(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022191599
(43)【公開日】2022-12-28
(54)【発明の名称】熱伝導シート及び熱伝導シートの製造方法
(51)【国際特許分類】
C08J 5/18 20060101AFI20221221BHJP
H01L 23/373 20060101ALI20221221BHJP
H01L 23/36 20060101ALI20221221BHJP
C08K 3/013 20180101ALI20221221BHJP
C08K 3/38 20060101ALI20221221BHJP
C08L 101/00 20060101ALI20221221BHJP
H05K 7/20 20060101ALI20221221BHJP
【FI】
C08J5/18
H01L23/36 M
H01L23/36 D
C08K3/013
C08K3/38
C08L101/00
H05K7/20 F
【審査請求】有
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2021099910
(22)【出願日】2021-06-16
(11)【特許番号】
(45)【特許公報発行日】2021-11-05
(71)【出願人】
【識別番号】000108410
【氏名又は名称】デクセリアルズ株式会社
(74)【代理人】
【識別番号】100113424
【弁理士】
【氏名又は名称】野口 信博
(74)【代理人】
【識別番号】100185845
【弁理士】
【氏名又は名称】穂谷野 聡
(72)【発明者】
【氏名】佐藤 勇磨
(72)【発明者】
【氏名】久保 佑介
【テーマコード(参考)】
4F071
4J002
5E322
5F136
【Fターム(参考)】
4F071AA67
4F071AB18
4F071AB22
4F071AB27
4F071AD05
4F071AE17
4F071AF32Y
4F071AF34Y
4F071AF44Y
4F071AG05
4F071AG26
4F071AH12
4F071BA03
4F071BB01
4J002AA001
4J002CP031
4J002DE106
4J002DE146
4J002DF016
4J002DK006
4J002FD206
4J002GQ00
5E322AA01
5E322AA02
5E322AB06
5E322AB11
5E322FA04
5F136BA03
5F136BC03
5F136BC07
5F136FA12
5F136FA14
5F136FA15
5F136FA16
5F136FA17
5F136FA51
5F136FA52
5F136FA53
5F136FA54
5F136FA55
5F136FA82
(57)【要約】
【課題】熱伝導率が高く、所望の熱伝導シートの良否判定を容易に行うことができる熱伝導シートを提供する。
【解決手段】熱伝導シート1は、バインダ樹脂2と、異方性熱伝導性フィラー3と、異方性熱伝導性フィラー3以外の他の熱伝導性フィラー4とを含む組成物の硬化物からなり、以下の条件1~3を満たす。
[条件1]熱伝導シート1表面に対する仮想垂線5から60°の位置より入射した光線6にて測定したグロス値が10未満である。
[条件2]異方性熱伝導性フィラー3の平均粒子径が15μm以上45μm以下である。
[条件3]熱伝導シート1中、異方性熱伝導性フィラー3と他の熱伝導性フィラー4の合計含有量が60体積%を超え、75体積%未満である。
【選択図】
図1
【特許請求の範囲】
【請求項1】
バインダ樹脂と、異方性熱伝導性フィラーと、上記異方性熱伝導性フィラー以外の他の熱伝導性フィラーとを含む組成物の硬化物からなる熱伝導シートであって、
以下の条件1~3を満たす、熱伝導シート。
[条件1]当該熱伝導シート表面に対する仮想垂線から60°の位置より入射した光線にて測定したグロス値が10未満である。
[条件2]上記異方性熱伝導性フィラーの平均粒子径が15μm以上45μm以下である。
[条件3]当該熱伝導シート中、上記異方性熱伝導性フィラーと上記他の熱伝導性フィラーの合計含有量が60体積%を超え、75体積%未満である。
【請求項2】
上記異方性熱伝導性フィラーの含有量が20体積%を超え、35体積%未満である、請求項1に記載の熱伝導シート。
【請求項3】
当該熱伝導シートの表面のL*a*b表色系におけるL*値が70以上である、請求項1又は2に記載の熱伝導シート。
【請求項4】
バルク熱伝導率が8W/m・K以上である、請求項1~3のいずれか1項に記載の熱伝導シート。
【請求項5】
上記異方性熱伝導性フィラーが窒化ホウ素であり、
上記他の熱伝導性フィラーが、アルミナと、窒化アルミニウム、酸化亜鉛及び水酸化アルミニウムの少なくとも1種とを含む、請求項1~4のいずれか1項に記載の熱伝導シート。
【請求項6】
上記窒化ホウ素が、鱗片状の窒化ホウ素である、請求項5に記載の熱伝導シート。
【請求項7】
上記異方性熱伝導性フィラーの平均粒子径が20μm以上40μm以下である、請求項1~6のいずれか1項に記載の熱伝導シート。
【請求項8】
バインダ樹脂と、異方性熱伝導性フィラーと、上記異方性熱伝導性フィラー以外の他の熱伝導性フィラーとを含有する熱伝導性組成物を作製する工程Aと、
上記熱伝導性組成物を押出成形した後硬化し、柱状の硬化物を得る工程Bと、
上記柱状の硬化物を柱の長さ方向に対し略垂直方向に所定の厚みに切断して熱伝導シートを得る工程Cとを有し、
上記熱伝導シートが以下の条件1~3を満たす、熱伝導シートの製造方法。
[条件1]上記熱伝導シート表面に対する仮想垂線から60°の位置より入射した光線にて測定したグロス値が10未満である。
[条件2]上記異方性熱伝導性フィラーの平均粒子径が15μm以上45μm以下である。
[条件3]上記熱伝導シート中、上記異方性熱伝導性フィラーと上記他の熱伝導性フィラーの合計含有量が60体積%を超え、75体積%未満である。
【請求項9】
発熱体と、
