(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022023914
(43)【公開日】2022-02-08
(54)【発明の名称】生理学的データのモニタリング方法
(51)【国際特許分類】
A61B 5/257 20210101AFI20220201BHJP
A61B 5/282 20210101ALI20220201BHJP
【FI】
A61B5/257
A61B5/282
【審査請求】有
【請求項の数】20
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2021174323
(22)【出願日】2021-10-26
(62)【分割の表示】P 2019191310の分割
【原出願日】2015-10-30
(31)【優先権主張番号】62/073,910
(32)【優先日】2014-10-31
(33)【優先権主張国・地域又は機関】US
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.テフロン
2.ブルートゥース
3.ZIGBEE
4.WINDOWS
5.UNIX
6.Linux
7.SOLARIS
8.BLACKBERRY
9.ANDROID
10.JAVA
11.iOS
(71)【出願人】
【識別番号】512290931
【氏名又は名称】アイリズム・テクノロジーズ・インコーポレイテッド
【氏名又は名称原語表記】iRhythm Technologies,Inc.
(74)【代理人】
【識別番号】100101454
【弁理士】
【氏名又は名称】山田 卓二
(74)【代理人】
【識別番号】100112911
【弁理士】
【氏名又は名称】中野 晴夫
(72)【発明者】
【氏名】シーナ・パーク
(72)【発明者】
【氏名】ニコラス・ヒューズ
(72)【発明者】
【氏名】マーク・デイ
(72)【発明者】
【氏名】ジェナロ・セプルベダ
(72)【発明者】
【氏名】フン・ホー
(72)【発明者】
【氏名】フランク・ガルシア
(72)【発明者】
【氏名】ユリコ・タムラ
(57)【要約】 (修正有)
【課題】パッチ型の生体モニタリングシステムにおいて小型で長期間装着可能なシステムを提供する。
【解決手段】センサ1002はECG信号1004を連続的に検出し、特徴例A、B及びCを表す複数の特徴1006を抽出する。特徴1008は、処理デバイス/サーバー1012へ送信され、送信された特徴1014は、不整脈を含むと思われるセグメント/位置1018を分析して識別する律動推測システム1016を介して分析を実行する。
【選択図】
図11
【特許請求の範囲】
【請求項1】
一もしくは複数の計算機器を備えるコンピュータシステムによって読取りが可能であるコンピュータ実行可能命令を記憶している非一時的記憶媒体であって、ここでコンピュータ実行可能命令は、コンピュータシステムに動作を実行させるためにコンピュータシステムにおいて実行可能であり、上記動作は、
通信リンクを介してコンピュータシステムによって、患者モニタリングデバイスにより生成された第1患者に関する生体センサデータを受信すること、
生体センサデータにおける一もしくは複数のポイントが一もしくは複数の予め決められた状態セットを示唆する可能性があるか否かを決定するために、コンピュータシステムによって生体センサデータを分析すること、
生体センサデータにおける一もしくは複数のポイントのうちの少なくとも1つが一もしくは複数の予め決められた状態セットのうちの少なくとも1つを示唆する可能性があると決定した後、コンピュータシステムによって、患者モニタリングデバイスへ送信するための電子データパッケージを生成すること、ここで電子データパッケージは、一もしくは複数の予め決められた状態セットのうちの少なくとも1つを示唆する可能性がある生体センサデータにおける一もしくは複数のポイントのうちの少なくとも1つに関する位置データを含む、
を含む、非一時的記憶媒体。
【請求項2】
生体センサデータは、記録された信号データから測定された間隔データのサンプリングを含み、間隔データのサンプリングのデータサイズは、記録された信号データよりも小さい、請求項1に記載のシステム。
【請求項3】
哺乳動物における生体信号をモニタリングするためのシステムであって、該システムは、
哺乳動物から心臓律動データを検出しかつ記録するように構成された粘着性のウェアラブルモニタを備え、ここで粘着性のウェアラブルモニタは、心臓律動データから特徴を抽出するように構成されている、
粘着性のウェアラブルモニタは、特徴を処理デバイスへ送信するように構成され、処理デバイスは、特徴を分析し、対象の位置を識別し、かつ対象の位置を粘着性のウェアラブルモニタへ返送するように構成されている、
システム。
【請求項4】
患者モニタリングデバイスからの生体センサデータを評価するためのシステムであって、該システムは、
コンピュータプロセッサ、及び、コンピュータプロセッサと結合される非一時的コンピュータ読取り可能媒体を備え、コンピュータプロセッサ及び非一時的コンピュータ読取り可能媒体は、第1サーバーに記憶されコンピュータプロセッサにより実行可能である命令セットを含むプログラムを提供するように、さらにプログラムのセンサデータ推測モジュールを実行するように構成され、
プログラムのセンサデータ推測モジュールは、
患者モニタリングデバイスにより生成された第1患者に関する生体センサデータを受信するための命令、
生体センサデータにおける一もしくは複数のポイントが一もしくは複数の予め決められた状態セットを示唆する可能性があるか否かを決定するために生体センサデータを分析するための命令、
生体センサデータにおける一もしくは複数のポイントのうちの少なくとも1つが一もしくは複数の予め決められた状態セットのうちの少なくとも1つを示唆する可能性があると決定した後、患者モニタリングデバイスへ送信するための電子データパッケージを生成するための命令、ここで電子データパッケージは、一もしくは複数の予め決められた状態セットのうちの少なくとも1つを示唆する可能性がある生体センサデータにおける一もしくは複数のポイントのうちの少なくとも1つに関する位置データを含む、
を記憶する、システム。
【請求項5】
コンピュータ化された方法であって、
少なくとも1つのコンピュータ読取り可能記憶媒体からコンピュータ実行可能命令にアクセスすること、
コンピュータ実行可能命令を実行し、これにより、少なくとも1つのコンピュータプロセッサを備えるコンピュータハードウェアに動作を実行させること、
を備え、ここで動作は、
通信リンクを介してサーバーコンピュータによって、患者モニタリングデバイスにより生成された第1患者に関する生体センサデータを受信すること、
生体センサデータにおける一もしくは複数のポイントが一もしくは複数の予め決められた状態セットを示唆する可能性があるか否かを決定するために、サーバーコンピュータによって生体センサデータを分析すること、
生体センサデータにおける一もしくは複数のポイントのうちの少なくとも1つが一もしくは複数の予め決められた状態セットのうちの少なくとも1つを示唆する可能性があると決定した後、サーバーコンピュータによって、患者モニタリングデバイスへ送信するための電子データパッケージを生成すること、ここで電子データパッケージは、一もしくは複数の予め決められた状態セットのうちの少なくとも1つを示唆する可能性がある生体センサデータにおける一もしくは複数のポイントのうちの少なくとも1つに関する位置データを含む、
を備える、
方法。
【発明の詳細な説明】
【技術分野】
【0001】
[関連出願の相互参照]
本出願は、2014年10月31日に提出された、WIRELESS PHYSIOLOGICAL MONITORINGと題する米国仮出願第62/073,910号の出願の利益を主張するものである。上記出願の内容は、本明細書において全てが記載されているかのように、その全体が参考としてここに組み込まれる。上記出願の優先権の利益は、限定されることなく特許法第119条(e)に含まれる適切な法的根拠に基づいて要求される。
【背景技術】
【0002】
本開示の目的に沿って、本明細書では、様々な実施形態の一定の態様、優位点、及び新規な特徴を記述する。そのような優位点の全てが必ずしも何れかの特定の実施形態により達成されてもよいとは限らない点は、理解されるべきである。したがって、様々な実施形態は、本明細書にて教示あるいは示唆されるかもしれない他の優位点を必ずしも達成することなしに、本明細書にて教示されたような1つの優位点あるいは優位点群を達成する方法において実施されてもよい。
【0003】
発明の分野
ウェアラブルセンサにより収集される心拍時系列情報から心臓律動情報を推測するシステム、及びウェアラブルセンサからの心電図信号データを選択的に送信するシステム。
【0004】
関連技術の記述
異常な心臓律動又は不整脈は、意識消失、動悸、目眩等の様々なタイプの症状、あるいは死をも引き起こすことがある。このような症状を引き起こす不整脈は、著しい潜在的心疾患の指標であることが多い。ペースメーカの植込みあるいは経皮的なカテーテルアブレーション等の様々な処置による治療がこれらの問題を首尾良く改善しかつ重大な症状及び死亡を防止できることから、異常な心臓律動によってそのような症状が生じるときを識別することは、重要である。例えば、現時点では、ホルタモニタ及びこれに類似するデバイス等のモニタが、心臓律動をモニタリングするために使用されている。
【発明の概要】
【0005】
本明細書に記述する実施形態は、人又は動物である検査対象によって少なくとも1週間以上かつより典型的には2、3週間以上に渡って連続的にかつ心地よく装着されてもよい生体(physiological)モニタリングデバイスに関する。1つの実施形態において、本デバイスは、具体的には、心臓律動(例えば、心電図、ECG)データを検出して記録するように設計されるが、様々な代わりの実施形態では、一もしくは複数の追加的な生理学的パラメータが検出されかつ記録されてもよい。このような生体モニタリングデバイスは、患者経験(patient experience)を円滑にし及び/又は強化して、心不整脈の診断をより正確かつタイムリーにするための幾つかの特徴を含んでもよい。
【0006】
幾つかの実施形態において、哺乳動物における生体信号をモニタリングするための電子デバイスは、固く曲げられないハウジングから横方向へ延びる少なくとも2つの柔軟な翼と、ここで柔軟な翼は、翼が哺乳動物の表面に従うのを可能にする材料の第1セットを備え、剛性を有するハウジングは材料の第2セットを備える; 剛性を有するハウジング内に収容されるプリント回路基板アッセンブリと、ここで剛性を有するハウジングは、哺乳動物の動きに応じてプリント回路基板の変形を防止するように構成される; 柔軟な翼内に埋め込まれた少なくとも2つの電極と、ここで電極は、哺乳動物の表面との共形接触(conformal contact)を提供して哺乳動物の生体信号を検出するように構成される; 翼内に埋め込まれかつ剛性を有するハウジングから機械的に切り離される少なくとも2つの電極トレースと、ここで電極トレースは、哺乳動物の表面との共形接触を提供しかつ電極からプリント回路基板アッセンブリへ電気信号を送信するように構成される; 及び、翼を剛性を有するハウジングへ接続する少なくとも1つのヒンジ部分と、ここでヒンジ部分は、剛性を有するハウジングと接合される領域で自由に屈曲するように構成される、を備える。
【0007】
実施形態において、各翼は、接着剤を含んでもよい。実施形態において、電極は、接着剤と同じ面に存在することができる。実施形態において、各翼は、少なくとも1つのリムを備え、リムは、各翼の隣接部分より薄い。剛性を有するハウジングは、さらに、剛性を有するハウジングと哺乳動物の表面との間に空気の流れを可能にするように構成した窪みをさらに備えてもよい。実施形態において、リムは、哺乳動物の表面から翼の一部が剥離することを防止するように構成される。幾つかの実施形態において、生体系(physiological systems)をモニタリングする電子デバイスは、少なくとも1つの軸における動きの信号を検出するように構成された測定器を備えてもよい。この測定器は、3軸における動きの信号を検出するように構成可能な加速度計であってもよい。
【0008】
実施形態において、動きの信号は、生体信号と合わせて収集可能である。ある実施形態では、生体信号と動きの信号とが一致したときに、動きのアーチファクト(motion artifact:人為的な結果)と識別する。さらなる実施形態では、プリント回路基板アッセンブリに結合したイベントトリガ(event trigger)を必要としてもよい。幾つかの実施形態では、イベントトリガ入力は、記録される信号におけるアーチファクト源を減らすことができるイベントトリガが動作したときにプリント回路基板における機械的応力を防止するように、剛性を有するハウジングによって支持される。このイベントトリガは、イベントトリガが容易に位置決めされるように、凹形であり人の指よりも大きいものであってもよい。ある実施形態において、電極トレースは、哺乳動物が動く間の信号歪を最小限に抑えるように構成される。特定の実施形態では、剛性を有するハウジングへ密閉可能に取り付ける手段としてガスケットが使用されてもよい。
【0009】
ある実施形態において、哺乳動物における生体信号をモニタリングする方法は、哺乳動物へ電子デバイスを付着すること;ここで電子デバイスは、哺乳動物から生体信号を検出するように構成された少なくとも2つの電極と、二次信号を検出するように構成された少なくとも1つの測定器と、電極及び剛性を有するハウジングに接続された少なくとも2つの電極トレースとを備える、
アーチファクトを識別するために生体信号を二次信号と比較すること、を備えてもよい。
【0010】
ある実施形態において、アーチファクトの識別は、生体信号の周波数スペクトルと二次信号の周波数スペクトルとの比較を備える。実施形態において、二次信号は、哺乳動物の活動及び位置を導出するために使用されてもよい動きの信号を備える。ある実施形態において、二次信号は、3軸において収集される。幾つかの実施形態では、三次信号(a tertiary signal)もまた収集されてもよい。幾つかの実施形態において、二次信号は、電子デバイスと哺乳動物との接続に関する情報を備える。幾つかの実施形態において、二次信号は、哺乳動物の睡眠時を検出するために使用されてもよい。
【0011】
幾つかの実施形態において、モジュール式生体モニタリングデバイスの一部を取り外して交換する方法は、上述したデバイスを哺乳動物へ7日を超える時限に渡り適用して生体情報を収集すること; 第1の生体信号セットを検出するために上記デバイスを使用すること; デバイスを哺乳動物の表面から取り外すこと; デバイスから第1のコンポーネントを取り外すこと; 及び第1のコンポーネントを第2の生体モニタリングデバイスに組み込むこと、ここで第2の生体モニタリングデバイスは第2の生体信号セットを検出するように構成される、を備えてもよい。
【0012】
幾つかの実施形態において、第1のコンポーネントは、永続接続を使用することなく他のデバイスコンポーネントへ電気的に接続される。幾つかの実施形態において、本デバイスは、さらにばね接続を備えてもよい。ある実施形態では、第1のコンポーネントは、損傷を防止するために、剛性を有するハウジングによる二次使用のために保存されてもよい。特定の実施形態において、第1のコンポーネントは、第1のコンポーネントが取り外されると第2のコンポーネントを固定し直すことができる機構によってデバイス内に固定される。
【0013】
ある実施形態は、コンシューマウェアラブル製品又は医療機器製品の何れかから得られるような心拍間隔の時系列データから心臓律動情報を推測するためのシステムに関してもよい。さらなる態様は、追加的なデータソースの使用によって、より健全に(robust)及び/又はタイムリーに心臓律動情報が推測されるのを可能にするようにシステムへの改良に関する。この追加データには、ECGから得られる簡易統計又は特異的信号特徴、加速度計から得られるユーザ活動時系列データ、ユーザ状態に関する情報、あるいは記録日/記録時間に関する情報が含まれてもよい。
【0014】
ある実施形態において、医療用ウェアラブルセンサからの心電図信号データを選択的に送信するためのシステム、ここでQRSは心室脱分極のときに記録したECGの3つの基準点を指す、は、下記のものを含んでもよい。
【0015】
a.ECGにおける各Rピーク位置のリアルタイム推定を生成するQRS検出器を組み込んだ医療用ウェアラブルセンサ、
【0016】
b.予め規定されたスケジュールに従い、センサからスマートフォン又はインターネット接続ゲートウェイ装置への、開始(onset)タイムスタンプと共にR-R間隔時系列の送信、
【0017】
c.スマートフォン又はインターネット接続ゲートウェイ装置からサーバーへのR-R間隔時系列及び開始タイムスタンプの送信、
【0018】
d.R-R間隔時系列データからの最確律動及びそれらのオンセット/オフセット時刻のサーバー側アルゴリズムインタフェース、
【0019】
e.特定のフィルター基準により推測された心臓律動リストのフィルターをかける、その結果、フィルターがかけられた後は、所定の基準に一致する推測律動のみが保持される、
【0020】
f.フィルターがかけられた後に残る律動毎のオンセット/オフセット時刻の、サーバーからスマートフォン又はインターネット接続ゲートウェイ装置への送信、
【0021】
g.フィルターがかけられた後に残る律動毎のオンセット/オフセット時刻の、スマートフォン又はインターネット接続ゲートウェイ装置からウェアラブルセンサへの送信、
【0022】
h.記録されたECGにおける、各オンセット/オフセット時刻ペアに対応する部分の、センサからスマートフォン又はインターネット接続ゲートウェイ装置への送信、
【0023】
i.記録されたECGにおける、各オンセット/オフセット時刻ペアに対応する部分の、スマートフォン又はインターネット接続ゲートウェイ装置からサーバーへの送信。
【0024】
律動フィルターの基準は、患者によるウェアラブルセンサの使用に先立って、医師又は他の医療専門家によって指定されてもよい。他の実施形態において、律動フィルターの基準は動的であり、システムの使用中に予め規定された規則に従って更新されることが可能である。幾つかの実施形態において、これらの予め規定される規則は、該システムの使用中における以前の発見に基づくフィルター基準への調整について記述してもよい。幾つかの実施形態において、推測される律動毎のオンセット及びオフセット時刻は、各律動の結果的な持続時間が所定の最大許容持続時間よりも短いように調整されてもよい。計算された信頼度尺度は、律動フィルター基準への入力であってもよい。幾つかの実施形態において、本システムは、R-R間隔時系列データから心臓律動情報を推測することを備える。ある実施形態において、心臓律動推測システムは、APIを介してアクセス可能なクラウドサービスとして実施される。
【0025】
ある実施形態において、心臓律動推測システムは、スタンドアロンアプリケーションへの組込みが可能なソフトウェアライブラリを介して提供される。R-R間隔値は、光電式容積脈波記録法の信号から推定されてもよい。
【0026】
心臓律動情報を推測するための方法のある実施形態において、心臓律動推測システムは、心臓律動のタイプ毎に信頼度スコアを計算し、該方法は、
【0027】
a.所定のユーザに関するR-R間隔時系列データの収集から推測される心臓律動タイプ毎の周波数(frequency)及び持続時間を計算すること、
【0028】
b.所定のユーザに関するR-R間隔時系列の収集に渡って推測される律動の周波数及び持続時間に基づいて各律動タイプに関する信頼統計を推定すること、
【0029】
c.推測される各律動に関する信頼統計が予め決められたしきい値を超えているかどうかを評価すること、
【0030】
d.信頼統計がしきい値を超えている推測された律動に関してのみ、律動情報を発呼側ソフトウェアへ戻して提供すること、を含む。
【0031】
ある実施形態において、心臓律動推測システムは、下記のうちの1つもしくは複数を備えた追加のデータソースを受け入れる。
【0032】
e.加速度計によって測定されたユーザ活動時系列データ、
【0033】
f.各R-R間隔時系列記録の特定の日時に関する情報、
【0034】
g.ユーザの年齢、性別、モニタリング用の臨床的兆候(clinical indication)、既存の医学的状態、投薬情報、及び病歴に関する情報、
【0035】
h.所定の時間内のECG信号サンプル値の平均、中央値、標準偏差、又は合計等のECG信号の特徴及び簡易統計、
【0036】
i.例えば各心拍あるいは連続した時間に関する心拍推定の品質を示すために測定デバイスにより提供された信頼度、
