(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022191808
(43)【公開日】2022-12-28
(54)【発明の名称】分光計測装置
(51)【国際特許分類】
G01N 21/3586 20140101AFI20221221BHJP
【FI】
G01N21/3586
【審査請求】未請求
【請求項の数】11
【出願形態】OL
(21)【出願番号】P 2021100259
(22)【出願日】2021-06-16
(71)【出願人】
【識別番号】000236436
【氏名又は名称】浜松ホトニクス株式会社
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【弁理士】
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100140442
【弁理士】
【氏名又は名称】柴山 健一
(74)【代理人】
【識別番号】100148013
【弁理士】
【氏名又は名称】中山 浩光
(72)【発明者】
【氏名】陸 昂義
(72)【発明者】
【氏名】河田 陽一
(72)【発明者】
【氏名】安田 敬史
(72)【発明者】
【氏名】泊 和岳
(72)【発明者】
【氏名】藤本 正俊
【テーマコード(参考)】
2G059
【Fターム(参考)】
2G059AA05
2G059BB08
2G059EE02
2G059GG01
2G059GG08
2G059HH01
2G059HH05
2G059JJ01
2G059JJ17
2G059JJ19
2G059JJ20
2G059KK01
(57)【要約】
【課題】測定物に対する測定部のアクセス性を向上させることができる分光計測装置を提供する。
【解決手段】分光計測装置1は、ポンプ光La及びプローブ光Lbを出力する光源部11と、ポンプ光Laの入力によってテラヘルツ波Tを発生させるテラヘルツ波発生部21と、テラヘルツ波T及びプローブ光Lbがそれぞれ入力され、テラヘルツ波Tの入力に伴う電気光学効果によって屈折率が変化することで、当該屈折率に基づくプローブ光Lbの変調を行うテラヘルツ波検出部23と、テラヘルツ波検出部23で変調されたプローブ光Lbを検出する光検出部13と、を備え、光源部11と光検出部13とを含んで構成された本体部2と、テラヘルツ波発生部21とテラヘルツ波検出部23とを含んで構成された測定部3と、を有し、本体部2と測定部3とが偏波保持ファイバFによって光学的に接続されている。
【選択図】
図2
【特許請求の範囲】
【請求項1】
ポンプ光及びプローブ光を出力する光源部と、
前記ポンプ光の入力によってテラヘルツ波を発生させるテラヘルツ波発生部と、
前記テラヘルツ波及び前記プローブ光がそれぞれ入力され、前記テラヘルツ波の入力に伴う電気光学効果によって屈折率が変化することで、当該屈折率に基づく前記プローブ光の変調を行うテラヘルツ波検出部と、
前記テラヘルツ波検出部で変調された前記プローブ光を検出する光検出部と、を備え、
前記光源部と前記光検出部とを含んで構成された本体部と、
前記テラヘルツ波発生部と前記テラヘルツ波検出部とを含んで構成された測定部と、を有し、
前記本体部と前記測定部とが偏波保持ファイバによって光学的に接続されている分光計測装置。
【請求項2】
前記測定部は、前記テラヘルツ波発生部及び前記テラヘルツ波検出部との間の前記テラヘルツ波の光路上に測定面を有する請求項1記載の分光計測装置。
【請求項3】
前記測定部は、前記テラヘルツ波検出部で変調された前記プローブ光が前記光検出部に向かう光路上に配置された波長板を更に含んで構成されている請求項1又は2記載の分光計測装置。
【請求項4】
前記波長板は、λ/8波長板であり、
前記測定部では、前記テラヘルツ波検出部の一方側から前記テラヘルツ波が入射し、且つ前記テラヘルツ波検出部の他方側から前記プローブ光が入射して前記光検出部側に反射する請求項3記載の分光計測装置。
【請求項5】
前記波長板は、λ/4波長板であり、
前記測定部では、前記テラヘルツ波検出部の一方側から前記テラヘルツ波及び前記プローブ光が入射し、且つ前記テラヘルツ波検出部の他方側に前記プローブ光が透過して前記光検出部側に向かう請求項3記載の分光計測装置。
【請求項6】
前記本体部を構成する光学部品同士の少なくとも一つが偏波保持ファイバによって光学的に接続されている請求項1~5のいずれか一項記載の分光計測装置。
【請求項7】
前記本体部は、前記ポンプ光と前記プローブ光との間の光路長差を調整する調整部を含んで構成されている請求項1~6のいずれか一項記載の分光計測装置。
【請求項8】
前記調整部は、複数のミラー及び前記ミラーの位置を移動させるステージを含んで構成され、前記ポンプ光又は前記プローブ光が光ファイバに依らずに自由空間を伝搬する請求項7記載の分光計測装置。
【請求項9】
前記調整部は、偏波保持ファイバによって構成されている請求項7記載の分光計測装置。
【請求項10】
前記光源部は、ファイバレーザによって構成されている請求項1~9のいずれか一項記載の分光計測装置。
【請求項11】
