IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社 情報システムエンジニアリングの特許一覧

<>
  • 特開-情報処理装置及び情報処理方法 図1
  • 特開-情報処理装置及び情報処理方法 図2
  • 特開-情報処理装置及び情報処理方法 図3
  • 特開-情報処理装置及び情報処理方法 図4
  • 特開-情報処理装置及び情報処理方法 図5
  • 特開-情報処理装置及び情報処理方法 図6
  • 特開-情報処理装置及び情報処理方法 図7
  • 特開-情報処理装置及び情報処理方法 図8
  • 特開-情報処理装置及び情報処理方法 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022020290
(43)【公開日】2022-02-01
(54)【発明の名称】情報処理装置及び情報処理方法
(51)【国際特許分類】
   G06Q 10/06 20120101AFI20220125BHJP
   G06Q 50/04 20120101ALI20220125BHJP
【FI】
G06Q10/06
G06Q50/04
【審査請求】有
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2020123695
(22)【出願日】2020-07-20
(11)【特許番号】
(45)【特許公報発行日】2021-09-08
(71)【出願人】
【識別番号】510050557
【氏名又は名称】株式会社 情報システムエンジニアリング
(74)【代理人】
【識別番号】100120868
【弁理士】
【氏名又は名称】安彦 元
(72)【発明者】
【氏名】黒田 聡
【テーマコード(参考)】
5L049
【Fターム(参考)】
5L049AA06
5L049CC03
(57)【要約】      (修正有)
【課題】作業者が必要な量の情報を、作業者に提示する。
【解決手段】情報処理装置は、作業者が第1の作業及び第2の作業を行うシーンの画像である第1の画像を取得し、第1の画像とシーンを一意に示すシーンIDとの間における連関性が記載されている第1の学習済みモデルを使用して、シーンを推定するシーン推定部と、第1の作業及び第2の作業の対象物の画像である第2の画像を取得し、第2の画像と、作業情報を分割又は示唆した情報であるチャンクを一意に示すチャンクIDと、1対1に対応付けられた1又は複数のチャンク用メタIDと、の間における連関性が記憶されている複数の第2の学習済みモデルのうちの1つを使用して、チャンクを推定するチャンク推定部と、第2の作業が行われた際に、第1の作業及び第2の作業の関係を予め保存している状態遷移テーブルと照らし合わせて次の作業に関しての示唆を行う示唆情報を出力する遷移先示唆部と、を含む。
【選択図】図1
【特許請求の範囲】
【請求項1】
作業者が作業の対象となる対象物に対して行う第1の作業及び第2の作業に関する情報である作業情報を出力する情報処理装置であって、
前記作業者が前記第1の作業及び前記第2の作業を行う状況であるシーンの画像である第1の画像を取得し、前記第1の画像と、前記シーンを一意に示すシーンIDと、の間における連関性が記載されている第1の学習済みモデルを使用して、前記シーンを推定するシーン推定部と、
前記第1の作業及び前記第2の作業の対象物の画像である第2の画像を取得し、前記第2の画像と、前記作業情報を分割又は示唆した情報であるチャンクを一意に示すチャンクIDと、1対1に対応付けられた1又は複数のチャンク用メタIDと、の間における連関性が記憶されている複数の第2の学習済みモデルのうちの1つを使用して、前記チャンクを推定するチャンク推定部と、
前記第2の作業が行われた際に、実際に行われた前記第1の作業及び前記第2の作業を、前記第1の作業及び前記第2の作業の関係を予め保存している状態遷移テーブルと照らし合わせて次の作業に関しての示唆を行う示唆情報を出力する遷移先示唆部と、
前記チャンクを出力する出力部と、を備え、
前記チャンク推定部は、前記複数の第2の学習済みモデルのうちの1つを、シーンIDと1対1に対応付けられたモデルIDを用いて選定し、前記チャンク用メタIDは前記対象物の性質に関する情報であるチャンク用メタ値を一意に示す、
情報処理装置。
【請求項2】
前記シーン推定部は、第1の画像が第1の作業か第2の作業かを、第1の画像の時系列的に連続する前後の画像を参照することで判断する、
請求項1に記載の情報処理装置。
【請求項3】
前記第1の作業における前記第1の画像には第1の番号が撮像され、前記チャンク推定部は、前記第1の番号から前記第2の作業において使用する第2の番号を、チャンク用メタIDを介して推測する、
請求項2に記載の情報処理装置。
【請求項4】
作業者が作業の対象となる対象物に対して行う第1の作業及び第2の作業に関する情報である作業情報を出力する情報処理装置が行う情報処理方法であって、
前記作業者が前記第1の作業及び前記第2の作業を行う状況であるシーンの画像である第1の画像を取得し、前記第1の画像と、前記シーンを一意に示すシーンIDと、の間における連関性が記載されている第1の学習済みモデルを使用して、前記シーンを推定する第1のステップと、
前記第1の作業及び前記第2の作業の対象物の画像である第2の画像を取得し、前記第2の画像と、前記作業情報を分割又は示唆した情報であるチャンクを一意に示すチャンクIDと、1対1に対応付けられた1又は複数のチャンク用メタIDと、の間における連関性が記憶されている複数の第2の学習済みモデルのうちの1つを使用して、前記チャンクを推定する第2のステップと、
前記第2の作業が行われた際に、実際に行われた前記第1の作業及び前記第2の作業を、前記第1の作業及び前記第2の作業の関係を予め保存している状態遷移テーブルと照らし合わせて次の作業に関しての示唆を行う示唆情報を出力する第3のステップと、
前記チャンクを出力する第4のステップと、を備え、
前記複数の第2の学習済みモデルのうちの1つが、シーンIDと1対1に対応付けられたモデルIDを用いて選定され、前記チャンク用メタIDは前記対象物の性質に関する情報であるチャンク用メタ値を一意に示す、
情報処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、情報処理装置及び情報処理方法に関する。
【背景技術】
【0002】
例えば特許文献1の作業支援システムでは、作業の手順、内容、留意点又はその他の事項を記述したマニュアルに基づいて、作業の対象又は作業の状況の判定条件を記述したルールを生成し、作業者が装着した機器からのセンサ情報に基づいて作業の対象及び作業の状況を認識し、生成したルール及び認識手段の認識結果に基づいて作業支援情報を出力する。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2019-109844号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら特許文献1に記載されたような従来の手法においては、マニュアルなどの文書として蓄積されている情報は、文書単位の検索しかできない。例えば段落単位での検索を文書に対して行う場合には、文書を構造化された情報に再構築する必要がある。検索対象となる全ての文書の再構築は費用対効果を考慮すると現実的ではないことが多く、また文書単位での情報では不要な情報を多分に閲覧してしまい、文書の閲覧者が迅速な対応ができないことがあるという課題がある。
【0005】
本発明の実施の形態の一態様は、大規模な情報の再構築をせずに、作業者が必要な際に、作業者が必要な量の情報を、作業者に提示する情報処理装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
作業者が作業の対象となる対象物に対して行う第1の作業及び第2の作業に関する情報である作業情報を出力情報処理装置であって、作業者が第1の作業及び第2の作業を行う状況であるシーンの画像である第1の画像を取得し、第1の画像と、シーンを一意に示すシーンIDと、の間における連関性が記載されている第1の学習済みモデルを使用して、シーンを推定するシーン推定部と、第1の作業及び第2の作業の対象物の画像である第2の画像を取得し、第2の画像と、作業情報を分割又は示唆した情報であるチャンクを一意に示すチャンクIDと、1対1に対応付けられた1又は複数のチャンク用メタIDと、の間における連関性が記憶されている複数の第2の学習済みモデルのうちの1つを使用して、チャンクを推定するチャンク推定部と、第2の作業が行われた際に、実際に行われた第1の作業及び第2の作業を、第1の作業及び第2の作業の関係を予め保存している状態遷移テーブルと照らし合わせて次の作業に関しての示唆を行う示唆情報を出力する遷移先示唆部と、チャンクを出力する出力部と、を備え、チャンク推定部は、複数の第2の学習済みモデルのうちの1つを、シーンIDと1対1に対応付けられたモデルIDを用いて選定し、チャンク用メタIDは対象物の性質に関する情報であるチャンク用メタ値を一意に示す、情報処理装置を提供する。
