(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022021152
(43)【公開日】2022-02-02
(54)【発明の名称】荷電粒子線装置及び設定支援方法
(51)【国際特許分類】
H01J 37/22 20060101AFI20220126BHJP
H01J 37/28 20060101ALI20220126BHJP
H01J 37/252 20060101ALI20220126BHJP
【FI】
H01J37/22 502H
H01J37/28 B
H01J37/252 A
H01J37/252 B
【審査請求】有
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2020124584
(22)【出願日】2020-07-21
(71)【出願人】
【識別番号】000004271
【氏名又は名称】日本電子株式会社
(74)【代理人】
【識別番号】110001210
【氏名又は名称】特許業務法人YKI国際特許事務所
(72)【発明者】
【氏名】渡壁 一貴
【テーマコード(参考)】
5C033
【Fターム(参考)】
5C033PP05
5C033PP06
5C033QQ10
5C033UU05
5C033UU06
(57)【要約】
【課題】走査電子顕微鏡等の荷電粒子線装置において、多層構造を有する試料内で生じる物理現象の発生深さをイメージしながら、照射条件の設定を行えるようにする。
【解決手段】UI画像82には参照像84が含まれ、参照像84には背景像86及び模式像88が含まれる。背景像86は多層構造を有する試料の断面に相当する。模式像88には、電子侵入深さを示す図形126、特性X線発生深さを示す図形128、及び、反射電子発生深さを示す図形130が含まれる。それらの図形126,128,130は、重合表示され、あるいは、並列表示される。
【選択図】
図6
【特許請求の範囲】
【請求項1】
多層構造を有する試料に対して荷電粒子線を照射する条件に従って、前記試料内において深さ方向に及ぶ物理現象の深さを演算する演算部と、
前記物理現象の深さに基づいて、前記多層構造を示す背景像及び前記物理現象の深さを示す模式像を有する参照像を生成する生成部と、
前記荷電粒子線の照射条件を設定する際に前記参照像を表示する表示器と、
を含むことを特徴とする荷電粒子線装置。
【請求項2】
請求項1記載の荷電粒子線装置において、
前記背景像には、前記試料内において深さ方向に並ぶn(但しnは2以上の整数)個の層を示すn個の層像が含まれ、
前記各層像の深さ方向の表示幅が前記各層の厚みに従って決定される、
ことを特徴とする荷電粒子線装置。
【請求項3】
請求項2記載の荷電粒子線装置において、
前記模式像には、前記物理現象の深さを示す図形であって前記深さ方向へ伸長した図形が含まれ、
前記背景像に対して前記模式像が重畳表示される、
ことを特徴とする荷電粒子線装置。
【請求項4】
請求項1記載の荷電粒子線装置において、
前記演算部は、前記物理現象の深さとして、電子侵入深さ及び信号発生深さを演算し、
前記模式像には、前記電子侵入深さを示す図形及び前記信号発生深さを示す図形が含まれ、
前記電子侵入深さを示す図形及び前記信号発生深さを示す図形は、重畳表示され、又は、並列表示される、
ことを特徴とする荷電粒子線装置。
【請求項5】
請求項1記載の荷電粒子線装置において、
前記演算部は、前記荷電粒子線が到達する最深層を第k(但しkは2以上の整数)層とした場合、前記荷電粒子線の加速電圧、前記試料内における第1層から第k-1層までの厚み合計、及び、前記第1層から前記第k層までの各層の組成に基づいて、前記物理現象の深さを演算する、
ことを特徴とする荷電粒子線装置。
【請求項6】
請求項1記載の荷電粒子線装置において、
前記物理現象は前記荷電粒子線である電子線の侵入であり、
前記演算部は、
第1層から深さ順で層ごとに前記電子線の透過の有無を調べることにより、前記電子線が到達する最深層である第k(但しkは2以上の整数)層を特定する手段と、
前記第1層から第k-1層までの厚み合計を演算する手段と、
前記第k層内での前記電子線の層内侵入深さを演算する手段と、
前記厚み合計に前記層内侵入深さを加算することにより、前記物理現象の深さとして、前記試料内における電子侵入深さを演算する手段と、
を含むことを特徴とする荷電粒子線装置。
【請求項7】
請求項1記載の荷電粒子線装置において、
前記物理現象は前記荷電粒子線である電子線の照射に起因する信号の発生であり、
前記演算部は、
第1層から深さ順で層ごとに前記試料からの前記信号の脱出の有無を調べることにより、脱出信号が発生する最深層である第k(但しkは2以上の整数)層を特定する手段と、
前記第1層の厚みから第k-1層までの厚み合計を演算する手段と、
前記試料からの前記信号の脱出を前提として、前記第k層内での前記信号の層内発生深さを演算する手段と、
前記厚み合計に前記層内発生深さを加算することにより、前記物理現象の深さとして、前記試料内における信号発生深さを演算する手段と、
を含むことを特徴とする荷電粒子線装置。
【請求項8】
請求項7記載の荷電粒子線装置において、
前記信号は、反射電子及び特性X線の中の少なくとも1つである、
ことを特徴とする荷電粒子線装置。
【請求項9】
多層構造を有する試料に対して荷電粒子線を照射する条件に従って、前記試料内において深さ方向に及ぶ物理現象の深さを演算する工程と、
前記物理現象の深さに基づいて、前記多層構造を示す背景像及び前記物理現象の深さを示す模式像を有する参照像を生成する工程と、
前記参照像を表示する工程と、
