IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ MOサポート合同会社の特許一覧

特開2022-29140学習管理プログラム、学習管理方法および学習管理サーバ
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022029140
(43)【公開日】2022-02-17
(54)【発明の名称】学習管理プログラム、学習管理方法および学習管理サーバ
(51)【国際特許分類】
   G06Q 50/20 20120101AFI20220209BHJP
【FI】
G06Q50/20 300
【審査請求】有
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2020132318
(22)【出願日】2020-08-04
(11)【特許番号】
(45)【特許公報発行日】2021-03-31
(71)【出願人】
【識別番号】519066038
【氏名又は名称】MOサポート合同会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】特許業務法人酒井国際特許事務所
(72)【発明者】
【氏名】丸尾 明秀
【テーマコード(参考)】
5L049
【Fターム(参考)】
5L049CC34
(57)【要約】
【課題】理解を深めて正答を導くための適切な学習スケジュールを管理することを課題とする。
【解決手段】学習管理サーバは、受講者に問題を出題し、問題に対する回答と回答に対する自己評価とを受講者から受け付ける。学習管理サーバは、回答の正誤と自己評価とに基づき、受講者の学習度を算出する。学習管理サーバは、学習度と、過去に出題された問題に対する過去の学習度とに基づき、問題に対する受講者の理解度を判定する。学習管理サーバは、受講者の理解度に基づき、受講者に対する問題の出題要否の決定および受講者が問題を次に学習する次回予定日の算出を実行する。
【選択図】図17
【特許請求の範囲】
【請求項1】
コンピュータに、
受講者に問題を出題し、
前記問題に対する回答と、前記回答に対する自己評価とを前記受講者から受け付け、
前記回答の正誤と前記自己評価とに基づき、前記受講者の学習度を算出し、
前記学習度と、過去に出題された前記問題に対する過去の学習度とに基づき、前記問題に対する前記受講者の理解度を判定し、
前記受講者の理解度に基づき、前記受講者に対する前記問題の出題要否の決定および前記受講者が前記問題を次に学習する次回予定日の算出を実行する、
処理を実行させることを特徴とする学習管理プログラム。
【請求項2】
前記受け付ける処理は、前記問題に対する回答として回答候補の一覧から選択させるとともに、前記回答に対する自己評価として予め指定された評価一覧から選択させることで、前記回答と前記自己評価とを受け付け、
前記算出する処理は、前記評価一覧に含まれる各自己評価と前記回答の正誤との組合せに対応付けられた点数一覧であって、前記自己評価が高くかつ前記回答が正解である場合に高く、前記自己評価が低くかつ前記回答が不正解である場合に低くなるように設定された前記点数一覧から、受け付けられた前記回答の正誤と前記自己評価との組合せに対応する点数を、前記受講者の学習度として算出することを特徴とする請求項1に記載の学習管理プログラム。
【請求項3】
前記判定する処理は、前記受講者の理解度として、最新の回答に対する前記点数と、過去の回答に対する前記点数との合計点を算出し、
前記実行する処理は、前記合計点が閾値以上の場合は、前記問題の学習を終了すると決定し、前記合計点が前記閾値未満の場合は、前記合計点と前記自己評価と前記回答の正誤の組合せに対応付けられた予定日の一覧であって、前記自己評価が高くかつ前記合計点が高くかつ前記回答が正解である場合に長く、前記自己評価が低くかつ前記合計点が低くかつ前記回答が不正解である場合に短くなるように設定された前記予定日の一覧に基づき、前記次回予定日を算出することを特徴とする請求項2に記載の学習管理プログラム。
【請求項4】
前記算出する処理は、
前記受講者が学習対象とする複数の問題それぞれについて前記次回予定日を算出し、
前記次回予定日が重複する前記問題の数が閾値以上である場合には、前記重複する問題の数が前記閾値未満となるように、前記次回予定日が重複する複数の問題から所定数の問題を選択し、
前記所定数の問題の前記次回予定日を別の日に変更することを特徴とする請求項1から3のいずれか一つに記載の学習管理プログラム。
【請求項5】
複数の問題それぞれに対応付けて、学習回数と学習した日付と学習時の正誤判定と前記自己評価と前記受講者の理解度と前記次回予定日とを対応付けた学習スケジュール表を生成し、
生成された前記学習スケジュール表を、表示装置に出力することで、前記受講者に表示する処理を、前記コンピュータが実行することを特徴とする請求項1に記載の学習管理プログラム。
【請求項6】
前記表示する処理は、
前記学習スケジュール表の前記次回予定日に関し、前記受講者の理解度が閾値以上である問題については、学習終了を示す情報を設定し、前記受講者の理解度が閾値未満である問題については、算出された前記次回予定日の日付を設定することを特徴とする請求項5に記載の学習管理プログラム。
【請求項7】
コンピュータに、
出題される複数の問題それぞれに対して回答する受講者を特定し、
特定された前記受講者から表示要求を受け付けた場合に、前記複数の問題それぞれを識別する各識別子に、前記受講者の選択に応じて問題の表示を実行するリンク情報を含む問題情報、および、前記受講者が前記問題を学習した学習回数と前記問題の学習が完了した完了日または前記問題を次に学習する次回予定日とを含む前回の学習結果を対応付けた学習プラン進捗管理表を、表示装置に出力することで前記受講者に表示する
処理を実行させることを特徴とする進捗表示プログラム。
【請求項8】
前記表示する処理は、前記前回の学習結果に、前記受講者による最新の学習時の回答に対する正誤判定と、前記最新の学習時に前記受講者が入力した自己評価とをさらに含む前記学習プラン進捗管理表を、前記受講者に表示する、ことを特徴とする請求項7に記載の進捗表示プログラム。
【請求項9】
前記表示する処理は、前記学習プラン進捗管理表に表示される前記複数の問題のうちの第1の問題に対応付けられる前記学習回数への選択を前記受講者から受け付けた場合、前記第1の問題が学習された回数ごとに、学習が実行された実行日と前記正誤判定と前記自己評価と前記次回予定日とを含む学習スケジュール表を、前記学習プラン進捗管理表上の前記第1の問題に対応する前記学習回数からのプルダウン表示で出力する、ことを特徴とする請求項8に記載の進捗表示プログラム。
【請求項10】
前記表示する処理は、前記受講者の要求に応じて、カレンダーの表示形式と同形式で、出題対象である問題に関する情報を表示する学習カレンダーを生成し、前記表示装置に出力することで前記受講者に表示する、ことを特徴とする請求項7に記載の進捗表示プログラム。
【請求項11】
前記表示する処理は、前記表示装置上でスワイプ操作を受け付けた場合、前記スワイプ操作に応じて、前記学習プラン進捗管理表と、学習予定日、学習予定月または学習予定年ごとに出題対象である問題の前記識別子と学習状況と前回の学習結果と対応付けた学習予定表との表示を切り替える、ことを特徴とする請求項7に記載の進捗表示プログラム。
【請求項12】
コンピュータが、
受講者に問題を出題し、
前記問題に対する回答と、前記回答に対する自己評価とを前記受講者から受け付け、
前記回答の正誤と前記自己評価とに基づき、前記受講者の学習度を算出し、
前記学習度と、過去に出題された前記問題に対する過去の学習度とに基づき、前記問題に対する前記受講者の理解度を判定し、
前記受講者の理解度に基づき、前記受講者に対する前記問題の出題要否の決定および前記受講者が前記問題を次に学習する次回予定日の算出を実行する、
処理を実行することを特徴とする学習管理方法。