【0037】
j.拍動内(intra-beat)間隔測定値。
【0038】
実施形態において、心臓信号データをモニタリングするためのシステムは、
【0039】
哺乳動物から心臓信号を検出して心臓信号内のRピーク位置を推定するように構成された、医療用ウェアラブルセンサを備え、
【0040】
ここで医療用ウェアラブルセンサは、R-R間隔時系列及びタイムスタンプを仲介装置へ送信するように構成され、該仲介装置は、R-R間隔時系列及びタイムスタンプをサーバーへさらに送信するように構成され、
【0041】
ここでサーバーは、R-R間隔時系列及びタイムスタンプから最確律動及びそれらのオンセット/オフセット時刻を推測するように構成され、該サーバーは、フィルターがかけられたデータセットへ第1の基準により最確律動にフィルターをかけるように構成され、
【0042】
ここでサーバーは、フィルターがかけられたデータセットをウェアラブルセンサへ仲介装置を介して返送するように構成され、
【0043】
ここでセンサは、フィルターがかけられた各イベントを取り囲む時間に渡ってフル解像度の心臓信号をサーバーへ送信する。
【0044】
ある実施形態において、心臓信号データをモニタリングするシステムは、
ウェアラブルセンサと通信するように構成されたサーバーを備え、上記ウェアラブルセンサは、哺乳動物から心臓信号を検出しかつ心臓信号内のRピーク位置を推定するように構成され、
ここでウェアラブルセンサは、R-R間隔時系列及びタイムスタンプをサーバーへ送信するように構成され、
ここでサーバーは、R-R間隔時系列及びタイムスタンプから最確律動及びそれらのオンセット/オフセット時刻を推測するように構成され、該サーバーは、フィルターがかけられたデータセットへ第1の基準により最確律動にフィルターをかけるように構成され、及び
ここでサーバーは、フィルターがかけられたデータの概要を送信するように構成されている。
【0045】
特定の実施形態において、心臓信号データをモニタリングするサーバーは、
ウェアラブルセンサと通信するように構成されたポータルであって、ここでウェアラブルセンサは哺乳動物から心臓信号を検出しかつ心臓信号内のRピーク位置を推定するように構成され、該ウェアラブルセンサはR-R間隔時系列及びタイムスタンプを仲介装置へ送信するように構成され、この仲介装置はR-R間隔時系列及びタイムスタンプをサーバーへさらに送信するように構成される、ポータルと、
R-R間隔時系列及びタイムスタンプから最確律動及びそれらのオンセット/オフセット時刻を推測するように構成されたプロセッサであって、フィルターがかけられたデータセットへ第1の基準により最確律動にフィルターをかけるように構成された、プロセッサと、を備え、
ここでサーバーは、フィルターがかけられたデータセットの概要を送信するように構成されている。
【0046】
実施形態において、非一時的記憶媒体は、コンピュータが実行可能な命令を格納しており、ここでコンピュータが実行可能な命令は、一もしくは複数の計算機器を備えたコンピュータシステムによって読取り可能であり、ここでコンピュータが実行可能な命令は、コンピュータシステムに以下のことを備えた動作を実行させるためにコンピュータシステムにおいて実行可能である:
通信リンクを介してコンピュータシステムによって、患者モニタリングデバイスにより生成された、第1患者に関連した生体センサデータを受信すること、
生体情報における一もしくは複数のポイントが一もしくは複数の予め決められた状態セット(set of conditions)を示唆する可能性があるか否かを決定するために、コンピュータシステムによって生体センサデータを分析すること、及び
生体情報における一もしくは複数のポイントのうちの少なくとも1つが一もしくは複数の予め決められた状態セットのうちの少なくとも1つを示唆する可能性があると決定した後、コンピュータシステムによって、患者モニタリングデバイスへ送信するための電子データパッケージを生成すること、ここで電子データパッケージは、一もしくは複数の予め決められた状態セットのうちの少なくとも1つを示唆する可能性がある生体センサデータにおける一もしくは複数のポイントのうちの少なくとも1つに関する位置データを含む。
【0047】
ある実施形態において、生体センサデータは、記録された信号データから測定された間隔データのサンプリングを含んでもよく、間隔データのサンプリングのデータサイズは、記録された信号データよりも小さい。
【0048】
特定の実施形態において、哺乳動物における生体信号をモニタリングするためのシステムは、哺乳動物から心臓律動データを検出しかつ記録するように構成された粘着性のウェアラブルモニタを備えてもよく、粘着性のウェアラブルモニタは、心臓律動データから特徴を抽出するように構成され、かつ、粘着性のウェアラブルモニタは、この特徴を処理デバイスへ送信するように構成され、処理デバイスは、その特徴を分析し、対象の位置(locations of interest)を識別しかつ対象の位置を粘着性のウェアラブルモニタへ返送するように構成される。
【0049】
ある実施形態において、患者モニタリングデバイスからの生体センサデータを評価するためのシステムは、コンピュータプロセッサと、該コンピュータプロセッサと結合される非一時的コンピュータ読取り可能媒体とを備え、該非一時的コンピュータ読取り可能媒体は、第1サーバーに記憶される命令セットでコンピュータプロセッサにより実行可能である命令セットを含むプログラムを提供するように構成され、かつさらにプログラムのセンサデータ推測モジュールを実行するように構成され、センサデータ推測モジュールは、プログラムの以下の動作を行うための命令を記憶する、
患者モニタリングデバイスにより生成される、第1患者に関連づけられる生体センサデータを受信する動作、
生体情報における一もしくは複数のポイントが一もしくは複数の予め決められた状態セットを示唆する可能性があるか否かを決定するため、生体センサデータを分析する動作、並びに、
生体情報における一もしくは複数のポイントのうちの少なくとも1つが一もしくは複数の予め決められた状態セットのうちの少なくとも1つを示唆する可能性があると決定した後、患者モニタリングデバイスへ送信するための電子データパッケージを生成する動作、ここで電子データパッケージは、一もしくは複数の予め決められた状態セットのうちの少なくとも1つを示唆する可能性がある生体センサデータにおける一もしくは複数のポイントのうちの少なくとも1つに関する位置データを含む命令とを記憶する。
【0050】
ある実施形態において、コンピュータ化された方法は、少なくとも1つのコンピュータ読取り可能記憶媒体からコンピュータ実行可能命令にアクセスすることと、コンピュータ実行可能命令を実行し、これにより、少なくとも1つのコンピュータプロセッサを備えるコンピュータハードウェアに動作を実行させることを含み、上記動作は、通信リンクを介してサーバーコンピュータによって、患者モニタリングデバイスにより生成された、第1患者に関連づけられた生体センサデータを受信すること、
生体情報における一もしくは複数のポイントが一もしくは複数の予め決められた状態セットを示唆する可能性があるか否かを決定するため、サーバーコンピュータによって生体センサデータを分析すること、並びに、
生体情報における一もしくは複数のポイントのうちの少なくとも1つが一もしくは複数の予め決められた状態セットのうちの少なくとも1つを示唆する可能性があると決定した後、サーバーコンピュータによって、患者モニタリングデバイスへ送信するための電子データパッケージを生成すること、を備え、ここで電子データパッケージは一もしくは複数の予め決められた状態セットのうちの少なくとも1つを示唆する可能性がある生体センサデータにおける一もしくは複数のポイントのうちの少なくとも1つに関する位置データを含む。
【0051】
以下に、図面を参照して、本発明のこれらの及び他の態様、並びに実施形態についてより詳しく説明する。
【図面の簡単な説明】
【0052】
【
図1A】
図1Aは、一実施形態による生体モニタリングデバイスの輪郭を示す斜視図である。
【
図1B】
図1Bは、一実施形態による生体モニタリングデバイスの輪郭を示す分解斜視図である。
【
図2A】
図2Aは、一実施形態による生体モニタリングデバイスのプリント回路基板アッセンブリの上面を示す斜視図である。
【
図2B】
図2Bは、一実施形態による生体モニタリングデバイスのプリント回路基板アッセンブリの底面を示す斜視図である。
【
図3A】
図3Aは、一実施形態による生体モニタリングデバイスの柔軟な本体及びガスケットを示す斜視図である。
【
図3B】
図3Bは、一実施形態による生体モニタリングデバイスの柔軟な本体及びガスケットを示す分解図である。
【
図3C】
図3Cは、一実施形態による生体モニタリングデバイスの柔軟な本体及びガスケットを示す分解図である。
【
図3D】
図3Dは、一実施形態による生体モニタリングデバイスの柔軟な本体及びガスケットを示す分解図である。
【
図3E】
図3Eは、一実施形態による生体モニタリングデバイスの柔軟な本体及びガスケットを示す斜視図である。
【
図4】
図4は、一実施形態による生体モニタリングデバイスの剛性を有するハウジングを示す分解図である。
【
図5A】
図5Aは、一実施形態による生体モニタリングデバイスの電池ホルダを示す斜視図である。
【
図5B】
図5Bは、一実施形態による生体モニタリングデバイスの電池ホルダを示す斜視図である。
【
図6A】
図6Aは、一実施形態による生体モニタリングデバイスを示す断面図である。
【
図6B】
図6Bは、一実施形態による生体モニタリングデバイスを示す断面図である。
【
図7】
図7は、一実施形態による、幾つかのオプションのアイテムを含む生体モニタリングデバイスを示す分解図である。
【
図8A】
図8Aは、一実施形態による生体モニタリングデバイスを装着した人の斜視図であり、デバイスが身体の動き及びポジションに従ってどのように曲がるかを示している。
【
図8B】
図8Bは、一実施形態による生体モニタリングデバイスを装着した人の斜視図であり、デバイスが身体の動き及びポジションに従って、どのように曲がるかを示している。
【
図9A】
図9Aは、一実施形態による生体モニタを患者の身体に装着するためのステップを示す。
【
図9B】
図9Bは、一実施形態による生体モニタを患者の身体に装着するためのステップを示す。
【
図9C】
図9Cは、一実施形態による生体モニタを患者の身体に装着するためのステップを示す。
【
図9D】
図9Dは、一実施形態による生体モニタを患者の身体に装着するためのステップを示す。
【
図9E】
図9Eは、一実施形態による生体モニタを患者の身体に装着するためのステップを示す。
【
図9F】
図9Fは、一実施形態による生体モニタを患者の身体に装着するためのステップを示す。
【
図10】
図10は、心臓律動推測サービスの一実施形態を示す概略図である。
【
図11】
図11は、生体モニタからデータ特徴を抽出して送信するためのシステムの一実施形態を示す概略図である。
【
図12】
図12は、送信デバイスを用いて生体モニタからデータ特徴を抽出しかつ送信するためのシステムの一実施形態を示す概略図である。
【
図13】
図13は、追加のデータチャネルを利用した生体モニタリングシステムの一実施形態を示す概略図である。
【
図14】
図14は、データフィルターを組み込んだ生体モニタリングシステムの一実施形態を示す概略図である。
【
図15】
図15は、ウェアラブルデバイスシステムの一実施形態を示す概略図である。
【
図16】
図16は、症候送信システムの一実施形態を示す概略図である。
【
図17】
図17は、無症候送信システムの一実施形態を示す概略図である。
【
図18】
図18は、コンピュータネットワークシステムの一実施形態を示す概略図である。
【
図19】
図19は、プログラミング及び配信モジュールの一実施形態を示す概略図である。
【発明を実施するための形態】
【0053】
以下の説明は、幾つかの多様な実施形態に関するものである。しかしながら、説明する実施形態は、多くの異なる方法で実施され及び/又は変えられてもよい。例えば、説明する実施形態は、幾つかの生理学的パラメータのうちの何れかをモニタリングするために、任意の適切なデバイス、装置、又はシステムにおいて実施されてもよい。例えば、以下の論考は、主として、長期的なパッチベース(patch-based)の心臓律動モニタリングデバイスに焦点を当てている。ある代替の実施形態では、生体モニタリングデバイスは、例えば、閉塞性睡眠時無呼吸のパルスオキシメトリ及び診断のために使用されてもよい。また、生体モニタリングデバイスの使用方法もまた、変更されてもよい。一部の事例では、デバイスの装着期間は、一週間以内であってもよいが、他の事例では、少なくとも7日間、及び/又は7日を超える、例えば14日から21日までの間、又はそれより長い間であってもよい。その他、説明する技術において、多くの代替の実施形態及び応用例が可能である。したがって、以下の説明は、単に例示を目的として提供する。明細書を通じて、「コンフォーマルな、共形の」(conformal)という用語が参照される場合がある。当業者には、本明細書で使用している「コンフォーマルな」という用語は、第1の表面あるいは構造体が第2の表面あるいは構造体の輪郭に適応するところの、表面間又は構造体間の関係を指すことが理解されるであろう。
【0054】
異常な心臓律動又は不整脈は、他の、さほど深刻でない原因による可能性も多いことから、主要な課題は、これらの症状の何れが、いつ不整脈によるものであるかを判断することにある。不整脈は、まれに及び/又は一時的に、発生することが多く、迅速かつ確実な診断を困難にする。先に述べたように、現時点で、心臓律動のモニタリングは、主として、胸部に付着される短期間(1日未満)の電極を用いるホルタモニタ等のデバイスを使用して達成されている。電極は、通常ベルトに装着される記録デバイスへ配線によって接続されている。電極は、毎日変える必要があり、かつ配線は、煩わしい。また、デバイスのメモリ及び記録時間も限定的である。デバイスの装着は、患者の動きを妨げ、またモニタリング中において、入浴等の所定の活動の実行を不可能にすることが多い。さらに、ホルタモニタは、入手が制限され、検査遅延に対応してしばしば供給制限になる状況を有する、ひどい機器である。これらの制限事項は、デバイスの診断有用性、デバイスを使用する患者のコンプライアンス、及び全ての重要情報を捕捉する可能性を著しく妨害する。コンプライアンス不足及びデバイスの欠点のため、しばしば、追加のデバイス、次のモニタリング、あるいは正しい診断を下すための他の検査、が必要となる。
【0055】
ホルタモニタ及び心臓異変(cardiac event)レコーダ等の心臓律動モニタリングデバイスの使用を含む、不整脈の発生と症状を関連づけるための現行方法は、正確な診断を下すことを可能にするには不十分である場合が多い。実際に、ホルタモニタは、90%の割合まで診断に到達しないことが示されている(「Assessment of the Diagnostic Value of 24-Hour Ambulatory Electrocardiographic Monitoring」DE Ward外著、Biotelemetry Patient Monitoring、第7巻、1980年刊行)。
【0056】
さらに、心臓律動モニタリングデバイスを実際に入手してモニタリングを開始するための医療処置プロセスは、典型的には、かなり複雑である。通常、そのようなモニタリングデバイスからのデータの取り寄せ、追跡、モニタリング、回収、分析において、多くの関連ステップが存在する。大部分の事例において、現在使用されている心臓モニタリングデバイスは、患者のかかりつけ医(PCP)ではなく、心臓専門医又は心臓電気生理学者(EP)によって発注される。PCPは、しばしば、患者を診察して患者の症状が不整脈によるものである可能性ありと判断する最初の医師であることから、この点は重要である。患者がPCPに会った後、PCPは、患者が心臓専門医又はEPに会うために予約を行う。通常、この予約は、PCPによる初診から数週間後であり、このこと自体、潜在的診断を遅らせるのみならず、不整脈の発作が発生する可能性及び診断未確定である可能性を高める。患者がようやく心臓専門医又はEPに会ったときに、心臓律動モニタリングデバイスが通常発注される。モニタリング期間は、24時間から48時間(ホルタモニタ)、又は1か月間(心臓異変モニタ又は携帯遠隔測定デバイス)持続することができる。モニタリングが完了すると、患者は、典型的にはデバイスを診療所に返却しなければならず、これ自体、不便になり得る。データがモニタリング会社によって、又は病院あるいは事務所における現場の技術者によって処理された後、報告書が、ようやく、分析のため心臓専門医又はEPへ送られる。この複雑なプロセスによって、結果的に、心臓律動のモニタリングを受ける患者は、モニタリングを受ける理想的な患者数よりも少なくなる。
【0057】
心臓モニタリングに関わるこれらの幾つかの問題点に対処するために、本出願の譲受人は、小型で長期的に装着可能な生体モニタリングデバイスの様々な実施形態を開発した。このデバイスの一実施形態は、Zio Patch(登録商標)である。また、様々な実施形態が、例えば米国特許第8,150,502号明細書、第8,160,682号明細書、第8,244,335号明細書、第8,560,046号明細書、及び第8,538,503号明細書にも記述されていて、これらの開示内容の全ては、参考としてここに含まれる。概して、上述の公報に記述されているパッチベース(patch-base)の生体モニタは、患者の胸部に心地よく適合し、かつ少なくとも1週間、及び典型的には2週間から3週間に渡って装着されるように設計されている。モニタは、デバイスが装着されている間、心臓律動信号データを連続的に検出して記録し、次いで、この心臓律動データは、処理及び分析に利用可能である。
【0058】
より小型で長期的なこれらのパッチベースの生体モニタリングデバイスは、従来技術デバイスを越える多くの優位点を提供する。同時に、さらなる改良も望まれている。最も有意義な改良分野の1つは、担当臨床医に重篤な不整脈の通知をよりタイムリーに提供することである。これらの初期の実施形態における顕著な特徴は、性能、コンプライアンス、及びコストを理由に、デバイスが延びた装着期間における情報を記録するのみで、分析及び報告は、記録の完了後に行われるというものであった。したがって、望ましい改良は、収集される律動情報をリアルタイムに又はタイムリーに分析する能力を追加することにあるであろう。このような、タイムリーな報告能力を有する診断モニタは、現時点で存在するが、これらは、システムの一もしくは複数の電気部品の定期的な充電又は交換の何れかを必要とする。これらの行為は、患者コンプライアンスの低下、ひいては診断率の低下に関連づけられる。したがって、重要な改良分野は、電池の充電又は交換の必要なしに、長期的な記録とタイムリーな報告とを組み合わせることができる生体モニタを開発することにある。
【0059】
患者コンプライアンス及びデバイス接着性能は、ECG記録の持続時間及び結果的に診断率を決定する2つの要素である。コンプライアンスは、患者の装着経験を改善することによって高めることができ、装着経験は、装着の心地よさ、デバイスの外観、及びデバイスが日常生活の通常の活動を妨げる度合いによって影響される。より長いECG記録がより高い診断率ひいては診断値を提供することを考えれば、デバイス接着性及び患者コンプライアンスを改善することが望ましい。
【0060】
信号品質は、装着持続時間を通じて重要であるが、徴候的な臨床的意義を示す記録を患者がどこに記すかがより重要であるかもしれない。記録を記すことは、デバイスの外面に設けたトリガにより最も容易に可能になる。しかしながらトリガは、組み込まれた電極と共に皮膚接触プラットフォームの一部であってもよいことから、患者は、トリガ用の感覚があったときに意味のある動きアーチファクトを導入することができる。望ましいデバイス改良は、動きアーチファクトの最小限の追加で作動可能である症状トリガであるだろう。
【0061】
さらに、デバイスは、製造が単純でかつ費用効果的であり、製造時のスケーラビリティ、並びにプロセスにおける反復可能性に起因するより高い品質を可能にすることが望ましい。製造の簡易さは、分解の容易さにも繋がることができ、これにより、別のデバイスにおける品質管理された再使用のためにプリント回路基板を効率的に回収することが可能になる。この高価な部品の効率的な再使用は、診断モニタのコスト低減にとって重要である。
【0062】