【0007】
作業者が作業の対象となる対象物に対して行う第1の作業及び第2の作業に関する情報である作業情報を出力する情報処理装置が行う情報処理方法であって、作業者が第1の作業及び第2の作業を行う状況であるシーンの画像である第1の画像を取得し、第1の画像と、シーンを一意に示すシーンIDと、の間における連関性が記載されている第1の学習済みモデルを使用して、シーンを推定する第1のステップと、第1の作業及び第2の作業の対象物の画像である第2の画像を取得し、第2の画像と、作業情報を分割又は示唆した情報であるチャンクを一意に示すチャンクIDと、1対1に対応付けられた1又は複数のチャンク用メタIDと、の間における連関性が記憶されている複数の第2の学習済みモデルのうちの1つを使用して、チャンクを推定する第2のステップと、第2の作業が行われた際に、実際に行われた第1の作業及び第2の作業を、第1の作業及び第2の作業の関係を予め保存している状態遷移テーブルと照らし合わせて次の作業に関しての示唆を行う示唆情報を出力する第3のステップと、チャンクを出力する第4のステップと、を備え、チャンク推定部は、複数の第2の学習済みモデルのうちの1つを、シーンIDと1対1に対応付けられたモデルIDを用いて選定し、チャンク用メタIDは対象物の性質に関する情報であるチャンク用メタ値を一意に示す、情報処理方法を提供する。
【発明の効果】
【0008】
本発明の実施の形態の一態様によれば大規模な情報の再構築をせずに、作業者が必要な際に、作業者が必要な量の情報を、作業者に提示する情報処理装置を実現できる。
【図面の簡単な説明】
【0009】
図1図1は、本実施の形態による利用段階における情報処理装置の構成を示すブロック図である。
図2図2は、本実施の形態による学習段階における情報処理装置の構成を示すブロック図である。
図3図3は、本実施の形態による取出し作業時及び梱包作業時におけるそれぞれの第1の画像及び第2の画像を示す図である。
図4図4は、本実施の形態による第1の学習済みモデル及び第2の学習済みモデルを示す図である。
図5図5は、本実施の形態による補助記憶装置に記憶されている情報を示す図である。
図6図6は、本実施の形態によるシーン推定機能、チャンク推定機能及びチャンク出力機能の説明に供するシーケンス図である。
図7図7は、本実施の形態による第1の学習済みモデル生成機能及び第2の学習済みモデル生成機能の説明に供するシーケンス図である。
図8図8は、本実施の形態による利用段階における情報処理の処理手順を示すフローチャートである。
図9図9は、本実施の形態による確認処理の処理手順を示すフローチャートである。
【発明を実施するための形態】
【0010】
以下図面を用いて、本発明の実施の形態の一態様を詳述する。例えば、物流の中間拠点などで作業の対象となる対象物を、取り出す取出し作業(以下、これを第1の作業と呼んでもよい)や第1の作業における対象物を梱包することで新たに対象物とする梱包作業(以下、これを第2の作業と呼んでもよい)を行う作業者が作業を行う際に参照する情報について説明する。なお第1の作業と第2の作業とで作業者は違ってもよいし、第1の作業と第2の作業とで作業者は同一でもよい。
【0011】
(本実施の形態)
まず図1を用いて利用段階における情報処理装置1について説明する。図1は、本実施の形態による利用段階における情報処理装置1の構成を示すブロック図である。情報処理装置1は、中央演算装置2、主記憶装置3及び補助記憶装置11を備える。
【0012】
中央演算装置2は、例えばCPU(Central Processing Unit)であって、主記憶装置3に記憶されたプログラムを呼び出すことで処理を実行する。主記憶装置3は、例えばRAM(Random Access Memory)であって、後述のシーン推定部4、チャンク推定部5、チャンク出力部6、確認部7、第1の学習済みモデル生成部9及び第2の学習済みモデル生成部10といったプログラムを記憶する。
【0013】
なおシーン推定部4、チャンク推定部5、チャンク出力部6及び確認部7を含むプログラムを制御部15と呼んでもよく、第1の学習済みモデル生成部9及び第2の学習済みモデル生成部10を含むプログラムを学習済みモデル生成部16と呼んでもよい。
【0014】
補助記憶装置11は、例えばSSD(Solid State Drive)やHDD(Hard Disk Drive)であって、後述の第1の学習済みモデルDB1や第1の学習モデルDB1’や第2の学習済みモデルDB2や第2の学習モデルDB2’といったデータベースやシーンテーブルTB1やモデルテーブルTB2やコンテンツテーブルTB3やシーン・コンテンツテーブルTB4やコンテンツ・チャンクテーブルTB5やチャンク・メタテーブルTB6やチャンクテーブルTB7やチャンク用メタテーブルTB8や状態遷移テーブルTB9といったテーブルを記憶する。
【0015】
図1に示すように作業者の行う作業に関する情報である作業情報を出力する情報処理装置1は、利用段階において、シーン推定部4と、チャンク推定部5と、作業情報を分割又は示唆した情報であるチャンクを出力するチャンク出力部6と、確認部7と、を備える。ここで作業情報をコンテンツと呼んでもよく、コンテンツIDは作業情報を一意に示すものとする。チャンク出力部6はチャンクを例えばユーザ端末12に出力する。
【0016】
シーン推定部4は、作業者が行う状況であるシーンを推定する。具体的にはシーン推定部4は、取出し作業時及び梱包作業時において後述の第1の画像20,40を取得し、第1の画像20,とシーンを一意に示すシーンIDと、の間における連関性が記憶されている第1の学習済みモデルDB1を使用して、シーンを推定する。
【0017】
シーン推定部4は、シーンIDとシーンの名称であるシーン名とが1対1で紐づけられたテーブルであるシーンテーブルTB1から、シーンIDを検索キーとしてシーン名を取得してユーザ端末12に送信する。ユーザ端末12はシーン推定部4から受信したシーン名を作業者に提示する。
【0018】
なおシーン推定部4は、取出し作業時か梱包作業時かの判断を、例えば第1の画像20,40の時系列系に連続する前後の画像を参照することで判断する。例えば第1の画像20に関しては、第1の画像20の時系列的に前の画像には、後述の対象物23が梱包された箱21が撮像され、第1の画像20の時系列的に後の画像には、箱から取り出され対象物23が撮像される。このため、シーン推定部4は、第1の画像20が取出し作業時の画像であることと判断することができる。
【0019】
また第1の画像40に関しては、第1の画像40の時系列的に前の画像には、梱包されていない対象物23,43が撮像され、第1の画像40の時系列的に後の画像には、対象物23,43が梱包された箱41が撮像されるため、シーン推定部4は、第1の画像20が梱包作業時の画像であることと判断することができる。
【0020】
チャンク推定部5は、第1の作業の対象物23の画像及び第2の作業の対象物51の画像である第2の画像30,50を取得し、第2の画像30,50と、チャンクを一意に示すチャンクIDと1対1に対応付けられた1又は複数のチャンク用メタIDと、の間における連関性が記憶されている複数の第2の学習済みモデルDB2のうちの1つを使用して、チャンクを推定する。
【0021】
チャンク推定部5は、複数の第2の学習済みモデルDB2のうちの1つを、シーンIDと1対1に対応付けられたモデルIDを用いて選定する。またチャンク用メタIDは対象物23,43,51の性質に関する情報であるチャンク用メタ値を一意に示す。
【0022】
チャンク推定部5は、モデルIDとシーンIDとが1対1で紐づけられたテーブルであるモデルテーブルTB2からシーンIDを検索キーとしてモデルIDを取得する。またチャンク推定部5は、チャンクIDとチャンク用メタIDとが1対1又は1対複数で紐づけられたテーブルであるチャンク・メタテーブルTB6からチャンク用メタIDを検索キーとしてチャンクIDを取得する。