【請求項13】
受講者に問題を出題する出題制御部と、
前記問題に対する回答と、前記回答に対する自己評価とを前記受講者から受け付ける受付部と、
前記回答の正誤と前記自己評価とに基づき、前記受講者の学習度を算出する算出部と、
前記学習度と、過去に出題された前記問題に対する過去の学習度とに基づき、前記問題に対する前記受講者の理解度を判定する判定部と、
前記受講者の理解度に基づき、前記受講者に対する前記問題の出題要否の決定および前記受講者が前記問題を次に学習する次回予定日の算出を実行する実行部と、
を有することを特徴とする学習管理サーバ。
【請求項14】
コンピュータが
出題される複数の問題それぞれに対して回答する受講者を特定し、
特定された前記受講者から表示要求を受け付けた場合に、前記複数の問題それぞれを識別する各識別子に、前記受講者の選択に応じて問題の表示を実行するリンク情報を含む問題情報、および、前記受講者が前記問題を学習した学習回数と前記問題の学習が完了した完了日または前記問題を次に学習する次回予定日とを含む前回の学習結果を対応付けた学習プラン進捗管理表を、表示装置に出力することで前記受講者に表示する
処理を実行することを特徴とする進捗表示方法。
【請求項15】
出題される複数の問題それぞれに対して回答する受講者を特定する特定部と、
特定された前記受講者から表示要求を受け付けた場合に、前記複数の問題それぞれを識別する各識別子に、前記受講者の選択に応じて問題の表示を実行するリンク情報を含む問題情報、および、前記受講者が前記問題を学習した学習回数と前記問題の学習が完了した完了日または前記問題を次に学習する次回予定日とを含む前回の学習結果を対応付けた学習プラン進捗管理表を、表示装置に出力することで前記受講者に表示する表示制御部と
を有することを特徴とする進捗表示サーバ。
【請求項16】
コンピュータに、
受講者が学習対象とする複数の問題それぞれについて、前記受講者が次に学習する予定を示す次回予定日を算出し、
前記次回予定日が重複する問題の数を示す出題数を計数し、
前記出題数が閾値以上である場合に、前記出題数が前記閾値未満となるように、前記次回予定日が重複する複数の問題から所定数の問題を選択し、
選択した前記所定数の問題以外の問題の前記次回予定日を別の日に変更する
処理を実行させることを特徴とする学習調整プログラム。
【請求項17】
前記選択する処理は、前記出題数が前記閾値未満となるように、前記次回予定日が重複する複数の問題のうち、学習された日を示す学習日が古い問題から順に、前記所定数の問題を選択することを特徴とする請求項16に記載の学習調整プログラム。
【請求項18】
前記計数する処理は、第1の学習日の学習が終了した時点で、前記第1の学習日の次の日に該当する第2の学習日が前記次回予定日として設定されている前記出題数を計数し、
前記選択する処理は、前記次回予定日が重複する複数の問題のうち、前記第1の学習日以前に、前記変更する処理によって前記次回予定日が前記別の日に変更されることにより、前記次回予定日が前記第2の学習日に設定された問題を優先的に選択することを特徴とする請求項16または17に記載の学習調整プログラム。
【請求項19】
コンピュータが、
受講者が学習対象とする複数の問題それぞれについて、前記受講者が次に学習する予定を示す次回予定日を算出し、
前記次回予定日が重複する問題の数を示す出題数を計数し、
前記出題数が閾値以上である場合に、前記出題数が前記閾値未満となるように、前記次回予定日が重複する複数の問題から所定数の問題を選択し、
選択した前記所定数の問題以外の問題の前記次回予定日を別の日に変更する
処理を実行することを特徴とする学習調整方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、学習管理プログラム、学習管理方法、学習管理サーバ、進捗表示プログラム、進捗表示方法、進捗表示サーバ、学習調整プログラムおよび学習調整方法に関する。
【背景技術】
【0002】
インターネットなどのネットワークやWebブラウザなどの情報技術を用いて、資格、英会話、スポーツなどの学習を行うe-learningが普及している。例えば、ユーザは、Webサイトにアクセスして出題される問題に回答し、正誤情報や解説などの確認することで学習を行う。
【0003】
近年では、ユーザ自身で、問題に回答した回答日、次回の学習日、自己評価などの学習スケジュールを管理することが行われている。例えば、ユーザが、出題された問題に回答する際に、回答の確信度を選択すると、選択された確信度に応じて次回の学習日が自動で決定される。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2001-109363号公報
【特許文献2】特開平1-174637号公報
【特許文献3】特許第6613006号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、上記技術では、ユーザ各々の学習過程に応じた適切な学習スケジュールを管理することが難しい。
【0006】
例えば、学習過程では、予習や復習などを繰り返して理解を深めていくことが一般的である。また、理解を深める過程では、一度正解した問題に間違ったり、正解した問題への自信が下がったりを繰り返して、理解が深まることが多い。しかし、上記技術は、最新回答日の確信度に応じて次回の学習日を決定するので、学習過程や理解を深める過程を考慮することができず、理解を深めて正答を導くための適切な学習スケジュールを管理できているとは言い難い。
【0007】
一つの側面では、理解を深めて正答を導くための適切な学習スケジュールを管理することができる学習管理プログラム、学習管理方法、学習管理サーバ、進捗表示プログラム、進捗表示方法、進捗表示サーバ、学習調整プログラムおよび学習調整方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
第1の案では、学習管理プログラムは、コンピュータに、受講者に問題を出題し、前記問題に対する回答と、前記回答に対する自己評価とを前記受講者から受け付け、前記回答の正誤と前記自己評価とに基づき、前記受講者の学習度を算出する処理を実行させる。学習管理プログラムは、コンピュータに、前記学習度と、過去に出題された前記問題に対する過去の学習度とに基づき、前記問題に対する前記受講者の理解度を判定し、前記受講者の理解度に基づき、前記受講者に対する前記問題の出題要否の決定および前記受講者が前記問題を次に学習する次回予定日の算出を実行する処理を実行させる。
【発明の効果】
【0009】
一実施形態によれば、理解を深めて正答を導くための適切な学習スケジュールを管理することができる。
【図面の簡単な説明】
【0010】
図1図1は、実施例1にかかるシステムの全体構成例を示す図である。
図2図2は、実施例1にかかる学習管理サーバの機能構成を示す機能ブロック図である。
図3図3は、ユーザDBに記憶されるユーザ情報の一例を示す図である。
図4図4は、問題DBに記憶される問題情報の一例を示す図である。
図5図5は、設定情報DBに記憶される設定情報の一例を示す図である。
図6図6は、学習スケジュールDBに記憶される学習スケジュール表の一例を示す図である。
図7図7は、ユーザ認証を説明する図である。
図8図8は、問題の出題と回答例1を説明する図である。
図9図9は、問題の出題と回答例2を説明する図である。
図10図10は、学習度のカウント表を説明する図である。
図11図11は、学習度の判定例を説明する図である。
図12図12は、学習度の累計を説明する図である。
図13図13は、次回予定日の算出を説明する図である。
図14図14は、自信度を説明する図である。
図15図15は、実施例1による学習度の累計を説明する図である。
図16図16は、参考技術の確信度を説明する図である。
図17図17は、学習スケジュール表の表示例を説明する図である。
図18図18は、学習予定表の表示例を説明する図である。