放熱体と、
発熱体と放熱体との間に挟持された請求項1~7のいずれか1項に記載の熱伝導シートとを備える、電子機器。
【発明の詳細な説明】
【技術分野】
【0001】
本技術は、熱伝導シート及び熱伝導シートの製造方法に関する。
【背景技術】
【0002】
電子機器の更なる高性能化に伴って、半導体素子の高密度化、高実装化が進んでいる。これに伴って、電子機器を構成する電子部品から発熱する熱をさらに効率よく放熱することが重要になっている。例えば、半導体装置は、効率よく放熱させるために、電子部品が、熱伝導シートを介して、放熱ファン、放熱板等のヒートシンクに取り付けられている。熱伝導シートとしては、シリコーン樹脂に、無機フィラー等の充填材を含有(分散)させたものが広く使用されている。
【0003】
この熱伝導シートのような放熱部材は、更なる熱伝導率の向上が要求されている。例えば、熱伝導シートの高熱伝導性を目的として、バインダ樹脂などのマトリクス内に配合されている無機フィラーの充填率を高めることが検討されている。しかし、無機フィラーの充填率を高めると、熱伝導シートの柔軟性が損なわれるおそれや、無機フィラーの粉落ちが発生するおそれがある。そのため、熱伝導シートにおいて無機フィラーの充填率を高めることには限界がある。
【0004】
無機フィラーとしては、例えば、アルミナ、窒化アルミニウム、水酸化アルミニウム等が挙げられる。また、高熱伝導率を目的として、窒化ホウ素、黒鉛等の鱗片状粒子、炭素繊維等をマトリクス内に充填させることもある。これは、鱗片状粒子、炭素繊維等の有する熱伝導率の異方性によるものである。例えば、炭素繊維は、繊維方向に約600~1200W/m・Kの熱伝導率を有することが知られている。また、鱗片状粒子である窒化ホウ素は、面方向に約110W/m・K程度の熱伝導率を有し、面方向に対して垂直な方向に約2W/m・K程度の熱伝導率を有することが知られている。このように、炭素繊維や鱗片状粒子は、熱伝導率に異方性を有することが知られている。炭素繊維の繊維方向や鱗片状粒子の面方向を、熱の伝達方向である熱伝導シートの厚み方向と同じにする、すなわち、炭素繊維や鱗片状粒子を熱伝導シートの厚み方向に配向させることによって、熱伝導シートの熱伝導率を飛躍的に向上させることができる。
【0005】
ところで、熱伝導シートは、高熱伝導性を有することの他に、製造した熱伝導シートの良否判定、例えば、所望の熱伝導シート(例えば、所定の粒子径の熱伝導性フィラーを、所定量含む熱伝導シート)が、所定の熱伝導性を有するかどうかの判定を容易に行えるようにすることが要望されている。
【0006】
特許文献1には、樹脂と、樹脂内に分散した鱗片状の熱伝導性フィラーとを含有する樹脂組成物からなる熱伝導シートであって、鱗片状の熱伝導性フィラーが熱伝導シートの厚さ方向に対する傾きが、熱伝導シートの面方向内の一方向に沿って周期的に変化している熱伝導シートが記載されている。特許文献1に記載された熱伝導シートは、鱗片状フィラーの配向度が不十分であり、異方性を有した高熱伝導シートといえず、高熱伝導性を実現することが難しいと考えられる。
【先行技術文献】
【特許文献】
【0007】
【発明の概要】
【発明が解決しようとする課題】
【0008】
本技術は、このような従来の実情に鑑みて提案されたものであり、熱伝導率が高く、所望の熱伝導シートの良否判定を容易に行うことができる熱伝導シートを提供する。
【課題を解決するための手段】
【0009】
本技術に係る熱伝導シートは、バインダ樹脂と、異方性熱伝導性フィラーと、異方性熱伝導性フィラー以外の他の熱伝導性フィラーとを含む組成物の硬化物からなる熱伝導シートであって、以下の条件1~3を満たす。
[条件1]熱伝導シート表面に対する仮想垂線から60°の位置より入射した光線にて測定したグロス値が10未満である。
[条件2]異方性熱伝導性フィラーの平均粒子径が15μm以上45μm以下である。
[条件3]熱伝導シート中、異方性熱伝導性フィラーと他の熱伝導性フィラーの合計含有量が60体積%を超え、75体積%未満である。
【0010】
本技術に係る熱伝導シートの製造方法は、硬化性樹脂組成物と、異方性熱伝導性フィラーと、異方性熱伝導性フィラー以外の熱伝導性フィラーとを含む熱伝導性組成物を作製する工程と、熱伝導性組成物を押出成形した後硬化し、柱状の硬化物を得る工程と、柱状の硬化物を柱の長さ方向に対し略垂直方向に所定の厚みに切断して熱伝導シートを得る工程とを有し、熱伝導シートが上述した条件1~3を満たす。
【発明の効果】
【0011】
本技術は、熱伝導率が高く、所望の熱伝導シートの良否判定を容易に行うことができる熱伝導シートを提供できる。
【図面の簡単な説明】
【0012】
【
図1】
図1は、熱伝導シートの一例を示す断面図である。
【
図2】
図2は、グロス値の測定方法の一例を説明するための図である。
【
図3】
図3は、異方性熱伝導性フィラーの一例である、結晶形状が六方晶型である鱗片状の窒化ホウ素を模式的に示す斜視図である。
【
図4】
図4は、熱伝導シートを適用した半導体装置の一例を示す断面図である。
【発明を実施するための形態】
【0013】
本明細書において、異方性熱伝導性フィラー及び他の熱伝導性フィラーの平均粒子径(D50)とは、異方性熱伝導性フィラー又は他の熱伝導性フィラーの粒子径分布全体を100%とした場合に、粒子径分布の小粒子径側から粒子径の値の累積カーブを求めたとき、その累積値が50%となるときの粒子径をいう。なお、本明細書における粒度分布(粒子径分布)は、体積基準によって求められたものである。粒度分布の測定方法としては、例えば、レーザー回折型粒度分布測定機を用いる方法が挙げられる。
【0014】
<熱伝導シート>
図1は、本技術に係る熱伝導シート1の一例を示す断面図である。熱伝導シート1は、バインダ樹脂2と、異方性熱伝導性フィラー3と、異方性熱伝導性フィラー3以外の他の熱伝導性フィラー4とを含む組成物の硬化物からなる。熱伝導シート1は、異方性熱伝導性フィラー3と他の熱伝導性フィラー4とがバインダ樹脂2に分散しており、異方性熱伝導性フィラー3が熱伝導シート1の厚み方向Bに配向している。