心臓の携帯型モニタリングオプションのポートフォリオへの、より長期的持続及び低コストのソリューションが貴重な追加であるかもしれないという臨床シナリオは、引き続き存在する。これらのニーズへの潜在的ソリューションに関するひらめきは、スマートウォッチ及びウェアラブルフィットネスバンドを含む様々な消費者の健康フィットネス製品にますます多く組み込まれている連続的な心拍検出機能に見出すことができる。ユーザに一般的なフィットネスレベルに関する情報を提供するために、連続的な心拍データが使用可能であるが、ユーザの健康及びウエルネスに関する有意義な情報を提供するためにこのデータを使用することは、より挑戦的でありかつ有益でもある。例えば、連続的な心拍データから潜在的不整脈を検出する能力は、心拍検出機能を組み込んだ消費者デバイスが心臓異常を早期に検出するための潜在的スクリーニングツールとして機能することを可能にするであろう。このような手法は、リスク集団、例えば心房性細動に関する危険性のある心不全患者のために長期的で費用効果的なスクリーニング方法を提供することにおいて、臨床的に有益である可能性がある。あるいはまた、このモニタリング手法は、例えば発作性心房細動の管理における副作用を減らしながら効能を保証するために、治療薬用量の長期的用量設定において役立つ可能性もある。また、心不整脈の検出を超えて、心拍情報の適切な分析はまた、睡眠及びストレスの応用例に関する識見をもたらす可能性もある。
【0063】
接着パッチ等の、生体デバイスを有する長期携帯型モニタリングは、特に、観察される不整脈の発生及び持続時間に関するタイムリーな情報がモニタリング期間中に提供可能な場合に、幾つかの臨床応用例を有する。特に老齢人口によって決まるような罹患率では、心房性細動(AF)の効率的な検出は、引き続きモニタリング上の最も重要なニーズである。このニーズは、症状のある患者にとって明らかであるだけでなく、この不整脈に付随して発作の危険性が高まることを思えば、高齢、心疾患のような持病の存在、また外科的処置の発生のうちの一もしくは複数の要因に起因する危険性のある個人における無症候性AFのより広範な集団ベースのモニタリングにとっても明らかである。後者のグループの場合、周術期及び処置後双方のモニタリングが臨床的に有益であることができ、単に不整脈の予防を目的とする処置(例えば、MAZEアブレーション処置、又は心内膜及び心外膜のハイブリッド処置、共にAF治療用)に対してだけでなく、麻酔が関わる一般的な外科手術に対しても有益であることができる。幾つかの応用例に関して、心房性細動の携帯型モニタリングの目的は、所定の時限内にAFが発生したかどうかに、はい、いいえで応える単純な二択質問に集中されることがある。例えば、アブレーション処置後の患者のモニタリングは、典型的に、AFの発生が全くないものとして典型的に定義される処置の成功を探し求めようとするものである。同様に、発作後の患者のモニタリングは、主として、心房性細動の存在の評価に関するものとなる。
【0064】
しかしながら、これらのシナリオにおいても、AFが発生すれば、発生をより良く特徴づけるために、日々の苦しみ(各日におけるAF時間の%)、及び発作の持続時間(例えば、発作持続時間のヒストグラムとして、あるいは特定限界、例えば6分を超えて続く発作の割合として表現される)で、両方とも絶対的期間あるいは従前の基準(例えば、ベースラインである処置前のモニタリング結果からの)との比較のいずれかであるような、追加的な態様を評価することは、臨床的に有意義であるかもしれない。実際に、日常的なAFの苦しみを測定し、AF発作の持続時間を評価し、睡眠期間及び覚醒期間中のAF発生を精査し、及び、患者の身体運動の度合いに応じてAFの存在を評価することは、この不整脈の薬剤中心治療の効果を評価することを含む様々な臨床シナリオにおいて、重要になり得る。
【0065】
モニタリング期間中にタイムリーな方法でこの情報を利用可能にすることは、担当医師が、例えば、管理が最適化されるまで新規経口抗凝固剤(NOAC)の投与量及び頻度を調整することによって、反復的に処理量を決めることを可能にするであろう。この管理模範のさらなる例は、AF管理用の「頓服」をタイムリーに投与するために、無症候性AFの患者に通知すべく、可聴又は振動ベースの警報を介して、デバイスに接続されたアプリケーションからの通知を介してデバイスによって直接に、又は、担当臨床医からの電話、eメールあるいはテキストメッセージ通信によって、のいずれかで通知することである。
【0066】
タイムリーな管理及び/又は介入のテーマは、例えば無症候性の第2度及び完全な心ブロック、長期に渡る心停止時間、上室性頻拍症、持続性心室頻拍、及び心室細動のような、臨床的に重大な不整脈が観察される状況において明白である。例えば、長期に渡る心停止時間又は完全な心ブロックが失神を引き起こす臨床シナリオは、タイムリーで信頼できるモニタリング方法の利用可能性がリスク患者の院内モニタリングの必要性を減じあるいはさらに排除することができるかもしれないところの、特に重大な事例である。また、このテーマはまた、重大な心臓安全性に影響を有することが示されている、よりかすかな形態変化、例えば投薬に対応したQT延長、にも拡大することができる。このような延長をタイムリーに気付くことは、例えば、薬剤の安全性及び効用を評価する臨床調査の早期終了、あるいは観察された延長を排除する手段としての投与量又は頻度の調整、に結果的につながることも可能である。
【0067】
生体モニタリングデバイス
図1A及び
図1Bを参照して、生体モニタリングデバイス100の一実施形態を示す斜視図及び分解輪郭図が提供されている。
図1Aに示されるように、生体モニタリングデバイス100は、防水性で、剛性を有するハウジング115と結合される柔軟な本体110を含んでもよい。柔軟な本体110(「軟質基板」又は「軟質構造物」と称することもある)は、典型的には、剛性を有するハウジング115から横方向へ延在する2つの翼130、131と、各々が翼130、131の一方に埋め込まれる2つの柔軟な電極トレース311、312とを含む。各電極トレース311、312は、柔軟な本体110の底面において、軟質な電極(
図1Aでは見えない)と結合されている。この電極は、モニタリングデバイス100が取り付けられた患者からの心臓律動信号を検出するように構成されている。電極トレース311、312は、次にこれらの信号を、剛性を有するハウジング115に収容される電子機器(
図1Aでは見えない)へ送信する。剛性を有するハウジング115は、典型的には、一もしくは複数の電池等の電源も含む。
【0068】
軟質の電極及び電極トレース311、312を含む非常に柔軟な本体110と、非常に剛性を有するハウジング115との組合せは、幾つかの優位点を提供可能である。主要な優位点は、高忠実度の信号捕捉である。非常にコンフォーマルで柔軟な、翼130、131、電極、及びトレース311、312は、電極-皮膚界面への外部エネルギーの伝達を制限する。例えば、剛性を有するハウジング115へ動きが伝わった場合でも、皮膚に対してコンフォーマルな接着のシステムは、監視(モニタ)される信号へ動きが影響する度合いを制限する。柔軟な電極トレース311、312は、一般的に、被検者の皮膚とのコンフォーマルな接触の提供を助けることができ、かつ電極350(電極350は、
図1では見えないが、後述する
図6Aでは見える)の皮膚からの剥がれ、又は持ち上げの防止を助けることができ、これにより、電極350への応力伝達が最小限に抑えられて、強力な動きアーチファクトの除去、及びより優れた信号品質が提供される。さらに、柔軟な本体110は、患者によるデバイス100の14日間又はそれ以上に渡る取り外しのない心地よい装着を助ける構造及び様々な特徴を含む。典型的には本明細書に記述する実施形態では患者に接着しない剛性を有するハウジング115は、デバイス100の心地よさに役立つ特徴を含む。ヒンジ部分132は、柔軟な本体110の比較的薄い、さらに柔軟な部分である。ヒンジ部分132は、柔軟な本体110が、剛性を有するハウジング115へ接合される領域で自由に屈曲できるようにする。この柔軟性は、患者が動いたときにハウジング115が患者の皮膚から自由に持ち上がることができることから、心地よさを高める。電極トレース311、312もまた極めて薄く、かつ柔軟であって、信号が歪むことなく患者が動くことを可能にする。
【0069】
次に、
図1Bを参照すると、生体モニタリングデバイス100の部分的に分解された図は、剛性を有するハウジング115を構成しかつこの中に含まれるコンポーネントパーツをより詳細に示している。この実施形態において、剛性を有するハウジング115は、下側ハウジング部材145と着脱式に結合する上側ハウジング部材140を含む。上側ハウジング部材140と下側ハウジング部材145との間には、上側ガスケット370及び下側ガスケット360(
図1Bでは見えないが、上側ガスケット370の直下)が挟まれている。ガスケット370、360は、組み立てられると、剛性を有するハウジング部材115を防水性にする手助けをする。上側ハウジング部材140と下側ハウジング部材145との間には、モニタリングデバイス100の幾つかの部品が収容されてもよい。例えば、一実施形態において、ハウジング115は、柔軟な本体110の一部分と、プリント回路基板アッセンブリ(PCBA)120と、電池ホルダ150と、2つの電池160とを含んでもよい。プリント回路基板アッセンブリ120は、電極トレース311、312及び電池160と接触するように、ハウジング115内に位置決めされる。様々な実施形態では、一もしくは複数の追加の部品が剛性を有するハウジング115内に含まれても、剛性を有するハウジング115に付着されてもよい。これらのオプション部品の幾つかについては、後に、追加の図面を参照して詳述する。
【0070】
電池ホルダ150は、様々な代わりの実施形態によると、(図示されている実施形態の場合のように)2つの電池を保持してもよく、1つの電池又は3つ以上の電池を保持してもよい。他の代替の実施形態では、他の電源が使用されてもよい。図示されている実施形態において、電池ホルダ150は、電池ホルダ150内に電池160を保持するための複数の保持タブ153を含む。さらに、電池ホルダ150は、PCBA120の表面から電池160の正しい間隔を確立しかつばねフィンガ235、236との適切な接触を確保するために、複数のフット152を含む。この実施形態では、電池160をPCBA120へはんだ付けするのではなく、ばねフィンガ235、236が使用される。代わりの実施形態では、はんだ付けが使用されてもよいが、ばねフィンガ235、236の1つの優位点は、何れの部品も損傷することなく、それらが電池160をPCBA120及びホルダ150から取り外すことを可能にし、よって、双方の複数回の再使用を可能にすることにある。はんだ接続をなくすことは、また、モニタリングデバイス100の組立て及び分解を単純化し、高速化する。
【0071】
幾つかの実施形態において、上側ハウジング部材140は、患者イベントトリガとして作用してもよい。心臓律動をモニタリングするために、患者が生体モニタリングデバイス100を装着しているとき、典型的に、患者によって知覚されるあらゆる心臓異変を患者がデバイス100に登録できる(例えば、デバイスのメモリに記録する)ことは都合がよい。例えば、患者は、自らが心臓不整脈の発作であると信じるものを感じた場合には、どうにかしてデバイス100をトリガして、知覚したイベント(event:異変)の記録を提供してもよい。幾つかの実施形態では、患者によって知覚されたイベントのトリガは、トリガされたイベントに関連したデータの送信を開始してもよい。幾つかの実施形態では、知覚されたイベントのトリガは、トリガされたイベントの位置(location)を有する連続的な記録を単に記してもよい。幾つかの実施形態によっては、関連データの送信、並びに連続的記録をとることの双方が行われてもよい。後に、知覚したイベント間に記録された患者の症状は、デバイス100によって記録された患者の実際の心臓律動と比較されることも可能であって、これは、患者が知覚したイベントが実際の心臓異変に関連するものであるか否かの判断に役立つかもしれない。しかしながら、現時点で利用可能なウェアラブルな心臓律動モニタリングデバイスに関わる患者イベントトリガの1つの問題点は、特にこのモニタリングデバイスが、典型的には衣服の下に装着されることから、僅かなトリガを発見及び/又は活性化することが困難であるかもしれないということである。さらに、トリガボタンを押すことは、その時点で記録される心臓律動信号が患者によるトリガ行為によってデバイスに引き起こされる動きによって変化するというような態様にて、デバイスにおける電子機器及び/又は電極に影響を与えるかもしれない。例えば、トリガを押すことで、電極の一方又は双方が振動し、実際の不整脈イベントが発生していなくても、そのときに記録される心臓律動信号が不整脈のように出現する場合がある。さらに、トリガが、例えば睡眠中あるいはモニタリングデバイス上に横たわった間に偶然に活性化されるかもしれないということもある。
【0072】
しかしながら、
図1A及び
図1Bに示されている実施形態において、剛性を有するハウジング115は十分に固く、柔軟な本体110は十分に柔軟であり、患者によってハウジング115に加えられる動きが電極によって感知されて異常な信号を引き起こすことは殆どあるいは全く発生することはない。この実施形態において、上側ハウジング部材140の中心部が僅かに窪んでいて、デバイス100を装着している患者によって押されたとき、この中心部が僅かに押し下げられ、PCBA120におけるトリガ入力をトリガする。剛性を有するハウジング115の上面全体が患者イベントトリガとして機能することから、これが僅かに凹形であるという事実を組み合わせれば、衣服の下であっても患者がトリガを見つけて押し下げることは、一般的にかなり容易であろう。さらに、ボタンが凹状である特徴は、凹むことを可能にし、これにより、意図しない起動が防止される。したがって、本実施形態は、現時点で利用可能な心臓律動モニタにおいて、患者イベントトリガが遭遇する問題点の幾つかを軽減するかもしれない。以下、
図1A及び
図1Bに示されている特徴のこれらの態様及び他の態様についてさらに詳述する。
【0073】
次に、
図2A及び
図2Bにおける実施形態を参照すると、プリント回路基板アッセンブリ120(又は、PCBA)は、上面220と、底面230と、患者トリガ入力210と、ばね接点235、236、237とを含んでもよい。プリント回路基板アッセンブリ120は、導電経路、トラックあるいは電極トレース311、312を用いて電子部品を機械的に支持しかつ電気的に接続するために使用されてもよい。さらに、PCBA120の繊細な特徴及び剛性のある本体115と機械的に接触する必要性のため、ECG信号へのノイズ又はアーチファクトを導くかもしれない望まない撓みを防止する程度にPCBA120を十分な固さにすることは有益である。これは、特に、患者によるトリガ起動の間、剛性のある本体115を介してPCBA120に力が伝達される際に当てはまる。幾つかの実施形態において、PCBAの剛性を保証する1つの方法は、PCBAの厚さが相対的に所定の値を超えることを確保することである。例えば、少なくとも約0.08cmの厚さが望ましく、より好ましくは、少なくとも約0.17cmの厚さが望ましい。本明細書において、PCBA120は、プリント回路基板(PCB)、プリント配線板(PWB)、エッチング配線板、あるいはプリント回路アッセンブリ(PCA)とも称され、又は、これらで置き換えられてもよい。幾つかの実施形態では、PCBA120に加えて、又はPCBA120の代わりに、ワイヤラップ又は空中配線が使用されてもよい。PCBA120は、アナログ回路及びデジタル回路を含んでもよい。
【0074】
患者トリガ入力210は、先に述べた上側ハウジング部材140のような患者トリガからの信号をPCBA120へ中継するように構成されてもよい。例えば、患者トリガ入力210は、患者トリガ(例えば、上側ハウジング部分140の上面)からの圧力に応答するPCBスイッチ又はボタンであってもよい。様々な実施形態において、患者トリガ入力210は、表面実装スイッチ、タクトスイッチ、LED照明タクトスイッチ、又はこれらに類似するものであってもよい。また、幾つかの実施形態において、患者トリガ入力210は、LED等のインジケータを起動してもよい。一実施形態は、別のデバイス上、又はスマートフォンアプリ等の遠隔に位置決めされたトリガを含んでもよい。
【0075】
本明細書に記述するデバイス100のような小型で2電極式の生体モニタリングデバイスにより、人又は動物の検査対象から心臓律動信号を収集することにおける1つの重大な課題は、電極が2つしか存在しないことにより、アーチファクトと臨床的に重要な信号とを区別しようとする際に、提供される見通し(perspective)が時として制限されることである。例えば、左利きの患者が左胸に小型の2電極式生体モニタリングデバイスを装着した状態で歯磨きをする場合、歯磨きは、しばしば、重大な心臓不整脈である心室頻拍症に酷似して、記録される信号を出現させる動きアーチファクトをもたらすかもしれない。追加のリード役(leads)(及び、よって、ベクトル)を追加することは、こうした課題を減じるための伝統的な手法であるが、これは、ホルタモニタの場合のように、典型的には、患者の胸の様々な場所に接着される余分な配線を加えることによって実行される。この手法は、生体モニタリングデバイス100のような、小型でウェアラブルな長期モニタには調和しない。
【0076】
上述の問題点に対する代替手法は、信号の弁別を助けるために1つもしくは複数の追加のデータチャネルを設けるというものである。例えば、幾つかの実施形態において、デバイス100は、パッチ(patch:当て布)の動きを検出するためのデータチャネルを含んでもよい。一実施形態では、加速度計又は他の適切なデバイスが、1軸測定の大きさ、あるいはまた3軸全てを組み合せた大きさの変化を単純に分析することによって、パッチの動きを提供してもよい。加速度計は、その周波数スペクトルと、記録されたECG信号のそれとのアルゴリズム的な比較を可能にするような十分なサンプリング速度で、デバイスの動きを記録してもよい。その動きと記録された信号との間に一致があれば、その時間におけるデバイスの記録は、臨床的(例えば、心臓関連)ソースによるものではないことが明らかであり、よって、その信号部分をアーチファクトとして確信的に示すことができる。この技術は、大きい振幅のアーチファクトだけでなく動きの頻度が迅速なものは、心室頻拍症のような命にかかわる可能性のある不整脈の心拍及び形態にそれぞれ類似しているところの、例えば上述の歯磨き動作において特に有益であるかもしれない。本明細書におけるこの章及び他の部分に記述している他の適切なデバイスもまた、動き情報の提供のために利用されてもよい。
【0077】
幾つかの実施形態において、このような分析のために3軸全ての大きさを用いることは、活動の変化ではなく位置の移動によるあらゆる突然の値の変化を押しならすであろう。他の実施形態では、歩行又は走行に関連する上下の動きにより導かれる特定タイプのアーチファクトに注目するように、身体の縦軸沿いのような特定の測定軸を用いることは、何らかの効果があるかもしれない。同様の趣旨で、加速度計と共にジャイロスコープを使用することは、経験される動きの性質についてさらなる分解能を提供するかもしれない。全身動作は、加速度計だけで十分に分析されるかもしれないが、腕の動きによる回転動作等の特定の動きはかなり複雑であり、加速度計だけでは区別できない場合もある。
【0078】
動きアーチファクトの検出に加えて、人の身体的活動のダイナミックレンジに一致された加速度計は、記録中に患者の活動レベルを提供する場合があり、これにより、アルゴリズム的な真の不整脈検出の精度を高めることも可能である。デバイス100において単極誘導制限(single-lead limitation)がある場合、上室性頻拍のような拍変化に加えてさほど顕著でない波形(例えば、P波)をも観察する必要がある不整脈は、訓練された人の目だけでなくコンピュータ化されたアルゴリズムの双方に難題となる。この特別な不整脈は、その突然発症の性質によっても特徴づけられるが、患者の活動レベルにおける急激な高まりが心拍増加と同時に検出されれば、これは、より確信的に非病理学的な洞性頻脈とは区別されるかもしれない。大まかに言えば、臨床専門家への活動情報の提供は、運動により誘発された不整脈か否かの弁別において彼らを手助けするかもしれない。動きアーチファクトの検出の場合と同様に、特定方向に最適化された加速度計の単一軸測定は、歩行あるいは走行といった活動タイプをより具体的に検出することを助けるかもしれない。この追加の情報は、症状をより具体的に説明する手助けとなり、よって、これに続く一連の治療行為に影響するかもしれない。
【0079】
