IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ソディックの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022021918
(43)【公開日】2022-02-03
(54)【発明の名称】積層造形方法および積層造形システム
(51)【国際特許分類】
   B22F 3/105 20060101AFI20220127BHJP
   B29C 64/153 20170101ALI20220127BHJP
   B29C 64/371 20170101ALI20220127BHJP
   B29C 64/393 20170101ALI20220127BHJP
   B33Y 10/00 20150101ALI20220127BHJP
   B33Y 30/00 20150101ALI20220127BHJP
   B33Y 50/02 20150101ALI20220127BHJP
   B22F 3/16 20060101ALI20220127BHJP
【FI】
B22F3/105
B29C64/153
B29C64/371
B29C64/393
B33Y10/00
B33Y30/00
B33Y50/02
B22F3/16
【審査請求】有
【請求項の数】24
【出願形態】OL
(21)【出願番号】P 2020125819
(22)【出願日】2020-07-22
(11)【特許番号】
(45)【特許公報発行日】2021-06-23
(71)【出願人】
【識別番号】000132725
【氏名又は名称】株式会社ソディック
(74)【代理人】
【識別番号】110001139
【氏名又は名称】SK特許業務法人
(74)【代理人】
【識別番号】100130328
【弁理士】
【氏名又は名称】奥野 彰彦
(74)【代理人】
【識別番号】100130672
【弁理士】
【氏名又は名称】伊藤 寛之
(72)【発明者】
【氏名】新家 一朗
(72)【発明者】
【氏名】梶 俊夫
(72)【発明者】
【氏名】宮下 泰行
(72)【発明者】
【氏名】小林 勝彦
【テーマコード(参考)】
4F213
4K018
【Fターム(参考)】
4F213AC04
4F213AR07
4F213AR11
4F213WA25
4F213WB01
4F213WL02
4F213WL12
4F213WL46
4F213WL85
4K018CA44
4K018EA51
4K018EA60
(57)【要約】      (修正有)
【課題】複数の走査装置を用いて複数のレーザ光を同時に照射する上で、造形速度の向上と造形品質の安定化を両立した積層造形方法を提供する。
【解決手段】所定の造形領域に材料層を形成する材料層形成工程と、n個の走査装置(但し、nは2以上の整数)で走査されたレーザ光を材料層の所定の照射領域に照射して固化層を形成する固化工程と、を繰り返す積層造形方法であって、照射領域を、同時に前記レーザ光が照射される分割領域のそれぞれの照射時間が等しくなるように、複数の第1分割線で(2n-1)個以上の分割領域に分割する第1分割工程S100と、隣接しない分割領域にレーザ光が同時に照射され、隣接する分割領域にレーザ光が同時に照射されないように、固化工程における分割領域の照射順序を決定する照射順序決定工程S110と、を備える、積層造形方法が提供される。
【選択図】図9
【特許請求の範囲】
【請求項1】
所定の造形領域に材料層を形成する材料層形成工程と、n個の走査装置(但し、nは2以上の整数)で走査されたレーザ光を前記材料層の所定の照射領域に照射して固化層を形成する固化工程と、を繰り返す積層造形方法であって、
前記照射領域を、同時に前記レーザ光が照射される分割領域のそれぞれの照射時間が等しくなるように、複数の第1分割線で(2n-1)個以上の前記分割領域に分割する第1分割工程と、
隣接しない前記分割領域に前記レーザ光が同時に照射され、隣接する前記分割領域に前記レーザ光が同時に照射されないように、前記固化工程における前記分割領域の照射順序を決定する照射順序決定工程と、を備える、積層造形方法。
【請求項2】
第1分割工程後、同時に前記レーザ光が照射される前記分割領域間の最短距離の大きさが所定の閾値以上であるかを判定する熱干渉判定工程と、
前記最短距離が前記閾値未満であるとき、前記最短距離の大きさが前記閾値以上となるよう、前記第1分割線を前記第1分割線に対して垂直な方向に移動させる第1分割線移動工程と、をさらに備える、請求項1に記載の積層造形方法。
【請求項3】
少なくとも各々の前記固化工程において、前記照射領域の直上に一定の方向に流れる不活性ガスを供給する不活性ガス供給工程をさらに備え、
前記第1分割工程において、前記第1分割線は、前記不活性ガスの流れ方向に沿って設定され、
前記固化工程において、前記レーザ光は各々の前記分割領域において前記流れ方向の下流側から上流側にラスタ走査される、請求項1または請求項2に記載の積層造形方法。
【請求項4】
第1分割工程後、それぞれの前記分割領域について、判定対象となる分割領域である判定領域から発生するヒュームが前記判定領域と同時に前記レーザ光が照射される分割領域である同時照射領域に到達するヒューム干渉が発生するかを判定するヒューム干渉判定工程と、
前記ヒューム干渉が発生すると判定されたとき、前記流れ方向と交差する第2分割線で、前記照射領域を分割する第2分割工程と、をさらに備え、
前記第2分割工程後、前記第2分割線で分割された照射領域のそれぞれについて、前記第1分割工程および前記照射順序決定工程が再度行われる、請求項3に記載の積層造形方法。
【請求項5】
前記第2分割線は、前記流れ方向に直交する、請求項4に記載の積層造形方法。
【請求項6】
前記ヒューム干渉判定工程では、前記ヒューム干渉が発生すると判定されたとき、前記判定領域において前記同時照射領域に到達する前記ヒュームの発生源となり得る領域のうち前記流れ方向の最も下流側の点または前記同時照射領域において前記判定領域から発生する前記ヒュームが到達し得る領域のうち前記流れ方向の最も上流側の点をヒューム干渉点として算出し、
前記第2分割工程では、前記第2分割線は、少なくとも1つの前記ヒューム干渉点のうち前記流れ方向の最も上流側の点を通るよう設定される、請求項4または請求項5に記載の積層造形方法。
【請求項7】
前記ヒューム干渉判定工程では、前記流れ方向に対し所定の角度θを有し前記判定領域に前記流れ方向の上流側で接する第1の直線および前記流れ方向に対し所定の角度-θを有し前記判定領域に前記流れ方向の上流側で接する第2の直線が、前記同時照射領域上を通るかどうかを判定し、前記第1の直線または前記第2の直線と前記同時照射領域とが交わる点のうち、前記流れ方向の最も上流側の点を前記ヒューム干渉点として算出する、請求項6に記載の積層造形方法。
【請求項8】
前記ヒューム干渉判定工程では、前記流れ方向に対し所定の角度θを有し前記同時照射領域に前記流れ方向の下流側で接する第1の直線および前記流れ方向に対し所定の角度-θを有し前記同時照射領域に前記流れ方向の下流側で接する第2の直線が、前記判定領域上を通るかどうかを判定し、前記第1の直線または前記第2の直線と前記判定領域とが交わる点のうち、前記流れ方向の最も下流側の点を前記ヒューム干渉点として算出する、請求項6に記載の積層造形方法。
【請求項9】
前記第1分割工程では、同時に前記レーザ光が照射される前記分割領域のそれぞれの面積が等しくなるように前記照射領域が分割される、請求項1から請求項8のいずれか1項に記載の積層造形方法。
【請求項10】
前記第1分割工程では、照射領域がn×m個(但し、mは2以上の整数)の前記分割領域に分割される、請求項1から請求項9のいずれか1項に記載の積層造形方法。
【請求項11】
前記第1分割工程では、照射領域が2n個の前記分割領域に分割される、請求項10に記載の積層造形方法。
【請求項12】
前記走査装置の数は2であり、
前記第1分割工程では、照射領域が4個の前記分割領域に分割される、請求項1から請求項11のいずれか1項に記載の積層造形方法。
【請求項13】
全ての前記走査装置におけるそれぞれの前記レーザ光の照射可能範囲は、前記造形領域の全体を含有する、請求項1から請求項12のいずれか1項に記載の積層造形方法。
【請求項14】
積層造形に係る指令が規定されたプロジェクトファイルを作成するCAM装置と、
前記プロジェクトファイルに基づき積層造形を行う積層造形装置と、を備え、
前記積層造形装置は、
所定の造形領域に材料層を形成する材料層形成装置と、
レーザ光を生成する光源および前記レーザ光を走査するn個の走査装置(但し、nは2以上の整数)を有し、前記レーザ光を前記材料層の所定の照射領域に照射して固化層を形成する照射装置と、を含み、
前記CAM装置は、前記プロジェクトファイルの作成にあたり、
前記照射領域を、同時に前記レーザ光が照射される分割領域のそれぞれの照射時間が等しくなるように、複数の第1分割線で(2n-1)個以上の前記分割領域に分割し、
隣接しない前記分割領域に前記レーザ光が同時に照射され、隣接する前記分割領域に前記レーザ光が同時に照射されないように、前記分割領域の照射順序を決定する、積層造形システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、積層造形方法および積層造形システムに関する。
【背景技術】
【0002】
三次元造形物の積層造形法としては種々の方式が知られている。例えば、粉末焼結積層造形法または粉末溶融積層造形法を実施する積層造形装置は、所望の三次元造形物が形成される領域である造形領域上に材料層を形成し、材料層の所定の照射領域にレーザ光を走査することで材料層を焼結または溶融させ固化層を形成する。そして、積層造形装置は、材料層の形成と固化層の形成を繰り返すことによって、複数の固化層を積層して三次元造形物を生成する。