前記光源部から出力されるレーザ光は、フェムト秒オーダの超短パルス光である請求項1~10のいずれか一項記載の分光計測装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、分光計測装置に関する。
【背景技術】
【0002】
テラヘルツ波は、光波と電波との中間領域に相当する0.01THz~100THz程度の周波数を有する電磁波であり、光波と電波との間の中間的な性質を有している。テラヘルツ波の応用として、測定対象物で透過或いは反射したテラヘルツ波の電場振幅の時間波形を測定することで、測定対象物の情報を取得する技術が研究されている。
【0003】
テラヘルツ波を用いた分光計測装置としては、例えば特許文献1,2に記載の装置がある。この分光計測装置は、ポンプ光及びプローブ光を出力する光源部と、ポンプ光の入力によってテラヘルツ波を発生させるテラヘルツ波発生部と、測定物に作用したテラヘルツ波とプローブ光とが入力され、当該テラヘルツ波によってプローブ光を変調するテラヘルツ波検出部と、テラヘルツ波検出部で変調されたプローブ光を検出する光検出部とを備えて構成されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2019-20293号公報
【特許文献2】特開2020-20641号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
テラヘルツ波を用いた分光計測を含めた時間領域分光法の分野では、測定光学系における光路長の担保が非常に重要となっており、一旦光学系のレイアウトを決めると、これを変更するのは容易ではない。例えば特許文献1に記載の分光計測装置では、ポンプ光をテラヘルツ波発生部に入力させる光学系、プローブ光をテラヘルツ波検出部に入力させる光学系、及びテラヘルツ波発生部で発生したテラヘルツ波を測定物に作用させてテラヘルツ波検出部に入力させる光学系のそれぞれの光路長の担保が特に重要となっている。このため、これらの光学系を構成するミラー等の位置を定めた後は、測定プリズムなどの測定部の位置も基本的には不変となる。
【0006】
しかしながら、測定部の位置が不変である場合、測定部にアクセス(例えば測定面に接触)できる測定物の形状や姿勢などが制限されることが考えられる。また、分光計測装置を組み込むことができる装置や製造ラインなどが制限されることなども考えられる。したがって、産業分野での分光計測装置の用途の拡大を図るためには、測定物に対する測定部のアクセス性を向上させることが必要となる。
【0007】
本開示は、上記課題の解決のためになされたものであり、測定物に対する測定部のアクセス性を向上させることができる分光計測装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
本開示の一側面に係る分光計測装置は、ポンプ光及びプローブ光を出力する光源部と、ポンプ光の入力によってテラヘルツ波を発生させるテラヘルツ波発生部と、テラヘルツ波及びプローブ光がそれぞれ入力され、テラヘルツ波の入力に伴う電気光学効果によって屈折率が変化することで、当該屈折率に基づくプローブ光の変調を行うテラヘルツ波検出部と、テラヘルツ波検出部で変調されたプローブ光を検出する光検出部と、を備え、光源部と光検出部とを含んで構成された本体部と、テラヘルツ波発生部とテラヘルツ波検出部とを含んで構成された測定部と、を有し、本体部と測定部とが偏波保持ファイバによって光学的に接続されている。
【0009】
この分光計測装置では、テラヘルツ波の入力に伴う電気光学効果によってテラヘルツ波検出部の屈折率の変化をプローブ光によってサンプリングする。これにより、測定物に作用したテラヘルツ波の電場波形を取得でき、電場波形に基づいて測定物の情報を取得できる。また、この分光計測装置では、測定部が偏波保持ファイバによって本体部と光学的に接続されている。これにより、測定部を本体部に対して自由に配置することが可能となり、測定物に対する測定部のアクセス性を向上させることができる。測定部にアクセスできる測定物の形状や姿勢の制限を撤廃でき、また、分光計測装置を組み込むことができる装置や製造ラインなどが増えることで、産業分野での分光計測装置の用途の拡大が図られる。偏波保持ファイバを用いることで、テラヘルツ波検出部に入力されるプローブ光の偏光状態が保持されるため、光検出部でのプローブ光の検出効率も維持できる。
【0010】
測定部は、テラヘルツ波発生部及びテラヘルツ波検出部との間のテラヘルツ波の光路上に測定面を有していてもよい。本体部に対して自由に配置可能な測定部に測定面を設けることで、測定物に対する測定部のアクセス性を一層向上させることができる。
【0011】
測定部は、テラヘルツ波検出部で変調されたプローブ光が光検出部に向かう光路上に配置された波長板を更に含んで構成されていてもよい。偏波保持ファイバでは、第1偏光成分とこれに直交する第2偏光成分との間で屈折率が異なるため、伝搬した光の第1偏光成分と第2偏光成分とが時間的にずれてしまうことが考えられる。したがって、測定部の適切な位置に波長板を配置することで、光検出部でのプローブ光の検出効率を担保できる。
【0012】