一実施形態において、3軸を有する加速度計は、動きの大きさが提供可能なものを超える優位点を与えるかもしれない。被検者が迅速な移動をしていないとき、3次元加速度計の読取り値は、PCBA120の傾斜に、よって身体の最初の方向に対する方向に、ほぼ等しいかもしれない。身体の最初の方向は、デバイスの身体への適切な位置決め及び装着に必要とされる直立又は仰向けの何れかであると想定することができる。この情報は、多くは心不全事例における、周期的振幅変化が観察される交互脈等の心拍間隔形態変化として現れる所定の心臓状態を除外することに役立つかもしれない。同様の心拍間隔形態変化は、電極の方向(vector)に対する心臓の位置の移動、例えば直立位置から前屈み位置への移動、による身体位置の移動がなされた際に、健康な被検者においても観察される。設計によって、単一チャネルのデバイス100は、潜在的な病理学的形態変化を容易に除外するための代替のECGチャネルを有していないが、身体方向の変化との相関性は、これらの正常な変化を説明し、誤診による不必要な治療を回避する手助けになるだろう。
【0080】
他の実施形態において、加速度計はまた、身体の方向及び動きに基づいて、睡眠インジケータとして使用されてもよい。臨床異変(例えば、一時停止)が現れたとき、睡眠中に発生した異変を覚醒時間中のものから明らかに分離するような方法において情報を提示できることは、診断に役立つ。実際に、ECGにより導出される呼吸数のような所定のアルゴリズムは、患者が比較的動きのない状態にあるときで、よって呼吸による胸部の動きによって引き起こされるかすかな信号変調が観察可能であるときにのみ実行されて意味をなす。呼吸数の情報は、所定の患者集団における睡眠時無呼吸の検出に必要な1つの情報チャネルとして有益である。
【0081】
一実施形態において、加速度計はまた、卒倒等の自重落下を検出するためにも使用されてもよい。加速度計によりデバイス100は、患者のトリガに依存することなく卒倒(失神)及び他の自重落下イベントをマークすることができるかもしれない。幾つかの実施形態では、このような自重落下イベントのトリガにより、関連データの送信が開始されてもよい。デバイス100等の小型でウェアラブルなデバイスの電池及びメモリの制限をも考慮して、このような重大なイベントをタイムリーに検出可能にするために、加速度計の読取り値の取得は、突発的に(bursts)行われてもよく、この場合、潜在的自重落下等の特定の情報のみが高いサンプリング速度でメモリに書き込まれる。このイベントトリガの概念を拡張したものが、先に述べたボタンの代わりあるいはボタンと共に、患者トリガとしての、デバイス100における特定のタッピング動作を使用することである。複数タイプの連続したタッピングの使用及び検出は、事実発生後に患者がトリガログにその症状及び持続時間を手動で記録することに頼ることに替えて、患者が感じていた正確なことについて、より良い分解能及び精度を提供するかもしれない。このような追加される分解能の例は、連続するタップの数によって症状の重大度を示すことである。
【0082】
あるいはまた、他の実施形態では、デバイスの動きと患者身体の動きとを区別するために光学センサが使用されてもよい。さらに、追加的な実施形態では、デバイスは、ボタンあるいはトリガを必要としなくてもよい。さらに多くの実施形態では、本明細書における本章又は他の所で記述している適切なデバイスが使用されてもよい。
【0083】
生体モニタリングデバイス100へ追加されてもよい別の任意的なデータチャネルは、デバイス100の屈曲及び/又は曲がりを検出するためのチャネルである。例えば、様々な実施形態において、デバイス100は、デバイス100自体における動きアーチファクトを検出し、よって動きアーチファクトと心臓律動データとの区別に役立てるために、歪ゲージ、圧電センサ、又は光学センサを含んでもよい。デバイス100のさらに別の任意的なデータチャネルは、心拍を検出するためのチャネルであってもよい。例えば、パルスオキシメータ、マイクロフォン、又は聴診器は、心拍情報を提供してもよい。冗長な心拍データは、アーチファクトからECG信号の弁別を容易にするかもしれない。これは、上室性頻拍等の不整脈がアーチファクトによって中断され、よってその発作が実際には複数のより短期的な発作であるのか、持続する1つの発作であるのかの判断を下さなければならない事例において、特に有益である。周囲の電気ノイズを検出するために、別のデータチャネルが含まれてもよい。例えば、デバイス100は、電磁干渉を捕捉するためのアンテナを含んでもよい。電磁干渉の検出は、実際のECG信号からの電気ノイズの弁別を容易にするかもしれない。上述のデータチャネルは何れも、将来のノイズ弁別をサポートするために記憶されても、臨床有効性を即時決定するためにリアルタイムで適用されてもよい。
【0084】
次に、
図3A及び
図3Bの実施形態を参照すると、柔軟な本体110がより詳細に示されている。
図3Aに示されているように、柔軟な本体110は、翼130、131と、各翼130、131の少なくとも一部の周りの薄い縁133(又は、「リム」又は「エッジ」)と、電極トレース311、312と、各翼130、131と剛性を有するハウジング115との接合部におけるあるいはこの接合部に近い、ヒンジ部分132(又は「ショルダ」)とを含んでもよい。
図3Aには、上側ガスケット370も示されていて、本明細書では、これは、柔軟な本体110の一部として考えていないが、剛性を有するハウジング115への柔軟な本体110の取り付けを容易にする。
【0085】
ヒンジ部分132は、比較的薄く、柔軟な本体110のさらに柔軟な部分である。ヒンジ部分132は、柔軟な本体110が、剛性を有するハウジング115へ接合される領域で自由に屈曲できるようにする。この柔軟性は、患者が動いたときにハウジング115が患者の皮膚から自由に持ち上がることができることから、心地よさを高める。電極トレース311、312もまた極めて薄くかつ柔軟であって、信号の歪のない患者の動きを可能にする。縁133は、柔軟な本体110の部分であり、直接に隣接する部分よりも薄く、柔軟な本体110から患者の皮膚への滑らかな移行を提供し、それによりエッジの持ち上がり、及び柔軟な本体110下への塵埃あるいは破片の浸入を防止する。
【0086】
図3Bにさらに詳しく示されているように、柔軟な本体110は、複数の層を含んでもよい。先に述べたように、幾つかの実施形態において、この記述の目的のため上側ガスケット370及び下側ガスケット360は、柔軟な本体110の一部には考えていないが、説明を完全にするために図示している。しかしながら、この区別は、単に説明上の便宜的なものであって、記述した実施形態の範囲を限定するものとして解釈されるべきではない。柔軟な本体110は、上部基板層300と、底部基板層330と、接着層340と、軟質電極350とを含んでもよい。上部及び底部の基板層300、330は、一もしくは複数の軟質ポリマー等の任意の適切な柔軟材料で製造されてもよい。適切な軟質ポリマーには、次のものに限定されないが、ポリウレタン、ポリエチレン、ポリエステル、ポリプロピレン、ナイロン、テフロン、及び炭素含浸ビニルを含むことができる。基板層300、330の材料は、所望の特性に基づいて選択されてもよい。例えば、基板層300、330の材料は、柔軟性、復元性、耐久性、通気性、湿気蒸散性、接着性、及び/又はこれらの類似する性質のために選択されてもよい。一実施形態において、例えば、上部基板層300は、ポリウレタン製であってもよく、底部基板層330は、ポリエチレンあるいはポリエステル製であってもよい。他の実施形態では、基板層300、330は、同じ材料で製造されてもよい。さらに別の実施形態において、基板層330は、さらなる通気性及び湿気蒸散性をもたらすために、接着層340を覆う領域において複数の穿孔を含んでもよい。様々な実施形態において、生体モニタリングデバイス100は、14日-21日間以上に渡って、装着期間中取り外されず、デバイス100がシャワー時、運動時などの間も装着されたままの状態で、患者によって連続的に装着されてもよい。したがって、基板層300、330の使用材料及び厚さ、及び形状は、生体モニタリングデバイス100の機能に影響する。幾つかの実施形態において、基板層300、330の材料は、アーク放電を防止するための静電放電(ESD)バリアとして作用する。
【0087】
典型的には、上部及び底部の基板層300、330は、層300、330の一方又は双方に設けた接着剤を介して互いに付着される。例えば、基板層300、330間の接着剤又は結合剤は、アクリル系、ゴム系、又はシリコーン系の接着剤であってもよい。他の代替の実施形態において、柔軟な本体110は、軟質材料による3つ以上の層を含んでもよい。
【0088】
材料の選定に加えて、基板層300、330の寸法-厚さ、長さ及び幅-も、柔軟な本体110の所望の特性に基づいて選択されてもよい。例えば、様々な実施形態において、基板層300、330の厚さは、柔軟な本体110の全体の厚さが約0.1mmから約1.0mmまでの間となるように選択されてもよい。様々な実施形態によれば、柔軟な本体110はまた、約7cmから15cmまでの間の長さ、及び約3cmから約6cmまでの幅を有してもよい。一般的に、柔軟な本体110は、電極350間の分離に必要な量を提供するに足る長さを有する。例えば、一実施形態において、一方の電極350の中心から他方の電極350の中心までの距離は、少なくとも約6.0cmであるべきであり、より好ましくは、少なくとも約8.5cmであるべきである。この分離距離は、応用例に依存して変化してもよい。幾つかの実施形態において、基板層300、330は、全て同じ厚さを有してもよい。あるいはまた、2つの基板層300、330は、異なる厚さを有してもよい。
【0089】
上で述べたように、ヒンジ部分132は、柔軟な本体110が皮膚に接着されたままの状態で、剛性のある本体115が患者から持ち上がることを可能にする。ヒンジ部分132のこの機能は、皮膚を延ばす又は圧縮してもよい様々な活動を通じてデバイスが患者に付着されたままであることを可能にする上で極めて重要である。さらに、ヒンジ部分132は、デバイスを装着している間の著しく改善された心地よさを可能にする。一般的に、ヒンジ部分132は、柔軟な本体110に過大な剥離力を生成することなく剛性のある本体115の適切な持ち上げを提供するに足る十分な広さになるであろう。例えば、様々な実施形態において、ヒンジ部分132の幅は、少なくとも約0.25cm、より好ましくは、少なくとも約0.75cmであるべきである。
【0090】
さらに、柔軟な本体110の形状あるいは占有面積は、所望の特性に基づいて選択されてもよい。
図3Aから分かるように、翼130、131及び縁133は、柔軟な本体110に全体として「ピーナッツ」形状を与える丸みのあるエッジを有してもよい。しかしながら、翼130、131は、長方形、楕円形、輪、又は短冊状等のいずれの数の異なる形状で形成することが可能である。
図3A及び
図3Bに示されている実施形態では、上部基板層300の拡張部が縁133を形成した状態で、上部基板層300の占有面積は、底部基板層330の占有面積よりも大きい。したがって、縁133は、上部層300が作製されるのと同じポリウレタン材料で作製される。縁133は上部層300にのみ含まれることから、各翼130、131の隣接部分よりも薄い。より薄く高順応性のリム133は、翼130、131の僅かに厚い部分の隣接部分から患者の皮膚への移行部を提供し、よってデバイス110のエッジが皮膚から剥がれ上がることを防止するのに役立つことから、生体モニタリングデバイス100の患者への接着を強化するであろう。また、縁133は、柔軟な本体110の下に塵埃及び他の破片が集まることの防止にも役立つ場合があり、このことは、皮膚への接着を助長すること、及びデバイス110の美観を高めることにも役立つかもしれない。代わりの実施形態において、基板層300、330の占有面積は、同じであってもよく、よって縁133はなくなる。
【0091】
図1A-
図3Bに示されている実施形態は、剛性を有するハウジング115から略反対方向へ(例えば、互いに対して180度の角度で)広がる2つの翼130、131のみを含むが、代わりの実施形態においては他の形状も可能である。例えば、幾つかの実施形態において、翼130、131は、互いに対して非対称の方向に配置されてもよく、及び/又は一もしくは複数の追加の翼が含まれてもよい。生体信号のモニタリングを可能にするのに十分な電極の間隔が提供される限り、及び、翼130、131が皮膚への拡大された接着を提供するように構成される限り、何れの適切な形状及び数の翼130、131、並びに電極トレース311、312が使用されてもよい。上述の実施形態は、接着性、患者の快適さ、及び心臓律動収集データの正確さに関して優位であることが証明されているが、代わりの実施形態では、代替形状を実施することが可能であってもよい。
【0092】
接着層340は、底部基板層330の底面の2つの部分、それぞれの部分は翼130、131の一方に対応する、へ塗布される接着剤である。したがって、接着層340は、剛性を有するハウジング115が搭載される、底部基板層330の部分に沿って延在しない。接着層340は、一定の接着剤が、比較的心地よくかつ皮膚を刺激することなく患者の皮膚に長期間の接着を提供する優位さを有することが分かっているけれども、適切な何れの接着剤で製造されてもよい。例えば、一実施形態において、接着層340は、親水コロイド接着剤である。別の実施形態において、接着層340は、発汗中に皮膚から水分を吸収する天然由来の又は合成の吸収材を含む親水コロイド接着剤で構成される。
【0093】
次に、
図3Bを参照すると、接着層340の2つの部分のそれぞれは、電極350の1つが嵌まる穴を含む。電極350は、柔軟な本体110の全体的順応性をさらに提供するような軟質材料で製造される。一実施形態では、例えば、軟質電極350は、ヒドロゲル350で製造されてもよい。電極350は、一般的に、皮膚との強化された電気的接続を提供しかつ動きアーチファクトを減らすために、皮膚とのコンフォーマルで非刺激性の接触を提供する。幾つかの実施形態において、ヒドロゲルの電極350は、接着層340へ穿孔されてもよく、よって穴が形成され、そこへヒドロゲル電極350が充填される。ある代替の実施形態では、電極350及び接着材340は、導電材料製の接着層で置換されてもよく、その結果、各翼130、131の下側における接着層全体が電極として作用する。このような接着層は、接着/導電性物質の混成物、あるいは導電性要素あるいは粒子と混合された接着物質を含んでもよい。例えば、一実施形態において、そのような接着層は、ヒドロゲル接着剤と親水コロイド接着剤との混成物であってもよい。
図1Aの剛性を有するハウジング115もまた、ハウジング120に含まれる電子機器及び電源を保護し、患者の能力を高めて知覚された心臓異変に関連した入力を提供し、ハウジング115の少なくとも幾つかの内容物の容易な製造及び再使用を可能にする。生体モニタリングデバイス100のこれらの及び他の特徴は、以下でさらに詳しく述べる。
【0094】
上で論じたように、幾つかの実施形態において、接着層340は、底部基板層330の下側の一部分を覆ってもよく、その結果、柔軟な本体110の底側の少なくとも一部分は、接着層340を含まない。
図3Aから分かるように、ヒンジ132は、接着層340が塗布されない、各翼130、131の部分として、柔軟な本体110に形成されてもよい。ヒンジ部分132は、一般的に、柔軟な本体110と剛性を有するハウジング115との接合部に、あるいは上記接合部の近くに配置され、よって、患者の動きを収容するためにデバイス100の屈曲を提供する。幾つかの実施形態において、ヒンジ部分132は、翼130、131の隣接部分の幅よりも小さい幅を有してもよく、よって、デバイス100に、先に述べた「ピーナッツ」形状を付与する。
図8に示されるように、被検者が動いたとき、デバイス100は、患者の動きとともに屈曲する。デバイスの屈曲は、激しいことがあり、長期モニタリング中に何度も発生する可能性がある。剛性を有するハウジング115の剛性は、デバイスが屈曲する間にハウジング115が患者の皮膚から持ち上がることを可能にしながら、ヒンジ部分132は、被検者への動的な順応性を許容してもよく、よって、デバイスのエッジでデバイス100が皮膚から剥がれることを防止する。
【0095】
柔軟な本体110は、さらに、上部基板層300と下部基板層330との間に挟まれた2つの電極トレース311、312を含む。各電極トレース311、312は、電極インタフェース部分310と、心電図回路インタフェース部分313とを含んでもよい。
図3C及び
図3Dの実施形態に示されるように、ECG回路インタフェース部分313は、ばねフィンガ237と物理的に接触し、かつ、デバイス100あるいは拡大されたデバイス部分101が組み立てられたときにPCBA120と電気通信を提供する。電極インタフェース部分310は、ヒドロゲル電極350と接触する。したがって、電極トレース311、312は、電極350からPCBA120へ心臓律動信号(及び/又は、様々な実施形態では、他の生体情報)を送信する。
【0096】
柔軟性、耐久性、及び信号送信の所望の組合せを提供することに関して、電極トレース311、312の材料及び厚さは重要である。例えば、一実施形態において、電極トレース311、312は、銀(Ag)及び塩化銀(AgCl)の組合せを含んでもよい。銀及び塩化銀は、層状に配置されてもよい。例えば、電極トレース311、312の一実施形態は、銀の上層と、炭素含浸ビニルの中間層と、塩化銀の(患者に面する)底層とを含んでもよい。別の実施形態では、電極トレース311、312の上層及び底層の双方は、塩化銀で製造されてもよい。一実施形態では、上層及び底層は、各々、銀インク及び塩化銀インクの形態で中間層に塗布されてもよい。ある代替の実施形態では、各電極トレースは、銀の上層及び塩化銀の底層のような、2層のみを含んでもよい。様々な実施形態において、AgCl等の、各電極トレース311、312の底層の材料は、ヒドロゲル電極350の化学的性質に適合し、かつ被検者の身体と共に半電池を生成するように選択されてもよい。
【0097】
電極トレース311、312の厚さは、多くの所望の性質のうちの何れかを最適化するように選択されてもよい。例えば、幾つかの実施形態において、電極トレース311、312の層のうちの少なくとも1層は、経時的な陽極/陰極効果からの材料減損を最小限に抑える、あるいは遅らせるのに十分な厚さであることが可能である。さらに、その厚さは、所望の柔軟性、耐久性、及び/又は信号送信品質に合わせて選択されてもよい。
【0098】
先に述べたように、幾つかの実施形態において、上部ガスケット370及び底部ガスケット360は、柔軟な本体110の上部基板300及び下部基板330に取り付けられてもよい。ガスケット360、370は、剛性を有するハウジング115の上側ハウジング部材140と下側ハウジング部材145との間に水密シールを提供する、ウレタン等の、任意の適切な材料で製造されてもよい。一実施形態において、上部ガスケット370及び/又は底部ガスケット360は、接着面を含んでもよい。
図3Eは、上側基板300に付着されながら、上部ガスケット370が上部ハウジング140の輪郭から離れて突出するタブ371を含む、さらに別の実施形態を示している。タブ371は、電極トレース311、312の一部分を覆い、かつ柔軟な本体が剛性を有するハウジングと接して応力が最も大きくなる箇所においてトレースのためのストレインリリーフとなる。
【0099】
次に、
図4の実施形態を参照すると、剛性を有するハウジング115の上側ハウジング部材140及び下側ハウジング部材145がより詳細に示されている。上側及び下側ハウジング部材140、145は、ガスケット360、370を間にして互いに結合されると、PCBA120、電池ホルダ150、電池160、及び剛性を有するハウジング115内に含まれる他のあらゆる部品を含むために水密エンクロージャを形成するように構成されてもよい。ハウジング部材140、145は、耐水プラスチック等の、内部コンポーネントを保護するためのあらゆる適切な材料で製造されてもよい。一実施形態において、上側ハウジング部材140は、硬質側壁440と、PCBAにおけるLEDからの視覚情報をハウジング部材を介して伝えるための光パイプ410と、僅かに軟質である上面420と、上面420から内側へ延びる内部トリガ部材430とを含んでもよい。上面420は、患者が不整脈又は他の心臓異変であると自らが思うことを知覚したとき、患者によって押し下げられるように構成される。押下されたとき、上面420は、PCBA120のトリガ入力210に接触しかつこれを活性化する内部トリガ部材430を押し下げる。さらに、先に述べたように、上面420は、指の形状に合わせるように凹形状(凹部がハウジング115の内側へ向いている)を有してもよい。上側ハウジング部材140の設計は、電極350とトリガ入力210の活性化とを分離し、これにより、データ記録におけるアーチファクトを最小化することが確信される。