図19図19は、実施例1にかかる処理の流れを示すフローチャートである。
図20図20は、実施例2にかかる重複問題を翌日の最後にスライドさせる重複調整処理を説明する図である。
図21図21は、実施例2にかかる重複調整処理の具体例を説明する図である。
図22図22は、実施例2にかかる重複調整処理の流れを示すフローチャートである。
図23図23は、実施例3にかかる重複問題を次の日に優先して実行させる重複調整処理の流れを示すフローチャートである。
図24図24は、仮の次回予定日の算出(6点以上)を説明する図である。
図25図25は、仮の次回予定日の算出(3点から5点)を説明する図である。
図26図26は、仮の次回予定日の算出(2点以下)を説明する図である。
図27図27は、次回予定日の仮計算結果の学習間隔別の集計を説明する図である。
図28図28は、次回予定日の時系列の集計結果を説明する図である。
図29図29は、次回予定日の決定を説明する図である。
図30図30は、実施例4にかかる自動繰延表示を説明する図である。
図31図31は、実施例4にかかる前倒し表示を説明する図である。
図32図32は、実施例5にかかる画面遷移を説明する図である。
図33図33は、実施例5にかかる学習プラン進捗管理表を説明する図である。
図34図34は、学習プラン進捗管理表で学習回数を選択したときの表示例を説明する図である。
図35図35は、学習プラン進捗管理表で問へのリンクが選択されたときの画面遷移例を説明する図である。
図36図36は、学習プラン進捗管理表上でのスワイプ操作時の画面遷移例を説明する図である。
図37図37は、日ベースの学習予定表上でのスワイプ操作時の画面遷移例を説明する図である。
図38図38は、日ベースの学習予定表上でのスワイプ操作時の画面遷移例を説明する図である。
図39図39は、学習プラン進捗管理表の別例を説明する図を示す図である。
図40図40は、初期画面の設定例を説明する図である。
図41図41は、ハードウェア構成例を説明する図である。
【発明を実施するための形態】
【0011】
以下に、本願の開示する学習管理プログラム、学習管理方法、学習管理サーバ、進捗表示プログラム、進捗表示方法、進捗表示サーバ、学習調整プログラムおよび学習調整方法の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、各実施例は、矛盾のない範囲内で適宜組み合わせることができる。
【実施例0012】
[全体構成]
図1は、実施例1にかかるシステムの全体構成例を示す図である。図1に示すように、このシステムは、複数のユーザと学習管理サーバ10とがネットワークを介して相互に通信可能に接続される学習管理システムである。なお、ネットワークには、インターネットや専用線などの各種通信網を採用することができる。
【0013】
図1に示すユーザAやユーザBは、学習管理サーバ10にユーザ登録されている学習管理システムを利用する受講者である。これらのユーザは、タブレット、スマートフォン、パーソナルコンピュータなどのコンピュータ装置を用いて、資格などの試験勉強をe-learningにより実行する。例えば、各ユーザは、Webブラウザなどを用いて学習管理サーバ10にアクセスし、学習管理サーバ10が提供する学習管理サービスを利用して、出題される問題に回答して学習し、問題ごとのスケジュール管理を実行する。
【0014】
学習管理サーバ10は、各ユーザに対して、e-learningによる学習スケジュール等の学習管理サービスを提供するコンピュータ装置や進捗表示サーバの一例である。例えば、学習管理サーバ10は、ユーザごとに学習スケジュールを管理し、学習スケジュールにしたがって出題や正誤判定などを実行して、各ユーザの学習や学習管理を実行する。
【0015】
このような構成において、学習管理サーバ10は、受講者に問題を出題し、問題に対する回答と、回答に対する自己評価の一例である自信度とを受講者から受け付ける。続いて、学習管理サーバ10は、回答の正誤と自信度とに基づき、受講者の学習度を算出し、算出した学習度と過去に出題された問題に対する過去の学習度とに基づき、受講者の理解度の一例である学習度の累計を算出する。その後、学習管理サーバ10は、学習度の累計に基づき、受講者に対する問題の出題要否の決定および受講者が問題を次に学習する次回予定日の算出を実行する。
【0016】
そして、学習管理サーバ10は、各ユーザの問題ごとに、学習スケジュール表を生成して、受講者に提示する。この学習スケジュール表には、学習した回数ごとに、学習した日を示す実行日、学習時の正誤判定、自信度、学習度の累計、次回予定日が含まれる。
【0017】
このように、学習管理サーバ10は、最新の回答時における自信度だけでなく、過去に回答したときの自信度を考慮して次回予定日を算出するので、学習過程や理解を深める過程を考慮した次回予定日を決定することができる。
【0018】
[機能構成]
図2は、実施例1にかかる学習管理サーバ10の機能構成を示す機能ブロック図である。図2に示すように、学習管理サーバ10は、通信部11、記憶部12、制御部20を有する。
【0019】
通信部11は、他の装置との間の通信を制御する処理部であり、例えば通信インタフェースなどにより実現される。この通信部11は、受講者が使用するコンピュータ装置との間で、Webブラウザによる通信を確立し、Webブラウザを用いて各種情報の送受信を実行する。
【0020】
記憶部12は、各種データや制御部20が実行する各種プログラムなどを記憶する記憶装置の一例であり、例えばメモリやハードディスクなどにより実現される。この記憶部12は、ユーザDB13、問題DB14、設定情報DB15、学習スケジュールDB16を記憶する。
【0021】
ユーザDB13は、受講者に関する情報を記憶するデータベースである。具体的には、ユーザDB13は、受講者が学習管理サーバ10にアクセスするためのログイン情報や受講者が契約している学習項目などを記憶する。図3は、ユーザDB13に記憶されるユーザ情報の一例を示す図である。図3に示すように、ユーザDB13は、「ユーザID、パスワード、学習項目」を対応付けて記憶する。
【0022】
ここで記憶される「ユーザID」は、受講者を識別する識別子であり、「パスワード」は、受講者が設定したパスワードである。「学習項目」は、受講者が契約している学習対象の学習項目である。図3の例では、「ユーザA」の受講者にはパスワード「XXXXX」が設定されており、この受講者は、資格Aを学習項目として契約していることを示す。
【0023】
問題DB14は、e-learningで提供する問題に関する情報を記憶するデータベースである。図4は、問題DB14に記憶される問題情報の一例を示す図である。図4に示すように、問題DB14は、「学習項目、項目、問題」を対応付けて記憶する。ここで記憶される「学習項目」は、学習対象の資格等を示し、「項目」は、複数の問題を包含する概念であり、「問題」は、出題対象の問題である。図4の例では、資格Aには学習項目として虚偽表示や意思無能力などが存在し、虚偽表示には「問:01」や「問:02」が含まれることを示す。なお、問題DB14には、各問題の正解や解説なども含まれる。
【0024】
設定情報DB15は、受講者の学習スケジュールを管理する際に用いる各種設定情報を記憶するデータベースである。具体的には、設定情報DB15は、各問題の次回予定日を決定するときに使用する、受講者の理解度の一例である学習度の累計に応じた情報を記憶する。図5は、設定情報DB15に記憶される設定情報の一例を示す図である。図5に示すように、設定情報DB15は、「学習度の累計」ごとに、「自信度」と「次回予定日」とを対応付けて記憶する。ここで記憶される「自信度」は、問題への回答時に受講者が設定する回答の自信度であり、「次回予定日」は、問題を次に学習する日を特定する情報である。
【0025】