【0003】
ここで、レーザ光を走査する走査装置を複数備える積層造形装置が公知である。例えば、特許文献1には、複数の走査装置からの光ビームを並列動作によって照射することで、効率良く三次元形状造形物を造形する製造方法が開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特許第4916392号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
このように、複数の走査装置を用いて積層造形を行う場合において、造形速度の高速化という観点からは、複数の走査装置が同時に利用され、複数箇所同時にレーザ照射が行われることが好ましい。その一方で、各々の走査装置によって走査されたレーザ光は、互いに影響を及ぼさないことが求められる。例えば、2つの走査装置を用いて2箇所同時にレーザ照射を同時に行う場合、従来は、照射領域を2つの分割領域に分割し、一方の分割領域に対しては一方の走査装置を用いてレーザ光を走査し、他方の分割領域に対しては他方の走査装置を用いてレーザ光を走査するようにしていた。そうすると、分割領域の境界付近で2つのレーザ光の照射位置が近接する可能性があった。同時に照射されたレーザ光の照射位置が近接していた場合、照射位置の温度が上昇しすぎてしまう虞があり、ひいては、照射位置の温度が安定せず、造形品質に影響が出る可能性がある。本明細書では、複数のレーザ光の照射位置が近接することによる意図しない温度上昇を熱干渉と呼ぶ。
【0006】
本発明はこのような事情に鑑みてなされたものであり、複数のレーザ光を同時に照射して造形速度を向上させるとともに、各々のレーザ光の干渉を防止して造形品質を安定化させた積層造形方法および積層造形システムを提供するものである。
【課題を解決するための手段】
【0007】
本発明によれば、所定の造形領域に材料層を形成する材料層形成工程と、n個の走査装置(但し、nは2以上の整数)で走査されたレーザ光を前記材料層の所定の照射領域に照射して固化層を形成する固化工程と、を繰り返す積層造形方法であって、前記照射領域を、同時に前記レーザ光が照射される分割領域のそれぞれの照射時間が等しくなるように、複数の第1分割線で(2n-1)個以上の前記分割領域に分割する第1分割工程と、隣接しない前記分割領域に前記レーザ光が同時に照射され、隣接する前記分割領域に前記レーザ光が同時に照射されないように、前記固化工程における前記分割領域の照射順序を決定する照射順序決定工程と、を備える、積層造形方法が提供される。
【0008】
また、本発明によれば、積層造形に係る指令が規定されたプロジェクトファイルを作成するCAM装置と、前記プロジェクトファイルに基づき積層造形を行う積層造形装置と、を備え、前記積層造形装置は、所定の造形領域に材料層を形成する材料層形成装置と、レーザ光を生成する光源および前記レーザ光を走査するn個の走査装置(但し、nは2以上の整数)を有し、前記レーザ光を前記材料層の所定の照射領域に照射して固化層を形成する照射装置と、を含み、前記CAM装置は、前記プロジェクトファイルの作成にあたり、前記照射領域を、同時に前記レーザ光が照射される分割領域のそれぞれの照射時間が等しくなるように、複数の第1分割線で(2n-1)個以上の前記分割領域に分割し、隣接しない前記分割領域に前記レーザ光が同時に照射され、隣接する前記分割領域に前記レーザ光が同時に照射されないように、前記分割領域の照射順序を決定する、積層造形システムが提供される。
【発明の効果】
【0009】
このような構成にすることにより、複数の走査装置を用いて複数のレーザ光を同時に照射しても、各々のレーザ光が互いに干渉することが防止される。これにより、高速かつ高品質の積層造形を行うことが可能となる。
【図面の簡単な説明】
【0010】
図1】第1の実施形態に係る積層造形装置100の概略構成図である。
図2】材料層形成装置3の斜視図である。
図3】リコータヘッド11を上方から見た斜視図である。
図4】リコータヘッド11を下方から見た斜視図である。
図5】照射装置13の平面断面図である。
図6】照射装置13の一部を示す斜視図である。
図7図1のA-A矢視断面図であり、不活性ガス給排機構の概略構成図である。
図8】CAM装置52と制御装置90を示すブロック図である。
図9】照射領域Sの分割方法を示すフロー図である。
図10】第1分割工程の説明図である。
図11】熱干渉判定工程の説明図である。
図12】第1分割線移動工程の説明図である。
図13】ヒューム干渉判定工程の説明図である。
図14】ヒューム干渉判定工程の説明図である。
図15】ヒューム干渉判定工程の説明図である。
図16】ヒューム干渉判定工程の説明図である。
図17】ヒューム干渉判定工程の別の様態を示す説明図である。
図18】第2分割工程の説明図である。
図19】第2分割工程後に再度行われる、第1分割工程の説明図である。
図20】ラスタ走査に係る走査線を示す図である。
図21】積層造形装置100を用いた三次元造形物の製造方法を示す図である。
図22】積層造形装置100を用いた三次元造形物の製造方法を示す図である。
図23】積層造形装置100を用いた三次元造形物の製造方法を示す図である。
図24】第2の実施形態に係る積層造形装置200の概略構成図である。
図25図24のB-B矢視断面図である。
図26】第1分割線の別の様態を示す図である。
【発明を実施するための形態】
【0011】
以下、図面を参照して本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。
【0012】
<1.積層造形装置100>
第1の実施形態の積層造形装置100は、所望の三次元造形物を所定の厚みで分割してなる分割層毎に、材料層82の形成と固化層83の形成とを繰り返して、三次元造形物を形成する。図1に示すように、本発明の第1実施形態の積層造形装置100は、チャンバ1と、材料層形成装置3と、照射装置13と、不活性ガス給排機構と、を備える。
【0013】
(1.1.チャンバ1)
チャンバ1は、所望の三次元造形物が形成される領域である所要の造形領域Rを覆い、所定濃度の不活性ガスで満たされる。本明細書において不活性ガスとは、材料層82や固化層83と実質的に反応しないガスであり、材料の種類に応じて窒素ガス、アルゴンガス、ヘリウムガス等から適当なものが選択される。
【0014】
チャンバ1の上面には、レーザ光L1,L2の透過窓となるチャンバウィンドウ1aが設けられる。チャンバウィンドウ1aは、レーザ光L1,L2を透過可能な材料で形成される。具体的には、チャンバウィンドウ1aの材料は、レーザ光L1,L2の種類に応じて、石英ガラスもしくはホウケイ酸ガラス又はゲルマニウム、シリコン、ジンクセレンもしくは臭化カリウムの結晶等から選択される。例えば、レーザ光L1,L2がファイバレーザ又はYAGレーザの場合、チャンバウィンドウ1aは石英ガラスで構成可能である。
【0015】
また、チャンバ1の上面には、チャンバウィンドウ1aを覆うようにヒューム拡散部17が設けられる。ヒューム拡散部17は、円筒状の筐体17aと、筐体17a内に配置された円筒状の拡散部材17cとを備える。筐体17aと拡散部材17cの間に不活性ガス供給空間17dが設けられる。また、筐体17aの底面には、拡散部材17cの内側に開口部17bが設けられる。拡散部材17cには多数の細孔17eが設けられており、不活性ガス供給空間17dに供給された清浄な不活性ガスは細孔17eを通じて清浄室17fに充満される。そして、清浄室17fに充満された清浄な不活性ガスは、開口部17bを通じてヒューム拡散部17の下方に向かって噴出される。このような構成により、ヒュームのチャンバウィンドウ1aへの付着を防止し、レーザ光L1,L2の照射経路からヒュームを排除することができる。
【0016】
(1.2.材料層形成装置3)
図1および図2に示すように、材料層形成装置3はチャンバ1の内部に設けられ、造形領域Rを有するベース4と、ベース4上に配置されるリコータヘッド11と、を備える。造形領域Rには、造形テーブル駆動装置6によって上下方向に移動可能である造形テーブル5が設けられる。造形にあたり、造形テーブル5上には、ベースプレート81が配置されてもよい。ベースプレート81が配置されるとき、ベースプレート81上に1層目の材料層82が形成される。なお、本実施形態の造形領域Rは矩形形状を有し、各辺は所定の水平1軸方向であるX軸、またはX軸に直交するY軸に平行であるが、これに限定されない。
【0017】
リコータヘッド11は、図2に示すリコータヘッド駆動装置12によって水平1軸方向に往復移動可能に構成される。
【0018】
図3および図4に示すように、リコータヘッド11は、材料収容部11aと、材料供給口11bと、材料排出口11cとを備える。本実施形態においては、材料層82を形成する材料として、金属の材料粉体が使用される。
【0019】
材料供給口11bは、材料収容部11aの上面に設けられ、材料供給ユニット(不図示)から材料収容部11aに供給される材料粉体の受け口となる。材料排出口11cは、材料収容部11aの底面に設けられ、材料収容部11a内の材料粉体を排出する。材料排出口11cは、材料収容部11aの長手方向に延びるスリット形状を有する。リコータヘッド11の両側面には、ブレード11fb,11rbが設けられる。ブレード11fb,11rbは、材料排出口11cから排出される材料粉体を平坦化して、材料層82を形成する。なお、ブレード11fb,11rbは、例えば、平板状のものであってもよいし、ブラシ状のものであってもよい。
【0020】
(1.3.照射装置13)