を含むことを特徴とする設定支援方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、荷電粒子線装置及び設定支援方法に関し、特に、照射条件の設定を支援する技術に関する。
【背景技術】
【0002】
荷電粒子線装置として、走査電子顕微鏡、電子線マイクロアナライザー、イオンビーム照射装置、等が知られている。以下においては、それらの装置を代表して走査電子顕微鏡について説明する。
【0003】
走査電子顕微鏡は、荷電粒子線である電子線(電子ビーム)を試料に対して照射し、試料から放出される二次電子、反射電子、特性X線等を検出する装置である。電子線の二次元走査により得られた一連の検出信号に基づいて試料の表面又は表層を表す画像が形成される。試料から出た特性X線の分析により、試料の定性解析及び定量解析が実行される。
【0004】
走査電子顕微鏡による試料の測定においては、試料を構成する元素によって試料内における電子侵入深さ(電子線侵入深さ、電子散乱深さ)が変化し、また、電子線の加速電圧(入射電圧)によって試料内における電子侵入深さが変化する。これと同様に、試料を構成する元素や電子線の加速電圧によって、試料内において反射電子が発生する深さ(試料から放出される反射電子の発生範囲)、及び、試料内において特性X線が発生する深さ(試料から放出される特性X線の発生範囲)が変化する。
【0005】
走査電子顕微鏡においては、ユーザーによる数値の指定により、加速電圧等の照射条件が設定される。従来において、照射条件の設定時に、設定作業を支援する模式図等は表示されていない。なお、試料中の電子散乱範囲又は信号発生範囲を推定するシミュレーション装置も知られている。そのような装置は、測定装置ではなく、単体で機能するものであり、そのような装置と荷電粒子線装置の連携は図られていない。
【0006】
特許文献1及び特許文献2には、X線分析装置が開示されている。それらの文献には、試料内でのX線発生領域の計算、及び、X線発生領域に基づく加速電圧の決定、が記載されている。しかし、それらの特許文献には、ユーザーによる照射条件の設定を支援する技術は開示されていない。
【0007】
特許文献3には、試料に対して電子線を照射し試料から放出されるX線を検出することにより試料中の薄膜の厚さを求めることが可能なX線分析装置が開示されている。特許文献4には、試料に対して電子線を照射し試料から放出されるX線を検出することにより試料の内部構造を特定する荷電粒子線装置が開示されている。しかし、特許文献3,4には、多層構造を有する試料中の信号発生範囲の計算については開示されておらず、特に、試料中のいずれかの層の途中まで電子線が侵入するモデルについては開示されていない。本願明細書において、照射条件の設定の概念には、照射条件の確認及び変更が含まれ得る。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2004-163135号公報
【特許文献2】特開2006-275756号公報
【特許文献3】特開昭64-16905号公報
【特許文献4】特開2013-143364号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
本開示の目的は、荷電粒子線装置において、ユーザーによる照射条件の設定を支援することにある。あるいは、本開示の目的は、荷電粒子線装置において、多層構造を有する試料内で生じる物理現象をイメージしながら、照射条件の設定を行えるようにすることにある。
【課題を解決するための手段】
【0010】
本開示に係る荷電粒子線装置は、多層構造を有する試料に対して荷電粒子線を照射する条件に従って、前記試料内において深さ方向に及ぶ物理現象の深さを演算する演算部と、前記物理現象の深さに基づいて、前記多層構造を示す背景像及び前記物理現象の深さを示す模式像を有する参照像を生成する生成部と、前記荷電粒子線の照射条件を設定する際に前記参照像を表示する表示器と、を含むことを特徴とする。
【0011】
本開示に係る設定支援方法は、多層構造を有する試料に対して荷電粒子線を照射する条件に従って、前記試料内において深さ方向に及ぶ物理現象の深さを演算する工程と、前記物理現象の深さに基づいて、前記多層構造を示す背景像及び前記物理現象の深さを示す模式像を有する参照像を生成する工程と、前記参照像を表示する工程と、を含むことを特徴とする。
【発明の効果】
【0012】
本開示によれば、荷電粒子線装置において、ユーザーによる照射条件の設定を支援できる。あるいは、本開示によれば、多層構造を有する試料内で生じる物理現象をイメージしながら、照射条件の設定を行える。
【図面の簡単な説明】
【0013】
【
図1】実施形態に係る走査電子顕微鏡を示す概念図である。
【
図2】UI(ユーザーインターフェイス)部の構成例を示す図である。
【
図4】電子侵入深さの計算方法を示すフローチャートである。
【
図5】信号発生深さの計算方法を示すフローチャートである。
【
図6】第1実施例に係るGUI画像を示す図である。
【
図7】第2実施例に係るGUI画像を示す図である。
【
図8】第3実施例に係るGUI画像を示す図である。
【発明を実施するための形態】
【0014】
以下、実施形態を図面に基づいて説明する。
【0015】
(1)実施形態の概要
実施形態に係る荷電粒子線装置は、演算部、生成部、及び、表示器を有する。演算部は、多層構造を有する試料に対して荷電粒子線を照射する条件に従って、試料内において深さ方向に及ぶ物理現象の深さを演算する。生成部は、物理現象の深さに基づいて、参照像を生成する。参照像は、多層構造を示す背景像及び物理現象の深さを示す模式像を有する。荷電粒子線の照射条件を設定する際に、表示器に参照像が表示される。
【0016】