図5の例では、学習度の累計が「0から2点」で、自信度が「10%」かつ回答が「不正解」である問題は、1日後に次回予定日が設定されることを示す。また、学習度の累計が「3から5点」で、自信度が「50%」かつ回答が「正解」である問題は、4日後に次回予定日が設定されることを示し、学習度の累計が「6点以上」で、自信度が「100%」かつ回答が「正解」である問題は、16日後に次回予定日が設定されることを示す。
【0026】
学習スケジュールDB16は、各受講者が学習対象とする問題ごとの学習スケジュール表を記憶するデータベースである。具体的には、学習スケジュールDB16は、各受講者が学習対象とする問題ごとに、回答の履歴や次回予定日などを記憶する。図6は、学習スケジュールDB16に記憶される学習スケジュール表の一例を示す図である。図6に示すように、学習スケジュール表は、「回数、実行日、正誤判定、自信度、学習度の累計、次回予定日」が対応付けられた情報である。
【0027】
ここで記憶される「回数」は、問題の学習回数を示し、「実行日」は、問題に回答した日付(問題を学習した日付)を示し、「正誤判定」は、回答の正誤判定の結果を示す。「自信度」は、回答時に受講者が選択した自信度を示し、「学習度の累計」は、回答時までに算出された過去の学習度の累計である。「次回予定日」は、問題の次の回答(学習)日である。図6の例では、「1回目」の学習時を示しており、実行日が「1月1日」、正誤判定が「誤」、自信度が「10%」であり、初回なので学習度の累計に「0」、初回なので次回予定日に「-」が設定される。また、1回目の学習の結果、次回予定日として「1月2日」が設定されたことを示している。
【0028】
制御部20は、学習管理サーバ10全体を司る処理部であり、例えばプロセッサなどにより実現される。この制御部20は、ユーザ認証部21、出題制御部22、学習スケジュール生成部23、画面表示部24を有する。なお、ユーザ認証部21、出題制御部22、学習スケジュール生成部23、画面表示部24は、プロセッサが有する電子回路やプロセッサが実行するプロセスなどにより実現される。
【0029】
ユーザ認証部21は、学習管理サーバ10が提供する学習管理システムの利用ユーザを認証する処理部である。具体的には、ユーザ認証部21は、Webブラウザを用いてアクセスしていきたユーザが正当な受講者か否かを認証する。
【0030】
図7は、ユーザ認証を説明する図である。図7に示すように、ユーザ認証部21は、Webブラウザを用いてユーザからアクセスを受け付けると、学習管理システムの認証画面50を当該Webブラウザに表示出力する。そして、ユーザ認証部21は、認証画面50上で「ユーザIDとパスワード」の入力を受け付け、受け付けた「ユーザIDとパスワード」がユーザDB13に登録されている場合に、認証を許可する。
【0031】
ユーザ認証部21は、認証を許可すると、本日の学習開始ボタン51や本日の問題一覧ボタン52を含む初期画面55を表示する。なお、本日の学習開始ボタン51が選択されると、本日出題対象の問題の出題が開始され、本日の問題一覧ボタン52が選択されると、選択された当日に出題対象である問題の一覧である学習予定表が表示される。なお、ここで表示する情報は、任意に変更することができる。
【0032】
出題制御部22は、問題の出題および回答の正誤判定を実行する処理部である。具体的には、出題制御部22は、図7の初期画面55において本日の学習開始ボタン51が選択された場合、学習スケジュール表にしたがって、当日の出題対象の問題を問題DB14から読み出して、受講者との間で確立されるWebブラウザに表示出力する。そして、出題制御部22は、Webブラウザ上で、問題の回答、自信度などを受付けて、学習スケジュール生成部23に出力する。
【0033】
図8は、問題の出題と回答例1を説明する図である。図8には一問一答形式の例を図示している。図8に示すように、出題制御部22は、「問:01」を表示する問題画面60を生成して出力することで、「問:01」を受講者に出題する。この問題画面60には、回答として、「正しい」を選択させる回答ボタン61と、「誤り」を選択させる回答ボタン62とが含まれる。ここで、出題制御部22は、「誤り」の回答ボタン62の選択を受け付けると、「問:01」の回答として「誤り」を取得する。
【0034】
回答を受け付けると、出題制御部22は、「答えに自信は?」などのメッセージ63を出力するとともに、自信度ボタン64を表示する。そして、出題制御部22は、自信度ボタン64が選択されると、「10%、50%、80%、100%」を選択させるプルダウンメニューを表示する。ここで、出題制御部22は、「10%」の選択を受け付けると、「問:01」の回答(誤り)の自信度として「10%」を取得する。
【0035】
上述した画面表示により、出題制御部22は、「問:01」の回答として「誤り」、回答「誤り」に対する自信度として「10%」を取得できる。なお、出題制御部22は、回答および自信度の取得後、「問:01」に対する受講者の回答「誤り」と正解情報とを比較して、回答が正しかったのか間違っていたのかを示す正誤判定の結果を表示し、学習スケジュール生成部23に出力する。
【0036】
図9は、問題の出題と回答例2を説明する図である。図9には択一問題形式の例を図示している。図9に示すように、出題制御部22は、「問:01」を表示する問題画面70を生成して出力することで、「問:01」を受講者に出題する。この問題画面70には、回答として、Aを選択させる回答ボタン71、Bを選択させる回答ボタン72、Cを選択させる回答ボタン73、Dを選択させる回答ボタン74が含まれる。ここで、出題制御部22は、回答ボタン74の選択を受け付けると、「問:01」の回答として「D」を取得する。
【0037】
回答を受け付けると、出題制御部22は、「答えに自信は?」などのメッセージ75を出力するとともに、自信度ボタン76を表示する。そして、出題制御部22は、自信度ボタン76が選択されると、「10%、50%、80%、100%」を選択させるプルダウンメニューを表示する。ここで、出題制御部22は、「10%」の選択を受け付けると、「問:01」の回答(D)の自信度として「10%」を取得する。
【0038】
上述した画面表示により、出題制御部22は、「問:01」の回答として「D」、回答「D」に対する自信度として「10%」を取得できる。なお、出題制御部22は、回答および自信度の取得後、「問:01」に対する受講者の回答「D」と正解情報とを比較して、正誤判定の結果を表示し、学習スケジュール生成部23に出力する。
【0039】
学習スケジュール生成部23は、学習スケジュール表を生成する処理部である。具体的には、学習スケジュール生成部23は、出題された問題への回答に応じた学習度を算出した後、学習度の累計により次回予定日の算出を実行する。
【0040】
(学習度の算出)
まず、学習スケジュール生成部23は、出題制御部22による取得された最新の出題に対する回答の正誤と自信度とに基づき、受講者の学習度を算出する。続いて、学習スケジュール生成部23は、学習度と過去の学習度とに基づき、学習度の累計を算出する。
【0041】
例えば、学習スケジュール生成部23は、問題の回答を取得するたびに、予め指定したカウント表を用いて、学習度の計算を実行する。図10は、学習度のカウント表を説明する図である。図10に示すように、学習度のカウント表は、「区分、正誤判定(〇=正、×=誤)、自信度の区分、学習度計算」から構成され、正誤判定の結果と自信度との組合せによって点数が設定されている。「区分」は、問題に対する過去の学習結果であり、図10では前々回結果、前回結果、今回結果の3回の回答履歴を用いる例を図示している。「点数」は、学習度を示す情報であり、自信度が高くかつ回答が正解である場合に高い点数、自信度が低くかつ回答が不正解である場合に低くい点数になるように設定された点数一覧である。なお、受講者は、自己の判断で当該「点数」の変更や決定を行うことができることから、受講者の主体的な学習スケジュールによる学習行動が可能なものとなっている。
【0042】