図1に示すように、照射装置13は、チャンバ1の上方に設けられる。照射装置13は、n個の走査装置(但し、nは2以上の整数)を含み、各々の走査装置はそれぞれレーザ光を走査可能に構成される。本実施形態においては、図5に示すように、照射装置13は2個の走査装置、具体的には、レーザ光L1を走査する第1のガルバノスキャナ32と、レーザ光L2を走査する第2のガルバノスキャナ42とを含む。照射装置13は、造形領域R上に形成される材料層82の所定の照射領域Sにレーザ光L1,L2を照射して、照射位置の材料層82を溶融または焼結させ、固化層83を形成する。なお、照射領域Sは、造形領域R内に存在する各分割層におけるレーザ光L1,L2の照射範囲をいい、各分割層における固化層83の輪郭形状で規定される領域とおおよそ一致する。
【0021】
図5に示すように、照射装置13は、第1のレーザ光源31と、第2のレーザ光源41と、第1のアパーチャ33と、第2のアパーチャ43と、第1のフォーカス制御ユニット34と、第2のフォーカス制御ユニット44と、第1の調整レンズ35と、第2の調整レンズ45と、第1のガルバノスキャナ32と、第2のガルバノスキャナ42と、を備える。以下において、レーザ光L1,L2の進路に沿って、相対的に第1のレーザ光源31または第2のレーザ光源41に近い側を上流側、第1のレーザ光源31または第2のレーザ光源41から遠い側を下流側とする。
【0022】
第1のレーザ光源31および第2のレーザ光源41は、それぞれ、レーザ光L1、レーザ光L2を生成する。レーザ光L1,L2は、材料粉体を焼結または溶融可能であればよく、例えば、ファイバレーザ、COレーザ、YAGレーザである。本実施形態においては、レーザ光L1,L2として、ファイバレーザが用いられる。後述するように、本実施形態においては、第1のレーザ光源31および第2のレーザ光源41によりそれぞれ生成されるレーザ光L1,L2を、第1のガルバノスキャナ32および第2のガルバノスキャナ42により各々走査する。但し、1つのレーザ光源により生成されるレーザ光を分割し、第1のガルバノスキャナ32および第2のガルバノスキャナ42により各々走査するよう構成してもよい。
【0023】
本実施形態に係る第1のアパーチャ33と、第2のアパーチャ43と、第1のフォーカス制御ユニット34と、第2のフォーカス制御ユニット44と、第1の調整レンズ35と、第2の調整レンズ45と、第1のガルバノスキャナ32と、第2のガルバノスキャナ42は、底面に開口部14aを有する筐体14内に一体的に配置される。開口部14aには、レーザ光L1,L2の透過窓となる照射装置ウィンドウ14bが設けられる。照射装置ウィンドウ14bは、レーザ光L1,L2を透過可能な材料で形成される。具体的に、照射装置ウィンドウ14bの材料は、レーザ光L1,L2の種類に応じて、石英ガラスもしくはホウケイ酸ガラス又はゲルマニウム、シリコン、ジンクセレンもしくは臭化カリウムの結晶等から選択される。
【0024】
筐体14には、第1のガルバノスキャナ32および第1のフォーカス制御ユニット34と電気的に接続される第1の制御基板38と、第2のガルバノスキャナ42および第2のフォーカス制御ユニット44と電気的に接続される第2の制御基板48が配置される。第1のガルバノスキャナ32は、第1のX軸ガルバノミラー32a、第1のX軸アクチュエータ32c、第1のY軸ガルバノミラー32b、および第1のY軸アクチュエータ32dを備える。第2のガルバノスキャナ42は、第2のX軸ガルバノミラー42a、第2のX軸アクチュエータ42c、第2のY軸ガルバノミラー42b、および第2のY軸アクチュエータ42dを備える。
【0025】
第1のレーザ光源31および第2のレーザ光源41は、それぞれ筐体14の背面に配置される第1のコネクタ37および第2のコネクタ47を介して、第1のアパーチャ33および第2のアパーチャ43に各々接続される。第1のアパーチャ33および第2のアパーチャ43は、第1のレーザ光源31からのレーザ光L1および第2のレーザ光源41からのレーザ光L2の中心部のみを通過させる絞りである。これにより、照射するレーザ光L1,L2のエネルギー分布が安定する。
【0026】
第1のフォーカス制御ユニット34は、第1の焦点制御レンズ34aと、第1の焦点制御レンズ34aを前後させる第1のモータ34bと、を備える。第2のフォーカス制御ユニット44は、第2の焦点制御レンズ44aと、第2の焦点制御レンズ44aを前後させる第2のモータ44bと、を備える。本実施形態における第1の焦点制御レンズ34aおよび第2の焦点制御レンズ44aは、上流側が平面で、下流側が凸面である平凸レンズである。第1の焦点制御レンズ34aおよび第2の焦点制御レンズ44aは、それぞれ第1のモータ34bおよび第2のモータ44bによりレーザ光L1,L2の進路に沿って前後に移動可能であり、これにより、各焦点制御レンズ34a,44aを透過するレーザ光L1,L2の焦点位置を調整することができる。
【0027】
第1の焦点制御レンズ34aおよび第2の焦点制御レンズ44aを各々透過したレーザ光L1,L2は、第1の調整レンズ35および第2の調整レンズにより各々集光される。第1の調整レンズ35および第2の調整レンズ45は、上流側が平面で、下流側が凸面である平凸レンズである。第1の調整レンズ35および第2の調整レンズ45は、手動で位置の調整が可能であり、装置の組付時等に生じ得る光学系の誤差を微調整する。
【0028】
図6に示すように、第1のガルバノスキャナ32は、第1の調整レンズ35を透過したレーザ光L1を2次元走査する。具体的には、レーザ光L1は、第1のX軸アクチュエータ32cにより回転される第1のX軸ガルバノミラー32aにより反射されて造形領域RのX軸方向に走査され、第1のY軸アクチュエータ32dにより回転される第1のY軸ガルバノミラー32bにより反射されて造形領域RのY軸方向に走査される。ここで、第1のガルバノスキャナ32は、造形領域R上の任意の位置を照射可能に構成されることが望ましい。換言すれば、第1のガルバノスキャナ32の照射可能範囲は、造形領域Rの全てを含有することが望ましい。
【0029】
第2のガルバノスキャナ42は、第2の調整レンズ45を透過したレーザ光L2を2次元走査する。具体的には、レーザ光L2は、第2のX軸アクチュエータ42cにより回転される第2のX軸ガルバノミラー42aにより反射されて造形領域RのX軸方向に走査され、第2のY軸アクチュエータ42dにより回転される第2のY軸ガルバノミラー42bにより反射されて造形領域RのY軸方向に走査される。ここで、第2のガルバノスキャナ42は、造形領域R上の任意の位置を照射可能に構成されることが望ましい。換言すれば、第2のガルバノスキャナ42の照射可能範囲は、造形領域Rの全てを含有することが望ましい。
【0030】
図6において、対称面Pは、第1の調整レンズ35および第2の調整レンズ45をそれぞれ通過したレーザ光L1,L2の光軸から等距離にあり、造形領域Rに対して垂直な面である。第1のガルバノスキャナ32の第1のX軸ガルバノミラー32aおよび第1のY軸ガルバノミラー32bと、第2のガルバノスキャナ42の第2のX軸ガルバノミラー42aおよび第2のY軸ガルバノミラー42bとは、対称面Pについて互いに面対称となるように配置される。
【0031】
好ましくは、第1のガルバノスキャナ32および第2のガルバノスキャナ42の下流側のガルバノミラー、すなわち本実施形態においては第1のX軸ガルバノミラー32aおよび第2のX軸ガルバノミラー42aにおけるレーザ光L1,L2の反射位置が、造形領域Rの略中央位置の上方に位置するように構成される。
【0032】
以上のような構成の照射装置13においては、第1のガルバノスキャナ32の下流側のガルバノミラーである第1のX軸ガルバノミラー32aと、第2のガルバノスキャナ42の下流側のガルバノミラーである第2のX軸ガルバノミラー42aとを、より近接させて設けることができる。これにより、第1のガルバノスキャナ32によって走査されたレーザ光L1の入射角度と、第2のガルバノスキャナ42によって走査されたレーザ光L2の入射角度とは、照射位置が同一であれば略一致する。ひいては、所定位置に照射されたレーザ光L1,L2の照射スポットの形状やエネルギー密度は、走査に使用されるのが第1のガルバノスキャナ32であるか、第2のガルバノスキャナ42であるかを問わず、略一定となり、造形品質が安定する。
【0033】
なお、以上に示した照射装置13の構成は一例であり、2個以上の走査装置を含むものであればよい。例えば、照射装置は、走査装置として、4個のガルバノスキャナを含むものであってもよい。なお、全ての走査装置におけるそれぞれのレーザ光の照射可能範囲は、造形領域Rの全体を含有することが望ましい。このようにすれば、三次元造形物の形状や位置を問わず、複数の走査装置を同時に利用することができる。また、後述する照射領域Sの分割時の演算が容易となる。
【0034】
(1.4.不活性ガス給排機構)
照射装置13で固化層83を形成する際、ヒュームと呼ばれる煙が発生する。ヒュームはチャンバウィンドウ1a等の光学部材を汚染したり、レーザ光L1,L2を遮蔽したりして、造形不良を引き起こす原因となる。そのため、不活性ガス給排機構は、チャンバ1に不活性ガスを供給するとともに、ヒュームを含んだ不活性ガスを排出し、チャンバ1内を清浄な状態に維持している。
【0035】
図7は、本実施形態の積層造形装置100の側面図である。図7に示すように、本実施形態の不活性ガス給排機構は、不活性ガス供給装置15と、ヒュームコレクタ19と、供給口21a,21bと、排出口22aと、各部を接続する配管と、を備える。
【0036】
不活性ガス供給装置15は、所定濃度の不活性ガスをチャンバ1に供給する。不活性ガス供給装置15は、例えば、周囲の空気から不活性ガスを取り出す不活性ガス発生装置、または不活性ガスが貯留されたガスボンベである。本実施形態では、不活性ガス供給装置15は、PSA式窒素発生装置である。