波長板は、λ/8波長板であり、測定部では、テラヘルツ波検出部の一方側からテラヘルツ波が入射し、且つテラヘルツ波検出部の他方側からプローブ光が入射して光検出部側に反射してもよい。この構成によれば、例えばプローブ光の初期の偏光状態を直線偏光とする場合において、テラヘルツ波検出部への入力の前後でプローブ光をλ/8波長板に2回入射させることで、プローブ光の偏光成分を第1偏光成分及び第2偏光成分に適切に分離することが可能となる。したがって、光検出部でのプローブ光の検出効率を好適に担保できる。
【0013】
波長板は、λ/4波長板であり、測定部では、テラヘルツ波検出部の一方側からテラヘルツ波及びプローブ光が入射し、且つテラヘルツ波検出部の他方側にプローブ光が透過して光検出部側に向かってもよい。この構成によれば、例えばプローブ光の初期の偏光状態を直線偏光とする場合において、テラヘルツ波検出部を経たプローブ光をλ/4波長板に1回入射させることで、プローブ光の偏光成分を第1偏光成分及び第2偏光成分に適切に分離することが可能となる。したがって、光検出部でのプローブ光の検出効率を好適に担保できる。
【0014】
本体部を構成する光学部品同士の少なくとも一つが偏波保持ファイバによって光学的に接続されていてもよい。これにより、本体部内での光学部品同士の配置の自由度を高めることができる。このことは、本体部の小型化にも寄与する。
【0015】
本体部は、ポンプ光とプローブ光との間の光路長差を調整する調整部を含んで構成されていてもよい。これにより、テラヘルツ波検出部へのテラヘルツ波及びプローブ光の入力のタイミングを自在に調整できる。調整部によってテラヘルツ波検出部へのプローブ光の入力タイミングを掃引することで、測定物に作用したテラヘルツ波の電場波形を好適に取得できる。
【0016】
調整部は、複数のミラー及びミラーの位置を移動させるステージを含んで構成され、ポンプ光又はプローブ光が光ファイバに依らずに自由空間を伝搬してもよい。この場合、簡単な構成で調整部を構築できる。
【0017】
調整部は、偏波保持ファイバによって構成されていてもよい。この場合、本体部内での光学部品同士の配置の自由度を更に高めることができる。また、本体部の一層の小型化が図られる。
【0018】
光源部は、ファイバレーザによって構成されていてもよい。この場合、光源部の小型化が可能となり、本体部の一層の小型化が図られる。
【0019】
光源部から出力されるレーザ光は、フェムト秒オーダの超短パルス光であってもよい。超短パルス光を用いることで、テラヘルツ波発生部で発生するテラヘルツ波の帯域が拡大され、分光計測装置の計測帯域を広げることが可能となる。
【発明の効果】
【0020】
本開示によれば、測定物に対する測定部のアクセス性を向上させることができる。
【図面の簡単な説明】
【0021】
【
図1】本開示の一側面に係る分光計測装置の一実施形態を示す斜視図である。
【
図2】
図1に示した分光計測装置の構成要素を示すブロック図である。
【
図3】
図1に示した分光計測装置による電気光学サンプリングの原理を示す模式図である。
【
図4】(a)及び(b)は、測定物に作用するテラヘルツ波の電場波形と変調されたプローブ光の偏光状態との関係を示す模式図である。
【
図5】(a)及び(b)は、比較例に係るプローブ光の偏光状態を示す模式図である。
【
図6】(a)及び(b)は、実施例に係るプローブ光の偏光状態を示す模式図である。
【
図7】変形例に係る分光計測装置の要部の構成要素を示すブロック図である。
【発明を実施するための形態】
【0022】
以下、図面を参照しながら、本開示の一側面に係る分光計測装置の好適な実施形態について詳細に説明する。
【0023】
図1は、本開示の一側面に係る分光計測装置の一実施形態を示す斜視図である。同図に示す分光計測装置1は、電気光学サンプリングによって測定物(不図示)の光学パラメータを計測する装置として構成されている。測定物は、液体、粉体、固体等の物質である。計測対象となる光学パラメータとしては、例えば屈折率、吸収係数、複素誘電率等が挙げられる。
【0024】
分光計測装置1は、
図1に示すように、例えば直方体形状をなす箱型の本体部2と、測定面Mを有するハンディタイプの筐体4を備えた測定部3とを備えている。本体部2と測定部3とは、後述する偏波保持ファイバFを収容する可撓性のケーブル5によって物理的に接続されている。これにより、分光計測装置1では、測定部3を本体部2に対して自由に動かすことができ、ケーブル5の長さの範囲で測定面Mを任意の位置に配置することが可能となっている。
図1では、測定部3の筐体4の側面に測定面Mが設けられているが、筐体4における測定面Mの位置は任意である。
【0025】
図2は、
図1に示した分光計測装置の構成要素を示すブロック図である。
図2に示すように、分光計測装置1の本体部2は、ポンプ光La及びプローブ光Lbとなるレーザ光Lを出力する光源部11と、ポンプ光Laを導光する導光光学系12Aと、プローブ光Lbを導光する導光光学系12Bと、プローブ光Lbを検出する光検出部13とを含んで構成されている。
【0026】