【0023】
またチャンク推定部5は、チャンクテーブルTB7からチャンクIDを検索キーとしてチャンクの概要を示すチャンクサマリを取得して、チャンクサマリをユーザ端末12に送信する。ユーザ端末12は、チャンク推定部5から受信したチャンクサマリを作業者に提示する。
【0024】
またチャンク推定部5は、チャンクテーブルTB7からチャンクIDを検索キーとしてチャンクを取得して、チャンクをユーザ端末12に送信する。ユーザ端末12は、チャンク推定部5から受信したチャンクを作業者に提示する。
【0025】
なおチャンクテーブルTB7は、チャンクIDにチャンクとチャンクサマリとハッシュ値とがそれぞれ1対1で紐づけられたテーブルである。なおハッシュ値は例えばチャンクが変更されたか否かを確認するために用いられる。
【0026】
遷移先示唆部7は、第2の作業に関する情報が処理される際に、実際に行われた第1の作業及び前記第2の作業を、第1の作業及び第2の作業の関係を予め保存している状態遷移テーブルTB9と照らし合わせて次の作業に関しての示唆を行う示唆情報を出力する。遷移先示唆部7は、示唆情報を例えばユーザ端末12に出力する。
【0027】
次に図2を用いて学習段階における情報処理装置1について説明する。例えば学習段階においては図示せぬ入力装置から入力される第1の画像20,40と1又は複数の第2の画像30,35,50,55とを1組として学習させる。ここで学習は、例えば教師あり学習を指すものとする。
【0028】
図2は、本実施の形態による学習段階における情報処理装置1の構成を示すブロック図である。学習段階においては、情報処理装置1は、第1の学習済みモデル生成部9と、第2の学習済みモデル生成部10と、を備える。
【0029】
第1の学習済みモデル生成部9は、シーンIDと、第1の画像20,40と、を1対として第1の学習モデルDB1’に学習させることで第1の学習済みモデルDB1を生成するプログラムである。
【0030】
第1の学習済みモデル生成部9は、第1の画像20,40に関してシーンテーブルTB1からシーンIDを取得し、シーンIDに対応するモデルIDをモデルテーブルTB2から取得する。
【0031】
第2の学習済みモデル生成部10は、モデルIDを指定して1又は複数のチャンク用メタIDと第2の画像30,50とを1対として第2の学習モデルDB2’に学習させることで第2の学習済みモデルDB2を生成するプログラムである。
【0032】
第2の学習済みモデル生成部10は、シーンIDとコンテンツIDとが1対多で紐づけられたテーブルであるシーン・コンテンツテーブルTB4からシーンIDを検索キーとしてコンテンツIDを取得する。なおここで検索キーとなるシーンIDは、処理の対象となる第2の画像30,50と対になっている第1の画像20,40と紐づくものである。
【0033】
第2の学習済みモデル生成部10は、コンテンツIDとコンテンツとが1対1で紐づけられたテーブルであるコンテンツテーブルTB3からコンテンツIDを検索キーとしてコンテンツを取得する。
【0034】
第2の学習済みモデル生成部10は、コンテンツIDとチャンクIDとが1対1又は多で紐づけられたテーブルであるコンテンツ・チャンクテーブルTB5からコンテンツIDを検索キーとしてチャンクIDを取得する。
【0035】
第2の学習済みモデル生成部10は、チャンクテーブルTB7からチャンクIDを検索キーとしてチャンクを取得し、チャンク・メタテーブルTB6からチャンクIDを検索キーとしてチャンク用メタIDを取得する。
【0036】
第2の学習済みモデル生成部10は、チャンク用メタテーブルTB8からチャンク用メタIDを検索キーとしてチャンク用メタ値を取得する。チャンク用メタテーブルTB8は、チャンク用メタIDにチャンク用カテゴリIDとチャンク用カテゴリ名とチャンク用メタ値とがそれぞれ1対1で結び付けられたテーブルである。
【0037】
チャンク用カテゴリIDはチャンク用メタ値が属するカテゴリの名前であるチャンク用カテゴリ名を一意に示す。なお第2の学習済みモデル生成部10は、第2の画像30,50を参照したうえで、取得したチャンク、コンテンツ及びチャンク用メタ値に問題がないことを確認する。
【0038】
問題がある値を異常値と判断し教師あり学習の学習には使用しないことで、第2の学習済みモデル生成部10は、精度の高い学習済みモデルDB2を生成することが可能となり、利用段階において情報処理装置1は、精度の高い処理を行うことができる。
【0039】
次に図3を用いてユーザ端末12が取得し、情報処理装置1が情報として処理するについて説明する。本実施の形態による取出し作業時及び梱包作業時におけるそれぞれの第1の画像20,40及び第2の画像30,50を示す図である。
【0040】
取出し作業時及び梱包作業時におけるそれぞれの第1の画像20,40及び第2の画像30,50は、例えば補助記憶装置11に保存され、また例えばユーザ端末12に表示される。図3においては例えば第2の作業時に第1の作業時も含めた第1の画像20,40及び第2の画像30,50が同時に表示されるような例を示しているが、第1の画像20,40はそれぞれ別々にユーザ端末12に表示されてもよい。
【0041】
取出し作業時における第1の画像20には例えば対象物23、対象物23が取り出された箱21及び発注番号22(以下、これを第1の番号と呼んでもよい)が撮像される。梱包作業時における第1の画像40には例えば取出し作業時に作業の対象だった対象物23,43及び対象物23,43を梱包する箱41が撮像される。
【0042】
取出し作業時における第2の画像30には例えば対象物23が撮像される。梱包作業時における第2の画像50には例えば取出し作業時に作業の対象だった対象物23,43、対象物23,43を梱包する箱41及び受注番号52(以下、これを第2の番号と呼んでもよい)が撮像される。
【0043】
発注番号22は、例えば物流の中間拠点の発注の担当者が注文を発注した際に付与された番号とし、受注番号52は、例えば物流の中間拠点の受注の担当者が注文を受注した際に付与される番号とする。例えばシーンIDが発注番号22まで考慮して決定される場合、チャンク推定部5は、チャンク用メタIDを介して受注番号52を推定する。
【0044】
次に図4を用いて第1の学習済みモデルDB1及び第2の学習済みモデルDB2について説明する。図4は、本実施の形態による第1の学習済みモデルDB1及び第2の学習済みモデルDB2を示す。
【0045】
第1の学習済みモデルDB1は、第1の画像20,40と、シーンIDと、を1対の学習データとして複数用いた機械学習により生成された、複数の第1の画像20,40と、複数のシーンIDと、の間における連関性が記憶されている。ここで機械学習とは例えば畳み込みニューラルネットワーク(CNN:Convolution Neural Network)とする。
【0046】
第1の画像20,40と、シーンIDと、の間における連関性は、具体的には、図4に丸で示すノードと矢印で示すエッジとエッジに設定される重み係数とによってあらわされる畳み込みニューラルネットワークによって表すことができる。なお図4に示すように第1の学習済みモデルDB1への第1の画像20,40の入力は、例えば画素p1,p2といった画素ごととする。
【0047】
第2の学習済みモデルDB2は、モデルIDと1対1で紐づけられ、複数とする。それぞれの第2の学習済みモデルDB2は、第2の画像30,35,50,55と、1又は複数のチャンク用メタIDと、を1対の学習データとして複数用いた機械学習により生成された、複数の第2の画像30,35,50,55と、複数の1又は複数のチャンク用メタIDと、の間における連関性が記憶されている。ここで機械学習とは例えば畳み込みニューラルネットワーク(CNN:Convolution Neural Network)とする。
【0048】
複数の第2の画像30,35,50,55と、複数の1又は複数のチャンク用メタIDと、の間における連関性は、具体的には、図4に丸で示すノードと矢印で示すエッジとエッジに設定される重み係数とによってあらわされる畳み込みニューラルネットワークによって表すことができる。なお図4に示すように第2の学習済みモデルDB2への第2の画像30,35,50,55の入力は、例えば画素p1,p2といった画素ごととする。
【0049】