上記構成によれば、参照像の観察を通じて、試料内において深さ方向に及ぶ物理現象の深さ(深さ範囲)をイメージしながら、照射条件を設定することが可能となる。特に、参照像には、背景像及び模式像が含まれるので、試料内部を意識しながら、物理現象の深さを認識できる。荷電粒子線又は荷電粒子線装置についての知識が乏しいユーザーであっても、参照像を観察することにより、照射条件を適切に設定し易くなる。
【0017】
模式像が目安であっても、ユーザーに何らの情報を提供しない場合に比べて、上記構成によれば、ユーザーによる照射条件の設定を支援できる。実施形態においては、参照像を含むグラフィカルユーザーインターフェイス画像がユーザーに提供され、その画像を通じて照射条件の確認、変更等が行われる。
【0018】
実施形態において、背景像には、試料内において深さ方向に並ぶn(但しnは2以上の整数)個の層を示すn個の層像が含まれる。各層像の深さ方向の表示幅が各層の厚みに従って決定される。試料を構成する層の総数をNとした場合、nはN以下である。nがユーザー指定されてもよい。各層の厚みは、ユーザー指定され、又は、試料解析結果に従って自動的に決定される。表示スケールに従って、各層の実際の厚みから各層像の表示幅が計算されてもよい。n番目の層の厚みとして、計算上、大きな値又は無限大が設定される場合、n番目の層像の表示幅として既定値が設定されてもよい。
【0019】
実施形態において、模式像には、物理現象の深さを示す図形であって深さ方向へ伸長した図形が含まれる。背景像に対して模式像が重畳表示される。この構成によれば、物理現象がどの層まで及んでいるのか、換言すれば、どこまでの層が観測対象となっているのか、を直感的に理解し得る。図形として矢印マークを採用してもよい。荷電粒子線の侵入が下向き矢印マークにより表現され、信号発生が上向き矢印マークにより表現されてもよい。物理現象の範囲が他の図形によって表現されてもよく、また、物理現象の範囲が着色範囲として表現されてもよい。
【0020】
実施形態において、演算部は、物理現象の深さとして、電子侵入深さ及び信号発生深さを演算する。模式像には、電子侵入深さを示す図形及び信号発生深さを示す図形が含まれる。電子侵入深さを示す図形及び信号発生深さを示す図形は、重畳表示され、又は、並列表示される。この構成によれば、電子侵入深さ及び信号発生深さを同時に視覚的に特定することが可能となる。その上で、加速電圧等の照射条件を設定し得る。
【0021】
実施形態において、演算部は、荷電粒子線が到達する最深層を第k(但しkは2以上の整数)層とした場合、荷電粒子線の加速電圧、試料内における第1層から第k-1層までの厚み合計、及び、第1層から第k層までの各層の組成に基づいて、物理現象の深さを演算する。k≦nである。k番目(又はn番目)の層の厚みとして、上記のように、無限大が設定されてもよい。
【0022】
実施形態において、物理現象は荷電粒子線である電子線の侵入である。最初に、演算部は、第1層から深さ順で層ごとに電子線の透過の有無を調べることにより、電子線が到達する最深層である第k(但しkは2以上の整数)層を特定する。次に、演算部は、第1層から最深層までの厚み合計を演算する。続いて、演算部は、第k層内での電子線の層内侵入深さを演算する。最後に、演算部は、厚み合計に層内侵入深さを加算することにより、物理現象の深さとして、試料内における電子侵入深さを演算する。
【0023】
実施形態において、物理現象は荷電粒子線である電子線の照射に起因する信号の発生である。最初に、演算部は、第1層から深さ順で層ごとに試料からの信号の脱出の有無を調べることにより、脱出信号が発生する最深層である第k(但しkは2以上の整数)層を特定する。次に、演算部は、第1層から第k-1層までの厚み合計を演算する。続いて、演算部は、試料からの信号の脱出を前提として、第k層内での信号の層内発生深さを演算する。最後に、演算部は、厚み合計に層内発生深さを加算することにより、物理現象の深さとして、試料内における信号発生深さを演算する。実施形態において、信号は、反射電子及び特性X線の中の少なくとも1つである。
【0024】
実施形態に係る設定支援方法は、第1工程、第2工程、及び、第3工程を含む。第1工程では、多層構造を有する試料に対して荷電粒子線を照射する条件に従って、試料内において深さ方向に及ぶ物理現象の深さが演算される。第2工程では、物理現象の深さに基づいて、参照像が生成される。参照像は、多層構造を示す背景像及び物理現象の深さを示す模式像を有する。第3工程では、参照像が表示される。
【0025】
参照像と共に、又はその一部として、照射条件を示す数値、各層の厚みを示す数値、各層の組成を示すラベル、等を表示してもよい。各層が複数の元素により構成される場合、層ごとに支配的な代表元素が選択されてもよいし、層ごとに複数の元素が考慮されてもよい。
【0026】
上記設定支援方法は、ソフトウエアの機能により実現され得る。その場合、上記設定支援方法を実行するプログラムが、ネットワーク又は可搬型記憶媒体を介して、荷電粒子線装置、情報処理装置、等に対してインストールされる。
【0027】
(2)実施形態の詳細
図1には、実施形態に係る荷電粒子線装置が示されている。荷電粒子線装置は、具体的には、走査電子顕微鏡10である。走査電子顕微鏡10は、図示された構成例において、測定部12及び情報処理部14に大別される。情報処理部14は、例えば、パーソナルコンピュータ(PC)により構成される。情報処理部14には、表示器16及び入力器18が接続されている。
【0028】
後述するように、表示器16に表示された画像19を通じて、試料情報及び照射条件が入力され、また、表示器16には、試料に対して電子線を照射した場合において試料内で生じる物理現象が模式的に表示される。