本実施形態では、本体部2の各構成要素は、全てファイバベースの光学部品によって構成され、これらの構成要素同士は、全て偏波保持ファイバFによって光学的に接続されている。ファイバベースの光学部品とは、ファイバによって部品同士を光学的に連結可能な部品である。ファイバベースの光学部品には、光の入力端及び出力端の少なくとも一方が光ファイバである部品も含まれ得る。偏波保持ファイバFは、例えばコアの両側に円形の応力付与部が配置された構造を有している。偏波保持ファイバFでは、コアに非軸対称な応力を加えて大きな複屈折を誘起することにより、複屈折の揺らぎによる偏光の変動抑制機能が発揮される。
【0027】
分光計測装置1の測定部3は、ポンプ光Laの入力に応じてテラヘルツ波Tを発生させるテラヘルツ波発生部21と、上述した測定面M(
図1参照)を構成する測定プリズム22と、テラヘルツ波T及びプローブ光Lbがそれぞれ入力されるテラヘルツ波検出部23と、λ/8波長板24とを含んで構成されている。
【0028】
光源部11は、ポンプ光La及びプローブ光Lbとなるレーザ光Lを出力する部分である。本実施形態では、光源部11は、超短パルスファイバレーザによって構成されており、光源部11から出力されるレーザ光Lは、フェムト秒オーダの超短パルス光となっている。レーザ光Lのパルス幅は、例えば200fs以下である。本実施形態では、レーザ光Lは、例えばパルス幅60fs、繰り返し周波数100MHz、平均出力50mWとなっている。レーザ光Lの波長は、例えばアイセーフ帯である1560nmとなっている。光源部11から出力されたレーザ光Lは、カプラ14によってポンプ光Laとプローブ光Lbとに分岐される。
【0029】
カプラ14で分岐したポンプ光Laの導光光学系12Aには、光路長調整部(調整部)15Aと、分散補正パッチコード16Aと、変調部17とが配置されている。光路長調整部15Aは、テラヘルツ波検出部23へのプローブ光Lbの入射タイミングをテラヘルツ波Tに対して掃引する部分である。本実施形態では、光路長調整部15Aは、複数のミラー及びミラーの位置を移動させるステージを含んで構成された遅延ステージによって構成されている。したがって、光路長調整部15Aでは、ポンプ光Laは、光ファイバ(偏波保持ファイバF)に依らずに自由空間を伝搬する。ポンプ光Laは、遅延ステージによってプローブ光Lbに対する所定の遅延を与えられた状態で分散補正パッチコード16Aに入力される。
【0030】
分散補正パッチコード16Aは、偏波保持ファイバFを通過する光(ここではポンプ光La)の波長分散を補正する部分である。分散補正パッチコード16Aは、例えば導光光学系12Aを構成する偏波保持ファイバFの長さに応じて生じる波長分散を相殺する(逆分散を与える)長さの分散補償ファイバによって構成されている。これにより、ポンプ光Laは、テラヘルツ波発生部21に入射する際のパルス幅が最小になるように調整された状態で変調部17に入力される。
【0031】
変調部17は、テラヘルツ波発生部21に向かうポンプ光Laのオン/オフを周期的に切り替える部分である。変調部17は、例えば光チョッパによって構成されている。光チョッパは、光を遮蔽するリブが所定の位相角をもって中心から放射状に設けられた円盤状の部材である。光チョッパの回転によってポンプ光Laのオン/オフが周期的に切り替えられることにより、テラヘルツ波発生部21におけるテラヘルツ波Tの発生のタイミングが制御される。光チョッパによるポンプ光Laのオン/オフの繰り返し周波数を示す信号は、光検出部13を構成する後述のロックイン増幅器32に出力される。なお、変調部17は、光チョッパによる変調に限られず、音響光学素子或いは電気光学素子などを用いた他の変調を行う態様であってもよい。
【0032】
カプラ14で分岐したプローブ光Lbの導光光学系12Bには、光路長調整部(調整部)15Bと、分散補正パッチコード16Bと、サーキュレータ18とが配置されている。光路長調整部15Bは、テラヘルツ波検出部23に対するテラヘルツ波T及びプローブ光Lbの入力の時間差を調整する部分である。本実施形態では、光路長調整部15Bは、導光光学系12Aに配置された光路長調整部15Aと同様の遅延ステージによって構成されている。したがって、光路長調整部15Bでは、プローブ光Lbは、光ファイバ(偏波保持ファイバF)に依らずに自由空間を伝搬する。プローブ光Lbは、遅延ステージによってポンプ光Laに対する所定の遅延を与えられた状態で分散補正パッチコード16Bに入力される。
【0033】
本実施形態では、分散補正パッチコード16Bは、導光光学系12Aに配置された分散補正パッチコード16Aと同様の分散補償ファイバによって構成されている。これにより、プローブ光Lbは、テラヘルツ波検出部23に入射する際のパルス幅が最小になるように調整された状態でサーキュレータ18に入力される。サーキュレータ18は、光に対する3つのポートを有し、互いに反対方向に進行する2つの光を分離するための光学部品である。サーキュレータ18のポート1に入力されたプローブ光Lbは、ポート2から測定部3に向けて出力される。測定部3からポート2に戻ったプローブ光Lbは、ポート3から出力され、偏光分離素子19を経て光検出部13に入力される。
【0034】
変調部17を通過したポンプ光La及びサーキュレータ18のポート2から出力されたプローブ光Lbは、ケーブル5(