【0015】
ここで、熱伝導シート1の厚み方向Bに異方性熱伝導性フィラー3が配向しているとは、例えば、熱伝導シート1中の全ての異方性熱伝導性フィラー3のうち、熱伝導シート1の厚み方向Bに長軸が配向している異方性熱伝導性フィラー3の割合が50%以上であり、55%以上であってもよく、60%以上であってもよく、65%以上であってもよく、70%以上であってもよく、80%以上であってもよく、90%以上であってもよく、95%以上であってもよく、99%以上であってもよい。
【0016】
異方性熱伝導性フィラー3は、形状に異方性を有する熱伝導性フィラーである。異方性熱伝導性フィラー3としては、長軸と短軸と厚みとを有する熱伝導性フィラー(例えば、鱗片状の熱伝導性フィラー)が挙げられる。鱗片状の熱伝導性フィラーとは、長軸と短軸と厚みとを有する熱伝導性フィラーであって、高アスペクト比(長軸/厚み)であり、長軸を含む面方向に等方的な熱伝導率を有するものである。鱗片状の熱伝導性フィラーの短軸とは、鱗片状の熱伝導性フィラーの長軸を含む面において、鱗片状の熱伝導性フィラーの長軸の中点を通って交差する方向であって、鱗片状の熱伝導性フィラーの最も短い部分の長さをいう。鱗片状の熱伝導性フィラーの厚みとは、鱗片状の熱伝導性フィラーの長軸を含む面の厚みを10点測定して平均した値をいう。異方性熱伝導性フィラー3のアスペクト比は、特に限定されず、目的に応じて適宜選択することができる。例えば、異方性熱伝導性フィラー3のアスペクト比は、10~100の範囲とすることができる。異方性熱伝導性フィラー3の長軸、短軸及び厚みは、例えば、マイクロスコープ、走査型電子顕微鏡(SEM)、粒度分布計などにより測定できる。
【0017】
他の熱伝導性フィラー4は、異方性熱伝導性フィラー3以外の熱伝導性フィラー、すなわち、形状に異方性を有しない熱伝導性フィラーである。
【0018】
図2は、グロス値の測定方法の一例を説明するための図である。本件発明者らが検討したところ、熱伝導シート1の配合(特に、異方性熱伝導性フィラー3の配向、異方性熱伝導性フィラー3の平均粒子径、異方性熱伝導性フィラー3と他の熱伝導性フィラー4の合計含有量など)と、熱伝導シート1中の熱伝導シート1の表面1Aに対する仮想垂線5から60°の位置より入射した光線6にて測定したグロス値との間には、次のような関係があると考えられる。
【0019】
まず、熱伝導シート1中の異方性熱伝導性フィラー3の配向による影響として、異方性熱伝導性フィラー3が配向していない熱伝導シートでは、異方性熱伝導性フィラー3が配向している熱伝導シートと比べて、入射光に対する反射成分が増加するため、グロス値が高くなりやすい傾向にある。
【0020】
また、熱伝導シート1中の異方性熱伝導性フィラー3と他の熱伝導性フィラー4の合計含有量のグロス値に対する影響として、熱伝導シート1中の異方性熱伝導性フィラー3と他の熱伝導性フィラー4の合計含有量が少なくなると、粒子(異方性熱伝導性フィラー3や、他の熱伝導性フィラー4)の反射よりも、熱伝導シート1の表面に存在するバインダ樹脂2の光沢の影響が大きくなる傾向にある。例えば、バインダ樹脂2がシリコーン樹脂である場合、熱伝導シート1から湧出するシリコーン樹脂の光沢が、異方性熱伝導性フィラー3や他の熱伝導性フィラー4による反射よりも強くなり、異方性熱伝導性フィラー3と他の熱伝導性フィラー4の合計含有量の減少によって、グロス値に対するシリコーン樹脂の影響が強くなると考えられる。
【0021】
また、異方性熱伝導性フィラー3の粒子径が大きくなるほど、熱伝導シート1の熱伝導率が増加することが期待できる。しかし、異方性熱伝導性フィラー3の粒子径が一定以上となると、その粒子径の影響から、異方性熱伝導性フィラー3をバインダ樹脂2に充填するのが難しくなり、その結果、熱伝導率を向上させることが難しくなる傾向にある。一方、異方性熱伝導性フィラー3の粒子径が小さくなるほど、例えば、熱伝導シート1の厚み方向Bの一端から他端まで熱を伝えるために、より多くの異方性熱伝導性フィラー3を要するため、より多くの異方性熱伝導性フィラー3の接触点が必要となる。このように、熱伝導シート1において異方性熱伝導性フィラー3の接触点が多くなると、その接触部での接触間熱抵抗が増加し、熱伝導ロスがより発生しやすくなるため、熱伝導シート1の厚み方向Bの熱伝導率を向上させることが難しくなる傾向にある。これは、熱伝導シート1の面方向Aについても同様である。
【0022】
そこで、熱伝導シート1は、以下の条件1~3を満たすものである。
[条件1]熱伝導シート1の表面1Aに対する仮想垂線5から60°の位置より入射した光線6にて測定したグロス値が10未満である。
[条件2]異方性熱伝導性フィラー3の平均粒子径が15μm以上45μm以下である。
[条件3]熱伝導シート1中、異方性熱伝導性フィラー3と他の熱伝導性フィラー4の合計含有量が60体積%を超え、75体積%未満である。
【0023】
条件1について、熱伝導シート1は、熱伝導シート1の表面1Aに対する仮想垂線5から60°の位置より入射した光線6にて測定したグロス値が10未満であり、8以下であってもよく、7以下であってもよく、6.2以下であってもよく、5.4以下であってもよく、5.2以下であってもよく、3.9以下であってもよい。熱伝導シート1のグロス値の測定方法は、後述する実施例に記載の方法と同様である。
【0024】
熱伝導シート1が条件1を満たすと、上述のように、熱伝導シート1中で異方性熱伝導性フィラー3が配向している割合が高い傾向にあり、熱伝導シート1の厚み方向の熱伝導率が良好となる。また、熱伝導シート1が条件1を満たすと、製造した熱伝導シートの良否判定、例えば、所定の粒子径の熱伝導性フィラーを所定量含む熱伝導シートが、所定の熱伝導性を有することの判定を容易に行うことが可能となる。換言すると、熱伝導シート1の熱伝導率を測定する以外に、熱伝導シート1のグロス値を計測することでも、熱伝導シート1の熱伝導率の目安を把握することができる。さらに、熱伝導シート1が条件1を満たすと、熱伝導シート1を使用する際に、自動機により熱伝導シート1をピックアップする際の画像認識の誤認識をより確実に回避することができ、熱伝導シート1のピックアップをより確実に行うことが可能となる。