ここで、回答と自信度に応じた学習度(点数)の判定ロジックを説明する。図11は、学習度の判定例を説明する図である。図11に示すように、学習スケジュール生成部23は、自信度が100%かつ回答が正解である場合に3点、自信度が100%かつ回答が不正解である場合に1点を学習度として算出する。同様に、学習スケジュール生成部23は、自信度が80%かつ回答が正解である場合に2点、自信度が80%かつ回答が不正解である場合に1点、自信度が50%かつ回答が正解である場合に1点、自信度が50%かつ回答が不正解である場合に0点、自信度が10%かつ回答が正解である場合に1点、自信度が10%かつ回答が不正解である場合に0点を学習度として算出する。
【0043】
このようにして、学習スケジュール生成部23は、学習が実行されるごと(回答が受け付けられるごと)に、学習度を計算し、各学習回の学習度を加算した学習度の累計を算出する。図12は、学習度の累計を説明する図である。図12に示すように、学習スケジュール生成部23は、1月1日に学習された学習1回目に対して、正誤判定が「誤」かつ自信度が「10%」であることから、学習度カウント表にしたがって、学習度を「0点」と算出する。続いて、学習スケジュール生成部23は、1月2日に学習された学習2回目に対して、正誤判定が「正」かつ自信度が「50%」であることから、学習度を「1点」と算出する。また、学習スケジュール生成部23は、最新の学習日である1月3日の3回目に対して、正誤判定が「正」かつ自信度が「100%」であることから、学習度を「3点」と算出する。
【0044】
その後、学習スケジュール生成部23は、学習度の累計を「0+1+3=4」と算出する。なお、ここでは、過去3回分の回答結果を用いた例を示しているが、この回数は任意に変更することができる。また、過去3回分の回答結果を用いる場合、3回分が取得できるまでは、収集できた回答結果のみを用いた算出が実行され、4回目の出題以降は古い回答結果が削除された新たな回答が追加される。
【0045】
(学習予定日の算出)
次に、学習スケジュール生成部23は、学習度の累計を用いて、受講者に対する問題の出題要否の決定および次回予定日の算出を実行する。具体的には、学習スケジュール生成部23は、設定情報DB15を参照して、最新の回答結果と最新の学習度との組合せに対応する次回予定日を特定する。
【0046】
図13は、次回予定日の算出を説明する図である。図13に示すように、学習スケジュール生成部23は、1月3日に実行された最新の学習結果である今回の回答結果として「正誤判定=〇(正)、自信度=100%」を取得し、学習度の累計として「4点」を算出したとする。この場合、学習スケジュール生成部23は、設定情報DB15を参照して、学習度の累計が「3点から5点」に該当する設定情報を参照する。
【0047】
続いて、学習スケジュール生成部23は、「3点から5点」に該当する設定情報から、「正誤判定=〇(正)、自信度=100%」に対応する次回予定日として「15日後」を特定する。この結果、学習スケジュール生成部23は、最新の学習実行日である「1月3日」から「15日後」に該当する「1月18日」を次回の学習日(次回予定日)として算出する。学習スケジュール生成部23は、各問題について、上記処理を実行して、学習度の累計に基づく次回予定日を算出する。なお、学習スケジュール生成部23は、学習度の累計が上限値(例えば10点)以上の場合は、学習完了と判定し、次回予定日に「完了」を設定することもできる。
【0048】
なお、図13の学習度の累計が、「0~2点」、「3~5点」、「6点以上」に基づく自信度と回答(正答又は誤答)に対応した「次回予定日」については、受講者は、自己の判断で当該「次回予定日」の数値(日数)を変更や決定することができる。また、学習度の累計の上限値(点数)に基づく、学習完了の設定についても、受講者は、自己の判断で当該「点数」を決定できることから、受講者の主体的な学習スケジュールによる学習行動が可能なものとなっている。
【0049】
例えば、基本パターンとして、3点、4点、5点、6点、7点のように、予め設定しておいた点数から、受講者が選択する形式で設定することもでき、受講者が10点などのように任意の点数を自由に設定することもできる。また、図5では、学習度の累計を3段階で管理する例を示しているが、これに限定されるものではなく、任意の段階数で管理することもできる。
【0050】
このようにして、学習スケジュール生成部23は、複数の問題それぞれに対応付けて、学習回数ごとに、回答した日付と回答に応じた正誤判定結果と自信度と学習度の累計と次回予定日とを対応付けた学習スケジュール表を生成して記憶部12に格納する。
【0051】
(自信度の説明)
次に、本願で開示する自信度について説明する。自信度は、学習ごとに随時変化する受講者の理解状況および自己評価を正確に把握するために重要な情報である。図14は、自信度を説明する図である。図14に示すように、自信度は、知識レベル、回答に要した時間、次回学習に対する所見を含む自己評価の基準により決定される。
【0052】
例えば、自信度10%は、全く知識がなく、回答に時間不足であり、次回は正解できるか不安があるという自己評価に該当する。自信度50%は、知識が不正確であり、回答に時間不足であり、次回は正解できるだろうという自己評価に該当する。自信度80%は、知識に少し不安があり、回答に少し時間的余裕があり、次回は正解できるだろうという自己評価に該当する。自信度100%は、回答および知識に自信があり、回答に時間的余裕が十分あり、次回も必ず正解できるという自己評価に該当する。なお、自信度10、50、80、100%は、不安度90、50、20、0%と表示することもできる。
【0053】
つまり、実施例1で用いる自信度は、時間的要素と心理的要素を組み合わせた評価指標である。図15は、実施例1による学習度の累計を説明する図である。図15に示すように、実施例1における「学習度の累計」は、自信度と回答(正答または誤答)との「二次元的基準」に加えて、学習の回数が多くなるに従って、当該問題に対する「習熟度(回答力)」がアップすることを反映した「三次元的基準」により構成されており、この「アップの度合い」を「学習度の累計」として数値化したものである。つまり、受講者は、学習を繰り返すたびに、正解への回答を導けるだけの理解が深まっていき、自信度も高くなるので、この学習の遷移を学習度の累計として抽出することができる。
【0054】
一方、参考技術で用いられる確信度は、その問題の回答時に閉じた情報であり、上記学習度の累計のように、時間的要素と心理的要素を組み合わせた評価指標とは異なるものである。図16は、参考技術の確信度を説明する図である。図16に示すように、確信度と回答(正答または誤答)との「二次元的基準」で対応付けられているだけであり、過去の学習状況や学習の遷移を評価することができない。つまり、次回予定日を決定するときに、最新の確信度のみを用いて次回予定日を決定するので、学習過程で遷移する確信度を考慮することができない。
【0055】
図2に戻り、画面表示部24は、学習スケジュール表を表示する処理部である。具体的には、画面表示部24は、出題された問題への回答および自信度が受け付けられて正誤判定が出力された後、当該問題に対応する学習スケジュール表を学習スケジュールDB16から取得して表示出力する。
【0056】
図17は、学習スケジュール表の表示例を説明する図である。図17に示すように、画面表示部24は、「問:01」に対して回答および自信度が受け付けられて正誤判定が出力された後、自信度等の表示を消去し、「問:01」に対応する学習スケジュール表を、「問:01」の下に表示出力する。なお、表示する位置は、任意に変更することができる。
【0057】
また、画面表示部24は、学習する日の出題問題の一覧を表示することもできる。図18は、学習予定表の表示例を説明する図である。図18に示すように、画面表示部24は、図7の初期画面55において本日の問題一覧ボタン52が選択された場合、学習スケジュールDB16に記憶される各問題の学習スケジュール表を参照して、当日の学習予定である問題一覧が含まれる学習予定表を生成して表示する。