図1参照)に収容された偏波保持ファイバFを介して測定部3に至り、GRINレンズ20A、20Bからファイバ外に出射される。すなわち、本体部2と測定部3との間のポンプ光La及びプローブ光Lbの光学的な接続は、測定部3に配置された2つの屈折率分布型レンズ(GRINレンズ)20A,20Bによって実現される。変調部17から一方のGRINレンズ20Aを介して測定部3に入力されたポンプ光Laは、テラヘルツ波発生部21に入力される。
【0035】
テラヘルツ波発生部21は、ポンプ光Laの入射によってテラヘルツ波Tを発生させる部分である。テラヘルツ波発生部21は、例えばポンプ光Laとして用いるレーザ光Lの波長が1560nmの場合には、DAST(4-dimethylamino-N-methyl-4-stilbazolium tosylate)などの有機非線形光学結晶によって構成され得る。当該結晶から発生するテラヘルツ波Tのパルス幅は、一般的には数ps程度であり、0.1THz~5THz程度の帯域の周波数成分を含んでいる。テラヘルツ波発生部21で発生したテラヘルツ波Tは、測定プリズム22に入力される。
【0036】
本実施形態の手法は、全反射減衰分光(ATR)法と称される手法であり、測定面Mに測定物を接触させた状態で計測を実施する。測定プリズム22は、例えば入力面、出力面、及び全反射面を有している。測定プリズム22の全反射面は、上述した測定面Mに相当する面である。測定面Mは、テラヘルツ波発生部21及びテラヘルツ波検出部23との間のテラヘルツ波Tの光路上に位置している。テラヘルツ波Tは、入力面から測定プリズム22内に入射し、測定面Mで全反射した後、出力面から測定プリズム22外に出射する。測定プリズム22外に出射したテラヘルツ波Tは、テラヘルツ波検出部23に入力される。測定面Mでのテラヘルツ波Tの全反射の際に生じたエバネセント成分は、測定面Mに配置される測定物に作用する。これにより、テラヘルツ波Tによる測定物の情報の取得が行われることとなる。
【0037】
テラヘルツ波検出部23は、測定物に作用したテラヘルツ波Tを検出する部分である。テラヘルツ波検出部23は、例えばGaAsの(111)面を切り出した電気光学結晶によって構成されている。本実施形態では、テラヘルツ波検出部23の一方側からテラヘルツ波Tが入射し、テラヘルツ波検出部23の他方側からプローブ光Lbが入射するようになっている。テラヘルツ波検出部23では、テラヘルツ波Tの入力に伴う電気光学効果によって屈折率が変化し、当該屈折率に基づくプローブ光Lbの変調が行われる。
【0038】
プローブ光Lbは、測定部3に配置された他方のGRINレンズ20Bを介して測定部3に入力される。測定部3に入力されたプローブ光Lbは、λ/8波長板24を通ってテラヘルツ波検出部23の他方側に入射する。テラヘルツ波検出部23で変調されたプローブ光Lbは、テラヘルツ波検出部23で反射して光検出部13側に向かう。プローブ光Lbは、再びλ/8波長板24を通った後、GRINレンズ20Bを介して本体部2に戻る。本体部2に戻ったプローブ光Lbは、サーキュレータ18を通り、偏光分離素子19を経て光検出部13に入力される。
【0039】
光検出部13は、テラヘルツ波検出部23で変調されたプローブ光Lbを検出する部分である。本実施形態では、光検出部13は、バランス検出器31と、ロックイン増幅器32とによって構成されている。光検出部13の前段には、偏光分離素子19が配置されている。偏光分離素子19は、例えば光ファイバ融着型偏光ビームスプリッタによって構成されている。光ファイバ融着型偏光ビームスプリッタは、光ファイバに通すことで光の第1偏光成分と第2偏光成分とを分離する光学素子である。第1偏光成分は、例えば光源部11から出力されるレーザ光Lの偏光と同方向の成分であり、第2偏光成分は、第1偏光成分に直交する方向の成分である。以下、説明の便宜上、第1偏光成分を縦偏光成分と称し、第2偏光成分を横偏光成分と称する。
【0040】
バランス検出器31は、偏光分離素子19で分離されたプローブ光Lbの縦偏光成分と横偏光成分との差分を検出する。バランス検出器31は、縦偏光成分と横偏光成分との差分に基づく差分信号をロックイン増幅器32に出力する。差分検出を行うことにより、プローブ光Lbの強度変動成分が除去される。差分検出を行うにあたっては、テラヘルツ波Tがテラヘルツ波検出部23に入射しない状態でバランス検出器31から差分信号の強度がゼロとなるように感度調整がなされていることが好ましい。また、偏光分離素子19とバランス検出器31との間には、光減衰器を配置してもよい。光減衰器の配置により、バランス検出器31に入力される縦偏光成分の強度と横偏光成分の強度とをそれぞれ容易に調整できる。
【0041】
ロックイン増幅器32は、光チョッパによるポンプ光Laのオン/オフの繰り返し周波数に基づいて、バランス検出器31から出力される差分信号を同期検出する。ロックイン増幅器32から出力される検出信号は、テラヘルツ波検出部23に入力されたテラヘルツ波Tの電場強度に依存した値をとる。
【0042】