【0037】
ヒュームコレクタ19は、チャンバ1から排出された不活性ガスからヒュームの大部分を除去した上で、チャンバ1に返送する。ヒュームコレクタ19は、例えば、電気集塵機または濾過式集塵機である。本実施形態では、ヒュームコレクタ19は、乾式電気集塵機である。
【0038】
供給口21aは、チャンバ1の壁面に設けられ、不活性ガス供給装置15およびヒュームコレクタ19と接続される。供給口21aを介して、不活性ガス供給装置15から所定濃度の不活性ガスがチャンバ1に供給される。また、供給口21aを介して、ヒュームコレクタ19によってヒュームの大部分が除去された不活性ガスがチャンバ1に返送される。供給口21bは、チャンバ1の上面に設けられ、不活性ガス供給装置15と接続される。供給口21bを介して、ヒューム拡散部17の不活性ガス供給空間17dへと、不活性ガスが供給される。チャンバウィンドウ1aにヒュームが付着するのを防止するため、供給口21bには、不活性ガス供給装置15のみ接続されることが望ましい。
【0039】
排出口22aは、供給口21aが設けられる壁面と対向するチャンバ1の壁面に設けられ、ヒュームコレクタ19と接続される。排出口22aを介して、ヒュームコレクタ19にヒュームを含む不活性ガスが排出される。
【0040】
このような構成により、図7に白抜矢印で示すように、照射領域Sの直上において、図中左側から右側へと向かう不活性ガスの流れが形成される。ヒュームはこの不活性ガスの流れに乗り、チャンバ1から排出される。
【0041】
なお、不活性ガス給排機構は別の形態であってもよく、上記に具体的に示した実施形態に限定されない。例えば、供給口および排出口は、固化層83を形成しているときに、照射領域Sの直上に不活性ガスが一定の方向に流れるように配置されればよく、その位置、形状および個数は限定されない。なお、1つの固化層83の形成を開始してから当該固化層83の形成を完了するまでの間で不活性ガスの流れ方向が一定であればよく、固化層83毎に流れ方向は異なっていてもよい。
【0042】
(1.5.CAM装置52および制御装置90)
図8には、CAM装置52および積層造形装置100の制御装置90の構成が概略的に示される。なお、本明細書では、積層造形装置100とCAM装置52とを含んで、積層造形システム300という。
【0043】
CAM装置52は、CADデータ等の所望の三次元造形物の形状を特定する造形形状データ、材料の種類、レーザ照射条件等に基づき、積層造形装置100に対する指令が規定されたプロジェクトファイルを作成する。CAM装置52は、具体的にはCAMソフトウェアがインストールされたコンピュータであり、所望の演算を行う演算装置53と、演算に必要なデータ等が保存された記憶装置54と、演算処理の過程で一時的に記憶する必要のある数値やデータを一時的に記憶するメモリ55と、を有する。プロジェクトファイルの作成にあたり、三次元造形物は所定の厚み毎に分割され、分割された各層、すなわち分割層毎に、照射領域Sの形状が算出される。CAM装置52は、分割層毎に、照射領域Sを複数の分割領域に分割する。そして、CAM装置52は、隣接しない分割領域にレーザ光L1,L2が同時に照射され、隣接する分割領域にレーザ光L1,L2が同時に照射されないように、分割領域の照射順序を決定する。このようにして作成されたプロジェクトファイルは、制御装置90に送られる。照射領域Sの分割方法については詳細を後述する。
【0044】
制御装置90は、主制御装置91と、照射制御装置30と、を含む。主制御装置91は、演算装置と記憶装置とメモリとを含み、CAM装置52が作成したプロジェクトファイルに従って各部を制御する。具体的に、主制御装置91は、リコータヘッド駆動装置12や造形テーブル駆動装置6を制御する。また、主制御装置91はプロジェクトファイルのうち、レーザ光L1,L2の照射位置等の指令を含む造形プログラムを照射制御装置30に送る。照射制御装置30は、演算装置と記憶装置とメモリとを含み、主制御装置91から送られた造形プログラムに応じて照射装置13を制御する。具体的に、照射制御装置30は、第1のX軸アクチュエータ32cおよび第1のY軸アクチュエータ32dの回転角度を制御してレーザ光L1の照射位置を制御し、第1のレーザ光源31を制御してレーザ光L1の強度やオン/オフの切り替えを行い、第1のモータ34bの位置を制御してレーザ光L1の焦点位置の制御を行う。また、照射制御装置30は、第2のX軸アクチュエータ42cおよび第2のY軸アクチュエータ42dの回転角度を制御してレーザ光L2の照射位置を制御し、第2のレーザ光源41を制御してレーザ光L2の強度やオン/オフの切り替えを行い、第2のモータ44bの位置を制御してレーザ光L2の焦点位置の制御を行う。なお、制御装置90は、CAM装置52が作成したプロジェクトファイルの指令に基づいて、固化層83の形成時、各々の分割領域においてレーザ光L1,L2を走査させるように照射装置13を制御するよう構成されればよく、上述の実施形態に限定されない。
【0045】
<2.照射領域Sの分割方法>
ここで、CAM装置52がプロジェクトファイルを作成するにあたっての、照射領域Sの分割方法を説明する。図9に示すように、本実施形態の積層造形方法における照射領域Sの分割方法は、第1分割工程と、照射順序決定工程と、熱干渉判定工程と、第1分割線移動工程と、ヒューム干渉判定工程と、第2分割工程と、を備える。
【0046】
図10には、所定の分割層における照射領域Sの一例が示される。前述の通り、本実施形態の造形領域Rは、X軸方向に延びる辺とY軸方向に延びる辺とからなる矩形形状を有する。照射領域Sは、造形領域R内に存在するレーザ光L1,L2の照射範囲である。本実施形態においては、照射領域Sの不活性ガスの流れ方向は、Y軸方向に平行であり、図10の下方から上方に向かう方向である。なお、照射領域Sの分割に係る演算上の不活性ガスの流れ方向は、積層造形装置100における実際の不活性ガスの流れ方向と厳密に一致させる必要はなく、不活性ガス給排機構の供給口および排出口の位置や形状等から推定された方向であってよい。
【0047】
図10に示すように、まず、第1分割工程(S100)が行われる。分割工程では、照射領域Sが、同時にレーザ光が照射される分割領域のそれぞれの照射時間が等しくなるように、複数の第1分割線で、(2n-1)個以上の分割領域に分割される。nは前述の通り、走査装置の数である。以下、分割領域を分割する個数を単に分割数という。なお、照射時間とは、ある照射領域Sまたは分割領域へのレーザ光Lの照射を開始してから、当該照射領域Sまたは当該分割領域に係る固化層83の形成が完了し、レーザ光Lの照射を終了するまでの時間をいう。
【0048】
照射領域Sの分割数が(2n-1)以上であれば、当該照射領域Sに係る固化層83の形成開始から形成完了までの期間の少なくとも一部において、n個の走査装置を使用して隣接しない複数の分割領域に対し同時に照射が行える。また、照射領域Sの分割数がn×m(但し、mは2以上の整数)であれば、当該照射領域Sに係る固化層83の形成開始から形成完了までの期間のより長い時間、n個の走査装置を使用して隣接しない複数の分割領域に対し同時に照射が行える。特に、照射領域Sの分割数がn×mであり、同時にレーザ光が照射される分割領域の照射時間が実質的に同一であれば、当該照射領域Sに係る固化層83の形成開始から形成完了までの期間の略全てにおいて、n個の走査装置を使用して同時に照射が行える。そのため、第1分割工程における分割数はn×mであることが望ましい。また、演算を容易にする観点から、第1分割工程における分割数は2nであることがより望ましい。本実施形態においては、走査装置の数は2であり、第1分割工程では複数の第1分割線N1,N2,N3によって、照射領域Sが4個の分割領域D1,D2,D3,D4に分割される。
【0049】
積層造形において、照射時間と面積には実質的に比例関係がある。厳密には、レーザ光の照射位置をある走査線から次の走査線に移動させるまでの時間は走査線の本数に応じて増加するため、短い走査線を多数含む照射領域では面積に対し照射時間はわずかに長くなるが、微差である。そのため、第1分割工程において、同時にレーザ光が照射される分割領域のそれぞれの照射時間が等しくなるよう照射領域Sを分割するにあたり、具体的には、同時にレーザ光が照射される分割領域のそれぞれの面積が等しくなるように照射領域Sを分割してもよい。また、本発明において「照射時間が等しい」および「面積が等しい」とは、照射時間や面積が実質的に等しければよいことを示す。例えば、同時に照射される分割領域のうち、{(最小の分割領域に係る照射時間または面積)/(最大の分割領域に係る照射時間または面積)}の値は、0.90以上であることが好ましく、0.95以上であることがより好ましい。また、第1分割工程において、全ての分割領域の照射時間または面積を実質的に等しくする必要はなく、同時にレーザ光が照射されない分割領域のそれぞれの照射時間または面積は、等しくなくてもよい。具体的に、本実施形態の第1分割工程においては、分割領域D1,D2,D3,D4全ての照射時間および面積が実質的に等しくなるように照射領域Sを分割しているが、分割領域D1と分割領域D3、および分割領域D2と分割領域D4の各組において照射時間および面積が実質的に等しければよく、例えば、同時に照射されない分割領域D1と分割領域D2の照射時間および面積は異なっていてもよい。
【0050】
なお、第1分割線は、不活性ガスの流れ方向に沿って設定されることが好ましい。すなわち、本実施形態においては、第1分割線N1,N2,N3はY軸方向に平行に設定される。これにより、所定の分割領域を照射する際、同時に照射される他の分割領域で発生したヒュームが、レーザ光に干渉することを抑制できる。