【0029】
測定部12は、鏡筒20及び本体21有する。本体21の内部が試料室22である。鏡筒20内には、電子線源、集束レンズ、偏向走査レンズ、対物レンズ等が設けられている。それらによって電子ビームつまり電子線23が生成される。試料室22内には、試料ステージ24が設けられ、試料ステージ24によって試料25が保持されている。具体的には、試料ステージ24に対して、試料25を保持した試料ホルダが取り付けられている。試料ステージ24は、試料25を上下左右方向に移動させるXYZ機構、試料25を回転させる回転機構、及び、試料25を傾斜させるチルト機構、を備えている。試料傾斜角度はチルト角とも称される。
【0030】
試料25は、多層構造を有している。試料25の測定時には、通常、チルト角が0°とされるが、それ以外のチルト角が設定されてもよい。
【0031】
図示の構成例において、試料25の周囲には、二次電子検出器26、反射電子検出器27、及び、特性X線分光器28が設けられている。それらは模式的に表現されている。試料25に対して電子線23を照射すると、試料25から二次電子及び反射電子が放出され、また試料25から特性X線が放出される。二次電子検出器26により、試料25から放出された二次電子が検出される。反射電子検出器27により、試料25から放出された反射電子が検出される。特性X線分光器28により、試料25から放出された特性X線が検出される。
【0032】
特性X線分光器28は、例えば、エネルギー分散型特性X線分光器である。それに代えて、又はそれと共に、波長分散型特性X線分光器が設けられてもよい。以上挙げた検出器以外の検出器が設けられてもよい。通常、試料25に対して電子線23が二次元走査される。二次電子検出器26、反射電子検出器27及び特性X線分光器28から出力された複数の検出信号が情報処理部14へ送られている。
【0033】
情報処理部14は、情報処理を実行するプロセッサ、データ及びプログラムを格納するメモリ、等を有している。
図1においては、情報処理部14により発揮される代表的な複数の機能が複数のブロックにより表現されている。具体的には、情報処理部14は、制御部30、試料画像形成部32、分析部34、UI(ユーザーインターフェイス)部36、等として機能する。
【0034】
制御部30は、測定部12内の個々の機器の動作を制御する。制御部30によって、ユーザー指定された照射条件を実現する複数の動作パラメータが決定される。照射条件には、電子線23の加速電圧が含まれる。電子線23の加速電圧は、試料25から見て、電子線23の入射電圧と言い得る。
【0035】
試料画像形成部32は、電子線23の二次元走査によって得られた一連の検出信号(例えば、一連の二次電子検出信号又は一連の反射電子検出信号)に基づいて、試料25の表面又は表層を表す二次元画像を形成する。分析部34は、特性X線分光器28から出力された検出信号に基づいて、試料25の定性分析及び定量分析を実行するものである。具体的には、分析部34は、試料を構成する複数の元素、及び、元素ごとの濃度を分析する機能を備えている。試料25を構成する層ごとに、組成が解析されてもよい。
【0036】
UI部36は、ユーザーに提供するグラフィカルユーザーインターフェイス(GUI)画像を生成し、GUI画像を通じてユーザーが入力する情報を受け付ける。UI部36は、参照像生成器38を備えている。
【0037】
参照像生成器38は、参照像を生成するモジュールである。参照像は、後に詳述するように、試料内の多層構造を示す背景像、及び、試料内における複数の物理現象を示す模式像を有する。背景像には、試料を構成する複数の層を示す複数の層像及び複数の層の厚みを示す複数の数値が含まれる。模式像には、複数の物理現象の範囲を示す複数の図形及び複数の数値が含まれる。参照像は、GUI画像の要部を構成する。物理現象として、電子散乱(電子侵入)、及び、信号の発生が挙げられる。信号の発生として、反射電子の発生、及び、特性X線の発生が挙げられる。参照像は、試料の縦断面に相当する。
【0038】
参照像又はそれを含むGUI画像は、ユーザーによる照射条件の設定を支援するための補助的画像である。ユーザーは、GUI画像の観察を通じて、物理現象の範囲をイメージ又は認識しながら、GUI画像を通じて加速電圧等の照射条件を確認又は変更し得る。以上のように、UI部36は、演算手段、生成手段、及び、受付手段として機能する。
【0039】
図1に示す構成例では、情報処理部14がUI部36を有していたが、UI部36を他の情報処理部に含めてもよい。例えば、制御部30を含む第1情報処理部、及び、UI部36を含む第2情報処理部を設け、それらを相互に連携させてもよい。
【0040】
表示器16は、液晶表示器、有機EL表示デバイス、等により構成される。入力器18は、キーボード、ポインティングデバイス、等により構成される。表示器16及び入力器18として、タッチパネル付き表示器が設けられてもよい。
【0041】
図2には、UI部36の構成例が示されている。
図2に示されている複数のブロックは、元素テーブル46を除いて、いずれも、ソフトウエアにより実現される機能を示している。受付部40は、加速電圧E
0、及び、試料情報を受け付けるモジュールである。試料情報には、試料内において深さ方向に並ぶ層の個数n、n個の層の厚みt1~tn、及び、n個の層の組成(元素情報)S1~Snが含まれる。nは2以上の整数であり、試料を構成する層の総数をNとした場合、n≦Nである。第1層が最上層つまり表層に相当する。入射電子が到達する最深層を第k層と表現し、あるいは、試料から放出される信号を発生させた最深層を第k層と表現した場合、通常、n≧kの条件が満たされるように、nが指定される。