【0100】
引き続き
図4を参照すると、下側ハウジング部材145は、モニタリングデバイス100の部品パーツのうちの少なくとも幾つかを再使用できるようにハウジング部材140、145が容易に着脱してもよい方法で、上側ハウジング部材140と着脱式に接続するように構成されてもよい。幾つかの実施形態において、下側ハウジング部材145の底面445(患者に面する表面)は、使用中に患者の皮膚に接触する複数の窪み450(又は「出っ張り」、「突起」又はこれらに類似するもの)を含んでもよい。窪み450は、底面445と患者の皮膚との間の空気の流れを可能にしてもよく、よって、底面445と皮膚との間に密封が形成されることが防止される。窪み450は、心地よさを高め、かつ、現時点で利用可能なデバイスにおける、ハウジング115が皮膚から持ち上がり皮膚との密封が破れたときに、あたかもモニタリングデバイス100が落下したかのように患者が感じるという知覚を防止する手助けをすることが確信される。さらに別の実施形態において、下側ハウジング部材450の底面445は、密封の形成を防止するために複数の窪み(突起ではなく凹所)を含んでもよい。
【0101】
次に、
図5Aを参照すると、電池ホルダ150がさらに詳述されている。電池ホルダ150は、プラスチック又は他の適切な材料で製造されてもよく、PCBA120へ装着され、続いて剛性を有するハウジング115へ取り付けられるように構成され、かつ、2つの電池160(
図1B)を保持することができる。代替の実施形態において、電池ホルダ150は、1つの電池又は3つ以上の電池を保持するように構成されてもよい。複数の突起152は、電池160がPCBA120の表面より上に一定の距離を隔てて位置決めされるような安定したプラットフォームを提供し、繊細な電子部品との不必要な接触を回避し、さらにばね接点235(
図5B)の適切な圧縮を提供する。突起153は、電池160を所定位置にロックし、ばね接点235から電池に加わる上向きの力に抵抗する。また、電池ホルダ150は、ばね接点236の適切な圧縮を提供するように、電池160を適切に位置決めする。ばね接点235、236と併せた電池ホルダ150の使用は、電池160とPCBA120との間に追加の電子部品を有しながら、電池160がPCBA120へ電気的に接続されること、及び超小型アッセンブリを維持することを可能にする。電池ホルダ150は、上側ハウジング部材140において対応する硬質フック440と係合する軟質フック510を含んでもよい。正常な組立て状態において、軟質フック510は、硬質フック440にしっかりと結合されたままである。分解する場合、軟質フック510は、上部ハウジング140を通される適切なツールを用いて押し曲げられることが可能であり、これにより硬質フック440から外され、続いて上部ハウジング140の取り外しが可能にされる。
【0102】
次に、
図6A及び
図6Bの実施形態を参照すると、生体モニタリングデバイス100が側面の断面図で示されている。
図6Aに示されるように、生体モニタリングデバイス100は、剛性を有するハウジング115と結合される柔軟な本体110を含んでもよい。柔軟な本体110は、上部基板層300と、底部基板層330と、接着層340と、電極350とを含んでもよい。電極トレース311、312も、典型的には柔軟な本体110の一部であり、上部基板層300と底部基板層330との間に埋め込まれるが、
図6には示されていない。柔軟な本体110は、ハウジング115の両側に広がる2つの翼130、131と、各翼130、131の少なくとも一部を取り囲む縁133とを形成する。剛性を有するハウジング115は、柔軟な本体110の一部分を間に挟みかつPCBA120のために防水性で密封された区画を提供するように、下側ハウジング部材145と結合される上側ハウジング部材140を含んでもよい。上側ハウジング部材140は、内部トリガ部材430を含んでもよく、PCBAは、患者トリガ部材210を含んでもよい。先に述べたように、下側ハウジング部材145は、モニタリングデバイス100の心地よさを高めるために、複数の窪み450又はディボット(divots)を含んでもよい。
【0103】
PCBA120は、曲がること、及び不必要なアーチファクトを信号に取り込むことを防止するのに十分な硬さであることが望ましい。一実施形態では、PCBA120の不必要な曲りを減らし防止するための追加的な機構が使用されてもよい。
図6Bは、この機構を示している。支柱460が下側ハウジング145と一体であり、患者トリガ入力210の真下に位置決めされている。患者による症状トリガの間、内部トリガ機構430に係合している上側ハウジング部材140が押下されて、力が患者トリガ入力210を介してPCBA120へ伝達される。その力は、曲げモーメントを生成することなくさらにPCBA120を介して支柱460に伝達され、よって不必要なアーチファクトが防止される。
【0104】
図7を参照すると、幾つかの実施形態において、生体モニタリングデバイス100は、一もしくは複数の追加的なオプションの特徴を含んでもよい。例えば、一実施形態では、モニタリングデバイス100は、取外し式ライナ810と、上部ラベル820と、デバイス識別子830と、底部ラベル840とを含んでもよい。ライナ810は、被検者へのデバイス100の装着を手助けするために、柔軟な本体110の上面上に取り付けられてもよい。後でさらに詳述するように、ライナ810は、使用前に接着面340を覆っている一もしくは複数の接着カバー(不図示)を除去する間、翼130、131だけでなく柔軟な本体110の縁133を支持する手助けを行ってもよい。ライナ810は、接着カバーを除去する間に柔軟な本体110を支える手助けとなるように、比較的硬質及び/又は堅固であってもよい。様々な実施形態において、ライナ810は、例えば、ボール紙、厚紙、プラスチック、又はこれらに類似するもので製造されてもよい。ライナ810は、典型的に、片側に、柔軟な本体110の翼130、131の上面へ接着するための接着剤を含む。
【0105】
ラベル820、840は、あらゆる適切なラベルであってもよく、製品名、製造者名、ロゴ、デザイン、及び/又はこれらに類似するものを含んでもよい。これらは、典型的には、未登録ユーザによるデバイスの規制のない再使用及び/又は転売を回避するために、永続的に取り付けられるだろうが、上側ハウジング部材140及び/又は下側ハウジング部材145に、取外し可能にあるいは永続的に取り付けられてもよい。デバイス識別子830は、バーコードステッカー、コンピュータ読取り可能なチップ、RFID、又はこれらに類似するものであってもよい。デバイス識別子830は、PCBA120、柔軟な本体110、又はこれらに類似するものへ、永続的又は取外し可能に取り付けられてもよい。実施形態によっては、デバイス識別子830をPCBA120と共に留めることが有益かもしれない。
【0106】
次に、
図8A及び
図8Bの実施形態を参照すると、生体モニタリングデバイス100は、一般的に、各翼130、131と剛性を有するハウジング115との接合部に、あるいはその近くに、ヒンジ部分132を含む。さらに、各翼130、131は、典型的には、接着層340を介して患者に接着され、一方、剛性を有する本体115は、患者に接着されず、よって運動中又は患者の位置変更中に、患者の皮膚の上方に「浮く」(例えば、上、下に動く)ことが自由である。言い替えれば、患者の胸部が縮まると、剛性を有するハウジングは、皮膚より上へ持ち上がり、つまり浮き、よって、デバイス100に加わる応力が最小化され、心地よさが高まり、かつ翼130、131が皮膚から剥がれる傾向が低減される。
図8A及び
図8Bには、浮き上がる剛性のある本体115と、接着される翼130、131との組合せにより提供される利点が示されている。
図8Aでは、患者が眠っており、
図8Bでは、患者はゴルフをしている。双方の例において、モニタリングデバイス100は、患者の身体によって圧迫され、その結果、翼130、131が互いに近づいて動くにつれて剛性を有するハウジング115が皮膚より上へ浮く。生体モニタリングデバイスの浮き上がる非付着部分によるこの優位点は、参照により予め編入されている、米国特許第8,560,046号明細書にさらに詳述されている。
【0107】
次に、
図9Aから
図9Fを参照して、モニタリングデバイス100を被検者の皮膚に装着するための方法の一実施形態について述べる。この実施形態では、
図9Aに示されている第1ステップの前に、典型的には、患者の皮膚は、デバイス100を置く左胸の皮膚の小部分を剃毛し、次に剃毛された部分を擦り及び/又は清浄にすることによって、準備がなされてもよい。
図9Aに示されるように、患者の皮膚が準備されると、デバイス100を装着する第1ステップは、デバイス100の底面における接着層340から2つの接着カバー600のうちの一方又は双方を剥がして接着層340を露出させることを含んでもよい。
図9Bに示すように、次のステップは、デバイス100を皮膚に接着させてもよく、よって、接着層340が所望の位置の皮膚に接着される。実施形態によっては、一方の接着カバー600が剥がされて、カバーされていない接着層340が皮膚に接着されてもよく、次に、第2の接着カバー600が剥がされて、第2の接着層340が皮膚に装着されてもよい。あるいはまた、デバイス100が皮膚に装着される前に、双方の接着カバー600が剥がされてもよい。接着カバー600が剥がされる間、ライナ810は、柔軟な本体110のサポートとして機能して、医師又は他のユーザに保持するものを提供し、かつ柔軟な本体110及び柔軟な本体110の縁133同士がくっついて皺になること、等々を防止する。先に述べたように、ライナ810は、デバイス100を皮膚へ装着する間、柔軟な本体110用の支持を提供するために、比較的堅い、しっかりとした材料で製造されてもよい。
図9Cを参照すると、デバイス100が皮膚へ装着された後、デバイス100の皮膚への接着を確実にする手助けとなるように、柔軟な本体110へ圧力を加えて胸部へ押しつけてもよい。
【0108】
次のステップでは、
図9Dを参照すると、ライナ810が柔軟な本体110の上面から外される(例えば、剥がされる)。
図9Eに示されるように、ライナ810が外されると、皮膚への接着を確実にする手助けとなるように、再度柔軟な本体110へ圧力がかけられてもよい。最後に、
図9Fに示すように、生体モニタリングデバイス140をオンにするために、上側ハウジング部材140が押圧されてもよい。説明したこの方法は、単に一実施形態である。代替の実施形態では、一もしくは複数のステップはスキップされてもよく、及び/又は一もしくは複数の追加ステップが加えられてもよい。
【0109】
一実施形態では、ある事例において約14日から21日間等である所望のモニタリング期間が終了すると、患者(又は、医師、看護師又はこれらに類する者)は、患者の皮膚から生体モニタリングデバイス100を取り外し、準備した郵送用の袋にデバイス100を入れ、データ処理施設へデバイス100を郵送してもよい。この施設では、デバイス100は、部分的又は完全に分解されてもよく、PCBA120が取り外されてもよく、かつ連続的な心臓律動情報等の記憶された生体情報がデバイス100からダウンロードされてもよい。次に、データは、任意の適切な方法によって分析されてもよく、次いで、報告書の形式で医師に提供されてもよい。医師は、次に、報告書を患者と論じてもよい。PCBA120及び/又は剛性を有するハウジング115等のデバイス100の他の部分は、同じ患者又は他の患者用の後続デバイスの製造において再使用されてもよい。デバイス100は、取り外し可能に結合された幾つかのパーツの組合せとして作り上げられていることから、様々なパーツがデバイス100の同じ実施形態又は異なる実施形態に再使用されてもよい。例えば、PCBA120は、まず、大人用の心臓律動モニタに使用されてもよく、次いで二度目に、睡眠時無呼吸用モニタを組み立てるために使用されてもよい。あるいは、又は追加的に、この同じPCBA120は、小児用の心臓モニタを組み立てるために異なるサイズの柔軟な本体110と共に使用されてもよい。このように、デバイス100の部品パーツのうちの少なくとも幾つかは、交換可能かつ再使用可能であってもよい。
【0110】
後にさらに詳述するさらなる実施形態では、モニタリングデータは、分析及び報告用にデバイスを物理的に発送する必要があるというよりも、分析のために無線式に、又は他の通信媒体を介して送信されてもよい。
【0111】
有利には、生体モニタリングデバイス100は、皮膚への長期的な接着を提供してもよい。柔軟でコンフォーマルな本体110の形状、剛性を有するハウジング115の防水性で薄型の形状、及び両者間の界面の組合せにより、デバイス100は、被検体の皮膚の延伸及び曲げに伴って生じる応力を補償することができる。その結果、デバイス100は、14日から21日間もしくはそれ以上の長期にわたって取り外されることなく持続して患者に装着されてもよい。事例によっては、デバイス100は、これよりさらに長い、又は短い時間に渡って装着されてもよいが、14日から21日は、多くの場合、患者から心臓律動データ及び/又は生体信号データを収集するのに望ましい時間量であるかもしれない。
【0112】
様々な代替の実施形態において、特定の生体モニタリングデバイスの形状は、変化してもよい。デバイスの形状、占有面積、外周、又は境界は、例えば、円形、楕円形、三角形、複合曲線、又はこれらに類似するものでもよい。実施形態によっては、複合曲線は、一もしくは複数の凹曲線及び一もしくは複数の凸曲線を含んでもよい。凸形状は、凹形部分によって分離されてもよい。凹形部分は、剛性を有するハウジングにおける凸形部分と、電極における凸形部分との間であってもよい。実施形態によっては、凹形部分は、少なくとも部分的に、本体と翼との間の厚さが低減された、ヒンジ、ヒンジ領域、又はヒンジ部位に対応してもよい。
【0113】
心臓モニタの文脈で記述しているが、本明細書に記述するデバイスの改良は、これに限定されない。本明細書に記述する改良は、広範な生体情報のモニタリング、記録及び/又は送信デバイスのうちの何れに適用されてもよい。また、この改良された接着設計特徴は、グルコースモニタ又は他の血液検査デバイス等の、薬剤の電子制御式及び/又はタイムリリース型投与に有益なデバイス、又は血液検査に有益なデバイスにも適用されてもよい。したがって、本明細書に記述している部品の説明、特性、及び機能性は、必要に応じて、電子機器、アンテナ、電源又は充電接続部、デバイスから情報をダウンロード又はオフロードするためのデータポート又はデータ接続部、流体追加又はデバイスからの流体オフロード、電極、プローブ又はセンサといったモニタリング又は検出エレメント、又は、デバイス固有の機能に必要なその他の一もしくは複数の部品等の、特定のアプリケーションに固有の部品を包含するように変更されてもよい。さらに、又は代替として、本明細書に記述するデバイスは、身体により生成される信号に関連する、ECG、EEG、及び/又はEMGのうちの1つもしくは複数を含む、但しこれらに限定されない信号又は情報を検出し、記録し、又は送信するために使用されてもよい。一実施形態では、追加的なデータ、例えばデバイスの動き、デバイスの屈曲又は平坦(bed)、心拍及び/又は周辺の電気雑音又は音響雑音を収集するために、追加的なデータチャネルを包含することができる。
【0114】
先に述べた、かつ本明細書の他所に記述されている生体モニタは、さらに、モニタからのデータ収集を向上させるデータ処理及びデータ送信の方法及びシステムと組み合わされてもよい。さらに、以下に述べる方法及びシステムは、上述のモニタの高い患者コンプライアンス及び使いやすさを保ちながら臨床情報のタイムリーな送信を有効化することによって、モニタの性能を高めてもよい。例えば、ここに記述する、又は本明細書の他所に記述されているデータ処理及びデータ送信の方法及びシステムは、モニタの電池寿命を延ばし、モニタの精度を高め、及び/又はここに記述する、又は本明細書の他所に記述されている他の改良及び優位点を提供するように機能してもよい。
【0115】
デバイスモニタリング及び臨床分析プラットフォーム
図10から
図17までの実施形態を参照して以下に詳述するシステム及び方法は、
図1から
図9までに関連して上で述べたようなウェアラブルな生体モニタからの心電図信号データ及び他の生体データを選択的に抽出し、送信し、かつ分析してもよい。以下に述べるシステム及び方法は、複数の手段を介してデータを同時に記録しかつ送信するウェアラブル生体モニタの性能を高めることができる。例えば、抽出されたデータの選択的な送信は、ウェアラブルパッチが必ずしも記録された全てのデータを送信する必要はないので、電力消費の低減が可能である。抽出されたデータを送ることにより、分析の多くは、同じく電力消費量が高く電池寿命を減らす可能性がある律動の完全なオンボード分析を必要とすることなく、ウェアラブルデバイスから離れて実行されてもよい。さらに、ウェアラブルデバイスに固有の電力制約のない遠隔分析は、データ分析におけるより高い感度及び精度を可能にするかもしれない。電力消費量の低減は、モニタリングサイクル中のデバイス交換、電池交換、又は電池充電の期間を引き延ばし、又はこれらの必要性すらなくすことから、患者コンプライアンスを改善することに役立つ。電池消費量を低減することにより、デバイス交換なしに、例えば、少なくとも1週間、少なくとも2週間、少なくとも3週間又は3週間を超える長いモニタリング時間が可能にされてもよい。
【0116】
図10は、持続心拍モニタリングデバイス904により生成してもよいような、R-R間隔時系列902から心臓律動情報を推測するためのシステム900の一実施形態の概観を描いたものである。このようなシステムについては、後に、
図11から
図17に関連してより詳細に述べる。システムに入力されたR-R間隔時系列902は、連続する心拍間のタイミング間隔の一連の測定値を含んでもよい。典型的には、各間隔は、ECG信号から識別されるような2つの連続するRピーク間の時間期間を表す。Rピークは、哺乳動物の心臓の左心室及び右心室の脱分極を表す、典型的にはECGにおいて見られる3つのグラフィック偏向の組み合わせであるQRS群の一部である。Rピークは、一般的に、ECGにおいて最も高くかつ最も明らかな上向きの偏向であり、よって、適切な基準点に役立つ。しかしながら、さらなる実施形態では、R-R間隔時系列の推定を提供するために、Rピークの代わりに任意の特徴的なECG基準点(QRS群のオンセット又はオフセット等)が使用されてもよい。
図1から
図9までに関連して先に述べたように、モニタリングデバイスの物理的特性は、信号忠実度を改善するようにして作り上げられ、よって、高い信号忠実度は、R-Rピークデータの正確な抽出において高いレベルの信頼度を可能にする。
【0117】
R-R間隔時系列902のデータは、心拍チェストストラップあるいは心拍ウォッチ等の専用の心拍モニタ、又は心拍検出機能を組み込んだウェアラブル健康あるいは運動デバイス906、908から抽出あるいは受信されてもよい。あるいはまた、R-R間隔時系列902は、ECG信号を測定するように設計されるウェアラブルパッチ904から(例えば、QRS検出アルゴリズムを用いてECGにおけるRピークを位置決めすることにより)導出されてもよい。さらに、R-R間隔時系列902は、光電式容積脈波記録法(PPG)から入手されるもののような代替的な生体信号から推定されてもよい。このシナリオでは、PPG信号から決定されるピーク間間隔時系列が、R-R間隔時系列の正確な推定値として使用されてもよい。
【0118】
ある態様において、心臓律動推測システム910は、R-R間隔時系列データあるいは他の信号データがシステムへ(例えば、HTTPを介して)送信されること、及び結果的に得られる心臓律動情報が発呼側ソフトウェアへ戻されることを可能にするアプリケーション・プログラミング・インタフェース(API)を開示(exposes)するクラウドサービス又はサーバーベースのシステムとして実施される。R-R間隔時系列データ902あるいは他の信号データは、心拍モニタリングデバイス自体から直接に、又はスマートフォン912、タブレットあるいは心拍モニタリングデバイスからデータを無線式又は有線式の何れかで受信できる他のインターネット対応通信デバイス914を介して間接的に、クラウドサービスへ送信されてもよい。さらに、R-R間隔時系列データ902あるいは他の信号は、多くのユーザに関するデータを記憶するサーバー916から送信されてもよい。
【0119】