【0051】
第1分割工程後、照射順序決定工程(S110)が行われる。照射順序決定工程では、分割領域D1,D2,D3,D4において、隣接しない分割領域に同時にレーザ光L1,L2が照射され、隣接する分割領域に同時にレーザ光L1,L2が照射されないように、後述する固化工程における分割領域D1,D2,D3,D4の照射順序が決定される。具体的には、分割領域D1と分割領域D3の組と、分割領域D2と分割領域D4の組のそれぞれに対して、同時にレーザ光L1,L2が照射されるように設定される。本実施形態では、分割領域D1および分割領域D3が1番目に同時にレーザ光L1,L2を照射される分割領域として決定され、分割領域D2および分割領域D4が2番目に同時にレーザ光L1,L2を照射される分割領域として決定される。なお、本実施形態では、第1分割工程の直後に照射順序決定工程を実施しているが、以降の工程で同時に照射される分割領域の組が把握できていればよく、照射順序決定工程を実施するタイミングは第1分割工程の直後に限定されない。
【0052】
第1分割工程後、熱干渉判定工程(S120)が行われる。熱干渉判定工程では、同時にレーザ光L1,L2が照射される分割領域間の最短距離の大きさが所定の閾値以上であるかが判定される。同時照射される分割領域間の最短距離の大きさが閾値未満であるとき、複数のレーザ光L1,L2の照射位置が近接し、熱干渉が発生する虞がある。なお、分割数が2n以下であるとき、同時照射される分割領域間の最短距離の大きさと、隣接する第1分割線の間隔の大きさは一致する。そのため、分割数が2n以下であるときは、熱干渉判定工程において、隣接する第1分割線の間隔の大きさは所定の閾値以上であるかを判定して、熱干渉の有無を判断してもよい。本実施形態では、第1分割線N1と第1分割線N2の間隔d12の大きさおよび第1分割線N2と第1分割線N3の間隔d23の大きさと、所定の閾値t以上とを比較することにより、熱干渉の有無を判定する。間隔d12および間隔d23のいずれか一方が閾値t未満であるとき、第1分割線移動工程(S130)を実施する。間隔d12および間隔d23がともに閾値t以上であるとき、第1分割線移動工程を実施せず、次の工程に進む。
【0053】
図11には、熱干渉が発生しうる照射領域Saの一例が示される。本例において、走査装置の数は2であり、分割数は4である。照射領域Saは、第1分割線N1a,N2a,N3aによって、4つの分割領域D1a,D2a,D3a,D4aに分割される。このとき、第1分割線N1aと第1分割線N2aの間隔d12aの大きさと、第1分割線N2aと第1分割線N3aの間隔d23aの大きさは、いずれも閾値t未満であり、熱干渉ありと判定される。
【0054】
熱干渉判定工程において熱干渉ありと判定された場合、第1分割線移動工程が行われる。第1分割移動工程では、同時にレーザ光L1,L2が照射される分割領域間の最短距離の大きさが閾値t以上となるよう、第1分割線を第1分割線に対して垂直な方向に移動させる。本実施形態では、具体的に、間隔d12aおよび間隔d34aの大きさが閾値t以上、好ましくは閾値tになるように、第1分割線N1aを図中左側に、第1分割線N3aを図中右側に、それぞれ移動させる。図12は、第1分割線移動工程後の分割領域D1a,D2a,D3a,D4aを示している。
【0055】
第1分割線移動工程により、同時にレーザ光が照射される分割領域のそれぞれの照射時間が均等とならなくなる可能性がある。また、分割領域の形状や閾値の値によっては、第1分割線が照射領域S上を通らなくなり、分割数が減少する場合もある。すなわち、第1分割線移動工程により、造形速度は多少低下する可能性がある。一方、熱干渉判定工程および第1分割線移動工程を実施することで、固化工程時における熱干渉の発生を抑制することができ、より高品質な三次元造形物を形成することができる。熱干渉判定工程および第1分割線移動工程を実施する場合、高い造形速度を維持しつつ熱干渉を抑制する上で、閾値tは熱干渉を抑制できる程度に小さい値であることが好ましい。閾値tは材料の種類や造形条件に応じて任意の値が設定されればよいが、例えば、約5mmである。閾値tは、少なくとも、照射するレーザ光のスポット径の大きさ以上に設定される。
【0056】
第1分割工程後、好ましくは熱干渉判定工程において熱干渉があると判定された場合は第1分割線移動工程後、ヒューム干渉判定工程(S140)が行われる。以下、ヒューム干渉判定工程において、判定対象となる分割領域を判定領域、判定領域と同時にレーザ光が照射される分割領域を同時照射領域と呼ぶ。ヒューム干渉判定工程では、それぞれの分割領域について、判定領域から発生するヒュームが同時照射領域に到達するか、すなわちヒューム干渉が発生するかを判定する。ヒューム干渉が発生すると判定されたときは、判定領域において同時照射領域に到達するヒュームの発生源となり得る領域のうち流れ方向の最も下流側の点または同時照射領域において判定領域から発生するヒュームが到達し得る領域のうち流れ方向の最も上流側の点をヒューム干渉点として算出する。ヒューム干渉が発生するとき、所定の分割領域で発生したヒュームが当該分割領域と同時にレーザ光が照射される分割領域に到達して固化層83の形成の妨げになる可能性がある。
【0057】
具体的には、まず、不活性ガスの流れ方向に対し所定の角度θを有し判定領域に流れ方向の上流側で接する第1の直線V1と、不活性ガスの流れ方向に対し所定の角度-θを有し判定領域に流れ方向の上流側で接する第2の直線V2と、を求める。そして、第1の直線V1または第2の直線V2が、同時照射領域上を通るかどうかを判定する。第1の直線V1または第2の直線V2が同時照射領域上を通る場合、ヒューム干渉ありと判定し、ヒューム干渉点を算出する。ここで、ヒューム干渉点は、第1の直線V1または第2の直線V2と同時照射領域とが交わる点のうち、流れ方向の最も上流側の点である。
【0058】
なお、同時照射領域が、判定領域の片側にしか存在していない場合、第1の直線V1と第2の直線V2のうち同時照射領域側に延びる一方のみが判定に使用されてもよい。走査装置の数が2であるとき、同時照射領域は、判定領域の片側にしか存在しない。
【0059】
角度θの値は材料の種類や造形条件、不活性ガスの流速等に応じて任意の値が設定されればよい。本実施形態の積層造形装置100においては、角度θは30°以下であることが好ましい。本実施形態の角度θは、例えば10°である。
【0060】
また、本実施形態においては、所定の照射位置で生じたヒュームは放射状に拡散すると仮定して、ヒューム干渉の判定に第1の直線V1および第2の直線V2を使用するが、他の線や領域が判定に使用されてもよい。例えば、所定の関数に基づく2次曲線が判定に使用されてもよい。
【0061】
図13には、分割領域D1を判定領域とするヒューム干渉判定工程が示される。分割領域D1の同時照射領域は、分割領域D3である。分割領域D1に不活性ガスの流れ方向の上流側で接する第1の直線V1が、分割領域D1と同時に照射される分割領域D3上を通るので、ヒューム干渉ありと判定される。そして、第1の直線V1と分割領域D3とが交わる点のうち、最も流れ方向の上流側の点が、ヒューム干渉点P1として算出される。
【0062】
図14には、分割領域D2を判定領域とするヒューム干渉判定工程が示される。分割領域D2の同時照射領域は、分割領域D4である。分割領域D2に不活性ガスの流れ方向の上流側で接する第1の直線V1が、分割領域D2と同時に照射される分割領域D4上を通るので、ヒューム干渉ありと判定される。そして、第1の直線V1と分割領域D4とが交わる点のうち、最も流れ方向の上流側の点が、ヒューム干渉点P2として算出される。
【0063】
図15には、分割領域D3を判定領域とするヒューム干渉判定工程が示される。分割領域D3の同時照射領域は、分割領域D1である。分割領域D3に不活性ガスの流れ方向の上流側で接する第2の直線V2は、分割領域D3と同時に照射される分割領域D1上を通らないので、ヒューム干渉なしと判定される。
【0064】
図16には、分割領域D4を判定領域とするヒューム干渉判定工程が示される。分割領域D4の同時照射領域は、分割領域D2である。分割領域D4に不活性ガスの流れ方向の上流側で接する第2の直線V2が、分割領域D4と同時に照射される分割領域D2上を通るので、ヒューム干渉ありと判定される。そして、第2の直線V2と分割領域D2とが交わる点のうち、最も流れ方向の上流側の点が、ヒューム干渉点P4として算出される。
【0065】
このように、全ての分割領域を判定対象として、ヒューム干渉判定工程が行われる。いずれの分割領域においてもヒューム干渉なしと判定された場合、所定の分割層における照射領域Sの分割は終了する。
【0066】
なお、ヒューム干渉の判定は別の様態によってなされてもよく、例えば下記の手順で行われてもよい。まず、不活性ガスの流れ方向に対し所定の角度θを有し同時照射領域に流れ方向の下流側で接する第1の直線V1aと、不活性ガスの流れ方向に対し所定の角度-θを有し同時照射領域に流れ方向の下流側で接する第2の直線V2aと、を求める。そして、第1の直線V1aまたは第2の直線V2aが、判定領域上を通るかどうかを判定する。第1の直線V1aまたは第2の直線V2aが判定領域上を通る場合、ヒューム干渉ありと判定し、ヒューム干渉点を算出する。ここで、ヒューム干渉点は、第1の直線V1aまたは第2の直線V2aと判定領域とが交わる点のうち、流れ方向の最も下流側の点である。
【0067】