【0025】
条件2について、熱伝導シート1の熱伝導性を良好にする観点から、熱伝導シート1中の異方性熱伝導性フィラー3の平均粒子径は、15μm以上であり、20μm以上であってもよく、25μm以上であってもよく、30μm以上であってもよく、35μm以上であってもよく、40μm以上であってもよい。また、熱伝導シート1中の異方性熱伝導性フィラー3の平均粒子径は、熱伝導シート1の熱伝導性を良好にする観点から、20~40μmの範囲であることが好ましい。
【0026】
熱伝導シート1は、異方性熱伝導性フィラー3を1種単独で用いてもよいし、粒子径が異なる2種以上の異方性熱伝導性フィラー3を併用してもよい。熱伝導シート1が、粒子径が異なる2種以上の異方性熱伝導性フィラー3を含む場合、熱伝導シート1中の異方性熱伝導性フィラー3の総含有量に対する、粒子径が20μm以上40μm以下である異方性熱伝導性フィラー3の含有量の割合が50体積%以上であってもよく、60体積%以上であってもよく、70体積%以上であってもよく、80体積%以上であってもよく、90体積%以上であってもよく、100体積%であってもよい。
【0027】
熱伝導シート1の成形性の観点では、熱伝導シート1は、異方性熱伝導性フィラー3として、異方性熱伝導性フィラー3を1種単独で含むことが好ましい。すなわち、熱伝導シート1において、2種以上の異方性熱伝導性フィラー3を併用しないことが好ましい。
【0028】
条件3について、熱伝導シート1は、熱伝導性や上述した条件1のグロス値の観点から、異方性熱伝導性フィラー3と他の熱伝導性フィラー4の合計含有量が60体積%を超え、61体積%以上であってもよく、63体積%以上であってもよく、66体積%以上であってもよく、67体積%以上であってもよい。また、熱伝導シート1は、熱伝導シート1の成形性の観点では、異方性熱伝導性フィラー3と他の熱伝導性フィラー4の合計含有量が75体積%未満であり、74体積%以下であってもよく、70体積%以下であってもよく、69体積%以下であってもよく、68体積%以下であってもよい。また、熱伝導シート1は、異方性熱伝導性フィラー3と他の熱伝導性フィラー4の合計含有量が63~67体積%の範囲であってもよい。
【0029】
熱伝導シート1中における異方性熱伝導性フィラー3の含有量は、熱伝導シート1の熱伝導性や上述した条件1のグロス値の観点から、20体積%を超えることが好ましく、23体積%以上であってもよく、25体積%以上であってもよく、26体積%以上であってもよい。また、熱伝導シート1中における異方性熱伝導性フィラー3の含有量は、熱伝導シート1の成形性の観点では、35体積%未満であることが好ましく、30体積%以下であってもよく、28体積%以下であってもよく、27体積%以下であってもよい。また、熱伝導シート1中における異方性熱伝導性フィラー3の含有量は、23~27体積%の範囲であってもよい。
【0030】
また、熱伝導シート1中における他の熱伝導性フィラー4の含有量は、10体積%以上とすることができ、15体積%以上であってもよく、20体積%以上であってもよく、25体積%以上であってもよく、30体積%以上であってもよく、35体積%以上であってもよい。また、熱伝導シート1中の他の熱伝導性フィラー4の含有量の上限値は、50体積%以下とすることができ、45体積%以下であってもよく、40体積%以下であってもよい。また、熱伝導シート1中における他の熱伝導性フィラー4の含有量は、30~50体積%の範囲であってもよく、35~45体積%の範囲であってもよく、37~42体積%の範囲であってもよい。
【0031】
熱伝導シート1、すなわち、バインダ樹脂2と、異方性熱伝導性フィラー3と、他の熱伝導性フィラー4とを含む組成物の硬化物からなり、上述した条件1~3を満たす熱伝導シートは、シート表面のL*a*b*表色系におけるL*値が高いほど、厚み方向Bに沿って配向されている異方性熱伝導性フィラー3が多い傾向にあり、厚み方向Bの熱伝導性が良好となる。そのため、熱伝導シート1は、シート表面のL*a*b*表色系におけるL*値が70以上であることが好ましく、75以上であってもよく、77以上であってもよく、80以上であってもよく、85以上であってもよく、88以上であってもよく、89以上であってもよい。また、熱伝導シート1は、シート表面のL*a*b*表色系におけるL*値の上限値が、95以下であることが好ましく、90以下であってもよい。
【0032】
ここで、L*a*b表色系は、例えば、「JIS Z 8781」に記載されている表色系であって、各色を球形の色空間に配置して示される。L*a*b表色系においては、明度を縦軸(z軸)方向の位置で示し、色相を外周方向の位置で示し、彩度を中心軸からの距離で示す。明度を示す縦軸(z軸)方向の位置は、L*で示される。明度L*の値は正の数であり、その数字が小さいほど明度が低いことになり、暗くなる傾向を持つ。具体的に、L*の値は黒に相当する0から白に相当する100まで変化する。また、球形の色空間をL*=50の位置で水平に切断した断面図において、x軸の正方向が赤方向、y軸の正方向が黄方向、x軸の負方向が緑方向、y軸の負方向が青方向である。x軸方向の位置は、-60~+60の値をとるa*によって表される。y軸方向の位置は、-60~+60の値をとるb*によって表される。このように、a*と、b*は、色度を表す正負の数字であり、0に近づくほど黒くなる。色相及び彩度は、これらのa*の値及びb*の値によって表される。
【0033】