幾つかの実施形態において、心臓律動推測システム910は、スマートフォン、タブレット、あるいはパーソナルコンピュータにインストールして用いるためのスタンドアロンアプリケーションへ組み込まれることが可能なソフトウェアライブラリを介して提供される。このライブラリは、インタフェースサービスの機能と同一の機能を提供してもよいが、R-R間隔時系列データ902あるいは他の信号データは、ウェブサービスAPI経由ではなく関数呼出し(functional call)によって直接に送信される。
【0120】
一実施形態において、心臓律動インタフェースシステムは、個々のR-R間隔時系列902に加えて、所与のユーザのデバイスから測定された複数のR-R間隔時系列918を受け入れてもよい。このシナリオにおいて、システムは、時系列データの収集から推測される心臓律動タイプ毎に周波数(frequency)及び持続時間を計算する。これらの結果は、次に、様々な時系列に渡りその律動の発生の周波数及び持続時間に基づいて心臓律動タイプ毎の信頼度統計を推定するために使用されてもよい。さらに、律動信頼度統計は、推測サービスの別々の発呼毎に順次更新されてもよい。さらに、幾つかの実施形態において、システムにより推測された心臓律動情報は、所定の律動タイプに関する信頼度スコアが予め決められたしきい値を超えるイベントのみにおいて、発呼側ソフトウェアへ提供し返されてもよい。
【0121】
特定の実施形態において、心臓律動推測システム910は、推測結果の精度及び/又は値を高めるために、R-R間隔時系列データに加えて、一般的に代替センサチャネルとして記述される追加的なデータソースを受け入れてもよい。追加的な1つのデータソースは、3軸加速度計によってR-R間隔時系列測定値と同時に測定されるもののような、ユーザ活動時系列データを含む。さらに、システムは、ユーザの年齢、性別、モニタリング表示、既存の医学的状態、投薬情報、病歴、及びこれらに類似するもののような、並びにシステムに提出される時系列毎の具体的な日時範囲に関する情報のような、律動分析の精度を向上する助けになるかもしれない他の関連メタデータを受け入れてもよい。またさらに、測定デバイスは、例えば、各Rピークに関する、あるいは順次的な時間期間に関する心拍検出信頼度の幾つかの測定(measure)を提供する場合もある。この信頼度測定は、記録された信号の分析に基づくものであるが、これは、典型的な実施形態では、記憶スペース及び電池エネルギー要求のために記録されないだろう。さらに、R-R間隔時系列データがECG信号から導出される特定の事例において、システムは、ECGから計算される追加の信号特徴を受け入れてもよい。これらの特徴は、拍動内間隔測定値(QTあるいはPR間隔、又はQRS持続時間等)の時系列、又は、所与の時限内のECG信号サンプル値の平均値、中央値、標準偏差、あるいは合計値等の信号統計の時系列を含んでもよい。
【0122】
上述の様々な態様は、個人の健康、ストレス、睡眠、運動、及び/又は他の資質に対する洞察を与えるアプリケーションを提供するために、個別又は組合せの何れかで使用される可能性もある。
【0123】
幾つかの実施形態は、ウェアラブルな医療用センサからの心電図信号データを選択的に送信するためのシステムに関する。iRhythm ZioPatch(登録商標)904のような、及び
図1から
図9に関連して先に述べた現行のウェアラブルセンサは、単極誘導心電図(ECG)信号を1回の充電で2週間まで記録することができる。しかしながら、多くの状況において、センサは、記録されたECG信号のうちの臨床関連のある特定部分を、後続処理及び分析のためにスマートフォン912あるいはインターネット接続ゲートウェイ装置914の何れかのようなコンピュータデバイスへリアルタイムで、あるいは略リアルタイムで、送信できることが望ましい。この方法では、患者又は担当医は、患者がセンサを装着している期間中に、潜在的に価値のある診断的なECG情報を提供されることが可能である。
【0124】
上述したように、この手法における重大な課題は、何れもユーザコンプライアンスを低減させる、ウェアラブルセンサの電池の交換又は充電を必要とすることなく、ウェアラブルセンサの電池寿命を管理することである。センサからスマートフォンあるいはローカル・ゲートウェイ装置へ(例えば、ブルートゥース低エネルギーを用いて)ECGをそれぞれ送信することは、センサ電池に蓄えられる合計電荷における後続の低下に帰着する。本開示の幾つかの実施形態、特に
図10から
図17までの実施形態は、ウェアラブルセンサからECGの臨床関連部分の選択的送信を可能にするために、新規の、ハードウェア及びソフトウェアの組み合わせを用いることにより、この問題に対処する。
【0125】
一実施形態において、ウェアラブルセンサは、ECGにおける各Rピーク位置のリアルタイム推定値を生成するソフトウェア、ハードウェア、あるいはハイブリッドQRS検出器のうちの何れかを組み込む。Rピーク位置データは、次に、R-R間隔時系列を計算するために使用され、R-R間隔時系列は、予め規定されたスケジュールに従って(例えば、1時間に一度)スマートフォンあるいはゲートウェイ装置へ続いて送信される。さらに、ECG記録の開始に関連するR-R間隔時系列の開始時間(onset time)を記憶するタイムスタンプも送信される。ECGにおける所与の部分に関するR-R間隔時系列は、(占有バイトの面で)ECG信号自体より著しく小さいことから、これは、電池寿命に与える影響をかなり少なくして送信されることが可能である。
【0126】
システムの第2ステージの幾つかの実施形態において、開始タイムスタンプを有するR-R間隔時系列は、続いて、スマートフォン又はゲートウェイ装置によりサーバーへ送信される。サーバーにおいて、時系列データにより表される期間中の最も可能性の高い心臓律動のリストを、その開始及び終了時間と共に推測するために、R-R間隔時系列が用いられる。推測された心臓律動のリストは、次に、特定の基準に従ってフィルターがかけられ、その結果、フィルターがかけられた後は、所与の基準に一致する律動のみが保持される。また、検出の陽性予測度(Positive Predictivity)を向上させるかもしれない方法においてイベントのフィルタリングを支援するために、信頼度の測定もまた使用されてもよい。
【0127】
システムの第3ステージの一実施形態において、サーバーは、フィルターがかけられた律動セットにおける各律動毎に、その特有の律動に関する開始及び終了時間をスマートフォン又はゲートウェイ装置へ送信する。推測された律動持続時間が予め規定した最大持続時間を超えるイベントでは、結果的な持続時間が最大許容持続時間よりも短くなるように開始時間及び終了時間が調整されてもよい。ゲートウェイにより受信された開始時間及び終了時間は、続いて、ウェアラブルセンサへ送信され、ウェアラブルセンサは、次に、記録されたECG信号のうちの開始時間と終了時間との間の部分をゲートウェイへ返送する。ECGのこの部分は、次に、サーバーへ送信され、ここでは、診断情報を患者又は担当医へ提供すべくそれが分析されかつ使用可能である。
【0128】
幾つかの実施形態において、システムは、基本的に、無症候性の不整脈イベントのタイムリーな通信を提供するため、電池の充電又は交換なしに(何れも患者コンプライアンスを低減し、よって診断値を低減させる動作である)、デバイスが約14日間、21日間、あるいは30日間まで、又はそれ以上に渡って装着されることを可能にする。この開発の動機付けは、高い精度と共に連続的な不整脈分析を提供しながら電池の交換又は充電を必要としない小型のウェアラブルデバイスを可能にするためには、オンボードで実行される分析の複雑さを制限することが望ましい、という技術上の制約にある。同様に、記録されたECGデータの全てをオフボード分析アルゴリズムへストリーミングすることは、より大きい電力要求を課することなしには実際的ではないかもしれない。このことは、R-R間隔を含む、但しこれに限定されない、記録されたECG信号の選択された特徴が心拍毎に送信され、カスタマイズされたアルゴリズムが、総合的分析をサポートするようなフル解像度で、例えば臨床診断をサポートできる解像度で、デバイスから要求する90秒イベントの数(例えば、10の)を決める(locate)することを可能にする、より創造的な「トリアージ」手法の動機付けとなる。
【0129】
他の実施形態において、システムは、頻繁な充電又は交換を必要としない、ウェアラブルな接着式で付着されるデバイスにおいて、無症候性不整脈をタイムリーな方法で検出する能力を提供するであろう。これは、記録が完了して分析用に戻された後にのみ、臨床的洞察が提供される現在の幾つかの臨床供与の価値を高めるために使用される。
【0130】
一実施形態において、システムは、低コストで使いやすいコンシューマ・ウェアラブル・デバイスにおいて収集される、その他の面では運動及び健康状態にのみに向けられる、データから、実用的な臨床的洞察が導出されることを可能にする。例えば、この技術は、全人口(at-large population)における心房性細動の存在を検出できる極めて効果的な低コストのスクリーニングツールを創作するために使用されることも可能である。このようなツールの使用により、ケアを要する患者の発見がより容易になるだけでなく、発見をより早期に、かつよりコスト効率良く行なうことができ、このことは、より良い結果に、即ちAFのより迅速な識別によって発作リスクの低減に繋がる。
【0131】
特定の実施形態において、システムは、このサービスを、データアクセス及び支払い承認に関するコンシューマの同意を受けた後に、ウェアラブルデバイスから、モバイルデバイスあるいはオンラインレポジトリ(online repository)のどちらかにおいて局所的に記憶された心拍データへのアクセス及び分析を開始するであろうダウンロード可能なアプリケーションを介して提供してもよい。このデータプル(data pull)及びデータ分析は、アルゴリズムAPIを介して発生し、その結果、アプリケーションへ送り返される臨床所見(clinical finding)がユーザへ提供されることになる。データが、例えば「不規則な律動が存在する可能性が検出された」という「スクリーニング指向の(screening oriented)」所見をサポートするのに足るものである場合には、アプリケーションは、より診断に焦点を合わせた提供、例えばZIO(登録商標)Serviceが、臨床診断及び治療をサポートするために提供可能であろうところの心臓専門医へそれらを振り向けるだろう。さらなる実施形態では、本明細書の他所でも記述されているように、特定の測定値及び/又は分析がアラームの必要を示していれば、システムは、アラームをトリガしてもよい。
【0132】
臨床的価値における追加のシナリオのさらなる例には、AFと生活様式要素の相互作用を調査するために、外来の不整脈モニタリングと血中アルコールモニタとを結合することを含んでもよい。例えば、外来の不整脈モニタリングは、低血糖症の不整脈に対する影響を調査するために、血糖モニタと結合されることも可能である。あるいはまた、外来の不整脈モニタリングは、睡眠時無呼吸と呼吸障害との相互作用を調査するために、呼吸数及び/又は呼吸気量モニタと結合されることも可能である。さらに、高率の上室異所性収縮(例えば、24時間で720回のSVE)は、AFの潜在的前兆として評価される可能性もある。
【0133】
抽出、送信及び処理システム
図11は、
図10に関連して先に述べたシステム及び/又は方法に類似する、送信能力を有するウェアラブルな医療用センサ1002に関するシステム及び方法1000の一実施形態を示す略図である。幾つかの実施形態において、本章に記述する、又は本明細書の他所に記述されている任意タイプのセンサ又はモニタであってもよいセンサ1002は、ECG信号又は比較可能な生体信号1004を連続的に検出し、かつECG信号又は比較可能な生体信号1004を連続的に記録する。一実施形態において、検出及び/又は記録のステップは、断続的に実行されてもよい。収集された信号1004は、次に、特徴例A、B及びCを表す一もしくは複数の特徴1006へと連続的に抽出されてもよい。これらの特徴は、信号の異なる時間部分のサンプリングとして意図されたものではなく、代わりに(後にさらに詳述するように)異なる特徴が、Rピーク位置あるいはRピーク振幅等の異なるデータタイプあるいはデータ片(pieces of data)に対応してもよい。ECG信号又は比較可能な生体信号の特徴は、信号1004の分析を遠隔的に容易にするために抽出される。一実施形態において、特徴は、ウィンドウベース(windowed basis)において抽出され、ウィンドウのサイズは、例えば1時間又は複数時間から数秒まで変化する。一実施形態において、ウィンドウは、最大で約0.1秒、約1秒、約2秒、約3秒、約5秒、約10秒、約30秒、約1分、約5分、約30分、約1時間、約2時間、約4時間、又は4時間を超えるものであってもよい。抽出ウィンドウは、反復されるのであれば、様々な時間量によって分けられてもよい。例えば、抽出ウィンドウは、少なくとも、約30秒、約1分、約5分、約30分、約1時間、約3時間、約6時間、約12時間、約24時間、約48時間、又は3日を超える時間で分けられてもよい。一実施形態において、ウィンドウのサイズは、抽出される特徴に依存して変化してもよい。特徴の抽出は、1タイプ又は様々なタイプの特徴に限定されてもよく、かつ抽出用に選定される特徴は、観察される信号の性質に依存して変わってもよい。
【0134】
広範な異なるタイプのECG信号又は比較可能な生体信号の特徴が抽出されてもよい。例えば、Rピーク位置が抽出されてもよい。一実施形態において、Rピーク位置は、一連のデジタルフィルタリング・ステップ及び適応性のあるしきい値化を使用した、リアルタイムのQRS群検出アルゴリズムを提供するPan-Tompkinsアルゴリズム(Pan及びTompkins、1985年)、又は、Rピークを決める(locate)ために帯域通過フィルター、比較器回路、及び動的利得調整から構成されるRピーク検出器を備えるアナログRピーク検出回路等の、様々な方法を介して抽出される。R-R間隔は、ピーク位置から計算され、かつ律動を弁別するための主要な特徴として使用されてもよい。実施形態では、Rピークのオーバーフロー・フラグが抽出されてもよい。所定の時間ウィンドウの間に所定数を超えるRピークが検出され、全てのデータが送信できないような場合には、ファームウェアによってフラグが立てられてもよい。このような抽出は、R-Rの極端に短い間隔が生理学的に可能ではないことに基づいて、分析からノイズの多いセグメントを除去するために使用されてもよい。同様の動機付けにより、Rピークのアンダーフローフラグは、この評価において心静止に関する適切な考察が行われることを条件として、連続するRピーク間の非現実的なほどに長い間隔を示すために抽出されてもよい。目標を同じくする代替の実施において、持続性間隔におけるRピークの不在は、その間隔が臨床的又はアーチファクトであった可能性を記述するであろう信頼度測定に関連づけられる可能性もある。
【0135】
抽出されてもよい特徴1006の別の例は、所与の時間ウィンドウ(例えば、1秒)の間に信号が飽和したという飽和フラグ、ファームウェア、又はハードウェア決定表示を含む。このような抽出は、分析からノイズの多いセグメントを除去するために使用されてもよい。一実施形態では、P/T波位置が抽出されてもよい。これは、Rピーク検出に類似するものであるが、より低い周波に調和(tuned)される。Rピーク位置は、可能な波成分のエリアを決定するために使用されてもよい。抽出されてもよい特徴のさらに別の例には、呼吸数を含む。ECG導出呼吸(EDR:ECG-derived respiration)は、ECG信号振幅の振幅変調を調査することから導出されてもよい。EDRは、不整脈の他の臨床指標に関連づけられてもよい。実施形態において、Rピークの振幅は、Rピーク位置におけるECG信号の振幅を測定することによって抽出されてもよい。このパターンは、真のピーク検出と偽のピーク検出との間を識別するために、及び/又は拍動形態の変化を検出するために、調査されてもよい。
【0136】
特定の実施形態において、ECG信号振幅のプロキシが抽出されてもよい。この特徴には、所与の時間期間中の生信号データの範囲、所与の時間期間中の信号の最大値、又は所与の時間期間中の信号の最小値が含まれてもよい。この特徴は、ECGのノイズ検出又は可能な形態変化(例えば、異所性心室興奮)に関するデータポイントとして使用されてもよい。幾つかの実施形態において、追加的なECG信号サンプルが抽出されてもよい。選択されたRピーク間における領域から規則的な間隔であるいは連続的に、数個のデータポイントをサンプリングすることは、律動及び/又はノイズ分類の信頼度決定を可能にするだろう。このような選択は、R-R間隔の長さに基づいてもよい。例えば、その間隔が3秒よりも長ければ、これは、一時停止の標識としてもよい。また、例えば、関心のある例えばRピークのポイントを中心とするウィンドウ内の信号値の二乗和を求めることによって、局部的なECG信号エネルギーもまた抽出されてもよく、これにより、所与の時間ウィンドウにおけるECGサンプル値の積分が提供される。この情報は、拍動の形態を特徴づけるために使用されてもよい(上室性頻拍(SVT)対心室性頻拍(VT))。
【0137】
一実施形態では、ハードウェアにおいて(信号捕捉中)又はファームウェアにおいての何れかで実現される一もしくは複数のフィルターによる出力から統計を抽出することによって、スペクトル情報が抽出されてもよい。フィルターは、短時間フーリエ変換(STFT)又はウェーブレット変換等のフィルターバンクとして実施されてもよい。このような情報は、心拍の形態を特徴づけるために使用されてもよい。単純な機械学習モデルからの出力が抽出されてもよい。例えば、この出力は、生の収集データ値又は利用可能なデータチャネルから導出される特徴の任意の組合せが抽出されることを条件とする、例えばガウス確率モデルである確率モデルに基づく選択されたECG信号セグメントの尤度である。単純な機械学習モデルの使用は、より少ないデータの送信を可能にする。実施形態において、この出力は、直接又は間接的に、根本的律動のタイプ、P波等のECG特徴の存在、Rピーク検出の信頼レベル、及びノイズの存在に関する洞察を与えることができる。
【0138】
上述したような特徴抽出が完了すると、様々な特徴1008は、次に、処理デバイス/サーバー1012へ送信1010されてもよい。特徴1008(及び、後述するような代替センサチャネルのデータ及び/又は特徴)は、一定間隔で、センサ1002の物理的部分ではないプロセッサ1012へ送信1010される。間隔の画定は、予め設定されても、使用毎に設定可能であっても、動的に設定可能であってもよい。また、特徴1008の送信1010は、症候的データ(後に、
図16に関連してさらに詳述する)の送信のように通信理由が別に存在するときには、バンドルされて送信されてもよい。一実施形態において、処理デバイス1012は、クラウドベースのサーバー、企業の場所における物理サーバー、患者又は診療所の場所における物理サーバー、スマートフォン、タブレット、パーソナルコンピュータ、スマートウォッチ、自動車コンソール、オーディオデバイス、及び/又は、オンサイトあるいはオフサイトにおける代替デバイスであってもよい。特定の実施形態において、送信1010は、ブルートゥース、ZigBee、WiFi(802.11)、無線USB、ANT又はANT+、超広帯域(UWB)、及び/又はカスタムプロトコル等の、短距離RF通信プロトコルを利用してもよい。送信1010は、IrDA等の赤外線通信、及び/又は、NFC等の誘導結合通信を介するものであってもよい。一実施形態において、送信は、USB、Serial、TDMA、あるいは他の適切なカスタム手段等の、セルラーデータネットワーク及び/又は有線通信プロトコルを介して達成されてもよい。
【0139】
幾つかの実施形態において、送信された特徴1014は、不整脈を含むと思われるセグメント/位置1018を分析して識別する律動推測システム1016を介して分析を実行するために、リモートプロセッサにより、データ特徴1014を利用して処理される。例えば、識別されてもよい不整脈及び異所性興奮のタイプには、一時停止、第二度又は第三度のAVB、完全な心ブロック、SVT、AF、VT、VF、二段脈、三段脈、及び/又は異所性興奮が含まれる可能性もある。決定の信頼度は、律動の識別に含まれてもよい。またさらに、律動推測システム1016は、年齢、性別、あるいは精度を向上するための及び/又は決定の信頼度を精緻化するための標識等の、患者の人口統計データも利用してもよい。
【0140】