図17には、別の様態のヒューム干渉判定工程が示される。分割領域D1を判定領域とするとき、分割領域D1の同時照射領域は、分割領域D3である。分割領域D1と同時に照射される分割領域D3に不活性ガスの流れ方向の下流側で接する第1の直線V1aが、分割領域D1上を通るので、ヒューム干渉ありと判定される。そして、第1の直線V1aと分割領域D1とが交わる点のうち、最も流れ方向の下流側の点が、ヒューム干渉点P1aとして算出される。分割領域D2を判定領域とするとき、分割領域D2の同時照射領域は、分割領域D4である。分割領域D2と同時に照射される分割領域D4に不活性ガスの流れ方向の下流側で接する第1の直線V1aが、分割領域D2上を通るので、ヒューム干渉ありと判定される。そして、第1の直線V1aと分割領域D2とが交わる点のうち、最も流れ方向の下流側の点が、ヒューム干渉点P2aとして算出される。分割領域D3を判定領域とするとき、分割領域D3の同時照射領域は、分割領域D1である。分割領域D3と同時に照射される分割領域D1に不活性ガスの流れ方向の下流側で接する第2の直線V2aは、分割領域D3上を通らないので、ヒューム干渉なしと判定される。分割領域D4を判定領域とするとき、分割領域D4の同時照射領域は、分割領域D2である。分割領域D4と同時に照射される分割領域D2に不活性ガスの流れ方向の下流側で接する第2の直線V2aが、分割領域D4上を通るので、ヒューム干渉ありと判定される。そして、第2の直線V2aと分割領域D4とが交わる点のうち、最も流れ方向の下流側の点が、ヒューム干渉点P4aとして算出される。
【0068】
少なくとも1つの分割領域においてヒューム干渉ありと判定された場合、すなわち少なくとも1つのヒューム干渉点が存在するとき、第2分割工程(S150)が行われる。第2分割工程では、流れ方向と交差する第2分割線Mで、照射領域Sを分割する。ここで、第2分割線Mは、不活性ガスの流れ方向に直交することが好ましい。また、第2分割線Mは、ヒューム干渉点のうち不活性ガスの流れ方向の最も上流側の点を通るよう設定されることが望ましい。このような第2分割線Mによれば、より効率よく照射領域Sの分割を行うことができる。本実施形態では、ヒューム干渉点P1,P2,P4のうち、最も上流側の点はヒューム干渉点P1である。そこで、図18に示すように、ヒューム干渉点P1を通り、不活性ガスの流れ方向に直交する第2分割線Mにより、照射領域Sを分割する。
【0069】
第2分割工程後、第2分割線Mで分割された照射領域Sのそれぞれについて、第1分割工程および照射順序決定工程が再度行われる。図19は、2回目の第1分割工程が行われた照射領域Sを示している。照射領域Sは、第1分割線N4,N5,N6,N7,N8,N9および第2分割線Mにより、8つの分割領域D5,D6,D7,D8,D9,D10,D11,D12に分割される。本実施形態では、分割領域D5と分割領域D7、分割領域D6と分割領域D8、分割領域D9と分割領域D11、分割領域D10と分割領域D12の各組に対してレーザ光L1,L2が同時に照射されるので、各組の照射時間ひいては面積は、実質的に等しくなるよう分割される。なお、照射順序決定工程にあたり、不活性ガスの下流側に位置する分割領域、すなわち分割領域D5,D6,D7,D8から先に照射されるように照射順序が決定されることが望ましい。例えば、本実施形態では、分割領域D5および分割領域D7が1番目に同時にレーザ光L1,L2を照射される分割領域として決定され、分割領域D6および分割領域D8が2番目に同時にレーザ光L1,L2を照射される分割領域として決定され、分割領域D9および分割領域D11が3番目に同時にレーザ光L1,L2を照射される分割領域として決定され、分割領域D10および分割領域D12が4番目に同時にレーザ光L1,L2を照射される分割領域として決定される。
【0070】
その後も同様に熱干渉判定工程およびヒューム干渉判定工程を行い、熱干渉ありと判定された場合は第1分割線移動工程を、ヒューム干渉ありが判定された場合は第2分割工程を再度行う。以上の手順がヒューム干渉なしと判定されるまで繰り返される。こうして、所定の分割層に係る照射領域Sの分割領域およびその照射順序が確定する。以上の工程が、各分割層に係る照射領域S毎に行われ、プロジェクトファイルが生成される。
【0071】
なお、各分割領域にレーザ光を照射するにあたり、レーザ光は例えばラスタ走査される。プロジェクトファイルは、ラスタ走査に係る走査線の位置および走査線の照射順序も規定している。ここで、分割領域D12を例にして、ラスタ走査を説明する。図20は、分割領域D12の拡大図であり、分割領域D12における走査線を概略的に示している。まず、分割領域D12は、所定幅wを有するラスタ領域に分割される。図20の破線はラスタ領域の分割線を示している。そして、ラスタ領域の長手方向と直交する方向に沿って、所定のピッチp毎に走査線が設定される。図20の実線矢印は走査線の走査方向を示しており、走査線に沿ってレーザ光が走査される。ヒュームの影響を抑えて造形する上で、ラスタ走査は、不活性ガスの流れ方向の下流側から上流側に向かって行われることが望ましい。具体的に、図20で示す分割領域D12に対してレーザ光をラスタ走査する場合、図中右上のラスタ領域を始点とし、図中左下のラスタ領域を終点として、順番にラスタ走査が行われる。各々のラスタ領域では、図中左上の走査線を始点とし、図中右下の走査線を終点として、順番にラスタ走査が行われる。
【0072】
<3.三次元造形物の製造方法>
次に、上述の手順で照射領域Sを分割して生成されたプロジェクトファイルに基づき、積層造形装置100で行われる三次元造形物の製造方法について説明する。本実施形態の積層造形方法における三次元造形物の製造方法は、材料層形成工程と、固化工程と、不活性ガス供給工程と、を備える。材料層形成工程は、所定の造形領域Rに材料層82を形成する。固化工程は、n個の走査装置、本実施形態では2個の走査装置で走査されたレーザ光L1,L2を材料層82の所定の照射領域に照射して固化層83を形成する。材料層形成工程および固化工程は繰り返し実施される。
【0073】
不活性ガス供給工程は、少なくとも各々の固化工程において、照射領域Sの直上に一定の方向に流れる不活性ガスを供給する。本実施形態においては、不活性ガス供給工程は積層造形中常時行われる。また、固化工程において、レーザ光L1,L2は各々の分割領域において不活性ガスの流れ方向の下流側から上流側にラスタ走査される。また、前述の通り、照射領域Sを分割する第1分割線は、不活性ガスの流れ方向に沿って設定されている。このような構成により、不活性ガスの流れ方向の下流側、すなわちヒュームの流れ方向の下流側から上流側に向かって固化層83を形成することができるので、ヒュームの影響を抑制して造形を行うことができる。
【0074】
まず、1回目の材料層形成工程が行われる。図21に示すように、造形テーブル5上にベースプレート81を載置した状態で造形テーブル5の高さを適切な位置に調整する。この状態で、リコータヘッド11を造形領域Rの左側から右側に移動させることにより、ベースプレート81上に1層目の材料層82が形成される。
【0075】
次に、1回目の固化工程が行われる。図22に示すように、1層目の材料層82の所定の照射領域Sにレーザ光L1,L2を照射することによって、1層目の材料層82を固化させ、1層目の固化層83を得る。本実施形態においては、第1のガルバノスキャナ32によって走査されるレーザ光L1と、第2のガルバノスキャナ42によって走査されるレーザ光L2は、それぞれが担当する分割領域に同時に照射される。各分割領域と照射順序が適切に設定されているので、レーザ光L1とレーザ光L2は、互いに干渉しない。なお、所定の分割領域の照射が、当該分割領域と同時に照射される他の分割領域の照射が完了するよりも先に完了した場合、当該分割領域を担当する走査装置は、当該分割領域と同時に照射される他の分割領域の照射が完了するまで待機する。
【0076】
続いて、2回目の材料層形成工程が行われる。1層目の固化層83を形成後、造形テーブル5の高さを材料層82の1層分下げる。この状態で、リコータヘッド11を造形領域Rの右側から左側に移動させることにより、1層目の固化層83を覆うように2層目の材料層82が形成される。そして2回目の固化工程が行われる。上述と同様の方法で、2層目の材料層82の所定の照射領域Sにレーザ光L1、L2を照射することによって、2層目の材料層82を固化させ、図23に示すように2層目の固化層83を得る。
【0077】
所望の三次元造形物が得られるまで、材料層形成工程および固化工程が繰り返され、複数の固化層83が積層される。隣接する固化層83は、互いに強く固着される。
【0078】
<4.他の実施形態>
以上、本発明の好適な実施形態について説明したが、本発明は上述の実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な設計変更が可能なものである。例えば、以下の態様によっても実施することができる。
【0079】
図24および図25は、第2の実施形態の積層造形装置200を示している。なお、第1の実施形態と同等の部材については詳細な説明を省略する。第2の実施形態に係る積層造形装置200は、固化層83に対して切削加工を行う切削装置7を備えている。チャンバ1は、三次元造形物の形成を行う造形室と、切削装置のX軸駆動装置71およびY軸駆動装置72の大部分が収容される駆動室とに、蛇腹18によって仕切られている。造形室と駆動室との間には、不活性ガスが通過できるだけのわずかな隙間である連通部が存在している。
【0080】
切削装置7は、造形室内に配置されスピンドル75を内蔵する加工ヘッド74と、加工ヘッド74をX軸方向に移動させるX軸駆動装置71と、加工ヘッド74をY軸方向に移動させるY軸駆動装置72と、加工ヘッド74を鉛直方向であるZ軸方向に移動させるZ軸駆動装置73と、を備える。スピンドル75は、エンドミルなどの切削工具を装着して回転させることができるように構成されている。このような切削装置7により、三次元造形物の造形中に、固化層83の表面や不要部分に対して切削加工を施してもよい。