【0058】
例えば、画面表示部24は、1月5日に本日の問題一覧ボタン52が選択された場合、1月5日に出題が予定される問題「問:01、問:02、問:04、問:06、問:07、問:08、問:09、問:10、問:13、問:15」と、各問題の最新の学習終了日とその時間と学習回数とを含む学習予定表90を生成して表示する。なお、この学習予定表90においては、問番号にリンクが含まれており、問番号が選択された場合、出題制御部22による出題制御が実行される。また、ここでは、学習予定の問題一覧を図示したが、学習済みの問題一覧も同様に生成することができる。さらに、画面表示部24は、本日の問題一覧ボタン52が選択された場合、学習予定表90の生成において、例えば、後述する図36の右表とおり、問数、問番号、今回区分、正誤判定、自信度で構成する日ベースの学習予定表120を生成して表示することも可能である。
【0059】
[処理の流れ]
図19は、実施例1にかかる処理の流れを示すフローチャートである。図19に示すように、ユーザ認証部21は、ユーザ認証を許可すると(S101:Yes)、初期画面55を表示する(S102)。
【0060】
続いて、画面表示部24は、初期画面55上で本日の問題一覧ボタン52が選択されて一覧表示が要求されると(S103:Yes)、当日の学習予定表90を表示する(S104)。
【0061】
そして、当日の学習予定表90で問題が選択された場合(S105:Yes)、または、S103の初期画面55上で本日の問題一覧ボタン52の選択ではなく(S103:No)、本日の学習開始ボタン51が選択された場合(S106:No)、出題制御部22は、当日の問題を出題する(S107)。
【0062】
続いて、出題制御部22は、出題された問題に対する回答と自信度を取得する(S108)。ここで、出題制御部22は、回答に対する正誤判定を実行してその結果を表示することができる。
【0063】
そして、学習スケジュール生成部23は、回答と自信度に基づき学習度を算出し(S109)、過去の学習度を用いて学習度の累計を算出する(S110)。
【0064】
その後、学習スケジュール生成部23は、学習度の累計に基づき次回予定日を算出し(S111)、当該問題に対応する学習スケジュール表を更新する(S112)。このとき、画面表示部24は、問題画面に、学習スケジュール表を表示することができる。
【0065】
その後、出題対象の問題が存在することから、出題を継続する場合(S113:No)、S106以降が実行される。一方、出題対象の全問題の出題が完了した場合(S113:Yes)、処理が終了する。
【0066】
なお、S101において、ユーザ認証部21は、ユーザ認証を拒否した場合(S101:No)、エラー画面を表示した後(S114)、処理を終了する。
【0067】
[効果]
上述したように、学習管理サーバ10は、最新の回答時における自信度だけでなく、過去に回答したときの自信度を考慮して次回予定日を算出するので、理解を深める学習過程を考慮した次回予定日を決定することができる。学習管理サーバ10は、各ユーザの問題ごとに、それまでの回答を基に生成した学習スケジュール表を表示することで、理解を深めて正答を導くための適切な学習スケジュールを管理することができる。
【0068】
また、学習度カウント表に設定する点数と、学習度の累計に基づく、自信度と回答(正答又は誤答)に対応した次回予定日の間隔日数と、学習度の累計の上限値に基づく、学習完了の点数設定について、受講者は、自己の判断で点数及び日数を変更し決定することができることから、受講者の主体的な学習スケジュールによる学習行動が可能なものとなっている。
【実施例0069】
ところで、学習スケジュールは、1日における出題数を限定した場合、次回予定日が重複する問題数が閾値以上となる場合が考えられる。そこで、実施例2では、次回予定日が重複する問題数が閾値以上となった場合に、出題対象の問題を別日にスライドさせることで、出題数を限定する例を説明する。
【0070】
図20は、実施例2にかかる重複問題を翌日の最後にスライドさせる重複調整処理を説明する図である。図20に示すように、学習スケジュール生成部23は、1月5日を学習日とする問題として、12問が予定されていることを特定する。具体的には、学習スケジュール生成部23は、1月2日に学習した「問:01、問:02、問:04、問:06、問:07、問:08、問:09、問:10」、1月3日に学習した「問:13、問:15」、1月4日に学習した「問:19、問:20」の合計12問を含む学習予定表90として生成したとする。
【0071】
この場合、学習スケジュール生成部23は、「2020年1月5日日曜日」の出題数が閾値(例えば10問)を超えることから、出題数が10問以下となるように、「問:19、問:20」の2問の次回予定日を次の日(2020年1月6日月曜日)にスライドさせる。なお、スライドさせる問題は、学習終了日が新しい問題から選択することもでき、学習回数が多い問題や少ない問題から選択することもできる。
【0072】
なお、学習スケジュールの決定に関して、1日における出題数を限定した場合、当該出題数(上限数)を、受講者が自己の判断で変更や決定できることから、受講者の主体的な学習スケジュールによる学習行動が可能なものとなっている。例えば、基本パターンとして、10問、20問のように、予め設定しておいた問数から、受講者が選択する形式で設定することもでき、受講者が18問などのように任意に設定することもできる。
【0073】
ここで、スライド処理を時系列に具体的に説明する。図21は、実施例2にかかる重複調整処理の具体例を説明する図である。図21では、一日の出題数を10問とし、全20問の次回予定日を決定する例について説明する。図21に示すように、学習スケジュール生成部23は、1月1日を次回予定日とする問題として「問1、問2、問3、問4、問5、問6、問7、問8、問9、問10」を決定する。ここでは、出題予定数が閾値以下であることから、重複調整処理は実行されない。
【0074】
次に、1月1日の学習が完了すると、学習スケジュール生成部23は、1月2日を次回予定日とする問題として「問1、問2、問4、問6、問7、問8、問9、問10、問11、問12、問13、問14、問15、問16、問17、問18、問19、問20」を決定する。ここでは、出題予定数が閾値以上であることから、重複調整処理が実行される。すなわち、学習スケジュール生成部23は、「問1、問2、問4、問6、問7、問8、問9、問10、問11、問12」の次回予定日を1月2日に決定し、「問13、問14、問15、問16、問17、問18、問19、問20」の次回予定日を翌々日(1月3日)にスライドさせる。
【0075】
次に、1月2日の学習が完了すると、学習スケジュール生成部23は、1月3日を次回予定日とする問題として、スライドされた問題を含む「問3、問5、問11、問12、問13、問14、問15、問16、問17、問18、問19、問20」を決定する。ここでは、出題予定数が閾値以上であることから、重複調整処理が実行される。すなわち、学習スケジュール生成部23は、「問3、問5、問11、問12、問13、問14、問15、問16、問17、問18」の次回予定日を1月3日に決定し、「問19、問20」の次回予定日を翌々日(1月4日)にスライドさせる。
【0076】
続いて、1月3日の学習が完了すると、学習スケジュール生成部23は、1月4日を次回予定日とする問題として、スライドされた問題を含む「問14、問16、問17、問18、問19、問20」を決定する。ここでは、出題予定数が閾値未満であることから、重複調整処理が実行されない。
【0077】
このように、学習スケジュール生成部23は、学習が完了して次回予定日を決定した後、必要に応じて、重複調整処理を実行する。
【0078】