【0042】
以下に説明する具体例においては、各層が単一の元素によって構成されており、その場合、各層の組成は各層を構成する元素を意味する。各層が複数の元素で構成される場合、各層がいずれかの代表元素で構成されるとみなしてもよいし、各層を構成する複数の元素の濃度(比率)を考慮してもよい。例えば、各深さの演算で必要となる質量、密度、及び、原子番号として、平均質量、平均密度、及び、平均原子番号を用いてもよい。
【0043】
符号42で示すように、受付部40は、ユーザーの操作に従って、制御部から、そこに設定されている加速電圧E0を取得する取得部として機能し、また、分析部から、試料情報を取得する取得部として機能する。受付部40は、符号58及び符号44で示すように、GUI画像を通じてユーザーにより入力された加速電圧E0、及び、試料情報(n,t1~tn,S1~Sn)を受け付ける機能を有する。
【0044】
受付部40は、ユーザー操作に従って、受け付けられた照射条件を制御部へ転送し、これにより、その照射条件を制御部に適用する転送部としても機能する(符号66を参照)。転送される照射条件は、加速電圧E0である。
【0045】
複数の層を構成する複数の元素S1~Snを特定する情報が、受付部40から元素テーブル46へ与えられている。元素テーブル46は元素データベースを構成するものである。各層を構成する元素ごとに、元素テーブル46から、元素情報が出力される。元素情報には、質量A、原子番号Z、密度ρ、及び、最低励起エネルギーEcが含まれる。最低励起エネルギーEcは、特性X線を生じさせる最低のエネルギーに相当する。
【0046】
電子侵入深さ演算器48は、加速電圧E0、及び、各層の元素情報に基づいて、電子侵入深さDPEを演算する。電子侵入深さDPEを求めるための計算式については後に説明する。電子侵入深さDPEは、電子散乱範囲の深さ方向の最大値である。
【0047】
反射電子発生深さ演算器50は、実施形態において、電子侵入深さDPEに基づいて反射電子発生深さDBSEを演算する。必要であれば、その演算の際に、元素テーブルから出力される複数の元素情報が参照されてもよい。反射電子発生深さDBSEを求めるための計算式については後に説明する。
【0048】
特性X線発生深さ演算器52は、加速電圧E0、及び、各層の元素情報に基づいて、特性X線発生深さDXを演算する。その演算に際しては、元素情報の1つである最低励起エネルギーが参照される。1つの元素から複数の特性X線が生じ得る場合、その内で代表特性X線について発生深さが演算されてもよいし、複数の特性X線のすべてについて複数の発生深さが演算されてもよい。加速電圧に従って、計算対象とする代表特性X線を自動的に決定するテーブルを用意してもよい。
【0049】
画像生成器54は、GUI画像を生成するモジュールであり、それには参照像生成器38が含まれる。参照像生成器38に対しては、電子侵入深さDPE、反射電子発生深さDBSE、特性X線発生深さDX、加速電圧E0、層の個数n、各層の厚みt1~tn、各層を構成する元素S1~Sn、が与えられている。符号56は、表示器に対して出力する信号を示している。符号58は、入力器からの信号を示している。
【0050】
加速電圧演算器60は、必要に応じて、特性X線発生深さDXから加速電圧E0を逆算するモジュールである。その逆算に際しては、試料情報、及び、その他の情報が参照される。逆算された加速電圧E0が受付部40に送られている(符号62を参照)。逆算された加速電圧E0が、必要に応じて、制御部へ送られる(符号64を参照)。これにより加速電圧E0が制御部に対して適用され、つまり加速電圧E0が有効化される。
【0051】
図2に示す構成例において、GUI画像上における加速電圧等の照射条件の入力とは別に、制御部に対する照射条件の入力を求めてもよい。これは、ユーザーによる照射条件の設定をより慎重に行わせるための安全策である。その場合でも、GUI画像が照射条件の設定を支援する画像であることに変わりはない。もっとも、そのような再入力は煩雑であるので、実施形態においては、入力された照射条件を有効化する適用ボタンが用意されている。これについては後述する。
【0052】
なお、従来同様、照射条件を設定するための設定画像(但し参照像を有しない)を通じて、照射条件の新規設定、照射条件の確認、及び、照射条件の変更を行える。そのような設定画像は、
図1に示した制御部により生成される。例えば、電子線又は走査電子顕微鏡についての知識及び経験が豊富なユーザーにおいては、GUI画像の表示を経由せずに、設定画像上において照射条件を設定し得る。
【0053】
図3には、元素テーブルの構成例が示されている。元素テーブル46は、不揮発メモリ上に構築される。元素テーブル46は、複数の元素に対応する複数のレコード70を有する。各レコードは、元素72に関する元素情報を含み、元素情報は複数の物理情報からなる。複数の物理情報には、具体的には、原子番号74、質量76、密度78、最低励起エネルギー80、等が含まれる。上記のように、個々の元素ごとに、複数の特性X線に対応する複数の最低励起エネルギー80が登録され得る。
【0054】
以下、電子侵入深さDPE、反射電子発生深さDBSE、及び、特性X線発生深さDXの計算方法について説明する。
【0055】
まず、試料が多層構造を有しておらず、試料が単一の元素からなる単一の層により構成されていることを前提とする。その前提の下では、電子侵入深さD
PEは、公知の以下の(1)式によって計算される。
【数1】
【0056】
上記(1)式において、Aは元素(原子)の質量を示しており、E0は加速電圧を示しており、ρは元素の密度を示しており、Zは原子番号を示している。質量A、密度ρ、及び、原子番号Zは、元素テーブルから特定される。