【0081】
本実施形態の不活性ガス給排機構は、第1の不活性ガス供給装置15aと、第2の不活性ガス供給装置15bと、ヒュームコレクタ19と、供給口24a,24b,24c,24d,24eと、排出口25a,25b,25cと、仕切板23aと、上部案内板23bと、下部案内板23cと、ファン23dと、整流板23eと、各部を接続する配管と、を備える。
【0082】
第1の不活性ガス供給装置15aは、第2の不活性ガス供給装置15bよりもより高濃度の不活性ガスを供給できるものが望ましく、例えば、第1の不活性ガス供給装置15aはPSA式窒素発生装置であり、第2の不活性ガス供給装置15bは膜分離式窒素発生装置である。
【0083】
供給口24aは、リコータヘッド11の一方の側面に設けられる。供給口24bは、供給口24aが設けられた側と反対側のベース4の端面上に敷設された配管に設けられる。供給口24aおよび供給口24bはそれぞれ第1の不活性ガス供給装置15aに接続され、リコータヘッド11の移動位置に応じて、択一的に供給口24aまたは供給口24bを通じて所定の圧力と流量の不活性ガスがチャンバ1に供給される。すなわち、照射領域Sに対して供給口24aが対面する位置にあるときは供給口24aを通じて不活性ガスが供給され、照射領域Sに対して供給口24aが対面しない位置にあるときは供給口24bを通じて不活性ガスが供給される。供給口24cは、供給口24bが設けられた側のチャンバ1の側壁に設けられる。供給口24cはヒュームコレクタ19と接続され、供給口24cを介して、ヒュームコレクタ19によってヒュームの大部分が除去された不活性ガスがチャンバ1に返送される。供給口24dは、チャンバ1の上面に設けられ、第1の不活性ガス供給装置15aと接続される。供給口24dを介して、ヒューム拡散部17の不活性ガス供給空間17dへと、不活性ガスが供給される。供給口24eは、駆動室の上部に設けられ、第2の不活性ガス供給装置15bと接続される。第2の不活性ガス供給装置15bから駆動室に供給された不活性ガスは、造形室と駆動室との間の連通部を通り、造形室内に供給される。
【0084】
供給口24bおよび供給口24cが設けられた側と反対側のチャンバ1の側壁を覆うように仕切板23aが設けられる。仕切板23aと側壁とで区切られる空間のチャンバ1の上面に排出口25aが設けられ、仕切板23a付近のチャンバ1の照射領域S側の上面に排出口25bが設けられる。また、排出口25bの下には、排出口25bを囲むように仕切板23a側に断面L字状に延びる上部案内板23bが設けられる。仕切板23aの下端には、下部が照射領域S側に延びる下部案内板23cが設けられ、仕切板23aと下部案内板23cとの間には所定の間隙が形成される。間隙は、造形室の中央より下側の高さに位置する。間隙付近には仕切板23aと側壁とで区切られる空間に不活性ガスを吸引する複数のファン23dが設けられ、各ファン23dの両端には上方向に延びる整流板23eが設けられる。仕切板23a付近に送られた不活性ガスは、間隙または下部案内板23cの下から、仕切板23aと側壁とで区切られる空間を通り、排出口25aへと送られる。また、間隙から回収しきれなかった不活性ガスは仕切板23aに沿って上昇し、上部案内板23bに案内されて排出口25bへと送られる。排出口25cは、リコータヘッド11の供給口24aが設けられていない側の側面に設けられる。排出口25a、排出口25bおよび排出口25cを通じて、不活性ガスがチャンバ1から排出され、ヒュームコレクタ19へと送られる。
【0085】
このような構成により、図25に白抜矢印で示すように、照射領域Sの直上において、図中左側から右側へと向かう不活性ガスの流れが形成される。ヒュームはこの不活性ガスの流れに乗り、チャンバ1から排出される。
【0086】
また、第1の実施形態においては、第1分割線は直線であったが、実質的に同時にレーザ光が照射される分割領域のそれぞれの照射時間が実質的に等しくなるように分割できる線であれば、直線でなくてもよい。例えば、図26には、第1分割線N1b,N2b,N3bによって、4つの分割領域D1b,D2b,D3b,D4bに分割された所定の照射領域Sbが示される。照射領域Sb内の斜線は、ラスタ走査に係る走査線を示している。第1分割線N1b,N2b,N3bは、走査線を極力切断しないように、ジグザグな線として設定される。
【0087】
以上、本発明に係る種々の実施形態を説明したが、これらは例として提示したものであり、発明の範囲を限定することは意図していない。当該新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。当該実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0088】
1:チャンバ、1a:チャンバウィンドウ、3:材料層形成装置、4:ベース、5:造形テーブル、6:造形テーブル駆動装置、7:切削装置、11:リコータヘッド、11a:材料収容部、11b:材料供給口、11c:材料排出口、11fb:ブレード、11rb:ブレード、12:リコータヘッド駆動装置、13:照射装置、14:筐体、14a:開口部、14b:照射装置ウィンドウ、15:不活性ガス供給装置、15a:第1の不活性ガス供給装置、15b:第2の不活性ガス供給装置、17:ヒューム拡散部、17a:筐体、17b:開口部、17c:拡散部材、17d:不活性ガス供給空間、17e:細孔、17f:清浄室、18:蛇腹、19:ヒュームコレクタ、21a:供給口、21b:供給口、22a:排出口、23a:仕切板、23b:上部案内板、23c:下部案内板、23d:ファン、23e:整流板、24a:供給口、24b:供給口、24c:供給口、24d:供給口、24e:供給口、25a:排出口、25b:排出口、25c:排出口、30:照射制御装置、31:第1のレーザ光源、32:第1のガルバノスキャナ、32a:第1のX軸ガルバノミラー、32b:第1のY軸ガルバノミラー、32c:第1のX軸アクチュエータ、32d:第1のY軸アクチュエータ、33:第1のアパーチャ、34:第1のフォーカス制御ユニット、34a:第1の焦点制御レンズ、34b:第1のモータ、35:第1の調整レンズ、37:第1のコネクタ、38:第1の制御基板、41:第2のレーザ光源、42:第2のガルバノスキャナ、42a:第2のX軸ガルバノミラー、42b:第2のY軸ガルバノミラー、42c:第2のX軸アクチュエータ、42d:第2のY軸アクチュエータ、43:第2のアパーチャ、44:第2のフォーカス制御ユニット、44a:第2の焦点制御レンズ、44b:第2のモータ、45:第2の調整レンズ、47:第2のコネクタ、48:第2の制御基板、52:CAM装置、53:演算装置、54:記憶装置、55:メモリ、71:X軸駆動装置、72:Y軸駆動装置、73:Z軸駆動装置、74:加工ヘッド、75:スピンドル、81:ベースプレート、82:材料層、83:固化層、90:制御装置、91:主制御装置、100:積層造形装置、200:積層造形装置、300:積層造形システム。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
【手続補正書】
【提出日】2021-03-31
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
所定の造形領域に材料層を形成する材料層形成工程と、n個の走査装置(但し、nは2以上の整数)で走査されたレーザ光を前記材料層の所定の照射領域に照射して固化層を形成する固化工程と、を繰り返す積層造形方法であって、
前記照射領域を、同時に前記レーザ光が照射される分割領域のそれぞれの照射時間が等しくなるように、複数の第1分割線で(2n-1)個以上の前記分割領域に分割する第1分割工程と、
隣接しない前記分割領域に前記レーザ光が同時に照射され、隣接する前記分割領域に前記レーザ光が同時に照射されないように、前記固化工程における前記分割領域の照射順序を決定する照射順序決定工程と、
第1分割工程後、同時に前記レーザ光が照射される前記分割領域間の最短距離の大きさが所定の閾値以上であるかを判定する熱干渉判定工程と、
前記最短距離が前記閾値未満であるとき、前記最短距離の大きさが前記閾値以上となるよう、前記第1分割線を前記第1分割線に対して垂直な方向に移動させる第1分割線移動工程と、を備える、積層造形方法。
【請求項2】
少なくとも各々の前記固化工程において、前記照射領域の直上に一定の方向に流れる不活性ガスを供給する不活性ガス供給工程をさらに備え、
前記第1分割工程において、前記第1分割線は、前記不活性ガスの流れ方向に沿って設定され、
前記固化工程において、前記レーザ光は各々の前記分割領域において前記流れ方向の下流側から上流側にラスタ走査される、請求項1に記載の積層造形方法。
【請求項3】
第1分割工程後、それぞれの前記分割領域について、判定対象となる分割領域である判定領域から発生するヒュームが前記判定領域と同時に前記レーザ光が照射される分割領域である同時照射領域に到達するヒューム干渉が発生するかを判定するヒューム干渉判定工程と、
前記ヒューム干渉が発生すると判定されたとき、前記流れ方向と交差する第2分割線で、前記照射領域を分割する第2分割工程と、をさらに備え、
前記第2分割工程後、前記第2分割線で分割された照射領域のそれぞれについて、前記第1分割工程および前記照射順序決定工程が再度行われる、請求項に記載の積層造形方法。
【請求項4】
前記第2分割線は、前記流れ方向に直交する、請求項に記載の積層造形方法。
【請求項5】
前記ヒューム干渉判定工程では、前記ヒューム干渉が発生すると判定されたとき、前記判定領域において前記同時照射領域に到達する前記ヒュームの発生源となり得る領域のうち前記流れ方向の最も下流側の点または前記同時照射領域において前記判定領域から発生する前記ヒュームが到達し得る領域のうち前記流れ方向の最も上流側の点をヒューム干渉点として算出し、