図22は、実施例2にかかる重複調整処理の流れを示すフローチャートである。図22に示すように、学習スケジュール生成部23は、当日の出題が完了して、次回予定日の算出が終了すると(S201:Yes)、翌日の出題数を計数する(S202)。
【0079】
ここで、学習スケジュール生成部23は、翌日の出題数が閾値未満である場合(S203:Yes)、重複調整処理を実行せずに、算出された次回予定日等を用いて、学習スケジュール表を生成する(S204)。
【0080】
一方、学習スケジュール生成部23は、翌日の出題数が閾値以上である場合(S203:No)、出題予定の後半の問題から出題数が閾値未満となるように、問題を選択する(S205)。そして、学習スケジュール生成部23は、選択した問題の次回予定日を翌々日に変更し(S206)、学習スケジュール表を生成する(S204)。
【0081】
このように、学習スケジュール生成部23は、学習が完了して次回予定日を決定した後、必要に応じて、重複調整処理を実行することで、予め設定された出題数を準拠しつつ、学習スケジュール表を生成することができる。
【実施例0082】
ところで、実施例2による重複調整では、スライドされた問題がスライド先の出題数の状況によっては、さらにスライドされる事象が発生し、学習スケジュールに少なからず影響を及ぼすことも考えられる。そこで、実施例3では、スライドされた問題から優先的に次回予定日を決定する例を説明する。
【0083】
[処理の流れ]
図23は、実施例3にかかる重複問題を次の日に優先して実行させる重複調整処理の流れを示すフローチャートである。図23に示すように、ユーザ認証部21は、ユーザ認証を許可すると(S301:Yes)、初期画面55を表示する(S302)。
【0084】
続いて、画面表示部24は、初期画面55上で本日の問題一覧ボタン52が選択されて一覧表示が要求されると(S303:Yes)、当日の学習予定表90を表示する(S304)。
【0085】
そして、当日の学習予定表90で問題が選択された場合(S305:Yes)、または、S103の初期画面55上で本日の問題一覧ボタン52の選択ではなく(S303:No)、本日の学習開始ボタン51が選択された場合(S306:No)、出題制御部22は、当日の問題を出題する(S307)。
【0086】
続いて、出題制御部22は、出題された問題に対する回答と自信度を取得する(S308)。ここで、出題制御部22は、回答に対する正誤判定を実行してその結果を表示することができる。
【0087】
そして、学習スケジュール生成部23は、回答と自信度に基づき学習度を算出し(S309)、過去の学習度を用いて学習度の累計を算出する(S310)。
【0088】
その後、実施例1や実施例2とは異なり、学習スケジュール生成部23は、重複調整処理を実行する(S311)。具体的には、学習スケジュール生成部23は、学習度の累計を用いて仮の次回予定日を算出し(S311-1)、スライド済みの問題を優先して次回予定日を決定する(S311-2)。
【0089】
そして、学習スケジュール生成部23は、決定された次回予定日に基づき、当該問題に対応する学習スケジュール表を更新する(S312)。このとき、画面表示部24は、問題画面に、学習スケジュール表を表示することができる。
【0090】
その後、出題対象の問題が存在することから、出題を継続する場合(S313:No)、S307以降が実行される。一方、出題対象の全問題の出題が完了した場合(S313:Yes)、処理が終了する。
【0091】
なお、S301において、ユーザ認証部21は、ユーザ認証を拒否した場合(S301:No)、エラー画面を表示した後(S314)、処理を終了する。
【0092】
[次回予定日の算出]
ここで、図24から図26を用いて、S310の重複調整処理で実行される仮の次回予定日の算出について具体的に説明する。図24は、仮の次回予定日の算出(6点以上)を説明する図であり、図25は、仮の次回予定日の算出(3点から5点)を説明する図であり、図26は、仮の次回予定日の算出(2点以下)を説明する図である。
【0093】
学習度の累計が6点以上である場合、図24に示すロジックにより仮の次回予定日が算出される。具体的には、学習スケジュール生成部23は、自信度が100%かつ回答が正解である場合に、次回予定日が16日後となるKグループ(024)と仮計算し、自信度が100%かつ回答が不正解である場合に、次回予定日が9日後となるHグループ(023)と仮計算する。また、学習スケジュール生成部23は、自信度が80%かつ回答が正解である場合に、次回予定日が9日後となるHグループ(022)と仮計算し、自信度が80%かつ回答が不正解である場合に、次回予定日が5日後となるEグループ(021)と仮計算する。
【0094】
同様に、学習スケジュール生成部23は、自信度が50%かつ回答が正解である場合に、次回予定日が5日後となるEグループ(020)と仮計算し、自信度が50%かつ回答が不正解である場合に、次回予定日が4日後となるDグループ(019)と仮計算する。また、学習スケジュール生成部23は、自信度が10%かつ回答が正解である場合に、次回予定日が4日後となるDグループ(018)と仮計算し、自信度が10%かつ回答が不正解である場合に、次回予定日が3日後となるCグループ(017)と仮計算する。
【0095】
また、学習度の累計が3から5点以下である場合、図25に示すロジックにより仮の次回予定日が算出される。具体的には、学習スケジュール生成部23は、自信度が100%かつ回答が正解である場合に、次回予定日が15日後となるJグループ(019)と仮計算し、自信度が100%かつ回答が不正解である場合に、次回予定日が8日後となるGグループ(015)と仮計算する。また、学習スケジュール生成部23は、自信度が80%かつ回答が正解である場合に、次回予定日が8日後となるGグループ(014)と仮計算し、自信度が80%かつ回答が不正解である場合に、次回予定日が4日後となるDグループ(013)と仮計算する。
【0096】
同様に、学習スケジュール生成部23は、自信度が50%かつ回答が正解である場合に、次回予定日が4日後となるDグループ(012)と仮計算し、自信度が50%かつ回答が不正解である場合に、次回予定日が3日後となるCグループ(011)と仮計算する。また、学習スケジュール生成部23は、自信度が10%かつ回答が正解である場合に、次回予定日が3日後となるCグループ(010)と仮計算し、自信度が10%かつ回答が不正解である場合に、次回予定日が2日後となるBグループ(009)と仮計算する。
【0097】
また、学習度の累計が2点以下である場合、図26に示すロジックにより仮の次回予定日が算出される。具体的には、学習スケジュール生成部23は、自信度が100%かつ回答が正解である場合に、次回予定日が14日後となるIグループ(008)と仮計算し、自信度が100%かつ回答が不正解である場合に、次回予定日が7日後となるFグループ(007)と仮計算する。また、学習スケジュール生成部23は、自信度が80%かつ回答が正解である場合に、次回予定日が7日後となるFグループ(006)と仮計算し、自信度が80%かつ回答が不正解である場合に、次回予定日が3日後となるCグループ(005)と仮計算する。
【0098】
同様に、学習スケジュール生成部23は、自信度が50%かつ回答が正解である場合に、次回予定日が3日後となるCグループ(004)と仮計算し、自信度が50%かつ回答が不正解である場合に、次回予定日が2日後となるBグループ(003)と仮計算する。また、学習スケジュール生成部23は、自信度が10%かつ回答が正解である場合に、次回予定日が2日後となるBグループ(002)と仮計算し、自信度が10%かつ回答が不正解である場合に、次回予定日が1日後となるAグループ(001)と仮計算する。
【0099】
[次回予定日の出題数(問数)の集計]