次に図5を用いて補助記憶装置11に記憶されている情報であるシーンテーブルTB1、モデルテーブルTB2、コンテンツテーブルTB3、シーン・コンテンツテーブルTB4、コンテンツ・チャンクテーブルTB5、チャンク・メタテーブルTB6、チャンクテーブルTB7、チャンク用メタテーブルTB8及び状態遷移テーブルTB9について説明する。図5は、本実施の形態による補助記憶装置11に記憶されている情報を示す図である。
【0050】
シーンテーブルTB1などに格納されるシーンIDは例えば0FDなどの3桁の16進数とする。またシーンテーブルTB1などに格納されるシーン名は、例えば割物取出や割物梱包などとする。
【0051】
モデルテーブルTB2などに格納されるモデルIDは、例えばMD1のように2文字の英字と1桁の10進数で表される。コンテンツテーブルTB3などに格納されるコンテンツIDは、例えば1B827-01のように5桁の16進数と2桁の10進数とで表される。コンテンツテーブルTB3などに格納されるコンテンツは、例えば1B827-01.txtのようにコンテンツIDであるファイル名が拡張子付きで示され、コンテンツの実体へのポインタなどが格納される。
【0052】
コンテンツ・チャンクテーブルTB5などに格納されるチャンクIDは、例えば82700-01のように5桁と2桁の10進数で表される。チャンク・メタテーブルTB6などに格納されるチャンク用メタIDは、例えば24FDのように4桁の16進数とする。
【0053】
チャンクテーブルTB7に格納されるチャンクは、例えば1B827-01.txt_0のように対象となるチャンクと対応するコンテンツのファイル名と1桁の10進数とで示され、対象となるチャンクと対応するコンテンツの実体の一部分へのポインタなどが格納される。
【0054】
チャンクテーブルTB7に格納されるチャンクサマリは、例えば「緩衝材を、…」といったチャンクの内容を要約した文書とする。チャンクテーブルTB7に格納されるハッシュ値は、例えば564544d8f0b746eのように15桁の16進数とする。
【0055】
チャンク用メタテーブルTB8に格納されるチャンク用カテゴリIDは、例えば394のように3桁の10進数とする。チャンク用メタテーブルTB8に格納されるチャンク用カテゴリ名は、例えば対象となる封筒や箱やパレットやかごなどのサイズや色や形などとする。
【0056】
チャンク用メタテーブルTB8に格納されるチャンク用メタ値は、例えばA4や60や白や青や封筒や箱やパレットやかごなどとする。なおチャンク用カテゴリID及びチャンク用カテゴリ名の値はNULLであってもよい。
【0057】
状態遷移テーブルTB9に格納されている状態遷移IDは、例えば2つのシーンIDの組み合わせを一意に示すものであって、例えば04Cのように3桁の16進数とする。状態遷移IDは、例えば注文を管理する注文票と対応付けられてもよい。
【0058】
状態遷移テーブルTB9に格納されている順序は、1や2とし、例えば1は取出し作業時を示し、2は梱包作業時を示す。なお状態遷移テーブルTB9においては、例えば状態遷移IDとシーンIDとの組み合わせを一意に特定するために、1から順に番号付けされるNOが格納されている。
【0059】
シーン・コンテンツテーブルTB4、コンテンツ・チャンクテーブルTB5及びチャンク・メタテーブルTB6に示すように、作業情報のデータ構造は、チャンク用メタIDを最下層である第1の層とし、チャンクIDを第2の層とし、コンテンツIDを第3の層とし、シーンIDを最上層である第4の層とする階層構造を有している。
【0060】
次に図6を用いてシーン推定機能、チャンク推定機能及びチャンク出力機能について説明する。図6は、本実施の形態によるシーン推定機能、チャンク推定機能及びチャンク出力機能の説明に供するシーケンス図である。
【0061】
利用段階の情報処理機能は、後述のシーン推定処理S60によって実現されるシーン推定機能と、後述のチャンク推定処理S80によって実現されるチャンク推定機能と、後述のチャンク出力処理S100によって実現されるチャンク出力機能と、から構成される。
【0062】
まずシーン推定機能について説明する。制御部15に含まれるシーン推定部4は、ユーザ端末12から第1の画像20,40を受信し(S1)、受信した第1の画像20,40を第1の学習済みモデルDB1に入力する(S2)。
【0063】
第1の学習済みモデルDB1は、受信した第1の画像20,40と強く結びついているシーンIDを1又は複数選択し、シーン推定部4に対して選択した1又は複数のシーンID(以下、これを第1のシーンIDリストと呼んでもよい)を出力する(S3)。
【0064】
シーン推定部4は、第1のシーンIDリストを取得すると、ユーザ端末12にそのまま送信する(S4)。ユーザ端末12は、第1のシーンIDリストに含まれるそれぞれのシーンIDについてのキャッシュの有無をシーン推定部4に対して送信する(S5)。
【0065】
ユーザ端末12は、過去に処理した情報に関しては、シーンテーブルTB1と同等のテーブルを保持している。ユーザ端末12は、受信した第1のシーンIDリストのシーンIDを検索キーとしてユーザ端末12が保持するテーブル内を検索する。検索結果が見つかったシーンIDはキャッシュ有りとなり、検索結果がみつからないシーンIDについてはキャッシュ無しとなる。
【0066】
シーン推定部4は、ユーザ端末12から受信した第1のシーンIDリストに含まれるそれぞれのシーンIDのうちユーザ端末12にキャッシュが無い1又は複数のシーンID(以下、これを第2のシーンIDリストと呼んでもよい)を検索キーとしてシーンテーブルTB1を検索する(S6)。
【0067】
シーン推定部4は、検索結果として第2のシーンIDリストに含まれるそれぞれのシーンIDに対応するシーン名(以下、これをシーン名リストと呼んでもよい)をシーンテーブルTB1から取得する(S7)。
【0068】
シーン推定部4は、取得したシーン名リストをユーザ端末12にそのままに送信する(S8)。利用段階において情報処理装置1は、ステップS1~S8によって、第1の画像20,40のシーンを、シーン名を推定することで、推定するシーン推定機能を実現する。
【0069】
次にチャンク推定機能について説明する。ユーザ端末12は、受信したシーン名リストを作業者に提示する。作業者は、提示されたシーン名リストの中から例えば1つのシーン名を選択する。ユーザ端末12は、作業者に選択されたシーン名を制御部15に含まれるチャンク推定部5に送信する(S9)。
【0070】
チャンク推定部5は、ユーザ端末12から受信したシーン名に対応するシーンIDを検索キーとして(S10)、モデルテーブルTB2を検索しモデルIDを取得する(S11)。
【0071】
チャンク推定部5は、第2の画像30,35,50,55をユーザ端末12から受信する(S12)。チャンク推定部5は、モデルテーブルTB2から取得したモデルIDによって複数の第2の学習済みモデルDB2のうちの1つを指定し、第2の画像30,50を指定した第2の学習済みモデルDB2に入力する(S13)。
【0072】
第2の学習済みモデルDB2は、第2の画像30,35,50,55と強く結びついている1又は複数のチャンク用メタIDを1又は複数選択し、チャンク推定部5に対して選択した1又は複数の、1又は複数のチャンク用メタID(以下、これをチャンク用メタIDリストと呼んでもよい)を出力する(S14)。
【0073】
チャンク推定部5は、チャンク用メタIDリストに含まれるそれぞれの1又は複数のチャンク用メタIDを検索キーとしてチャンク・メタテーブルTB6を検索する(S15)。
【0074】
チャンク推定部5は、検索結果として1又は複数のチャンクID(以下、これを第1のチャンクIDリストと呼んでもよい)をチャンク・メタテーブルTB6から取得する(S16)。チャンク推定部5は、取得した第1のチャンクIDリストをユーザ端末12にそのままに送信する(S17)。
【0075】
ユーザ端末12は、第1のチャンクIDリストに含まれるそれぞれのチャンクIDについてのキャッシュの有無をチャンク推定部5に対して送信する(S18)。ユーザ端末12は、過去に処理した情報に関しては、チャンクテーブルTB7におけるチャンクID列とチャンクサマリ列とを備えたテーブルを保持している。
【0076】
ユーザ端末12は、受信した第1のチャンクIDリストのチャンクIDを検索キーとしてユーザ端末12が保持するテーブル内を検索する。検索結果が見つかったチャンクIDはキャッシュ有りとなり、検索結果がみつからないチャンクIDについてはキャッシュ無しとなる。
【0077】