次に、識別された不整脈位置1018は、センサ1002へ返送される1020。センサへの返送1020は、本章に記述するあるいは本明細書の他所に記述されている任意の通信プロトコル/技術によって、例えばブルートゥースを介して達成されてもよい。センサは、次に、送信された識別位置1022を読み取り、かつECGの送信された識別位置1022に対応するメモリエリアにアクセスする1024。幾つかの実施形態において、センサは、不整脈識別における信頼度をさらに確立するために、識別されたセグメントの追加の分析を適用する。このさらなる律動信頼度決定ステップ1026は、電力を大量消費する送信ステップに先行して陽性予測度を高めることを可能にする。実施形態において、信頼度が規定のしきい値を超えれば、データセグメントが送信される。例えば、規定されたしきい値は、予め設定された値であっても、ユーザ毎に及びモニタリングセッション毎に設定されてもよい。実施形態において、規定されたしきい値は、律動の性質、モニタリング期間内の正確な検出の履歴、及び/又は律動推測システムの信頼度に依存して、動的に変更されてもよい。また、追加の分析も、実行されてもよい。可能な分析技術の例には、本章に記述する又は本明細書の他所に記述されている任意の方法、例えば、Rピークの振幅、ECG信号振幅プロキシ、ECG信号サンプル、ローカルECG信号エネルギー、スペクトル情報、及び/又は単純な機械学習モデルからの出力、が含まれる。
【0141】
先に述べたように、信頼度がしきい値を超えれば、センサ1002は、要求されたECGセグメント1028を処理デバイスへ、本章に記述する又は本明細書の他所に記述されている任意の送信手段を介して送信してもよい。処理デバイスは、必要に応じて、データを用いてユーザ及び/又は医師へ報告する前に、予測された不整脈の精度を確認するためにセグメントに対するさらなる分析を完了してもよい。
【0142】
図12は、
図11に関連して先に述べたシステム及び/又は方法1000に酷似する、送信能力を有するウェアラブルECG及び/又は医療センサ2002に関するシステム及び方法2000の一実施形態を示す略図である。
図12のシステムは、二次的な送信デバイス2004を含む点が
図11のシステムとは異なる。例えば、二次的な送信デバイスとして可能なものには、スマートフォン、タブレット、パーソナルコンピュータ、専用カスタムゲートウェイ、オーディオデバイス、ウェアラブル活動モニタ、自動車コンソール、本章に記述する又は本明細書の他所に記述されている他のデバイス、及びデータを送るための他の利用可能デバイスが含まれる。
【0143】
図13は、
図11及び
図12に関連して先に述べたシステム及び/又は方法に酷似する、送信能力を有するウェアラブルECG及び/又は医療センサ3002のためのシステム及び方法3000の一実施形態を示す略図である。
図13は、
図13が特徴3010の代替出力及び/又は抽出3008を生成する代替センサチャネル3004、3006を示している点で、
図11及び
図12とは異なる。他のデータチャネルの収集は、ECG抽出特徴をさらに増強する働きをしてもよい。代替のセンサチャネルからのデータは、全てが送信されてもよく、又は、データチャネルの特有の特徴3010が抽出3008されてもよい。一実施形態において、代替データチャネルは、電気皮膚反応/インピーダンスを記録してもよい。このデータは、センサ3002のリードがオンあるいはオフにあるかを、例えば、予め設定されたしきい値及び組み込んだヒステリシスに基づいて所与の時間期間中に上記リードがオン状態あるいはオフ状態にあるかを示すブールアルゴリズムを介して、表示してもよい。この情報は、さらに、デバイスが身体に接触していない期間を分析から除去するために使用される可能性もある。一実施形態では、ブールのオン/オフの表示に加えて、より粒状(granular)のインピーダンス・データ・ポイントの収集が、発汗レベルの変化によって、患者の活動レベルの変化に対する洞察を提供するかもしれない。実施形態において、代替のセンサ・データ・チャネルは、加速度計からであってもよい。このようなデバイスは、自重落下を検出するオンボードアルゴリズムを介して、患者が不整脈誘発性失神に起因して突然倒れたかもしれないという指標である、自重落下の検出を提供してもよい。さらに、加速度計によって検出された加速度の大きさは、睡眠期間、活動レベル、活動のタイプ、及び/又は動きアーチファクトの可能性を検出するために使用されてもよく、これらは全て、所定の律動タイプの罹患率と相関するかもしれない。特定の実施形態において、所与の基準点(例えば、それらが最初に当てられたときに患者が直立していたかどうか)に対する身体の方向を決定するために、生の加速度計値が使用されてもよい。さらに、加速度計における方向の変化は、活動タイプに対するさらなる洞察を提供することに加えて、臨床関連の形態変化と非臨床関連の変化とを区別するために使用されてもよい。
【0144】
幾つかの実施形態において、代替のデータチャネルは、パルスオキシメータによって提供されてもよい。例えば、光電式容積脈波(PPG)は、パルスオキシメータによって発生されてもよい。PPGは、Rピーク位置用の代替ソース、又はECG回路によるRピーク検出におけるクロスチェックを提供してもよい。さらに、PPGデータチャネルは、Rピーク検出信頼レベルの信頼度を出力するために、複数のPPG/BioZチャネルと結合されてもよい。さらなる実施形態では、パルスオキシメータを介するSpO2/潅流が、重篤な不整脈のさらなる臨床指標を提供してもよい。一実施形態において、代替のセンサチャネルは、生体インピーダンスを含んでもよく、これは、心拍位置を決定するために使用されてもよく、及び/又はRピークデータ用の代替ソースとして作用してもよい。幾つかの実施形態において、代替のセンサチャネルを介して温度データが提供されてもよい。このデータは、活動のタイプ、レベル、及び/又は睡眠を識別するために、他の活動測定基準(metrics)と共に使用されることが可能である。幾つかの実施形態において、代替のデータチャネルは、時計からの情報、例えば時刻又は昼間もしくは夜間の指標、を提供してもよい。一実施形態において、代替のデータチャネルは、心拍の可聴記録を提供する、マイクロフォン/聴診器によって提供されてもよい。最後に、代替のデータチャネルは、動きアーチファクトの識別を可能にするかもしれない屈曲又は曲がりセンサによって提供されてもよい。
【0145】
図14は、
図11から
図13までに関連して先に述べたシステム及び/又は方法に酷似する、送信能力を有するウェアラブルなECG及び/又は医療のセンサ4002に関するシステム及び方法4000の一実施形態を示す略図である。
図14の実施形態は、追加的なデータフィルターを組み込んでいることから、
図14は、
図11から
図13までとは異なる。また、幾つかの実施形態において、処理デバイス4004は、律動推測システム4008によって識別された律動を、複数のソースから導かれてもよいフィルター基準を適用することによって、フィルターをかけた律動4006にしてもよい。例えば、フィルター基準は、特定の律動タイプのタイムリーな報告に関心のある医師、以前に見たものに類似する律動を見ることに関心のある医師、から引き出されてもよい(例えば、複数の3秒間の一時停止が既に医師に報告されていれば、関心のあるしきい値を4秒又は5秒に変更する)。一実施形態において、フィルタリングは、類似する律動タイプ及び持続時間の検索を繰り返すことを制限するために自動的なフィルタリングを含んでもよい。自動的なフィルタリングは、低い陽性予測度のイベント、例えば、律動推測エンジンの陽性予測度が低いところの高レベルの動きアーチファクトを有する記録、の検索の繰返しを制限することができ、かつ、後続の要求に対するフィルタリングの自動化を可能にするかもしれない。このような手法は、律動推測システムによって割り当てられる信頼間隔、ならびに所与のモニタリングセッションに関する律動推測システム陽性予測度の追跡履歴を利用してもよい。
【0146】
図15は、
図10から
図14までの医療用センサに幾分か類似する、フルECG検出(full ECG detection)のないコンシューマ・ウェアラブル・デバイス用のシステム5000の一実施形態を示す略図である。センサ5002は、医療用ECGセンサである必要はなく、単に拍動を検出できるものである。実施形態において、センサ5002は、心拍位置が導出可能であるデータチャネルを連続的に検出してもよい。可能なデータソースには、PPG(任意的に、精度を高めるために複数のチャネルを有する)、生体インピーダンス、及び
図10から
図14までのセンサに比較して信号品質が不十分であることによるフル実施ではないECGが含まれる。
図10から
図14までのデバイスと同様に、例えば、Rピーク位置、Rピーク・オーバーフロー・フラグ、飽和フラグ、呼吸数、P/T波位置、Rピーク振幅(又は、プロキシ)、又はECG信号振幅プロキシ、の信号から特徴が抽出されてもよい。データ抽出は、本章に記述する、又は本明細書の他所に記述されている任意の方法によって実行されてもよい。一実施形態では、律動評価の信頼度を高めるために、他のデータチャネルが収集される。コンシューマ・デバイス・システム5000は、さらに、本章に記述する、又は本明細書の他所に記述されている任意の方法によってデータを送信し処理する。これらの決定を基礎として、律動分析の結果がユーザへ送られてもよい。
【0147】
フルECG検出をしないコンシューマ・デバイス・システム5000は、効果的には、コンシューマが利用可能な心拍センサを用いる不整脈分析を可能にし、これにより、コストが低減され、かつデバイスの利用可能性が高まる。結果的に、これは、市販スクリーニングによるものを含む、より大きい集団に対する不整脈スクリーニングを可能にするかもしれない。
【0148】
図16は、症候送信を有するECGモニタシステム6000の一実施形態を示す略図である。このようなシステムは、
図1から
図14までに関連して述べたセンサに類似するウェアラブルECGセンサを含む。先に述べたように、このようなセンサは、ECGを連続的に検出しかつ記録する。患者による各症状のトリガは、ECGデータストリップ(ECG data strip)の転送を開始してもよい。データストリップは、持続的位置だけでなく一時的位置において変化してもよく、かつトリガされたイベントの周りに集中されてもよい。一実施形態において、データストリップは、症状のトリガより前の時限の方へバイアスされてもよく、あるいは、症状のトリガ後の時限の方へバイアスされてもよい。データストリップの持続時間は、数心拍回(約5~10秒程)の短いものであっても、あるいは60~90秒の別の持続時間、あるいはさらに長いもの(約5~20分程)であってもよい。実施形態において、データストリップの持続時間は、臨床的必要性に基づいてプログラム的に、又は患者のトリガ頻度に基づいて自動調整式の何れかで、動的に変更されてもよい。ECGデータストリップは、本章に記述する又は本明細書の他所に記述されている手段の何れを介して送信されてもよい。送信が患者による介入なしに(例えば、NFC又は有線送信でなく)可能にされれば、データ転送は、症状のトリガ以外の患者による介入を必要とすることなく自動的にかつ都合の良いように開始されてもよい。
【0149】
データストリップの分析に関する位置は、変化するかもしれない。例えば、分析は、スマートフォン、タブレット、又はPCにおいて患者に対して局所的に発生してもよい。あるいはまた、分析は、サーバー又は他の処理デバイスにおいて診療所に対して局所的に発生してもよく、又は、ECG分析サービスプロバイダに対してローカルにサーバー又は他の処理デバイスにおいて発生してもよい。最後に、実施形態において、分析は、クラウドベースの分散処理リソースを用いて発生してもよい。一実施形態において、報告は、各症候性ECGデータストリップ毎に提供されてもよいが、その症候性ECGデータストリップが臨床的に関心のあるものと判断されなければ、報告は提供されなくてもよい。事例によっては、報告は利用可能にされてもよいが、ユーザへの通知は、特に臨床的関連のある場合に限られてもよい。このオプションの提供は、ユーザの時間に対する要求を制限することができる。
【0150】
一実施形態において、報告は、様々な方法で送られてもよい。例えば、報告は、ウェブサイトを介して、スマートフォン、タブレット、又はPCアプリケーションを介して、複数のプロバイダのシステムへ組み込まれて相互運用される電子医療記録(EMR/EHR)システムを介して、又はeメール、SMS、アプリケーションベースのメッセージング等の自動メッセージングを介して、伝えられてもよい。報告の受信者は変わってもよく、一部のアプリケーションでは、報告受信者が患者-ユーザであることもあれば、他のアプリケーションでは、報告受信者が臨床医であることもある。
【0151】
特定の実施形態では、モニタリングが完了すると、患者は、デバイスを外して完全な連続的ECG記録をデータ処理場所へ送る。送る方法は、変わってもよく、例えば、これは、郵送等のデバイス全体の物理的移送を介して送られても、処方した診療所へデバイスが持ち込まれてもよく、又は、データのローカルダウンロード及び後続ダウンロードを介してデータ処理場所へ送られてもよい。一部の事例では、患者は、連続的なECG記録の部分セグメントを送信する前までデバイスを外すことを待たなくてもよく、これは、デバイスの除去を必要としない転送方法、例えばNFC又は超低電力無線データ転送、によって可能になる。先に述べた症候性ECG分析の場合と同様に、データ処理場所は、変わってもよい。
【0152】
図17は、症候送信及び無症候送信の双方を有するECGモニタシステム7000の一実施形態を示す略図である。ウェアラブルセンサは、本章に記述する又は本明細書の他所に記述されているセンサに類似するものである。しかしながら、実施形態において、各無症候性のトリガは、先に述べたようなECGデータストリップの転送を開始する。本章に記述する又は本明細書の他所に記述されている生体モニタリングデバイスのさらなる物理的特徴は、記述しているような実施を容易にする。先に述べた他の実施形態の場合と同様に、本章に詳述する又は本明細書の他所に詳述されている設計により可能になるような高忠実度ECG記録は、特徴抽出精度が高められた信頼度を可能にする。
【0153】
コンピュータシステム及び方法
幾つかの実施形態において、これまでに述べたものを用いるシステム、ツール及び方法は、コンピュータシステム(computing system)13000により実行される相互作用及びデータ収集を可能にする。
図18は、コンピュータシステム13000が、ネットワーク13002、及び、同じくネットワーク13002と通信しているウェアラブルシステム13005、ゲートウェイ装置13006のような様々な外部コンピュータシステム13004、と通信している一実施形態を示すブロック図である。コンピュータシステム13000は、本明細書に記述しているシステム及び方法を実施するために使用されてもよい。外部システム13004は、グループ化して示されているが、各システムが互いから外側にあり及び/又は遠隔的に配置されてもよいことは認識される。
【0154】
幾つかの実施形態において、コンピュータシステム13000は、一もしくは複数の計算機器(computing devices)、例えば、サーバー、ラップトップコンピュータ、モバイルデバイス(例えば、スマートフォン、スマートウォッチ、タブレット、パーソナル・デジタル・アシスタント)、キオスク、自動車コンソール、又はメディアプレーヤを含む。一実施形態において、計算機器13000は、一もしくは複数の中央処理装置(CPU)13105を含み、これらは各々、従来の、又は独自仕様のマイクロプロセッサを含んでもよい。計算機器13000は、さらに、情報を一時的に記憶するためのランダム・アクセス・メモリ(RAM)、情報を永続的に記憶するための一もしくは複数の読取り専用メモリ(ROM)等の一もしくは複数のメモリ13130、及びハードドライブ、ディスケット、ソリッド・ステート・ドライブ、又は光媒体記憶デバイス等の一もしくは複数の大容量記憶デバイス13120を含む。一実施形態において、処理デバイス、クラウドサーバー、サーバー又はゲートウェイ装置は、コンピュータシステム1300として実施されてもよい。一実施形態において、コンピュータシステム13000のモジュールは、標準ベースのバスシステムを用いてコンピュータへ接続される。異なる実施形態において、標準ベースのバスシステムは、例えば、周辺装置相互接続(PCI)、マイクロチャネル、小型コンピュータシステム・インタフェース(SCSI)、業界標準アーキテクチャ(ISA)及び拡張ISA(EISA)といったアーキテクチャにおいて実施される可能性もある。さらに、計算機器13000の部品及びモジュールにおいて提供される機能は、より少数の部品及びモジュールへと組み合わされても、追加的な部品及びモジュールへとさらに分離されてもよい。
【0155】
計算機器13000は、オペレーティング・システム・ソフトウェアによって、例えば、iOS、Windows XP、Windows Vista、Windows7、Windows8、Windows10、Windows Server、Embedded Windows、Unix、Linux、Ubuntu Linux、SunOS、Solaris、Blackberry OS、Android、又は他のオペレーティングシステムによって制御されかつ調和されてもよい。Macintoshシステムでは、オペレーティングシステムは、MAC OS X等の利用可能な何れのオペレーティングシステムであってもよい。他の実施形態では、計算機器13000は、独自仕様のオペレーティングシステムによって制御されてもよい。従来のオペレーティングシステムは、実行するためのコンピュータプロセスを制御しかつスケジュールし、メモリ管理を実行し、ファイルシステム、ネットワーキング、I/Oサービスを提供し、かつ特にグラフィカル・ユーザ・インタフェース(GUI)等のユーザインタフェースを提供する。
【0156】
例示的な計算機器13000は、一もしくは複数のI/Oインタフェース及びデバイス13110、例えばタッチパッド又はタッチスクリーン、を含んでもよいが、キーボード、マウス及びプリンタも含む可能性もある。一実施形態において、I/Oインタフェース及びデバイス13110は、データをユーザへ視覚的に提示できるようにする一もしくは複数のディスプレイデバイス(タッチスクリーン又はモニタ等)を含む。より具体的には、ディスプレイデバイスは、例えば、GUIのプレゼンテーション、アプリケーションソフトウェア・データ及びマルチメディアプレゼンテーションを提供してもよい。また、コンピュータシステム13000は、例えばカメラ、スピーカ、ビデオカード、グラフィックアクセラレータ及びマイクロフォン等の一もしくは複数のマルチメディアデバイス13140も含んでもよい。
【0157】
I/Oインタフェース及びデバイス13110は、コンピュータシステム及びアプリケーションツールの一実施形態において、様々な外部デバイスへの通信インタフェースを提供してもよい。一実施形態において、計算機器13000は、例えばローカル・エリア・ネットワーク、広域ネットワーク及び/又はインターネットのうちの1つもしくは複数を備えるネットワーク13002へ、有線式、無線式又は有線及び無線の組合せ式である通信リンク13115を介して電子的に結合される。ネットワーク13002は、有線又は無線通信リンクを介して様々なセンサ、計算機器及び/又は他の電子デバイスと通信することができる。
【0158】
幾つかの実施形態において、フィルターの基準、信号及びデータは、律動推測モジュールによって処理され、本明細書に記述している方法及びシステムによるアプリケーションツールは、一もしくは複数のデータソース13010からネットワーク13002上でコンピュータシステム13000へ提供されてもよい。データソースには、一もしくは複数の内部及び/又は外部データベース、データソース及び物理データストアが含まれてもよい。データソース13010、外部コンピュータシステム13004及び律動インタフェースモジュール13190は、先に述べたシステム及び方法に従ってデータ(例えば、特徴データ、生信号データ、患者データ)を記憶するためのデータベースと、先に述べたシステム及び方法に従って処理されたデータ(例えば、センサへ送信されるべきデータ、臨床医へ送信されるべきデータ)を記憶するためのデータベースとを含んでもよい。
図19の一実施形態では、センサデータ14050は、一部の実施形態において、センサから受信されるデータ、臨床医から受信されるデータ、等々を記憶してもよい。規則データベース14060は、一部の実施形態において、特徴データを分析するためのしきい値のパラメータを確立するデータ(例えば、命令、選択、輪郭)を記憶してもよい。幾つかの実施形態において、データベース又はデータソースのうちの1つもしくは複数は、Sybase、Oracle、CodeBase、MySQL、SQLite及びMicrosoft(登録商標)SQL Server等のリレーショナルデータベース、及び例えばフラット・ファイル・データベース、エンティティ-リレーションシップ・データベース、オブジェクト指向データベース、NoSQLデータベース及び/又は記録ベースのデータベース等の他のタイプのデータベースを用いて実施されてもよい。