一般に、テラヘルツ波Tのパルス幅はピコ秒程度である。これに対し、プローブ光Lbのパルス幅はフェムト秒程度であり、テラヘルツ波Tと比べてプローブ光Lbのパルス幅は数桁小さくなっている。このため、光路長調整部15Aによりテラヘルツ波検出部23へのプローブ光Lbの入射タイミングが掃引されることで、テラヘルツ波Tの電場波形(電場振幅の時間波形)が得られる。このテラヘルツ波Tの電場波形に基づいて、測定物の光学パラメータを得ることができる。
【0043】
図3は、
図1に示した分光計測装置による電気光学サンプリングの原理を示す模式図である。同図に示すように、分光計測装置1における電気光学サンプリングでは、パルス状のテラヘルツ波Tが用いられる。テラヘルツ波Tの入力に伴い、テラヘルツ波検出部23では、電気光学効果によって屈折率の変化が生じる。電気光学効果は、媒質に入射した電界によって当該媒質の光学特性が変化する現象である。電気光学効果によって変化した屈折率に基づいてテラヘルツ波検出部23で変調されたプローブ光Lbは、テラヘルツ波Tの電場波形情報を有するプローブ光Lbとなる。したがって、テラヘルツ波検出部23での屈折率の変化をプローブ光Lbによってサンプリングすることで、測定物に作用したテラヘルツ波Tの電場波形を取得することができる。
【0044】
図4(a)及び
図4(b)は、測定物に作用するテラヘルツ波の電場波形と変調されたプローブ光の偏光状態との関係を示す模式図である。同図に示すように、テラヘルツ波検出部23での屈折率の変化は、テラヘルツ波検出部23を経たプローブ光Lbの偏光状態の変化として読み取ることができる。この場合、例えばテラヘルツ波検出部23に向かうプローブ光Lbの初期の偏光状態を直線偏光とし、テラヘルツ波Tの電場強度がゼロである場合(
図4(a)におけるA,Dの場合)に偏光分離素子19に入力されるプローブ光Lbの偏光状態を円偏光とすることが好適である。
【0045】
例えばテラヘルツ波Tの電場強度がゼロである場合(
図4(a)におけるA,Dの場合)には、テラヘルツ波検出部23での屈折率の変化は生じず、テラヘルツ波検出部23を経たプローブ光Lbの偏光状態が初期の偏光状態のままで維持される。このとき、偏光分離素子19に入力されるプローブ光Lbの偏光状態が円偏光であれば、バランス検出器31からの出力がゼロとなる。一方、テラヘルツ波Tの電場強度がゼロより大きい場合(
図4(a)におけるB,Cの場合)には、テラヘルツ波Tの電場強度に応じてテラヘルツ波検出部23での屈折率の変化が生じる。このとき、テラヘルツ波検出部23を経たプローブ光Lbの偏光状態が屈折率の変化に応じた位相の楕円偏光に変化すれば、バランス検出器31からの出力は、テラヘルツ波Tの電場強度に応じた非ゼロの値となる。
【0046】
続いて、プローブ光の偏光状態に基づくテラヘルツ波の電場波形の復元手法について説明する。上述したように、分光計測装置1では、本体部2と測定部3とが偏波保持ファイバFによって光学的に接続されている。また、本体部2を構成する光学部品同士も偏波保持ファイバFによって光学的に接続されている。偏波保持ファイバFでは、コアに非軸対称な応力を加えており、伝搬する光の縦偏光成分に対する屈折率と横偏光成分に対する屈折率とが互いに異なっている。このため、偏波保持ファイバFを伝搬した光では、縦偏光成分と横偏光成分との間で出力のタイミングにずれが生じ得る。
【0047】
ここで、比較例として、
図5(a)に示すように、テラヘルツ波検出部23の一方側からテラヘルツ波Tが入射し、テラヘルツ波検出部23の他方側からプローブ光Lbが入射する態様において、例えばλ/4波長板101をサーキュレータ18と偏光分離素子19との間に配置する場合を想定する。この場合、
図5(b)に示すように、テラヘルツ波検出部23に向かうプローブ光Lb(
図5(a)におけるA)が直線偏光であり、テラヘルツ波検出部23で変調されたプローブ光Lb(
図5(a)におけるB)が楕円偏光であるとすると、サーキュレータ18から偏光分離素子19に向かうプローブ光Lb(
図5(a)におけるC)の偏光状態は、タイミングがずれた2つの直線偏光となる。
【0048】
このプローブ光Lbが偏光分離素子19に入力される直前にλ/4波長板101を通ると、当該λ/4波長板101を通ったプローブ光Lb(
図5(a)におけるD)の偏光状態は、タイミングがずれた2つの円偏光となる。この場合、偏光分離素子19で分離されるプローブ光Lbの縦偏光成分及び横偏光成分が等しくなり、バランス検出器31から出力される差分値がゼロとなる。したがって、テラヘルツ波検出部23での屈折率の変化が生じているにも関わらず、光検出部13で検出されるプローブ光Lbの偏光状態が直線偏光の場合と同じとなり、テラヘルツ波Tの電場強度が0であるとの検出結果が得られてしまうことが想定される。
【0049】
これに対し、分光計測装置1では、
図6(a)に示すように、テラヘルツ波検出部23で変調されたプローブ光Lbが光検出部13に向かう光路上、より具体的には、測定部3におけるテラヘルツ波検出部23とGRINレンズ20B(
図2参照)との間にλ/8波長板24が配置されている。この構成では、
図6(b)に示すように、サーキュレータ18から向かうλ/8波長板24に向かうプローブ光Lb(
図6(a)におけるA)の偏光状態が直線偏光であり、テラヘルツ波検出部23で変調されたプローブ光Lb(
図6(a)におけるB)の偏光状態は、屈折率の変化に応じた位相の楕円偏光となる。