チャンク推定部5は、ユーザ端末12から受信した第1のチャンクIDリストに含まれるそれぞれのチャンクIDのうちユーザ端末12にキャッシュが無い1又は複数のチャンクID(以下、これを第2のチャンクIDリストと呼んでもよい)を検索キーとしてチャンクテーブルTB7を検索する(S19)。
【0078】
チャンク推定部5は、検索結果として第2のチャンクIDリストに含まれるそれぞれのチャンクIDに対応するチャンクサマリ(以下、これをチャンクサマリリストと呼んでもよい)をチャンクテーブルTB7から取得する(S20)。チャンク推定部5は、取得したチャンクサマリリストをユーザ端末12にそのままに送信する(S21)。
【0079】
利用段階において情報処理装置1は、ステップS9~S21によって、対象物23,43,51のチャンクを、チャンクサマリを推定することで、推定するチャンク推定機能を実現する。
【0080】
次にチャンク出力機能について説明する。ユーザ端末12は、受信したチャンクサマリリストを作業者に提示する。作業者は、提示されたチャンクサマリリストの中から例えば1つのチャンクサマリを選択する。ユーザ端末12は、作業者に選択されたチャンクサマリを制御部15に含まれるチャンク出力部6に送信する(S22)。
【0081】
チャンク出力部6は、ユーザ端末12から受信したチャンクサマリに対応するチャンクIDを検索キーとして(S23)、チャンクテーブルTB7を検索しチャンクを取得する(S24)。
【0082】
チャンク出力部6は、取得したチャンクをユーザ端末12にそのままに送信する(S25)。ユーザ端末12は、受信したチャンクをユーザに提示する。利用段階において情報処理装置1は、ステップS22~S25によって、対象物23,43,51のチャンクを出力するチャンク出力機能を実現する。
【0083】
次に図7を用いて第1の学習済みモデル生成機能及び第2の学習済みモデル生成機能について説明する。図7は、本実施の形態による第1の学習済みモデル生成機能及び第2の学習済みモデル生成機能の説明に供するシーケンス図である。
【0084】
学習段階の情報処理機能は、第1の学習済みモデル生成処理によって実現される第1の学習済みモデル生成機能と、第2の学習済みモデル生成処理によって実現される第2の学習済みモデル生成機能と、から構成される。
【0085】
まず第1の学習済みモデル生成機能について説明する。学習済みモデル生成部16に含まれる第1の学習済みモデル生成部9は、処理対象とするシーン名と、第1の画像20,40と、1又は複数の第2の画像30,35,50,55と、の組を決め、シーンテーブルTB1にシーン名を検索キーとして予め生成されたシーンテーブルTB1を検索する(S31)。
【0086】
第1の学習済みモデル生成部9は、検索結果としてシーンIDをシーンテーブルTB1から取得し(S32)、第1の学習モデルDB1’に、第1の画像20,40と、シーンIDと、を1対として学習させる(S33)。
【0087】
また第1の学習済みモデル生成部9は、モデルテーブルTB2に取得したシーンIDを送信しモデルID取得要求を行う(S34)。モデルテーブルTB2は、受信したシーンIDに対応するモデルIDを生成して、シーンIDとモデルIDとの組み合わせを記憶する。
【0088】
次に第1の学習済みモデル生成部9は、モデルIDをモデルテーブルTB2から取得する(S35)。学習段階において情報処理装置1は、ステップS31~S35によって、第1の学習済みモデルDB1を生成する第1の学習済みモデル生成機能を実現する。
【0089】
次に第2の学習済みモデル生成機能について説明する。学習済みモデル生成部16に含まれる第2の学習済みモデル生成部10は、ステップS32において第1の学習済みモデル生成部9が受信したシーンIDを検索キーとして、予め生成されたシーン・コンテンツテーブルTB4を検索する(S36)。
【0090】
第2の学習済みモデル生成部10は、検索結果としてコンテンツIDをシーン・コンテンツテーブルTB4から取得し(S37)、取得したコンテンツIDを検索キーとして予め生成されたコンテンツテーブルTB3を検索する(S38)。
【0091】
第2の学習済みモデル生成部10は、検索結果としてコンテンツをコンテンツテーブルTB3から取得し(S39)、ステップS37で取得したコンテンツIDを検索キーとして予め生成されたコンテンツ・チャンクテーブルTB5を検索する(S40)。
【0092】
第2の学習済みモデル生成部10は、検索結果としてチャンクIDをコンテンツ・チャンクテーブルTB5から取得し(S41)、取得したチャンクIDを検索キーとして予め生成されたチャンクテーブルTB7を検索する(S42)。
【0093】
第2の学習済みモデル生成部10は、検索結果としてチャンクをチャンクテーブルTB7から取得し(S43)、ステップS41で取得したチャンクIDを検索キーとして予め生成されたチャンク・メタテーブルTB6を検索する(S44)。
【0094】
第2の学習済みモデル生成部10は、検索結果として1又は複数のチャンク用メタIDをチャンク・メタテーブルTB6から取得し(S45)、取得したそれぞれのチャンク用メタIDを検索キーとして予め生成されたチャンク用メタテーブルTB8を検索する(S46)。
【0095】
第2の学習済みモデル生成部10は、検索結果としてそれぞれのチャンク用メタIDに対応するチャンク用メタ値をチャンク用メタテーブルTB8からそれぞれ取得する(S47)。
【0096】
第2の学習済みモデル生成部10は、ステップS39で取得したコンテンツ、ステップS43で取得したチャンク及びステップS47で取得したそれぞれのチャンク用メタ値に問題がないかを第1の画像20,40及び第2の画像30,35,50,55を参照して確認を行う。
【0097】
例えば第2の学習済みモデル生成部10は、第1の画像20において撮像された発注番号22や第2の画像30において撮像された対象物23の形状や第1の画像40において撮像された対象物23,43や第2の画像50において撮像された受注番号52などを参照して確認を行う。
【0098】
参照した結果、コンテンツやチャンクやチャンク用メタ値が第2の画像30,35,50,55に撮像されている対象物23,43,51とは明らかに違う情報であることが明確であるなどの問題があった場合は対象となる組についての処理を終了する。
【0099】
次に第2の学習済みモデル生成部10は、第2の学習モデルDB2’にモデルIDと、第2の画像30,35,50,55と、1又は複数のチャンク用メタIDと、を1対として学習させる(S48)。学習段階において情報処理装置1は、ステップS36~S48によって、第2の学習済みモデルDB2を生成する第2の学習済みモデル生成機能を実現する。
【0100】
次に図8を用いて利用段階における情報処理について説明する。図8は、本実施の形態による利用段階における情報処理の処理手順を示すフローチャートである。利用段階における情報処理は、シーン推定処理S60と、チャンク推定処理S80と、チャンク出力処理S100と、遷移先示唆処理S110とから構成される。
【0101】
まずシーン推定処理S60について説明する。シーン推定処理S60は、ステップS61~ステップS67から構成される。シーン推定部4は、ユーザ端末12から第1の画像20,40を受信すると(S61)、第1の画像20,40を第1の学習済みモデルDB1に入力する(S62)。
【0102】
シーン推定部4は、第1の学習済みモデルDB1から出力として第1のシーンIDリストを取得し(S63)、ユーザ端末12に第1のシーンIDリストをそのまま送信してキャッシュの有無をユーザ端末12に問い合わせる(S64)。
【0103】
ユーザ端末12からの返答結果がすべてキャッシュ有りの場合(S65:NO)、シーン推定処理S60は終了しチャンク推定処理S80が開始される。ユーザ端末12からの返答結果が1つでもキャッシュ無しの場合(S65:YES)、シーン推定部4は、シーンテーブルTB1からシーン名リストを取得し(S66)、そのままユーザ端末12に送信し(S67)、シーン推定処理S60は終了する。
【0104】
次にチャンク推定処理S80について説明する。チャンク推定処理S80は、ステップS81~ステップS88から構成される。チャンク推定部5は、作業者に選択されたシーン名をユーザ端末12から受信する(S81)。
【0105】