熱伝導シート1の熱伝導率は、高熱伝導化の観点では高いほど好ましく、例えば、厚み方向Bのバルク熱伝導率が8.0W/m・K以上であることが好ましく、8.1W/m・K以上であってもよく、8.4W/m・K以上であってもよく、8.7W/m・K以上であってもよく、10.3W/m・K以上であってもよい。熱伝導シート1の熱伝導率は、後述する実施例に記載の方法で測定することができる。
【0034】
熱伝導シート1の厚みは、特に限定されず、目的に応じて適宜選択することができる。例えば、熱伝導シートの厚みは、0.05mm以上とすることができ、0.1mm以上とすることもできる。また、熱伝導シートの厚みの上限値は、5mm以下とすることができ、4mm以下であってもよく、3mm以下であってもよい。熱伝導シート1の取り扱い性の観点から、熱伝導シート1の厚みは、0.1~4mmとすることが好ましい。熱伝導シート1の厚みは、例えば、熱伝導シート1の厚みBを任意の5箇所で測定し、その算術平均値から求めることができる。
【0035】
以下、熱伝導シート1の構成要素の具体例について説明する。
【0036】
<バインダ樹脂>
バインダ樹脂2は、異方性熱伝導性フィラー3と他の熱伝導性フィラー4とを熱伝導シート1内に保持するためのものである。バインダ樹脂2は、熱伝導シート1に要求される機械的強度、耐熱性、電気的性質等の特性に応じて選択される。バインダ樹脂2としては、熱可塑性樹脂、熱可塑性エラストマー、熱硬化性樹脂の中から選択することができる。
【0037】
熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のエチレン-αオレフィン共重合体、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリフッ化ビニリデン及びポリテトラフルオロエチレン等のフッ素系重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリアクリロニトリル、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)樹脂、ポリフェニレン-エーテル共重合体(PPE)樹脂、変性PPE樹脂、脂肪族ポリアミド類、芳香族ポリアミド類、ポリイミド、ポリアミドイミド、ポリメタクリル酸、ポリメタクリル酸メチルエステル等のポリメタクリル酸エステル類、ポリアクリル酸類、ポリカーボネート、ポリフェニレンスルフィド、ポリサルホン、ポリエーテルサルホン、ポリエーテルニトリル、ポリエーテルケトン、ポリケトン、液晶ポリマー、シリコーン樹脂、アイオノマー等が挙げられる。
【0038】
熱可塑性エラストマーとしては、スチレン-ブタジエンブロック共重合体又はその水添化物、スチレン-イソプレンブロック共重合体又はその水添化物、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等が挙げられる。
【0039】
熱硬化性樹脂としては、架橋ゴム、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂等が挙げられる。架橋ゴムの具体例としては、天然ゴム、アクリルゴム、ブタジエンゴム、イソプレンゴム、スチレン-ブタジエン共重合ゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、エチレン-プロピレン共重合ゴム、塩素化ポリエチレンゴム、クロロスルホン化ポリエチレンゴム、ブチルゴム、ハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、及びシリコーンゴムが挙げられる。
【0040】
バインダ樹脂2としては、例えば、発熱体(例えば電子部品)の発熱面とヒートシンク面との密着性の観点や、上述した条件1を満たす観点では、シリコーン樹脂が好ましい。シリコーン樹脂としては、例えば、アルケニル基を有するシリコーンを主成分とし、硬化触媒を含有する主剤と、ヒドロシリル基(Si-H基)を有する硬化剤とからなる、2液型の付加反応型シリコーン樹脂を用いることができる。アルケニル基を有するシリコーンとしては、例えば、ビニル基を有するポリオルガノシロキサンを用いることができる。硬化触媒は、アルケニル基を有するシリコーン中のアルケニル基と、ヒドロシリル基を有する硬化剤中のヒドロシリル基との付加反応を促進するための触媒である。硬化触媒としては、ヒドロシリル化反応に用いられる触媒として周知の触媒が挙げられ、例えば、白金族系硬化触媒、例えば白金、ロジウム、パラジウムなどの白金族金属単体や塩化白金などを用いることができる。ヒドロシリル基を有する硬化剤としては、例えば、ヒドロシリル基を有するポリオルガノシロキサンを用いることができる。バインダ樹脂2は、1種単独で用いてもよいし、2種以上を併用してもよい。
【0041】
熱伝導シート1中のバインダ樹脂2の含有量は、特に限定されず、目的に応じて適宜選択することができる。例えば、熱伝導シート1中のバインダ樹脂2の含有量は、25体積%超とすることができ、30体積%以上であってもよく、32体積%以上であってもよく、33体積%以上であってもよい。また、熱伝導シート1中のバインダ樹脂2の含有量の上限値は、60体積%以下とすることができ、50体積%以下であってもよく、40体積%以下であってもよく、37体積%以下であってもよい。特に、上述した条件1のグロス値を低くする観点では、熱伝導シート1中のバインダ樹脂2の含有量は、25体積%超~40体積%未満とすることが好ましく、33~37体積%であってもよい。
【0042】
<異方性熱伝導性フィラー>
異方性熱伝導性フィラー3の材質は、特に限定されず、例えば、窒化ホウ素(BN)、雲母、アルミナ、窒化アルミニウム、炭化珪素、シリカ、酸化亜鉛、二硫化モリブデン等が挙げられ、熱伝導率や上述した条件1のグロス値の観点では、窒化ホウ素が好ましい。異方性熱伝導性フィラー3は、1種単独で用いてもよいし、2種以上を併用してもよい。
【0043】
図3は、異方性熱伝導性フィラー3の一例である、結晶形状が六方晶型である鱗片状の窒化ホウ素3Aを模式的に示す斜視図である。