【0159】
コンピュータシステムは、一実施形態において、大容量記憶デバイス13120内にCPU13105により実行される実行可能ソフトウェアコードとして記憶されてもよい律動インタフェースモジュール13190を含む。律動インタフェースモジュール13190は、特徴モジュール14010と、代替データモジュール14020と、推測モジュール14030と、フィードバックモジュール14040と、センサ・データ・データベース14050と、規則データベース14060とを有してもよい。これらのモジュールは、例示として、ソフトウェアコンポーネント、オブジェクト指向ソフトウェアコンポーネント、サブルーチン、プログラムコードのセグメント、ドライバ、ファームウェア、マイクロコード、回路、データ、データベース、データ構造、テーブル、アレイ及び変数等のコンポーネントを含んでもよい。また、これらのモジュールは、一部の実施形態において
図10から
図17までに関連して述べたプロセスを含む、本明細書に開示しているプロセスを実行するように構成される。
【0160】
一般的に、本明細書で使用している「モジュール」という用語は、ハードウェア又はファームウェアにおいて具現化される論理を指し、もしくは、恐らくはエントリポイント及びエグジットポイントを有する、例えばPython、Java、Lua、C及び/又はC++等のプログラミング言語で書かれたソフトウェア命令の収集を指す。ソフトウェアモジュールは、コンパイルされて実行可能プログラムにリンクされ、動的リンクライブラリにインストールされてもよく、又は、例えばBASIC、Perl又はPython等のインタープリタ型プログラミング言語で書かれてもよい。これらのソフトウェアモジュールが、他のモジュールから、又はこれら自体から呼出し可能であってもよいこと、及び/又は検出されたイベント又は中断に応答して呼び出されてもよいことは認識されるであろう。計算機器上で実行されるように構成されるソフトウェアモジュールは、コンパクトディスク、デジタル・ビデオ・ディスク、フラッシュドライブ又はその他の有形媒体等のコンピュータ読取り可能媒体上に提供されてもよい。このようなソフトウェアコードは、部分的に、又は完全に、計算機器によって実行されるべくコンピュータシステム13000等の実行側計算機器のメモリデバイス上に記憶されてもよい。ソフトウェア命令は、EPROM等のファームウェアに埋め込まれてもよい。ハードウェアモジュールが、ゲート及びフリップフロップ等の接続された論理ユニットから構成されてもよいこと、及び/又は、プログラマブル・ゲート・アレイ又はプロセッサ等のプログラマブルユニットから構成されてもよいことは、さらに認識されるであろう。本明細書に開示しているブロック図は、モジュールとして実施されてもよい。本明細書に記述しているモジュールは、ソフトウェアモジュールとして実施されてもよいが、ハードウェア又はファームウェアにおいて表現されてもよい。一般的に、本明細書に記述しているモジュールは、他のモジュールと結合されてもよい、又はその物理編成又はストレージに関わらずサブモジュールに分割されてもよい論理モジュールを指す。
【0161】
これまでに記述したプロセス、方法及びアルゴリズムは各々、一もしくは複数のコンピュータシステムにより、又はコンピュータハードウェアを備えるコンピュータプロセッサにより実行されるコードモジュールに具現されかつ上記コードモジュールによって完全に、又は部分的に自動化されてもよい。コードモジュールは、あらゆるタイプの非一時的コンピュータ読取り可能媒体上、又はハードドライブ、ソリッド・ステート・メモリ、光ディスク及び/又はこれらに類似するもの等のコンピュータ記憶デバイス上に記憶されてもよい。また、システム及びモジュールは、生成されたデータ信号として(例えば、搬送波又は他のアナログ又はデジタルの伝搬信号の一部として)、無線ベース及び有線/ケーブルベースの媒体を含む様々なコンピュータ読取り可能伝送媒体上で送信されてもよく、かつ様々な形態を(例えば、単一又は多重化されたアナログ信号の一部として、又は複数の離散デジタルパケット又はフレームとして)とってもよい。プロセス及びアルゴリズムは、部分的又は完全に、アプリケーション固有回路において実施されてもよい。開示したプロセス及びプロセスステップの結果は、連続的に又は別段で、例えば揮発性又は不揮発性記憶装置等のあらゆるタイプの非一時的コンピュータ記憶装置に記憶されてもよい。
【0162】
これまでに述べた様々な特徴及びプロセスは、互いに独立して使用されても、様々な方法で組み合わされてもよい。可能な組合せ及び部分的組合せは全て、本開示の範囲に含まれることが意図される。さらに、実施によっては、一定の方法又はプロセスブロックが省略されてもよい。また、本明細書に記述している方法及びプロセスも、任意の特定の順序に限定されず、これらに関連するブロック又は状態は、適切な他の順序で実行されることが可能である。例えば、記述したブロック又は状態は、具体的に開示されているもの以外の順序で実行されてもよく、あるいは、複数のブロック又は状態が単一のブロック又は状態に結合されてもよい。これらの例示的なブロック又は状態は、連続して、並行して、又は他の何らかの方式で実行されてもよい。ブロック又は状態は、開示した実施形態例に追加されても、外されてもよい。本明細書に記述している例示的なシステム及びコンポーネントは、記述に相違して構成されてもよい。例えば、開示された実施形態例に対して、要素が追加されても、外されても、再配置されてもよい。
【0163】
とりわけ、「できる(can)」、「可能性もある(could)」、「場合もある(might)」又は「してもよい、かもしれない(may)」等の条件付き言語は、別段の指摘のない限り、又は使用される文脈において別段に理解されない限り、一般的に、所定の特徴、要素及び/又はステップを、他の実施形態では含まないものの、一実施形態は含むことを示唆するためのものである。したがって、このような条件付き言語は、一般的に、特徴、要素及び/又はステップが、一もしくは複数の実施形態に如何にしても必要とされること、又は、一もしくは複数の実施形態が、ユーザによる入力又はプロンプトの有無に関わらず、これらの特徴、要素及び/又はステップが任意の具体的な実施形態に包含されるか、又は任意の具体的な実施形態において実行されるものかを決定するための論理を必ず含むこと、を含意するためのものではない。「含む(including)」という用語は、「含まれるが、これに限定されない」ことを意味する。「又は、あるいは(or)」という語は、「及び/又は(and/or)」を意味する。
【0164】
本明細書に記述され及び/又は添付の図面に描かれているフロー図又はブロック図におけるプロセス記述、要素又はブロック図は何れも、潜在的に、プロセス内の特定の論理機能又はステップを実施するための一もしくは複数の実行可能命令を含むコードのモジュール、セグメント又は部分を表すものとして理解されるべきである。当業者には理解されるであろうが、本明細書に記述している実施形態の範囲には、要素又は機能が削除され、包含される機能に依存して略同時又は反対順を含む、示された、又は論じられた順序を外れて実行されてもよい代替実施も含まれる。
【0165】
これまでに述べた方法及びプロセスは全て、一もしくは複数のコンピュータにより実行されるソフトウェア・コード・モジュールにおいて少なくとも部分的に具現され、かつ上記ソフトウェア・コード・モジュールを介して部分的に、又は完全に自動化されてもよい。例えば、本明細書に記述している方法は、コンピュータシステム及び/又は他の適切な任意の計算機器によって実行されてもよい。これらの方法は、有形コンピュータ読取り可能媒体から読み取られるソフトウェア命令又は他の実行可能コードの実行に応答して、計算機器上で実行されてもよい。有形コンピュータ読取り可能媒体は、コンピュータシステムによる読取りが可能なデータを記憶できるデータ記憶デバイスである。コンピュータ読取り可能媒体の例には、読取り専用メモリ、ランダム・アクセス・メモリ、他の揮発性又は不揮発性メモリデバイス、CD-ROM、磁気テープ、フラッシュドライブ及び光学データ記憶デバイスが含まれる。
【0166】
上述の実施形態に対し、多くの変形及び変更が行われてもよいことは重視されるべきであり、その要素は、他の受容可能な例に含まれるものとして理解されるべきである。このような変更及び変形は全て、本開示の範囲に含まれるべきものである。これまでに行った詳細な説明は、一実施形態に関するものである。しかしながら、これまでに行った記述が如何に詳細であっても、これらのシステム及び方法を多くの方法で実施可能であることは認識されるであろう。例えば、一実施形態のある特徴は、異なる実施形態における何らかの特徴と共に使用されてもよい。先にも述べたように、システム及び方法の所定の特徴又は態様を記述する際の具体的な用語の使用を、本明細書においてこの用語が、その用語が関連づけられているシステム及び方法の特徴及び態様の具体的な特徴を包含するものと限定されて定義し直されることを含意すると捉えるべきでない点は、留意されるべきである。
【0167】
本明細書には、生体モニタリングデバイス、方法、及びシステムの様々な実施形態が開示されている。これらの様々な実施形態は、単独で使用されても、組み合わせて使用されてもよく、かつ実施形態の個々の特徴に対する様々な変更は、本発明の範囲を逸脱することなく行われてもよい。例えば、様々な方法ステップの順序は、一部の例において変更されてもよく、及び/又は、一もしくは複数のオプションの特徴は、記述されているデバイスに追加されても、除去されてもよい。したがって、先に提供した実施形態の説明は、請求範囲に記載されている発明の範囲を不当に限定するものと解釈されるべきではない。
【0168】
本開示に記述している実施に対しては、本開示の精神又は範囲を逸脱することなく様々な変更が行われてもよく、かつ本明細書に規定されている一般原理は、他の実施に適用されてもよい。したがって、本開示の範囲は、本明細書に示されている実施に限定されないことが意図され、本開示、原理及び本明細書に開示されている新規特徴に一致する最も広い範囲が与えられるべきものである。
【0169】
本明細書において別々の実施形態の文脈で記述されている一定の特徴は、単一の実施形態に組み合わせて実施されることも可能である。逆に、単一の実施形態の文脈で記述されている様々な特徴は、複数の実施形態において別々に、又は任意の適切な部分的組合せで実施されることも可能である。さらに、これまで特徴は一定の組合せで作用するものとして記述されている場合があり、また最初にそうしたクレームもされているが、クレームされた組合せにおける一もしくは複数の特徴は、一部の事例において、その組合せから削除されることが可能であり、かつクレームされた組合せは、部分的組合せ又は部分的組合せの変形へと方向づけられてもよい。
【0170】
同様に、動作は、図面において特定の順序で描かれているが、望ましい結果を達成するために、このような動作が図示されている特定の順序又は順番で実行される必要はなく、また、図示されている動作が全て実行される必要もない。さらに、図面は、一もしくは複数の例示的なプロセスをフロー図の形式で略示している場合がある。しかしながら、略示されている例示的なプロセスには、描かれていない他の動作を組み込むことができる。例えば、図示されている何れかの動作の前、後、これと同時又はこれらの間で、一もしくは複数の追加的な動作を実行することができる。さらに、先に述べた実施形態における様々なシステムコンポーネントの分離は、全ての実施形態においてこのような分離が必要であると解釈されるべきではない。さらに、他の実施形態も添付の請求範囲に含まれる。実施形態によっては、請求範囲に記載されている動作と異なる順序で実行し、しかも望ましい結果を達成することができる。
【手続補正書】
【提出日】2021-11-25
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
一もしくは複数の計算機器を備えるコンピュータシステムによって読取りが可能であるコンピュータ実行可能命令を記憶している非一時的記憶媒体であって、ここでコンピュータ実行可能命令は、コンピュータシステムに動作を実行させるためにコンピュータシステムにおいて実行可能であり、上記動作は、
通信リンクを介してコンピュータシステムによって、患者モニタリングデバイスにより生成された第1患者に関する生体センサデータを受信すること、
生体センサデータにおける一もしくは複数のポイントが一もしくは複数の予め決められた状態セットを示唆する可能性があるか否かを決定するために、コンピュータシステムによって生体センサデータを分析すること、
生体センサデータにおける一もしくは複数のポイントのうちの少なくとも1つが一もしくは複数の予め決められた状態セットのうちの少なくとも1つを示唆する可能性があると決定した後、コンピュータシステムによって、患者モニタリングデバイスへ送信するための電子データパッケージを生成すること、ここで電子データパッケージは、一もしくは複数の予め決められた状態セットのうちの少なくとも1つを示唆する可能性がある生体センサデータにおける一もしくは複数のポイントのうちの少なくとも1つに関する位置データを含む、
を含む、非一時的記憶媒体。
【手続補正書】
【提出日】2021-12-10
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
ウェアラブルモニタを使用して患者の生理学的データをモニタリングする方法であって、
患者の皮膚に接触し粘着するように構成されたウェアラブルモニタを設けること、ここでウェアラブルモニタは、アッセンブリ内にハードウェアプロセッサを備え、アッセンブリは心臓信号を検出するように構成されており、
ハードウェアプロセッサ内で、患者から心臓信号を連続して収集すること、ここでハードウェアプロセッサは、心臓信号から機械学習出力あるいはそれから得られた信号を抽出するため機械学習モデルを使用するよう構成されており、機械学習出力は、心臓信号よりも少ないデータを備えており、
ウェアラブルモニタは、機械学習出力をコンピュータシステムへ無線で送信するように構成されており、コンピュータシステムは、過去に生じた心不整脈の可能性を推測するように構成されている、
を備えた、モニタリング方法。
【請求項2】
機械学習出力の送信は、心臓信号を送信するよりも少ない電池電力を消費する、請求項1に記載のモニタリング方法。
【請求項3】
心臓信号は、心電図信号を含む、請求項1に記載のモニタリング方法。
【請求項4】
心臓信号は、光電式容積脈波記録法の信号を含む、請求項1に記載のモニタリング方法。
【請求項5】
ウェアラブルモニタは、電極を備える、請求項1から4のいずれかに記載のモニタリング方法。
【請求項6】
ウェアラブルモニタは、複数の電極を備える、請求項5に記載のモニタリング方法。
【請求項7】
ウェアラブルモニタは、チェストストラップを備える、請求項1から6のいずれかに記載のモニタリング方法。
【請求項8】
ウェアラブルモニタは、腕装着ウォッチを備える、請求項1から6のいずれかに記載のモニタリング方法。
【請求項9】
ウェアラブルモニタは、ハウジングと、ハウジングから延在する複数の翼とを備え、翼は、患者の皮膚に粘着するように構成されている、請求項1から6のいずれかに記載のモニタリング方法。
【請求項10】
コンピュータシステムは、ウェアラブルモニタから遠隔にある、請求項1から9のいずれかに記載のモニタリング方法。
【請求項11】
さらに、二次性の生理学的データを収集することを備える、請求項1に記載のモニタリング方法。
【請求項12】
二次性の生理学的データは、加速度計で収集された動きのデータを含む、
請求項11に記載のモニタリング方法。
【請求項13】
さらに、二次性の生理学的データを心臓信号とアルゴリズム的に比較することを備える、請求項11又は12に記載のモニタリング方法。
【請求項14】
二次性の生理学的データは、電極接触品質データを含む、請求項11に記載のモニタリング方法。
【請求項15】
コンピュータシステムは、ゲートウェイを備える、請求項1から14のいずれかに記載のモニタリング方法。
【請求項16】
さらに、報告書を作成することを備え、報告書は、心不整脈発生の可能性の症状を含む、請求項1から15のいずれかに記載のモニタリング方法。
【請求項17】
さらに、心房性細動負担を計算することを備える、請求項1から16のいずれかに記載のモニタリング方法。
【請求項18】
心房性細動負担は、患者が心房細動に費やした時間の長さを備える、請求項17に記載のモニタリング方法。
【請求項19】
さらに、心臓信号からノイズレベルを推定することを含む、請求項1から18のいずれかに記載のモニタリング方法。
【請求項20】
ウェアラブルモニタは、7日を超える間、装着されるように構成されている、請求項1から19のいずれかに記載のモニタリング方法。
【手続補正書】
【提出日】2021-12-14
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
ウェアラブルモニタを使用して患者の生理学的データをモニタリングする方法であって、
患者の皮膚に接触するように構成されたウェアラブルモニタを設けること、ここでウェアラブルモニタは、アッセンブリ内にハードウェアプロセッサを備え、アッセンブリは心臓信号を検出するように構成されており、
ハードウェアプロセッサ内で、患者から心臓信号を連続して収集すること、ここでハードウェアプロセッサは、心臓信号から機械学習出力あるいはそれから得られた信号を抽出するため機械学習モデルを使用するよう構成されており、機械学習出力は、心臓信号よりも少ないデータを備えており、
ウェアラブルモニタは、機械学習出力をコンピュータシステムへ無線で送信するように構成されており、コンピュータシステムは、過去に生じた心不整脈の可能性を推測するように構成されている、
を備えた、モニタリング方法。
【請求項2】
機械学習出力の送信は、心臓信号を送信するよりも少ない電池電力を消費する、請求項1に記載のモニタリング方法。
【請求項3】
心臓信号は、心電図信号を含む、請求項1に記載のモニタリング方法。
【請求項4】
心臓信号は、光電式容積脈波記録法の信号を含む、請求項1に記載のモニタリング方法。
【請求項5】
ウェアラブルモニタは、電極を備える、請求項1から4のいずれかに記載のモニタリング方法。
【請求項6】
ウェアラブルモニタは、複数の電極を備える、請求項5に記載のモニタリング方法。
【請求項7】
ウェアラブルモニタは、チェストストラップを備える、請求項1から6のいずれかに記載のモニタリング方法。
【請求項8】
ウェアラブルモニタは、腕装着ウォッチを備える、請求項1から6のいずれかに記載のモニタリング方法。
【請求項9】
ウェアラブルモニタは、ハウジングと、ハウジングから延在する複数の翼とを備え、翼は、患者の皮膚に粘着するように構成されている、請求項1から6のいずれかに記載のモニタリング方法。
【請求項10】
コンピュータシステムは、ウェアラブルモニタから遠隔にある、請求項1から9のいずれかに記載のモニタリング方法。
【請求項11】
さらに、二次性の生理学的データを収集することを備える、請求項1に記載のモニタリング方法。
【請求項12】
二次性の生理学的データは、加速度計で収集された動きのデータを含む、
請求項11に記載のモニタリング方法。
【請求項13】
さらに、二次性の生理学的データを心臓信号とアルゴリズム的に比較することを備える、請求項11又は12に記載のモニタリング方法。
【請求項14】
二次性の生理学的データは、電極接触品質データを含む、請求項11に記載のモニタリング方法。
【請求項15】
コンピュータシステムは、ゲートウェイを備える、請求項1から14のいずれかに記載のモニタリング方法。
【請求項16】
さらに、報告書を作成することを備え、報告書は、心不整脈発生の可能性の症状を含む、請求項1から15のいずれかに記載のモニタリング方法。
【請求項17】
さらに、心房性細動負担を計算することを備える、請求項1から16のいずれかに記載のモニタリング方法。
【請求項18】
心房性細動負担は、患者が心房細動に費やした時間の長さを備える、請求項17に記載のモニタリング方法。
【請求項19】
さらに、心臓信号からノイズレベルを推定することを含む、請求項1から18のいずれかに記載のモニタリング方法。
【請求項20】
ウェアラブルモニタは、7日を超える間、装着されるように構成されている、請求項1から19のいずれかに記載のモニタリング方法。
【外国語明細書】