【0057】
反射電子発生深さD
BSEは、以下の(2)式によって計算される。すなわち、反射電子発生深さD
BSEは、電子侵入深さD
PEの半分として、電子侵入深さD
PEから直ちに計算され得る。
【数2】
【0058】
特性X線発生深さD
Xは、公知の以下の(3)式によって計算される。E
cは、特定の電子軌道についての最低励起エネルギーである。
【数3】
【0059】
一方、試料が多層構造を有する場合、i番目の層を電子線が透過するために必要なエネルギーE
iは、上記(1)式を変形して、以下の(4)式のように表現される。説明簡略化のため、各層は単一の元素により構成されているものとする。以下のt
iはi番目の層の厚さを示している。質量A
i、密度ρ
i、及び、原子番号Z
iは、それぞれ、第i層を構成する原子の質量、密度、及び、原子番号である。
【数4】
【0060】
各層の透過に際しては、上記(4)式で定義されるエネルギーが消費される。よって、第i層に入射する電子のエネルギーE
kは以下の(5)式のように表せる。
【数5】
【0061】
上記(5)式の第1項は加速電圧E0であり、上記(5)式の第2項は第1層から第k-1層までを入射電子が透過するのに要した総エネルギーを意味している。
【0062】
上記(5)式に従って、深さ方向に沿って、第1層から層ごとに順番にエネルギーExの符号を調べ、エネルギーEXが最初にマイナスとなった層が、入射電子が到達する最深層である。その最深層を第k層と表現した場合、最深層の1つ手前の直前層は第k-1層と表現される。最深層つまり第k層における電子侵入深さ(層内深さ)は、第k層へ入射する電子のエネルギーExを上記(3)式のE0に与えることにより、算出される。
【0063】
第1層から第k-1層までの厚み合計に対して、最深層における電子侵入深さ(層内深さ)DPEkを加算することにより、多層構造を有する試料内における電子侵入深さDPEが求められる。
【0064】
以下の(6)式は、上記(1)式に基づくものであり、(6)式によって層内深さD
PEkが求められる。
【数6】
【0065】
質量Ak、密度ρk、及び、原子番号Zkは、それぞれ、第k層を構成する原子の質量、密度、及び、原子番号である。
【0066】
整理すると、多層構造を有する試料内における電子侵入深さD
PEは以下の(7)式のように表現される。
【数7】
【0067】
上記(7)式の第1項が第1層から第k-1層までの厚み合計を示しており、上記(7)式の第2項は上記(6)式から求められる層内深さDPEkである。各層が複数の元素で構成されている場合、例えば、層ごとに、複数の元素の濃度に従って平均質量、平均密度、平均原子番号を求め、それらを上記各式に代入すればよい。
【0068】
試料が多層構造を有する場合における反射電子発生深さについても、上記同様の考え方から、求められる。もっとも、反射電子に関しては、入射過程(往路過程)及び脱出過程(復路過程)の両方でのエネルギー消費を考慮する必要がある。換言すれば、入射電子の場合に比べて、2倍のエネルギーを消費する。よって、第i層において発生した反射電子が試料から脱出するために満たすべき条件(脱出条件)は、以下の(8)式で示すエネルギー2E
kがマイナスとならないことである。
【数8】
【0069】
深さ方向に沿って、第1層から層ごとに順番にエネルギー2Ekの符号を調べ、エネルギー2Ekが最初にマイナスとなった層が、試料から放出される反射電子を発生させた最深層となる。その最深層を第k層と表現した場合、最深層の1つ前の層が第k-1層である。
【0070】
最深層つまり第k層における反射電子発生深さ(層内深さ)D
BSEkは、上記(1)式及び(2)式に基づく以下の(9)式に従って計算される。
【数9】
【0071】
試料内における反射電子発生深さD
BSEは、以下の(10)に従って計算される。
【数10】
【0072】
すなわち、第1層から第k-1層までの厚み合計に上記層内深さDBSEkを加算したものが試料内における反射電子発生深さDBSEとなる。
【0073】
試料が多層構造を有する場合における特性X線発生深さについても、上記同様の考え方から、求められる。もっとも、入射電子のエネルギーが特性X線を発生させるエネルギーに達している場合に限り、特性X線が生じ、それに達していない場合には特性X線は生じないので、これを考慮する必要がある。
【0074】
すなわち、深さ方向に沿って、第1層から層ごとに順番に、以下の(11)式で定義されるエネルギーE
k-ckがチェックされる。
【数11】
【0075】
上記(11)式において、エネルギーEkは、第k層に入射する電子のエネルギーを示している。それは上記(5)により求められる。上記(11)式において、エネルギーEckは、第k層における最低励起エネルギーを示している。第1層から層ごとに順番に、エネルギーEkからエネルギーEckを引いて求められるエネルギーEk-ckの符号が調べられる。その過程で、エネルギーEk-ckが最初にマイナスとなった層が、特性X線を発生させた最深層となる。それを第k層と表現した場合、その1つ前の直前層が第k-1層となる。入射電子は、第1層から第k-1層まで透過した上で、第k層の途中まで侵入する、ことになる。
【0076】
第k層における特性X線発生深さ(層内深さ)D
Xkは、上記(3)式と同様に、以下の(12)式から求められる。
【数12】
【0077】
第k層に入射する電子のエネルギーE
kは上記(5)式から求められる。多層構造を有する試料内における特性X線発生深さD
Xは、以下の(13)式に従って求められる。
【数13】
【0078】