【0050】
テラヘルツ波検出部23で反射して再びλ/8波長板24を通ったプローブ光Lb(
図6(a)におけるC)の偏光状態は、楕円率の異なる楕円偏光となり、サーキュレータ18から偏光分離素子19に向かうプローブ光Lb(
図6(a)におけるD)の偏光状態は、タイミングがずれた2つの直線偏光となる。偏光分離素子19で分離されるプローブ光Lbの縦偏光成分及び横偏光成分の差分値をバランス検出器31で検出した場合にその値は非ゼロとなるため、プローブ光Lbの偏光状態に基づくテラヘルツ波Tの電場波形を容易に復元できる。
【0051】
プローブ光Lbにおける2つの直線偏光のタイミングのずれは、概ねピコ秒オーダとなる。このため、この種の分光計測に通常利用されるMHz帯以下のバランス検出器では、プローブ光Lbにおける2つの直線偏光のタイミングのずれが分離されることはなく、同時にバランス検出器に入力したと見做されて差分検出が行われる。したがって、λ/8波長板24を通過した後のプローブ光Lbに関しては、偏波保持ファイバFによる作用で時間的に直線偏光成分が分離されたとしても、テラヘルツ波Tの計測に対する影響は生じない。
【0052】
以上説明したように、分光計測装置1では、テラヘルツ波Tの入力に伴う電気光学効果によってテラヘルツ波検出部23の屈折率の変化をプローブ光Lbによってサンプリングする。これにより、測定物に作用したテラヘルツ波Tの電場波形を取得でき、電場波形に基づいて測定物の情報を取得できる。また、分光計測装置1では、測定部3が偏波保持ファイバFによって本体部2と光学的に接続されている。これにより、測定部3(測定面M)を本体部2に対して自由に配置することが可能となり、測定物に対する測定部3のアクセス性を向上させることができる。
【0053】
測定部3にアクセスできる測定物の形状や姿勢の制限を撤廃でき、また、分光計測装置1を組み込むことができる装置や製造ラインなどが増えることで、産業分野での分光計測装置1の用途の拡大が図られる。分光計測装置1では、偏波保持ファイバFを用いることで、テラヘルツ波検出部23に入力されるプローブ光Lbの偏光状態が保持されるため、光検出部13でのプローブ光Lbの検出効率も維持できる。
【0054】
また、分光計測装置1では、テラヘルツ波検出部23が電気光学結晶によって構成されているため、電磁環境両立性(EMC)対策が不要となる。例えばテラヘルツ波検出部23を光伝導アンテナによって構成する場合、テラヘルツ波検出部23において電気信号を利用するため、測定部3において、ノイズ対策に加え、電磁シールドを備えた筐体4を設計する必要が生じる。これに対し、テラヘルツ波検出部23を電気光学結晶によって構成した電気光学サンプリングでは、テラヘルツ波検出部23において電気信号を利用しないため、電磁シールドを設けないプラスチック等で測定部3の筐体4を構成することができる。
【0055】
分光計測装置1では、テラヘルツ波検出部23で変調されたプローブ光Lbが光検出部13に向かう光路上に配置された波長板を含んで構成されている。本実施形態では、波長板は、λ/8波長板24であり、測定部3では、テラヘルツ波検出部23の一方側からテラヘルツ波Tが入射し、且つテラヘルツ波検出部23の他方側からプローブ光Lbが入射して光検出部13側に反射する。この構成によれば、例えばプローブ光Lbの初期の偏光状態が直線偏光である場合、テラヘルツ波検出部23への入力の前後でプローブ光Lbをλ/8波長板24に2回入射させることで、プローブ光Lbの偏光成分を縦偏光成分及び横偏光成分に適切に分離することが可能となる。したがって、光検出部13でのプローブ光Lbの検出効率を好適に担保できる。
【0056】
分光計測装置1では、本体部2を構成する光学部品同士の少なくとも一つが偏波保持ファイバFによって光学的に接続されている。本実施形態では、本体部2を構成する光学部品は、光路長調整部15A,15Bを除いて全てファイバベースの光学部品によって構成され、これらの構成要素同士が全て偏波保持ファイバFによって光学的に接続されている。これにより、本体部2内での光学部品同士の配置の自由度を高めることができる。このことは、本体部2の小型化にも寄与する。
【0057】
分光計測装置1では、ポンプ光Laとプローブ光Lbとの間の光路長差を調整する光路長調整部15A,15Bを含んで本体部2が構成されている。これにより、テラヘルツ波検出部23へのテラヘルツ波T及びプローブ光Lbの入力のタイミングを自在に調整できる。例えば光路長調整部15Aによってテラヘルツ波検出部23へのプローブ光Lbの入力タイミングを掃引することで、測定物に作用したテラヘルツ波Tの電場波形を好適に取得できる。
【0058】
分光計測装置1では、光路長調整部15A,15Bのそれぞれが複数のミラー及びミラーの位置を移動させるステージを含んで構成され、ポンプ光La又はプローブ光Lbが光ファイバに依らずに自由空間を伝搬する。これにより、簡単な構成で光路長調整部15A,15Bを構築できる。また、分光計測装置1では、光源部11がファイバレーザによって構成されている。これにより、光源部11の小型化が可能となり、本体部2の一層の小型化が図られる。
【0059】