ユーザ端末12からシーン名を受信すると、チャンク推定部5は、モデルテーブルTB2からモデルIDを取得する(S82)。次にチャンク推定部5は、モデルIDによって複数の第2の学習済みモデルDB2のうちの1つを指定し、ユーザ端末12から受信した第2の画像30,35,50,55を指定した第2の学習済みモデルDB2に入力する(S83)。
【0106】
チャンク推定部5は、第2の学習済みモデルDB2から出力としてチャンク用メタIDリストを取得し(S84)、チャンク・メタテーブルTB6から第1のチャンクIDリストを取得する(S85)。次にチャンク推定部5は、ユーザ端末12に第1のチャンクIDリストをそのまま送信してキャッシュの有無をユーザ端末12に問い合わせる(S86)。
【0107】
ユーザ端末12からの返答結果がすべてキャッシュ有りの場合(S86:NO)、チャンク推定処理S80は終了しチャンク出力処理S100が開始される。ユーザ端末12からの返答結果が1つでもキャッシュ無しの場合(S86:YES)、チャンク推定部5は、チャンクテーブルTB7からチャンクサマリリストを取得し(S87)、そのままユーザ端末12に送信し(S88)、チャンク推定処理S80は終了する。
【0108】
次にチャンク出力処理S100について説明する。チャンク出力処理S100は、ステップS101~ステップS103から構成される。チャンク出力部6は、作業者に選択されたチャンクサマリをユーザ端末12から受信する(S101)。
【0109】
ユーザ端末12からチャンクサマリを受信すると、チャンク出力部6は、チャンクテーブルTB7からチャンクを取得し(S102)、そのままユーザ端末12に送信し(S103)、チャンク出力処理S100は終了する。
【0110】
次に遷移先示唆処理S110について説明する。遷移先示唆処理S110は、ステップS111から構成される。遷移先示唆部7は、示唆情報を出力する(S111)。例えば遷移先示唆部7は、並行して処理をしている注文票に関して、第1の作業をまとめて処理した後に、第2の作業をまとめて処理するような示唆を作業者に対して行う。さらに第1の作業の中でもシーンIDが同じ作業をまとめて処理するような示唆を作業者に対して行う。
【0111】
状態遷移TB9を用いて具体的な説明を行う。状態遷移ID「04C」、状態遷移ID「05D」及び状態遷移ID「05E」の3つの注文の処理を並行して行うとする。作業者がNO「1」の状態遷移ID「04C」におけるシーンID「0FD」の作業を行っていると、遷移先示唆部7は、作業者にNO「3」の状態遷移ID「05D」におけるシーンID「0FD」の作業をするように示唆を行う。
【0112】
作業者がNO「3」の状態遷移ID「05D」におけるシーンID「0FD」の作業を行っていると、遷移先示唆部7は、作業者にNO「5」の状態遷移ID「05E」におけるシーンID「1FD」の作業をするように示唆を行う。ここまで作業が行われると、順序「1」の未作業の作業はなくなる。
【0113】
作業者がNO「5」の状態遷移ID「05E」におけるシーンID「1FD」の作業を行っていると遷移先示唆部7は、作業者にNO「2」の状態遷移ID「04C」におけるシーンID「0FE」の作業をするように示唆を行う。
【0114】
作業者がNO「2」の状態遷移ID「04C」におけるシーンID「0FE」の作業を行っていると遷移先示唆部7は、作業者にNO「6」の状態遷移ID「05E」におけるシーンID「0FE」の作業をするように示唆を行う。
【0115】
作業者がNO「6」の状態遷移ID「05E」におけるシーンID「0FE」の作業を行っていると遷移先示唆部7は、作業者にNO「4」の状態遷移ID「05D」におけるシーンID「1FE」の作業をするように示唆を行う。
【0116】
次に図9を用いて学習段階における情報処理について説明する。図9は、本実施の形態による学習段階における情報処理の処理手順を示すフローチャートである。学習段階における情報処理は、第1の学習済みモデル生成処理S120と、第2の学習済みモデル生成処理S140と、から構成される。
【0117】
まず第1の学習済みモデル生成処理S120について説明する。第1の学習済みモデル生成処理S120は、ステップS121~ステップS124から構成される。第1の学習済みモデル生成部9は、シーン名と、第1の画像20,40と、1又は複数の第2の画像30,35,50,55と、の組を決めると、シーン名を検索キーとしてシーンテーブルTB1を検索する(S121)。
【0118】
第1の学習済みモデル生成部9は、検索結果としてシーンテーブルTB1からシーンIDを取得し(S122)、第1の学習モデルDB1’にシーンIDと、第1の画像20,40と、を1対として学習させる(S123)。
【0119】
次に第1の学習済みモデル生成部9は、モデルテーブルTB2にステップS122で取得したシーンIDを送信しモデルID取得要求を行い、モデルIDを取得する(S124)。
【0120】
次に第2の学習済みモデル生成処理S140について説明する。第2の学習済みモデル生成処理S140は、ステップS141~ステップS150から構成される。第2の学習済みモデル生成部10は、ステップS122で取得されたシーンIDを検索キーとしてシーン・コンテンツテーブルTB4を検索しコンテンツIDを取得する(S141)。
【0121】
第2の学習済みモデル生成部10は、取得したコンテンツIDを検索キーとしてコンテンツテーブルTB3を検索しコンテンツを取得する(S142)。また第2の学習済みモデル生成部10は、取得したコンテンツIDを検索キーとしてコンテンツ・チャンクテーブルTB5を検索しチャンクIDを取得する(S143)。
【0122】
また第2の学習済みモデル生成部10は、取得したチャンクIDを検索キーとしてチャンクテーブルTB7を検索しチャンクを取得する(S144)。また第2の学習済みモデル生成部10は、取得したチャンクIDを検索キーとしてチャンク・メタテーブルTB6を検索し1又は複数のチャンク用メタIDを取得する(S145)。
【0123】
また第2の学習済みモデル生成部10は、取得した1又は複数のチャンク用メタIDのそれぞれを検索キーとしてチャンク用メタテーブルTB8を検索し、それぞれのチャンク用メタIDに対応するチャンク用メタ値をそれぞれ取得する(S146)。
【0124】
第2の学習済みモデル生成部10は、ステップS142で取得したコンテンツ、ステップS144で取得したチャンク及びステップS146で取得したそれぞれのチャンク用メタ値に問題がないかを第1の画像20,40及び第2の画像30,35,50,55を参照して確認を行う(S147)。
【0125】
確認の結果問題があった場合(S148:NO)、処理中の組に関しての学習段階の情報処理は終了する。確認の結果問題がない場合(S148:YES)、第2の学習済みモデル生成部10は、第2の学習モデルDB2’にモデルIDと、1又は複数のチャンク用メタIDと、第2の画像30,35,50,55と、を1対として学習させ(S149)、処理中の組に関しての学習段階の情報処理は終了する。
【0126】
以上のように本実施の形態による情報処理装置1によって、作業情報を分割又は示唆したチャンクは、ユーザ端末12を介して提示される。このため、チャンクを適切に設定することで必要な分量の情報を提示することが可能となる。またチャンクを、文書全体を示唆するような情報とすれば、大規模な情報の再構築は不要となる。
【0127】
モデルテーブルTB2を使用することで、第1の学習済みモデルDB1と第2の学習済みモデルDB2との関係が変わった場合にも、モデルテーブルTB2を変更するだけ対応が可能となり、メンテナンス性に優れた装置を提供できる。
【0128】
なおモデルテーブルTB2を使用しない場合、第1の学習済みモデルDB1と第2の学習済みモデルDB2との関係が変わった場合には学習済みモデルDB2を再度生成する必要がある。
【0129】
本実施の形態においては、シーン推定部4、チャンク推定部5、チャンク出力部6、確認部7、第1の学習済みモデル生成部9及び第2の学習済みモデル生成部10及びレコメンド画像出力部13は、プログラムとしたがこれに限らず論理回路でもよい。
【0130】
またシーン推定部4、チャンク推定部5、チャンク出力部6、確認部7、第1の学習済みモデル生成部9及び第2の学習済みモデル生成部10、レコメンド画像出力部13、第1の学習済みモデルDB1、第1の学習モデルDB1’、第2の学習済みモデルDB2、第2の学習モデルDB2’、シーンテーブルTB1、モデルテーブルTB2、コンテンツテーブルTB3、シーン・コンテンツテーブルTB4、コンテンツ・チャンクテーブルTB5、チャンク・メタテーブルTB6、チャンクテーブルTB7、チャンク用メタテーブルTB8及び状態遷移テーブルTB9は1つの装置に実装されておらず、ネットワークで接続された複数の装置に分散して実装されていてもよい。