図3中、aは鱗片状の窒化ホウ素3Aの長軸を表し、bは鱗片状の窒化ホウ素3Aの厚みを表し、cは鱗片状の窒化ホウ素3Aの短軸を表す。異方性熱伝導性フィラー3としては、熱伝導率や上述した条件1のグロス値の観点では、
図3に示すように結晶形状が六方晶型である鱗片状の窒化ホウ素3Aを用いることが好ましい。本技術では、異方性熱伝導性フィラー3として、球状の熱伝導性フィラー(例えば球状の窒化ホウ素)よりも安価な鱗片状の熱伝導性フィラー(例えば、鱗片状の窒化ホウ素3A)を用いることで、低コストで、優れた熱特性(高熱伝導率)と光学特性(低グロス値)を両立させた熱伝導シート1が得られる。
【0044】
異方性熱伝導性フィラー3の平均粒子径は、上述した条件2を満たす範囲で、目的に応じて適宜選択することができる。
【0045】
熱伝導シート1中の異方性熱伝導性フィラー3の含有量は、上述した条件2を満たす範囲で、目的に応じて適宜選択することができる。
【0046】
<他の熱伝導性フィラー>
他の熱伝導性フィラー4には、球状、粉末状、顆粒状などの熱伝導性フィラーが含まれる。他の熱伝導性フィラー4の材質は、熱伝導シート1の熱伝導性の観点では、例えば、セラミックフィラーが好ましく、具体例としては、酸化アルミニウム(アルミナ、サファイア)、窒化アルミニウム、水酸化アルミニウム、酸化亜鉛、窒化ホウ素、ジルコニア、炭化ケイ素などが挙げられる。他の熱伝導性フィラー4は、1種単独で用いてもよいし、2種以上を併用してもよい。
【0047】
特に、他の熱伝導性フィラー4としては、上述した条件1のグロス値の観点、熱伝導シート1の熱伝導率の観点、熱伝導シート1の比重の観点などを考慮して、アルミナと、窒化アルミニウム、酸化亜鉛及び水酸化アルミニウムの少なくとも1種とを含むことが好ましく、例えば、窒化アルミニウムとアルミナを併用することができる。
【0048】
窒化アルミニウムの平均粒子径は、熱伝導シート1の比重の観点では、30μm未満とすることができ、0.1~10μmであってもよく、0.5~5μmであってもよく、1~3μmであってもよく、1~2μmであってもよい。また、アルミナの平均粒子径は、熱伝導シート1の比重の観点では、0.1~10μmとすることができ、0.1~8μmであってもよく、0.1~7μmであってもよく、0.1~3μmであってもよい。
【0049】
熱伝導シート1中の他の熱伝導性フィラー4の含有量は、上述した条件3を満たす範囲で、目的に応じて適宜選択することができる。例えば、他の熱伝導性フィラー4として、窒化アルミニウム粒子とアルミナ粒子とを併用する場合、熱伝導シート1中、窒化アルミニウム粒子の含有量は10~25体積%(特に、17~23体積%)とすることが好ましく、アルミナ粒子の含有量は10~25体積%(特に、17~23体積%)とすることが好ましい。
【0050】
熱伝導シート1の好ましい態様は次の通りである。熱伝導シート1は、バインダ樹脂2としてのシリコーン樹脂と、異方性熱伝導性フィラー3としての窒化ホウ素と、他の熱伝導性フィラー4としてのアルミナと窒化アルミニウムとを含む組成物の硬化物からなることが好ましい。また、熱伝導シート1は、異方性熱伝導性フィラー3としての窒化ホウ素の含有量が20体積%を超え、35体積%未満であることが好ましい。
【0051】
熱伝導シート1は、本技術の効果を損なわない範囲で、上述した成分以外の他の成分をさらに含有してもよい。他の成分としては、例えば、カップリング剤、分散剤、硬化促進剤、遅延剤、粘着付与剤、可塑剤、難燃剤、酸化防止剤、安定剤、着色剤、溶剤などが挙げられる。例えば、熱伝導シート1は、異方性熱伝導性フィラー3及び他の熱伝導性フィラー4の分散性をより向上させる観点で、カップリング剤で処理した異方性熱伝導性フィラー3及び/又はカップリング剤で処理した他の熱伝導性フィラー4を用いてもよい。
【0052】
<熱伝導シートの製造方法>
熱伝導シート1の製造方法は、下記工程Aと、工程Bと、工程Cとを有する。
【0053】
<工程A>
工程Aでは、異方性熱伝導性フィラー3と他の熱伝導性フィラー4とをバインダ樹脂2に分散させることにより、バインダ樹脂2と、異方性熱伝導性フィラー3と、他の熱伝導性フィラー4とを含有する熱伝導性組成物を作製する。熱伝導性組成物は、バインダ樹脂2と、異方性熱伝導性フィラー3と、他の熱伝導性フィラー4との他に、必要に応じて上述した他の成分を公知の手法により均一に混合することで調製できる。
【0054】
<工程B>
工程Bでは、工程Aで調製した熱伝導性組成物を押出成形した後硬化し、柱状の硬化物(成形体ブロック)を得る。押出成形する方法としては、特に制限されず、公知の各種押出成形法の中から、熱伝導性組成物の粘度や熱伝導シート1に要求される特性等に応じて適宜採用することができる。押出成形法において、熱伝導性組成物をダイより押し出す際、熱伝導性組成物中のバインダ樹脂2が流動し、その流動方向に沿って異方性熱伝導性フィラー3が配向する。
【0055】
工程Bで得られる柱状の硬化物の大きさ・形状は、求められる熱伝導シート1の大きさに応じて決めることができる。例えば、断面の縦の大きさが0.5~15cmで横の大きさが0.5~15cmの直方体が挙げられる。直方体の長さは必要に応じて決定すればよい。
【0056】
<工程C>
工程Cでは、工程Bで得た柱状の硬化物を柱の長さ方向に対し所定の厚みに切断して熱伝導シート1を得る。工程Cで得られる熱伝導シート1の表面(切断面)には、異方性熱伝導性フィラー3が露出する。切断方法としては特に制限はなく、柱状の硬化物の大きさや機械的強度により公知のスライス装置(好ましくは超音波カッタ)の中から適宜選択することができる。柱状の硬化物の切断方向としては、成形方法が押出成形法である場合、押出し方向に異方性熱伝導性フィラー3が配向しているものもあるため、押出し方向に対して60~120度であることが好ましく、70~100度の方向であることがより好ましく、90度(略垂直)の方向であることがさらに好ましい。柱状の硬化物の切断方向は、上記の他は特に制限はなく、熱伝導シート1の使用目的等に応じて適宜選択することができる。
