、熱遮断を実行しない。
(2)第1流路20を閉鎖するとともに第2流路30を開放するように流路バルブ50を制御し、且つEGRバルブ61を閉鎖して、熱回収のみを実行する第2の制御モード。すなわち、この制御モードでは、EGRクーラー処理及び熱遮断を実行しない。
(3)第1流路20を開放するとともに第2流路30を閉鎖するように流路バルブ50を制御し、且つEGRバルブ61を開放して、EGRクーラー処理のみを実行する第3の制御モード。すなわち、この制御モードでは、熱回収を実行しない(熱遮断を実行する)。
(4)第1流路20を開放するとともに第2流路30を閉鎖するように流路バルブ50を制御し、且つEGRバルブ61を閉鎖して、熱回収及びEGRクーラー処理の両方を実行しない第4の制御モード。すなわち、この制御モードでは、熱遮断のみを実行する。
上記のような構成とすることにより、熱交換システム1000において、熱回収、熱遮断及びEGRクーラー処理のいずれか一つの処理を状況に応じて選択するように制御できる。
【0070】
(3.熱交換器の制御方法)
本発明の実施形態に係る熱交換器の制御方法は、エンジン300の排気管350に配置される上記の熱交換器100を用いて行われる。
本発明の実施形態に係る熱交換器の制御方法は、一態様において、第1流路20を閉鎖するとともに第2流路30を開放するように流路バルブ50を制御して、熱交換を行う工程と、第1流路20を開放するとともに第2流路30を閉鎖するように流路バルブ50を制御して、熱遮断を行う工程とを含む。このような構成とすることにより、熱交換器100において熱回収及び熱遮断の制御が容易になる。
【0071】
また、上記の制御方法は、EGRバルブ61を開放して、EGR管60を介してエンジン300の吸気系に第1流体を供給する工程を更に含むことができる。このような構成とすることにより、熱交換器100においてEGRクーラー処理の制御が容易になる。
【0072】
本発明の実施形態に係る熱交換器の制御方法は、別の態様において、図8に示されるような、下記(1)~(4)の制御工程を含む。
(1)第1流路20を閉鎖するとともに第2流路30を開放するように流路バルブ50を制御し、且つEGRバルブ61を開放して、熱回収及びEGRクーラー処理の両方を実行する第1の制御工程。すなわち、この制御工程では、熱遮断を実行しない。第1の制御工程における流路バルブ50の制御としては、例えば、第1流路バルブ50aを閉として第1流路20を閉鎖し、第2流路バルブ50bを開として第2流路30を開放する形態が挙げられる。
(2)第1流路20を閉鎖するとともに第2流路30を開放するように流路バルブ50を制御し、且つEGRバルブ61を閉鎖して、熱回収のみを実行する第2の制御工程。すなわち、この制御工程では、EGRクーラー処理及び熱遮断を実行しない。第2の制御工程における流路バルブ50の制御としては、例えば、第1流路バルブ50aを閉として第1流路20を閉鎖し、第2流路バルブ50bを開として第2流路30を開放する形態が挙げられる。
(3)第1流路20を開放するとともに第2流路30を閉鎖するように流路バルブ50を制御し、且つEGRバルブ61を開放して、EGRクーラー処理のみを実行する第3の制御工程。すなわち、この制御工程では、熱回収を実行しない(熱遮断を実行する)。第3の制御工程における流路バルブ50の制御としては、例えば、第1流路バルブ50aを開として第1流路20を開放し、第2流路バルブ50bを閉として第2流路30を閉鎖する形態が挙げられる。
(4)第1流路20を開放するとともに第2流路30を閉鎖するように流路バルブ50を制御し、且つEGRバルブ61を閉鎖して、熱回収及びEGRクーラー処理の両方を実行しない第4の制御工程。すなわち、この制御工程では、熱遮断のみを実行する。第4の制御工程における流路バルブ50の制御としては、例えば、第1流路バルブ50aを開として第1流路20を開放し、第2流路バルブ50bを閉として第2流路30を閉鎖する形態が挙げられる。
上記のような構成とすることにより、熱交換器100において、熱回収、熱遮断及びEGRクーラー処理のいずれか一つの処理を状況に応じて選択するように制御できる。
【符号の説明】
【0073】
10 ハニカム構造体
11 内周壁
12 外周壁
13 隔壁
14a 第1端面
14b 第2端面
15 セル
20 第1流路
21 内筒部材
22 貫通孔
23 上流側筒状部材
30 第2流路
31 接続口
32 第1外筒部材
33 筒状接続部材
40 第3流路
41 第2外筒部材
42 供給管
43 排出管
50 流路バルブ
50a 第1流路バルブ
50b 第2流路バルブ
60 EGR管
61 EGRバルブ
100 熱交換器
300 エンジン
350 排気管
400 第1触媒ユニット
500 第2触媒ユニット
600 制御部
1000 熱交換システム
図1
図2
図3
図4
図5
図6
図7
図8