すなわち、第1層から第k-1層までの厚み合計に対して、第k層における層内深さDXkを加算することにより、試料内における特性X線発生深さDXが求まる。なお、実施形態では、いわゆる自己吸収は考慮されていないが、それを考慮してもよい。その場合には、(11)式において自己吸収を考慮すればよい。
【0079】
多層構造を有する試料における特性X線発生深さD
Xから加速電圧E
0を逆算する場合には、以下の(14)式を用い得る。
【数14】
【0080】
上記(14)式において、第1項は第1層から第k-1層までを電子が透過するのに要するエネルギーの総和であり、第2項は第k層における層内深さD
Xkに対応する消費されたエネルギーE
Xkを示している。エネルギーE
Xkは、上記(12)式を変形することにより、以下の(15)式に従って、求められる。
【数15】
【0081】
図4には、電子侵入深さの計算方法がフローチャートとして示されている。S10では、電子が到達する最深層(第k層)が特定され、また、その1つ手前の直前層(第k-1層)が特定される。S12では、第1層から直前層までの厚み合計が計算される。S14では、最深層内における電子侵入深さ(層内深さ)が演算される。S16では、厚み合計に対して層内深さが加算され、これにより試料内の電子侵入深さが求められる。
【0082】
図5には、特性X線や反射電子等の信号についての発生深さの計算方法がフローチャートとして示されている。S20では、脱出信号を発生させた最深層(第k層)が特定され、また、その1つ手前の直前層(第k-1層)が特定される。S22では、第1層から第k-1層までの厚み合計が計算される。S24では、最深層内における信号発生侵入深さ(層内深さ)が演算される。S26では、厚み合計に対して層内深さが加算され、これにより試料内の信号発生深さが求められる。
【0083】
図6には、第1実施例に係るUI画像82が示されている。照射条件設定用の本来の画像に代えてUI画像82が表示されてもよいし、そのような本来の画像と共にUI画像82が表示されてもよい。
【0084】
UI画像82には、設定支援像としての参照像84が含まれる。参照像84には背景像86及び模式像88が含まれる。背景像86は多層構造を有する試料の断面に相当する。模式像88は、試料内で生じる複数の物理現象を模式的に表現した像である。機能面から見て、UI画像82には、入力部90及び数値表示部91が含まれる。
【0085】
入力部90には、加速電圧入力欄92、ボタン列93、層数入力欄94、元素入力欄96~100、厚み入力欄102,104、等が含まれる。加速電圧入力欄92を利用して加速電圧がユーザーにより指定される。ボタン列93には、取得ボタン144及び適用ボタン146が含まれる。取得ボタン144をポインタで指定してクリック操作を行うと、制御部に設定されている加速電圧が取得され、その加速電圧が加速電圧入力欄92に反映される。適用ボタン146をポインタで指定してクリック操作を行うと、加速電圧入力欄92に表示されている加速電圧が制御部に対して適用され、つまりその加速電圧が有効化される。
【0086】
層数入力欄94を利用してユーザーにより試料中において注目する層の数が指定される。総数をnで表現し、試料内におけるトータルの層数をNと表現した場合、n≦Nである。nは通常、2以上の数値である。例えば、試料が既知の構造を有する半導体デバイスである場合、当該半導体デバイスを構成する層数又はその内で観察対象となる層数がnとして指定される。一般には、入射電子が到達する最深層が第k層であると見込まれる場合、nとしてk以上の数値が設定される。数値表示部91の内容に応じて、nを事後的に変更してもよい。
【0087】
元素入力欄96~100を用いて、各層を構成する元素を指定し得る。この場合、周期律表を表示し、その中から個々の層を構成する元素を指定させてもよい。各層が複数の元素で構成される場合、その中において支配的な元素が代表元素として指定されてもよい。あるいは、各層を構成する複数の元素が指定されてもよい。その場合、元素ごとの濃度に基づいて、各層について、平均質量、平均密度、及び、平均原子番号が特定される。
【0088】
厚み入力欄102,104を用いて、各層の厚みを指定し得る。図示の例では、n番目の層の厚みが計算上、無限大とされている。
【0089】
指定された層数及び各層の厚みに従って、背景像86が生成される。背景像86は、n個の層の断面を示すn個の層像112,114,116により構成され、それらは上下方向に並んでいる。第1層を示す第1層像112の上辺124が試料表面に相当している。層像112,114の上下方向の表示幅118,120は、第1層及び第2層の厚みに従って決定されている。すなわち、各層の実際の厚みから各層像の表示幅が換算される。換算条件又は表示スケールについては、事前に定めておいてもよいし、適応的に定めるようにしてもよい。層像116の上下方向の表示幅122は規定値とされている。n番目の層の厚みを計算上、無限大としたことによる。層数に応じて表示スケールが調整されてもよい。各層像112~116の識別力を高めるため各層に対して着色を施してもよい。その場合、各層を構成する元素に対応するカラーを選択してもよい。
【0090】
模式像88には、図形126,128,130が含まれ、更に図形106が含まれる。図形106は、電子線を示しており、それは下向きの三角形である。その頂点は上辺124に一致している。但し、
図6に示す例ではその頂点が他の図形に覆われている。
【0091】
図形126は、下向きの矢印マークであり、それは電子侵入深さを示している。具体的には、図形126の最下点が電子侵入深さ(電子侵入範囲)を示している。図形126の表示サイズの決定に際しては、上記の換算条件又は表示スケールが適用される。図示の例では、3番目の層の途中まで、電子散乱が及んでいる。