【0057】
このように、工程Aと、工程Bと、工程Cとを有する熱伝導シートの製造方法では、上述した条件1~3を満たす熱伝導シート1が得られる。
【0058】
熱伝導シート1の製造方法は、上述した例に限定されず、例えば、工程Cの後に、切断面をプレスする工程Dをさらに有していてもよい。プレスする工程Dをさらに有することで、工程Cで得られる熱伝導シート1の表面がより平滑化され、他の部材との密着性をより向上させることができる。プレスの方法としては、平盤と表面が平坦なプレスヘッドとからなる一対のプレス装置を使用することができる。また、ピンチロールでプレスしてもよい。プレスの際の圧力としては、例えば、0.1~100MPaとすることができる。プレスの効果をより高め、プレス時間を短縮するために、プレスは、バインダ樹脂2のガラス転移温度(Tg)以上で行うことが好ましい。例えば、プレス温度は、0~180℃とすることができ、室温(例えば25℃)~100℃の温度範囲内であってもよく、30~100℃であってもよい。
【0059】
<電子機器>
熱伝導シート1は、例えば、発熱体と放熱体との間に配置させることにより、発熱体で生じた熱を放熱体に逃がすためにそれらの間に配された構造の電子機器(サーマルデバイス)とすることができる。電子機器は、発熱体と放熱体と熱伝導シート1とを少なくとも有し、必要に応じて、その他の部材をさらに有していてもよい。
【0060】
発熱体としては、特に限定されず、例えば、CPU、GPU(Graphics Processing Unit)、DRAM(Dynamic Random Access Memory)、フラッシュメモリなどの集積回路素子、トランジスタ、抵抗器など、電気回路において発熱する電子部品等が挙げられる。また、発熱体には、通信機器における光トランシーバ等の光信号を受信する部品も含まれる。
【0061】
放熱体としては、特に限定されず、例えば、ヒートシンクやヒートスプレッダなど、集積回路素子やトランジスタ、光トランシーバ筐体などと組み合わされて用いられるものが挙げられる。ヒートシンクやヒートスプレッダの材質としては、例えば、銅、アルミニウムなどが挙げられる。放熱体としては、ヒートスプレッダやヒートシンク以外にも、熱源から発生する熱を伝導して外部に放散させるものであればよく、例えば、放熱器、冷却器、ダイパッド、プリント基板、冷却ファン、ペルチェ素子、ヒートパイプ、ベーパーチャンバー、金属カバー、筐体等が挙げられる。ヒートパイプは、例えば、円筒状、略円筒状又は扁平筒状の中空構造体である。
【0062】
図4は、熱伝導シートを適用した半導体装置の一例を示す断面図である。例えば、熱伝導シート1は、
図4に示すように、各種電子機器に内蔵される半導体装置50に実装され、発熱体と放熱体との間に挟持される。
図4に示す半導体装置50は、電子部品51と、ヒートスプレッダ52と、熱伝導シート1とを備え、熱伝導シート1がヒートスプレッダ52と電子部品51との間に挟持される。熱伝導シート1が、ヒートスプレッダ52とヒートシンク53との間に挟持されることにより、ヒートスプレッダ52とともに、電子部品51の熱を放熱する放熱部材を構成する。熱伝導シート1の実装場所は、ヒートスプレッダ52と電子部品51との間や、ヒートスプレッダ52とヒートシンク53との間に限らず、電子機器や半導体装置の構成に応じて、適宜選択できる。ヒートスプレッダ52は、例えば方形板状に形成され、電子部品51と対峙する主面52aと、主面52aの外周に沿って立設された側壁52bとを有する。ヒートスプレッダ52は、側壁52bに囲まれた主面52aに熱伝導シート1が設けられ、主面52aと反対側の他面52cに熱伝導シート1を介してヒートシンク53が設けられる。
【実施例0063】
以下、本技術の実施例について説明する。なお、本技術は、これらの実施例に限定されるものではない。
【0064】
<実施例1>
シリコーン樹脂33体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm)27体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%と、を均一に混合することにより、熱伝導性組成物を調製した。この熱伝導性組成物を、押出成形法により、直方体状の内部空間を有する金型(開口部:50mm×50mm)中に流し込み、60℃のオーブンで4時間加熱して、柱状の硬化物(成形体ブロック)を形成した。なお、金型の内面には、剥離処理面が内側となるように剥離ポリエチレンテレフタレートフィルムを貼り付けておいた。得られた柱状の硬化物を柱の長さ方向に対し略直交する方向に、柱状の硬化物を超音波カッターで2mm厚のシート状に切断(スライス)することにより、鱗片状の窒化ホウ素がシートの厚み方向に配向した熱伝導シートを得た。
【0065】
<実施例2>
実施例2では、シリコーン樹脂33体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が30μm)27体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
【0066】
<実施例3>
実施例3では、シリコーン樹脂37体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が30μm)23体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
【0067】
<実施例4>
実施例4では、シリコーン樹脂33体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が20μm)27体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
【0068】
<比較例1>