【0131】
また上述の図7及び図9に示した学習段階では、第1の学習済みモデル及び第2の学習済みモデルを関連付けて生成する場合について説明したが、本発明はこれに限らず、第1の学習済みモデルDB1と第2の学習済みモデルDB2とは、別々に生成してもよい。
【0132】
第1の学習済みモデルDB1と第2の学習済みモデルDB2とを別々に生成する場合、例えばシーンは既存のものであってコンテンツのみを追加する場合などに、シーンに関する学習を行わずに済む。
【0133】
本実施の形態においては、第2の学習済みモデルDB2を複数使用する場合について述べたが、これに限らず利用する第2の学習済みモデルDB2は1つでもよい。また本実施の形態においては、第1の作業と第2の作業とで同一の第1の学習済みモデルDB1を利用する場合について述べたが、これに限らず取り出し作業時と梱包作業時とで別々の第1の学習済みモデルDB1を使用してもよい。
【0134】
本実施の形態においては、第1の作業と第2の作業との関係は予め保存されている場合について述べたが、第1の作業と第2の作業との関係についても機械学習によって学習されてもよい。
【0135】
本実施の形態においては、第1の作業を行う作業者及び第2の作業を行う作業者である作業者の情報であるユーザ情報などの取得については触れていないが、これに限らず、例えばユーザ端末12からユーザ情報が取得され利用されてもよいものとする。
【符号の説明】
【0136】
1……情報処理装置、2……中央演算装置、3……主記憶装置、4……シーン推定部、5……チャンク推定部、6……チャンク出力部、7……遷移先示唆部、9……第1の学習済みモデル生成部、10……第2の学習済みモデル生成部、11……補助記憶装置、12……ユーザ端末。
図1
図2
図3
図4
図5
図6
図7
図8
図9
【手続補正書】
【提出日】2020-12-24
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
作業者が作業の対象となる対象物に対して行う第1の作業及び第2の作業に関する情報である作業情報を出力する情報処理装置であって、
前記作業者が前記第1の作業及び前記第2の作業を行う状況であるシーンの画像である第1の画像を取得し、前記第1の画像と、前記シーンを一意に示すシーンIDと、の間における連関性が記載されている第1の学習済みモデルを使用して、前記シーンを推定するシーン推定部と、
前記第1の作業及び前記第2の作業の対象物の画像である第2の画像を取得し、前記第2の画像と、1又は複数のチャンク用メタIDと、の間における連関性が記憶されている複数の第2の学習済みモデルのうちの1つを使用して、前記チャンクを推定するチャンク推定部と、
前記第2の作業が行われた際に、実際に行われた前記第1の作業及び前記第2の作業を、前記第1の作業及び前記第2の作業の関係を予め保存している状態遷移テーブルと照らし合わせて次の作業に関しての示唆を行う示唆情報を出力する遷移先示唆部と、
前記チャンクを出力する出力部と、を備え、
前記1又は複数のチャンク用メタIDは、前記作業情報を分割又は示唆した情報であるチャンクを一意に示すチャンクIDと1対1に対応付けられ、
前記チャンク推定部は、前記複数の第2の学習済みモデルのうちの1つを、シーンIDと1対1に対応付けられたモデルIDを用いて選定し、前記チャンク用メタIDは前記対象物の性質に関する情報であるチャンク用メタ値を一意に示
前記遷移先示唆部は、状態遷移IDによって前記シーンIDの組み合わせを一意に特定する、
情報処理装置。
【請求項2】
前記シーン推定部は、第1の画像が第1の作業か第2の作業かを、第1の画像の時系列的に連続する前後の画像を参照することでの判断する、
請求項1に記載の情報処理装置。
【請求項3】
前記第1の作業における前記第1の画像には第1の番号が撮像され、前記チャンク推定部は、前記第1の番号から前記第2の作業において使用する第2の番号を、チャンク用メタIDを介して推測する、
請求項2に記載の情報処理装置。
【請求項4】
作業者が作業の対象となる対象物に対して行う第1の作業及び第2の作業に関する情報である作業情報を出力する情報処理装置が行う情報処理方法であって、
前記作業者が前記第1の作業及び前記第2の作業を行う状況であるシーンの画像である第1の画像を取得し、前記第1の画像と、前記シーンを一意に示すシーンIDと、の間における連関性が記載されている第1の学習済みモデルを使用して、前記シーンを推定する第1のステップと、
前記第1の作業及び前記第2の作業の対象物の画像である第2の画像を取得し、前記第2の画像と、1又は複数のチャンク用メタIDと、の間における連関性が記憶されている複数の第2の学習済みモデルのうちの1つを使用して、前記チャンクを推定する第2のステップと、
前記第2の作業が行われた際に、実際に行われた前記第1の作業及び前記第2の作業を、前記第1の作業及び前記第2の作業の関係を予め保存している状態遷移テーブルと照らし合わせて次の作業に関しての示唆を行う示唆情報を出力する第3のステップと、
前記チャンクを出力する第4のステップと、を備え、
前記1又は複数のチャンク用メタIDは、前記作業情報を分割又は示唆した情報であるチャンクを一意に示すチャンクIDと、1対1に対応付けられ、
前記複数の第2の学習済みモデルのうちの1つが、シーンIDと1対1に対応付けられたモデルIDを用いて選定され、前記チャンク用メタIDは前記対象物の性質に関する情報であるチャンク用メタ値を一意に示
前記シーンIDの組み合わせは、状態遷移IDによって一意に特定される、
情報処理方法。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0006
【補正方法】変更
【補正の内容】
【0006】
作業者が作業の対象となる対象物に対して行う第1の作業及び第2の作業に関する情報である作業情報を出力情報処理装置であって、作業者が第1の作業及び第2の作業を行う状況であるシーンの画像である第1の画像を取得し、第1の画像と、シーンを一意に示すシーンIDと、の間における連関性が記載されている第1の学習済みモデルを使用して、シーンを推定するシーン推定部と、第1の作業及び第2の作業の対象物の画像である第2の画像を取得し、第2の画像と、1又は複数のチャンク用メタIDと、の間における連関性が記憶されている複数の第2の学習済みモデルのうちの1つを使用して、チャンクを推定するチャンク推定部と、第2の作業が行われた際に、実際に行われた第1の作業及び第2の作業を、第1の作業及び第2の作業の関係を予め保存している状態遷移テーブルと照らし合わせて次の作業に関しての示唆を行う示唆情報を出力する遷移先示唆部と、チャンクを出力する出力部と、を備え、1又は複数のチャンク用メタIDは、作業情報を分割又は示唆した情報であるチャンクを一意に示すチャンクIDと1対1に対応付けられ、チャンク推定部は、複数の第2の学習済みモデルのうちの1つを、シーンIDと1対1に対応付けられたモデルIDを用いて選定し、チャンク用メタIDは対象物の性質に関する情報であるチャンク用メタ値を一意に示遷移先示唆部は、状態遷移IDによって前記シーンIDの組み合わせを一意に特定する、情報処理装置を提供する。
【手続補正3】
【補正対象書類名】明細書
【補正対象項目名】0007
【補正方法】変更
【補正の内容】
【0007】
作業者が作業の対象となる対象物に対して行う第1の作業及び第2の作業に関する情報である作業情報を出力する情報処理装置が行う情報処理方法であって、作業者が第1の作業及び第2の作業を行う状況であるシーンの画像である第1の画像を取得し、第1の画像と、シーンを一意に示すシーンIDと、の間における連関性が記載されている第1の学習済みモデルを使用して、シーンを推定する第1のステップと、第1の作業及び第2の作業の対象物の画像である第2の画像を取得し、第2の画像と、1又は複数のチャンク用メタIDと、の間における連関性が記憶されている複数の第2の学習済みモデルのうちの1つを使用して、チャンクを推定する第2のステップと、第2の作業が行われた際に、実際に行われた第1の作業及び第2の作業を、第1の作業及び第2の作業の関係を予め保存している状態遷移テーブルと照らし合わせて次の作業に関しての示唆を行う示唆情報を出力する第3のステップと、チャンクを出力する第4のステップと、を備え、1又は複数のチャンク用メタIDは、作業情報を分割又は示唆した情報であるチャンクを一意に示すチャンクIDと、1対1に対応付けられ、チャンク推定部は、複数の第2の学習済みモデルのうちの1つを、シーンIDと1対1に対応付けられたモデルIDを用いて選定し、チャンク用メタIDは対象物の性質に関する情報であるチャンク用メタ値を一意に示シーンIDの組み合わせは、状態遷移IDによって一意に特定される、情報処理方法を提供する。