本開示は、上記実施形態に限られるものではない。例えば上記実施形態では、波長板がλ/8波長板24によって構成され、測定部3では、テラヘルツ波検出部23の一方側からテラヘルツ波Tが入射し、且つテラヘルツ波検出部23の他方側からプローブ光Lbが入射して光検出部13側に反射するが、測定部3の構成は、他の態様を採り得る。
【0060】
例えば
図7に示すように、波長板がλ/4波長板41によって構成され、測定部3では、テラヘルツ波検出部23の一方側からテラヘルツ波T及びプローブ光Lbが入射し、且つテラヘルツ波検出部23の他方側にプローブ光Lbが透過して光検出部13側に向かってもよい。この構成によれば、例えばプローブ光Lbの初期の偏光状態が直線偏光である場合、テラヘルツ波検出部23を経たプローブ光Lbをλ/4波長板41に1回入射させることで、偏光分離素子19に向かうプローブ光Lbの偏光状態をタイミングがずれた2つの直線偏光とすることができる。したがって、プローブ光Lbの偏光成分を縦偏光成分及び横偏光成分に適切に分離することが可能となり、光検出部13でのプローブ光Lbの検出効率を好適に担保できる。
【0061】
なお、
図7の例では、テラヘルツ波検出部23で変調されたプローブ光Lbを測定部3から本体部2に導光する構成として、λ/4波長板41の後段側にファイバ結合素子42が配置されている。ファイバ結合素子42は、例えばレンズによって構成され、λ/4波長板41を通ったプローブ光Lbを、本体部2と測定部3とを光学的に接続する偏波保持ファイバFに入射させる。
【0062】
また、上記実施形態では、光路長調整部15A,15Bのそれぞれが複数のミラー及びミラーの位置を移動させるステージを含んで構成され、ポンプ光La又はプローブ光Lbが光ファイバに依らずに自由空間を伝搬するが、光路長調整部15A,15Bの少なくとも一方が偏波保持ファイバFによって構成されていてもよい。この場合、本体部2内での光学部品同士の配置の自由度を更に高めることができる。また、本体部2の一層の小型化が図られる。
【0063】
光路長調整部15A,15Bを偏波保持ファイバFによって構成する場合の一例としては、圧電素子に所定の長さの偏波保持ファイバFを巻き付けた構成が考えられる。この構成によれば、圧電素子に電圧を印加して体積を変化させることで、圧電素子に巻き付けられている偏波保持ファイバFのファイバ長を調整することができる。したがって、ポンプ光La又はプローブ光Lbの光路長の制御を精度良く実施できる。
【0064】
また、上記実施形態では、ポンプ光Laの導光光学系12Aに分散補正パッチコード16Aが配置され、プローブ光Lbの導光光学系12Bに分散補正パッチコード16Bが配置されているが、分散補正パッチコード16A,16Bを必ずしも用いなくてもよい。この場合、一定の距離を伝搬したポンプ光La及びプローブ光Lbのパルス幅がテラヘルツ波発生部21及びテラヘルツ波検出部23に入射する際に最短となるように、予め逆分散を与えたレーザ光源を用いて分光計測装置1を構成すればよい。また、分散補正パッチコード16A,16Bに代えて、偏波保持パッチコードを用いてもよく、偏波保持パッチコードと分散補正パッチコードとを組み合わせて用いてもよい。
【0065】
また、上記実施形態では、測定部3において、テラヘルツ波検出部23で変調されたプローブ光Lbが光検出部13に向かう光路上に波長板(λ/8波長板24、λ/4波長板41)が配置されているが、波長板に代えて、プローブ光Lbの偏光状態を調節可能な他の素子を配置してもよい。このような素子としては、例えばファラデー回転子などが挙げられる。
図7に示した例のように、プローブ光bが波長板を往復しない構成の場合には、偏光回転子(例えば石英偏光回転子)などを用いることも可能である。
【0066】
また、上記実施形態では、全反射減衰分光(ATR)法に基づき、測定面Mに測定物を接触させた状態で計測を実施する態様を例示したが、分光計測装置1における計測手法はこれに限られない。例えば測定面Mから自由空間に出射させたテラヘルツ波Tを測定物に照射し、その反射光を再び測定面Mに入射させ、テラヘルツ波検出部23で検出する態様としてもよい。また、例えば測定面Mから自由空間に出射させたテラヘルツ波Tを測定物に照射し、その透過光をミラー等で反射させて再び測定面Mに入射させ、テラヘルツ波検出部23で検出する態様としてもよい。
【0067】
また、測定部3の筐体4に測定面Mを設けず、筐体4内に測定物を配置する態様としてもよい。この場合、例えば測定部3において、測定プリズム22の配置を省略し、その代わりにテラヘルツ波発生部21とテラヘルツ波検出部23との間に測定物を配置する。そして、テラヘルツ波発生部21で発生したテラヘルツ波Tを測定物に照射し、その透過光をテラヘルツ波検出部23で検出する態様としてもよい。
【符号の説明】
【0068】
1…分光計測装置、2…本体部、3…測定部、11…光源部、13…光検出部、15A,15B…光路長調整部(調整部)、21…テラヘルツ波発生部、23…テラヘルツ波検出部、24…λ/8波長板(波長板)、41…λ/4波長板(波長板)、F…偏波保持ファイバ、L…レーザ光、La…ポンプ光、Lb…プローブ光、M…測定面、T…テラヘルツ波。