【0092】
図形128は、上向きの矢印マークであり、それは特性X線発生深さ(特性X線発生範囲)を示している。具体的には、図形128の最下点が特性X線発生深さを示している。図形128の表示サイズの決定に際しては、上記の換算条件又は表示スケールが適用される。図示の例では、3番目の層の上部まで、特性X線発生深さが及んでいる。
【0093】
図形130は、上向きの矢印マークであり、それは散乱電子発生深さ(散乱電子発生範囲)を示している。具体的には、図形130の最下点が散乱電子発生深さを示している。図形130の表示サイズの決定に際しては、上記の換算条件又は表示スケールが適用される。図示の例では、2番目の層の上部まで、散乱電子発生深さが及んでいる。
【0094】
深さ方向において、図形126~130の表示スケールと層像112~116の表示スケールとを合わせることにより、電子がどの層まで到達するか、信号発生の深さがどの層まで及ぶのかを正しく認識することが可能である。その上で、加速電圧の適切さを評価することができる。必要に応じて、加速電圧を変更してもよく、その場合においては加速電圧の変更に伴って模式像88が動的に変化する。もちろん、試料情報を変更することも可能である。その場合には背景像86及び模式像88が変化する。
【0095】
数値表示部91は、表示された複数の数値からなる。具体的には、数値表示部91には、電子侵入深さを示す数値134、特性X線発生深さを示す数値138、及び、反射電子発生深さを示す数値142が含まれる。更に、数値表示部91には、電子侵入深さを示すラベル132、特性X線発生深さを示すラベル136、及び、反射電子発生深さを示すラベル140が含まれる。各数値132,138,142は、図示の例において、各図形126,128,130の下端レベルと同じほぼレベルに表示されており、両者間における対応関係が明瞭化されている。
【0096】
以上説明した参照像によれば、多層構造を有する試料との関係で、各物理現象が及ぶ範囲を直感的に特定でき、また、その範囲の大きさを数値として確認することが可能である。なお、試料が傾斜した場合には、背景像を傾斜させてもよい。傾斜時の深さの定義に従って、各深さを再計算してもよい。
【0097】
図7には、第2実施例に係るUI像82Aが示されている。
図6に示した要素と同様の要素には同一の符号を付しその説明を省略する。
【0098】
第2実施例に係るUI像82Aには参照像84Aが含まれ、参照像84Aには背景像86A及び模式像88Aが含まれる。UI像82Aには、入力部90A及び数値表示部91Aが含まれる。複数の入力欄94~104は、背景像86Aから左側へ外れた位置に設けられている。
【0099】
模式像88Aは、電子侵入深さを示す図形126A、特性X線発生深さを示す図形128A、及び、反射電子発生範囲を示す図形130Aを含み、更に、二次電子発生範囲を示す図形154を含んでいる。それらの図形126A~130A,154は、水平方向に並んでおり、重畳関係にはない。このような表示態様によれば、各図形の視認性を高められる。電子線を示す図形106の全体形状も現れており、試料上での照射点が明確化されている。模式像88Aが物理現象の発生を厳密に再現するものではないことから、各図形が左右方向に並んでいても、ユーザーにおいて誤認を生じることはなく、あるいは誤認を生じさせるおそれは非常に小さいものと考えられる。
【0100】
図8には、第3実施例に係るUI画像が示されている。背景像に対して模式像88Bが重畳表示されている。模式像88Bは、電子侵入深さを示す図形126B、特性X線発生深さを示す図形128B、及び、反射電子発生範囲を示す図形130Bを含んでおり、それらが重合表示されている。表示欄156には、特性X線発生深さが数値160として表示される。その数値160をユーザーにより変更し得る。その場合、符号162で示すように、その数値に対応する加速電圧が逆算され、それが加速電圧入力欄164に反映される。それに従って他の深さも変更される。
【0101】
上記同様に、表示欄166には、反射電子発生深さを示す数値167が表示されており、その数値167をユーザーにより変更し得る。その変更により、符号168で示されるように、その数値に対応する加速電圧が逆算され、それが加速電圧入力欄164に反映される。それに従って他の深さも変更される。
【0102】
数値160及び数値167の直接的な変更に代えて、図形128Bの下端170及び図形130Bの下端172をポインタにより上下にスライドさせてもよい。下端170,172のレベルに従って数値160,167が自動的に変更される。それに伴って、加速電圧も変化する。
【0103】
以上において示した計算式やモデルは一例であり、他の計算式やモデルを利用してもよい。いずれにしても、電子侵入深さ、反射電子発生深さ、及び、特性X線発生深さといった物理現象の範囲を大まかに示す目安をユーザーに提供すれば、それらの情報がまったく得られない場合に比べて、ユーザーの利便性を向上でき、あるいは、ユーザーによる照射条件設定を支援することが可能となる。上記実施形態においては、走査電子顕微鏡について説明したが、上記で説明した事項が他の荷電粒子線装置に適用されてもよい。
【符号の説明】
【0104】
10 走査電子顕微鏡、12 測定部、14 情報処理部、16 表示器、18 入力器、22 試料室、23 電子線、24 試料ステージ、25 試料、36 UI部、38 参照像生成器、40 受付部、46 元素テーブル、48 電子侵入深さ演算器、50 反射電子発生深さ演算器、52 特性X線発生深さ演算器、54 画像生成器、60 加速電圧演算器、82 UI画像、84 参照像、86 背景像、88 模式像。