【手続補正書】
【提出日】2021-06-22
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
作業者が作業の対象となる対象物に対して行う第1の作業及び第2の作業に関する情報である作業情報を出力する情報処理装置であって、
前記作業者が前記第1の作業及び前記第2の作業を行う状況であるシーンの画像である第1の画像を取得し、前記第1の画像と、前記シーンを一意に示すシーンIDと、の間における連関性が記載されている第1の学習済みモデルを使用して、前記シーンを推定するシーン推定部と、
前記第1の作業及び前記第2の作業の対象物の画像である第2の画像を取得し、前記第2の画像と、前記作業情報を分割又は示唆した情報であるチャンクを一意に示すチャンクIDと、前記チャンクIDそれぞれに対応付けられた1又は複数のチャンク用メタIDと、の間における連関性が記憶されている複数の第2の学習済みモデルのうちの1つを使用して、前記チャンクを推定するチャンク推定部と、
前記第1の作業又は前記第2の作業が行われた際に、実際に行われた前記第1の作業及び前記第2の作業を、前記第1の作業に応じたシーンID及び前記第2の作業に応じたシーンIDの組み合わせを一意に示す2以上の状態遷移IDを予め保存している状態遷移テーブルと照らし合わせて次の作業に関しての示唆を行う示唆情報を出力する遷移先示唆部と、
前記チャンクを出力する出力部と、を備え
前記チャンク推定部は、前記複数の第2の学習済みモデルのうちの1つを、シーンIDと1対1に対応付けられたモデルIDを用いて選定し、前記チャンク用メタIDは前記対象物の性質に関する情報であるチャンク用メタ値を一意に示し、
前記遷移先示唆部は、一の状態遷移IDにおけるシーンIDを取得した場合に、他の状態遷移IDが紐付けられた同一の当該シーンIDを持つ第1の作業に関しての示唆を行う
情報処理装置。
【請求項2】
次に前記遷移先示唆部は、更なる他の状態遷移IDが紐付けられた他のシーンIDを持つ第1の作業に関する示唆を行う
請求項1に記載の情報処理装置。
【請求項3】
前記遷移先示唆部は、第1の作業に関する示唆を全て終了させた後、一の状態遷移IDにおける第2の作業のシーンIDを取得した場合に、他の状態遷移IDが紐付けられた同一の当該シーンIDを持つ第2の作業に関しての示唆を行う
請求項2に記載の情報処理装置。
【請求項4】
作業者が作業の対象となる対象物に対して行う第1の作業及び第2の作業に関する情報である作業情報を出力する情報処理装置が行う情報処理方法であって、
前記作業者が前記第1の作業及び前記第2の作業を行う状況であるシーンの画像である第1の画像を取得し、前記第1の画像と、前記シーンを一意に示すシーンIDと、の間における連関性が記載されている第1の学習済みモデルを使用して、前記シーンを推定する第1のステップと、
前記第1の作業及び前記第2の作業の対象物の画像である第2の画像を取得し、前記第2の画像と、前記作業情報を分割又は示唆した情報であるチャンクを一意に示すチャンクIDと、前記チャンクIDそれぞれに対応付けられた1又は複数のチャンク用メタIDと、の間における連関性が記憶されている複数の第2の学習済みモデルのうちの1つを使用して、前記チャンクを推定する第2のステップと、
前記第1の作業又は前記第2の作業が行われた際に、実際に行われた前記第1の作業及び前記第2の作業を、前記第1の作業に応じたシーンID及び前記第2の作業に応じたシーンIDの組み合わせを一意に示す2以上の状態遷移IDを予め保存している状態遷移テーブルと照らし合わせて次の作業に関しての示唆を行う示唆情報を出力する第3のステップと、
前記チャンクを出力する第4のステップと、を備え
前記第2のステップでは、前記複数の第2の学習済みモデルのうちの1つが、シーンIDと1対1に対応付けられたモデルIDを用いて選定され、前記チャンク用メタIDは前記対象物の性質に関する情報であるチャンク用メタ値を一意に示し、
前記第3のステップでは、一の状態遷移IDにおけるシーンIDを取得した場合に、他の状態遷移IDが紐付けられた同一の当該シーンIDを持つ第1の作業に関しての示唆を行う
情報処理方法。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0006
【補正方法】変更
【補正の内容】
【0006】
作業者が作業の対象となる対象物に対して行う第1の作業及び第2の作業に関する情報である作業情報を出力する情報処理装置であって、前記作業者が前記第1の作業及び前記第2の作業を行う状況であるシーンの画像である第1の画像を取得し、前記第1の画像と、前記シーンを一意に示すシーンIDと、の間における連関性が記載されている第1の学習済みモデルを使用して、前記シーンを推定するシーン推定部と、前記第1の作業及び前記第2の作業の対象物の画像である第2の画像を取得し、前記第2の画像と、前記作業情報を分割又は示唆した情報であるチャンクを一意に示すチャンクIDと、前記チャンクIDそれぞれに対応付けられた1又は複数のチャンク用メタIDと、の間における連関性が記憶されている複数の第2の学習済みモデルのうちの1つを使用して、前記チャンクを推定するチャンク推定部と、前記第1の作業又は前記第2の作業が行われた際に、実際に行われた前記第1の作業及び前記第2の作業を、前記第1の作業に応じたシーンID及び前記第2の作業に応じたシーンIDの組み合わせを一意に示す2以上の状態遷移IDを予め保存している状態遷移テーブルと照らし合わせて次の作業に関しての示唆を行う示唆情報を出力する遷移先示唆部と、前記チャンクを出力する出力部と、を備え、前記チャンク推定部は、前記複数の第2の学習済みモデルのうちの1つを、シーンIDと1対1に対応付けられたモデルIDを用いて選定し、前記チャンク用メタIDは前記対象物の性質に関する情報であるチャンク用メタ値を一意に示し、前記遷移先示唆部は、一の状態遷移IDにおけるシーンIDを取得した場合に、他の状態遷移IDが紐付けられた同一の当該シーンIDを持つ第1の作業に関しての示唆を行う情報処理装置を提供する。
【手続補正3】
【補正対象書類名】明細書
【補正対象項目名】0007
【補正方法】変更
【補正の内容】
【0007】
作業者が作業の対象となる対象物に対して行う第1の作業及び第2の作業に関する情報である作業情報を出力する情報処理装置が行う情報処理方法であって、前記作業者が前記第1の作業及び前記第2の作業を行う状況であるシーンの画像である第1の画像を取得し、前記第1の画像と、前記シーンを一意に示すシーンIDと、の間における連関性が記載されている第1の学習済みモデルを使用して、前記シーンを推定する第1のステップと、前記第1の作業及び前記第2の作業の対象物の画像である第2の画像を取得し、前記第2の画像と、前記作業情報を分割又は示唆した情報であるチャンクを一意に示すチャンクIDと、前記チャンクIDそれぞれに対応付けられた1又は複数のチャンク用メタIDと、の間における連関性が記憶されている複数の第2の学習済みモデルのうちの1つを使用して、前記チャンクを推定する第2のステップと、前記第1の作業又は前記第2の作業が行われた際に、実際に行われた前記第1の作業及び前記第2の作業を、前記第1の作業に応じたシーンID及び前記第2の作業に応じたシーンIDの組み合わせを一意に示す2以上の状態遷移IDを予め保存している状態遷移テーブルと照らし合わせて次の作業に関しての示唆を行う示唆情報を出力する第3のステップと、前記チャンクを出力する第4のステップと、を備え、前記第2のステップでは、前記複数の第2の学習済みモデルのうちの1つが、シーンIDと1対1に対応付けられたモデルIDを用いて選定され、前記チャンク用メタIDは前記対象物の性質に関する情報であるチャンク用メタ値を一意に示し、前記第3のステップでは、一の状態遷移IDにおけるシーンIDを取得した場合に、他の状態遷移IDが紐付けられた同一の当該シーンIDを持つ第1の作業に関しての示唆を行う情報処理方法を提供する。