比較例1では、シリコーン樹脂40体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm)20体積%と、窒化アルミニウム(D50が1.2μm)30体積%と、球状アルミナ粒子(D50が2μm)10体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
【0069】
<比較例2>
比較例2では、シリコーン樹脂40体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm)20体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
【0070】
<比較例3>
比較例3では、シリコーン樹脂40体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm)20体積%と、窒化アルミニウム(D50が1.2μm)10体積%と、球状アルミナ粒子(D50が2μm)30体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
【0071】
<比較例4>
比較例4では、シリコーン樹脂40体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が20μm)20体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
【0072】
<比較例5>
比較例5では、シリコーン樹脂25体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm)35体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%とを均一に混合することにより、熱伝導性組成物を調製した。
【0073】
<比較例6>
比較例6では、シリコーン樹脂33体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm)27体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%とを均一に混合することにより、熱伝導性組成物を調製した。この熱伝導性組成物を、バーコーターで2mm厚に成形し、60℃のオーブンで4時間加熱して、2mm厚の熱伝導シートを得た。
【0074】
<比較例7>
比較例7では、シリコーン樹脂33体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が50μm)27体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
【0075】
<比較例8>
比較例8では、シリコーン樹脂33体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が10μm)27体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
【0076】
<L*値>
熱伝導シートの表面(断面)のL*a*b表色系におけるL*値を測定した。L*値は、分光光度計(製品名:コニカミルノルタ社製 CM-700d)を用いて、JIS Z 8781に準拠して求めた。結果を表1に示す。表1中、「-」は熱伝導シートを作製できなかったことにより、L*値を測定できなかったことを表す。
【0077】
<バルク熱伝導率>
バルク熱伝導率は、ASTM-D5470に準拠した方法で各熱伝導シートの熱抵抗を測定し、横軸に測定時の熱伝導シートの厚み(mm)、縦軸に熱伝導シートの熱抵抗(℃・cm2/W)をプロットし、そのプロットの傾きから熱伝導シートのバルク熱伝導率(W/m・K)を算出した。熱伝導シートの熱抵抗は、厚みの異なる熱伝導シートを3種類用意して、それぞれの厚みの熱伝導シートについて測定した。結果を表1に示す。表1中、「-」は熱伝導シートを作製できなかったことにより、バルク熱伝導率を測定できなかったことを表す。
【0078】
<60°グロス値>
熱伝導シートの表面のグロス値は、マイクロトリグロス(BYK Instruments社製)を用い、ASTM D523に準拠した方法で測定した。結果を表1に示す。表1中、「-」は熱伝導シートを作製できなかったことにより、グロス値を測定できなかったことを表す。
【0079】
【0080】
実施例1~4で得られた熱伝導シートは、バインダ樹脂と、異方性熱伝導性フィラーと、他の熱伝導性フィラーとを含む組成物の硬化物からなり、上述した条件1~3を満たすことにより、熱伝導率が高いことが分かった。
【0081】
また、実施例1~4で得られた熱伝導シートは、上述した条件1を満たすため、製造した熱伝導シートの良否判定、例えば、所定の粒子径の熱伝導性フィラーを所定量含む熱伝導シートが、所定の熱伝導性を有することの判定を容易に行うことが可能となる。
【0082】
比較例1~4で得られた熱伝導シートは、熱伝導率が良好ではないことが分かった。比較例1~4で得られた熱伝導シートは、上述した条件1及び条件3を満たさなかったためと考えられる。
【0083】
比較例5では、高硬度により熱伝導シートを作製することができなかった。比較例5で用いた熱伝導性組成物は、異方性熱伝導性フィラーと他の熱伝導性フィラーの合計含有量が75体積%であり、上述した条件3を満たさなかったためと考えられる。
【0084】
比較例6で得られた熱伝導シートは、熱伝導率が良好ではないことが分かった。比較例6で得られた熱伝導シートは、上述した条件1を満たさなかったためと考えられる。
【0085】
比較例7,8で得られた熱伝導シートは、熱伝導率が良好ではないことが分かった。比較例7,8で得られた熱伝導シートは、上述した条件2を満たさなかったためと考えられる。
1 熱伝導シート、1A 表面、2 バインダ樹脂、3 異方性熱伝導性フィラー、4 他の熱伝導性フィラー、5 仮想垂線、6 光線、51 電子部品、52 ヒートスプレッダ、53 ヒートシンク、52a 主面、52b 側壁