前記第2分割工程では、前記第2分割線は、少なくとも1つの前記ヒューム干渉点のうち前記流れ方向の最も上流側の点を通るよう設定される、請求項または請求項に記載の積層造形方法。
【請求項6】
前記ヒューム干渉判定工程では、前記流れ方向に対し所定の角度θを有し前記判定領域に前記流れ方向の上流側で接する第1の直線および前記流れ方向に対し所定の角度-θを有し前記判定領域に前記流れ方向の上流側で接する第2の直線が、前記同時照射領域上を通るかどうかを判定し、前記第1の直線または前記第2の直線と前記同時照射領域とが交わる点のうち、前記流れ方向の最も上流側の点を前記ヒューム干渉点として算出する、請求項に記載の積層造形方法。
【請求項7】
前記ヒューム干渉判定工程では、前記流れ方向に対し所定の角度θを有し前記同時照射領域に前記流れ方向の下流側で接する第1の直線および前記流れ方向に対し所定の角度-θを有し前記同時照射領域に前記流れ方向の下流側で接する第2の直線が、前記判定領域上を通るかどうかを判定し、前記第1の直線または前記第2の直線と前記判定領域とが交わる点のうち、前記流れ方向の最も下流側の点を前記ヒューム干渉点として算出する、請求項に記載の積層造形方法。
【請求項8】
前記第1分割工程では、同時に前記レーザ光が照射される前記分割領域のそれぞれの面積が等しくなるように前記照射領域が分割される、請求項1から請求項のいずれか1項に記載の積層造形方法。
【請求項9】
前記第1分割工程では、照射領域がn×m個(但し、mは2以上の整数)の前記分割領域に分割される、請求項1から請求項のいずれか1項に記載の積層造形方法。
【請求項10】
前記第1分割工程では、照射領域が2n個の前記分割領域に分割される、請求項に記載の積層造形方法。
【請求項11】
前記走査装置の数は2であり、
前記第1分割工程では、照射領域が4個の前記分割領域に分割される、請求項1から請求項10のいずれか1項に記載の積層造形方法。
【請求項12】
全ての前記走査装置におけるそれぞれの前記レーザ光の照射可能範囲は、前記造形領域の全体を含有する、請求項1から請求項11のいずれか1項に記載の積層造形方法。
【請求項13】
所定の造形領域に材料層を形成する材料層形成工程と、n個の走査装置(但し、nは2以上の整数)で走査されたレーザ光を前記材料層の所定の照射領域に照射して固化層を形成する固化工程と、を繰り返す積層造形方法であって、
前記照射領域を、同時に前記レーザ光が照射される分割領域のそれぞれの照射時間が等しくなるように、複数の第1分割線で(2n-1)個以上の前記分割領域に分割する第1分割工程と、
隣接しない前記分割領域に前記レーザ光が同時に照射され、隣接する前記分割領域に前記レーザ光が同時に照射されないように、前記固化工程における前記分割領域の照射順序を決定する照射順序決定工程と、
第1分割工程後、それぞれの前記分割領域について、判定対象となる分割領域である判定領域から発生するヒュームが前記判定領域と同時に前記レーザ光が照射される分割領域である同時照射領域に到達するヒューム干渉が発生するかを判定するヒューム干渉判定工程と、
前記ヒューム干渉が発生すると判定されたとき、前記流れ方向と交差する第2分割線で、前記照射領域を分割する第2分割工程と、
少なくとも各々の前記固化工程において、前記照射領域の直上に一定の方向に流れる不活性ガスを供給する不活性ガス供給工程と、を備え、
前記第1分割工程において、前記第1分割線は、前記不活性ガスの流れ方向に沿って設定され、
前記第2分割工程後、前記第2分割線で分割された照射領域のそれぞれについて、前記第1分割工程および前記照射順序決定工程が再度行われ、
前記固化工程において、前記レーザ光は各々の前記分割領域において前記流れ方向の下流側から上流側にラスタ走査される、積層造形方法。
【請求項14】
前記第2分割線は、前記流れ方向に直交する、請求項13に記載の積層造形方法。
【請求項15】
前記ヒューム干渉判定工程では、前記ヒューム干渉が発生すると判定されたとき、前記判定領域において前記同時照射領域に到達する前記ヒュームの発生源となり得る領域のうち前記流れ方向の最も下流側の点または前記同時照射領域において前記判定領域から発生する前記ヒュームが到達し得る領域のうち前記流れ方向の最も上流側の点をヒューム干渉点として算出し、
前記第2分割工程では、前記第2分割線は、少なくとも1つの前記ヒューム干渉点のうち前記流れ方向の最も上流側の点を通るよう設定される、請求項13または請求項14に記載の積層造形方法。
【請求項16】
前記ヒューム干渉判定工程では、前記流れ方向に対し所定の角度θを有し前記判定領域に前記流れ方向の上流側で接する第1の直線および前記流れ方向に対し所定の角度-θを有し前記判定領域に前記流れ方向の上流側で接する第2の直線が、前記同時照射領域上を通るかどうかを判定し、前記第1の直線または前記第2の直線と前記同時照射領域とが交わる点のうち、前記流れ方向の最も上流側の点を前記ヒューム干渉点として算出する、請求項15に記載の積層造形方法。
【請求項17】
前記ヒューム干渉判定工程では、前記流れ方向に対し所定の角度θを有し前記同時照射領域に前記流れ方向の下流側で接する第1の直線および前記流れ方向に対し所定の角度-θを有し前記同時照射領域に前記流れ方向の下流側で接する第2の直線が、前記判定領域上を通るかどうかを判定し、前記第1の直線または前記第2の直線と前記判定領域とが交わる点のうち、前記流れ方向の最も下流側の点を前記ヒューム干渉点として算出する、請求項15に記載の積層造形方法。
【請求項18】
前記第1分割工程では、同時に前記レーザ光が照射される前記分割領域のそれぞれの面積が等しくなるように前記照射領域が分割される、請求項13から請求項17のいずれか1項に記載の積層造形方法。
【請求項19】
前記第1分割工程では、照射領域がn×m個(但し、mは2以上の整数)の前記分割領域に分割される、請求項13から請求項18のいずれか1項に記載の積層造形方法。
【請求項20】
前記第1分割工程では、照射領域が2n個の前記分割領域に分割される、請求項19に記載の積層造形方法。
【請求項21】
前記走査装置の数は2であり、
前記第1分割工程では、照射領域が4個の前記分割領域に分割される、請求項13から請求項20のいずれか1項に記載の積層造形方法。
【請求項22】
全ての前記走査装置におけるそれぞれの前記レーザ光の照射可能範囲は、前記造形領域の全体を含有する、請求項13から請求項21のいずれか1項に記載の積層造形方法。
【請求項23】
積層造形に係る指令が規定されたプロジェクトファイルを作成するCAM装置と、
前記プロジェクトファイルに基づき積層造形を行う積層造形装置と、を備え、
前記積層造形装置は、
所定の造形領域に材料層を形成する材料層形成装置と、
レーザ光を生成する光源および前記レーザ光を走査するn個の走査装置(但し、nは2以上の整数)を有し、前記レーザ光を前記材料層の所定の照射領域に照射して固化層を形成する照射装置と、を含み、
前記CAM装置は、前記プロジェクトファイルの作成にあたり、
前記照射領域を、同時に前記レーザ光が照射される分割領域のそれぞれの照射時間が等しくなるように、複数の第1分割線で(2n-1)個以上の前記分割領域に分割し、
隣接しない前記分割領域に前記レーザ光が同時に照射され、隣接する前記分割領域に前記レーザ光が同時に照射されないように、前記分割領域の照射順序を決定
前記第1分割線による前記分割領域の分割後、同時に前記レーザ光が照射される前記分割領域間の最短距離の大きさが所定の閾値以上であるかを判定し、
前記最短距離が前記閾値未満であるとき、前記最短距離の大きさが前記閾値以上となるよう、前記第1分割線を前記第1分割線に対して垂直な方向に移動させる、積層造形システム。
【請求項24】
積層造形に係る指令が規定されたプロジェクトファイルを作成するCAM装置と、
前記プロジェクトファイルに基づき積層造形を行う積層造形装置と、を備え、
前記積層造形装置は、
所定の造形領域に材料層を形成する材料層形成装置と、
レーザ光を生成する光源および前記レーザ光を走査するn個の走査装置(但し、nは2以上の整数)を有し、前記レーザ光を前記材料層の所定の照射領域に照射して固化層を形成する照射装置と、
前記照射装置により少なくとも各々の前記固化層を形成するときにおいて、前記照射領域の直上に一定の方向に流れる不活性ガスを供給する不活性ガス給排機構と、を含み、
前記CAM装置は、前記プロジェクトファイルの作成にあたり、
前記照射領域を、同時に前記レーザ光が照射される分割領域のそれぞれの照射時間が等しくなるように、前記不活性ガスの流れ方向に沿って設定された複数の第1分割線で(2n-1)個以上の前記分割領域に分割し、
隣接しない前記分割領域に前記レーザ光が同時に照射され、隣接する前記分割領域に前記レーザ光が同時に照射されないように、前記分割領域の照射順序を決定し、
前記第1分割線による前記照射領域の分割後、それぞれの前記分割領域について、判定対象となる分割領域である判定領域から発生するヒュームが前記判定領域と同時に前記レーザ光が照射される分割領域である同時照射領域に到達するヒューム干渉が発生するかを判定し、
前記ヒューム干渉が発生すると判定されたとき、前記流れ方向と交差する第2分割線で、前記照射領域を分割し、
前記第2分割線による前記照射領域の分割後、前記第2分割線で分割された照射領域のそれぞれについて、前記第1分割線による前記照射領域の分割および前記分割領域の照射順序の決定を再度行い、
前記積層造形装置は、前記照射装置により前記固化層を形成するときにおいて、前記レーザ光を各々の前記分割領域において前記流れ方向の下流側から上流側にラスタ走査させる、積層造形システム。