次に、学習終了後における次回予定日の仮計算結果を集計する。図27は、次回予定日の仮計算結果の学習間隔別の集計を説明する図である。図27に示すように、学習スケジュール生成部23は、1日後と仮計算された「001」のAグループについて問数を集計し、2日後と計算された「002」、「003」、「009」のBグループについて問数を集計し、3日後と計算された「004」、「005」、「010」、「011」、「017」のCグループについて問数を集計する。
【0100】
また、学習スケジュール生成部23は、4日後と仮計算された「012」、「013」、「018」、「019」のDグループについて問数を集計し、5日後と計算された「020」、「021」のEグループについて問数を集計し、7日後と計算された「006」、「007」のFグループについて問数を集計する。
【0101】
また、学習スケジュール生成部23は、8日後と仮計算された「014」、「015」のGグループについて問数を集計し、9日後と計算された「022」、「023」のHグループについて問数を集計し、14日後と計算された「008」のIグループについて問数を集計する。また、学習スケジュール生成部23は、15日後と仮計算された「016」のJグループについて問数を集計し、16日後と計算された「024」のKグループについて問数を集計する。
【0102】
続いて、学習スケジュール生成部23は、時系列で問数を集計する。図28は、次回予定日の時系列の集計結果を説明する図である。図28に示すように、学習スケジュール生成部23は、1月1日の学習時点で、1月2日にAグループ、1月3日にBグループ、1月4日にCグループ、1月5日にDグループのように、図27で説明したグループを出題対象として設定する。
【0103】
その後、1月1日の学習が完了すると、学習スケジュール生成部23は、上記図24から図27の処理を実行することで、1月2日の学習時点において、1月3日にAグループ、1月4日にBグループ、1月5日にCグループ、1月6日にDグループのように、図27で説明したグループを出題対象として新たに設定する。つまり、1月3日には、当初から設定されていたBグループに加えて新たにAグループが設定される。
【0104】
その後、1月2日の学習が完了すると、学習スケジュール生成部23は、上記図24から図27の処理を実行することで、1月3日の学習時点において、1月4日にAグループ、1月5日にBグループ、1月6日にCグループ、1月7日にDグループのように、図27で説明したグループを出題対象として新たに設定する。つまり、1月4日には、当初(1月1日の学習)から設定されていたCグループに加えて、1月2日の学習により新たに発生したBグループと1月3日の学習により新たに発生したAグループとが設定される。
【0105】
このように、学習スケジュール生成部23は、その日の学習が完了するたびに、上記図24から図27の処理を実行して、新たにグループ管理を行うことで、翌日以降の出題数(問数)を計数することができる。
【0106】
[次回予定日の決定]
学習スケジュール生成部23は、上述した図24から図28で説明した処理によって、当日の学習が完了した後、翌日以降のグループ分けを実行して、各日の問数を計数する。そのとき、学習スケジュール生成部23は、重複する問題を翌日にスライドすることで、次回予定日を決定する例を説明する。
【0107】
図29は、次回予定日の決定を説明する図である。図29では、1日に学習する問題の限度数(出題数の閾値)を10問とした場合における例を示している。図29に示すように、学習スケジュール生成部23は、1月2日に出題予定である問数が5問である場合、その5問をそのまま確定問数と決定する。
【0108】
続いて、学習スケジュール生成部23は、1月2日の学習が完了すると、1月3日の出題予定を確定する。例えば、学習スケジュール生成部23は、1月3日に出題予定である問数が13問である場合、そのうち限度数の10問を選択して確定問数と決定するとともに、残りの3問を繰延数として翌日にスライドさせる。
【0109】
そして、学習スケジュール生成部23は、1月3日の学習が完了すると、1月4日の出題予定を確定する。例えば、学習スケジュール生成部23は、1月4日に出題予定である問数として、当初の9問に、前日からスライドされた3問を加えた12問を特定する。このとき、学習スケジュール生成部23は、前日からスライドされた3問を優先的に選択するとともに当初の9問から7問を選択することで、限度数となる合計10問を選択して確定問数と決定する。そして、学習スケジュール生成部23は、残りの2問を繰延数として翌日にスライドさせる。
【0110】
その後、学習スケジュール生成部23は、1月4日の学習が完了すると、1月5日の出題予定を確定する。例えば、学習スケジュール生成部23は、1月5日に出題予定である問数として、当初の10問に、前日からスライドされた2問を加えた12問を特定する。このとき、学習スケジュール生成部23は、前日からスライドされた2問を優先的に選択するとともに当初の10問から8問を選択することで、限度数となる合計10問を選択して確定問数と決定する。そして、学習スケジュール生成部23は、残りの2問を繰延数として翌日にスライドさせる。
【0111】
このように、学習管理サーバ10は、設定された出題数の範囲内で次回予定日を決定して学習スケジュールを生成することができるとともに、出題数が超過した問題を翌日にスライドさせた学習スケジュールを生成することができる。この結果、学習管理サーバ10は、1日の出題数に収まらない問題であっても、不用意に遅延させることなく、翌日に確実に学習する学習スケジュールを生成することができる。
【実施例0112】
ところで、受講者によっては、学習スケジュール表にしたがって学習を実行しつつ、気になる問題などを予定日よりも前倒しで実行したり、自信のある問題などを予定日よりも後回し(繰延)で実行したりすることも考えられる。このような場合であっても、学習管理サーバ10は、学習スケジュールを正確に管理することができる。
【0113】
そこで、実施例4では、学習カレンダーを用いて、前倒しや繰延が発生したときの管理手法について説明する。なお、学習カレンダーに限らず、実施例1-3で用いた学習スケジュール表や学習予定表などを用いた場合でも、後述する「今回区分」の欄を設けることで、同様に処理することができる。
【0114】
図30は、実施例4にかかる自動繰延表示を説明する図である。図30に示すように、学習管理サーバ10の学習スケジュール生成部23は、上記各実施例で説明した処理で得られる情報を用いて、1月6日時点の学習予定の問題一覧を表示する学習カレンダーを生成する。この学習カレンダーには、その日に出題予定である問題を示す「問番号」、処理区分を示す「今回区分」、学習スケジュール表と同様の「前回結果(学習回数、正誤判定、自信度、学習度の累計)」が含まれる。図30の例では、学習スケジュール生成部23は、1月6日時点の1月6日用の学習カレンダーとして、「問:01、問:02、問:03、問:04」を設定し、いずれも学習予定であることから「今回区分」に「予定」を設定する。
【0115】
このような状態において、1月6日に「問:01」のみが学習されたとする。すると、学習スケジュール生成部23は、1月7日時点における1月6日用の学習カレンダーに対して、「問:01」の「今回区分」に「実行」を設定し、「問:02、問:03、問:04」を削除する。その一方で、学習スケジュール生成部23は、1月7日時点における1月7日用の学習カレンダーに対して、「問:02、問:03、問:04」を追加し、これらの「今回区分」に「繰延」を設定する。
【0116】
このようにすることで、学習管理サーバ10は、受講者が体調不良等によりスケジュール通りに学習できない場合であっても、翌日に自動的に繰延することができるので、未学習の発生を抑制することができる。
【0117】
図31は、実施例4にかかる前倒し表示を説明する図である。図31に示すように、学習スケジュール生成部23は、1月6日時点の1月6日用の学習カレンダーとして、「問:01」を設定し、学習予定であることから「今回区分」に「予定」を設定する。また、学習スケジュール生成部23は、1月6日時点の1月20日用の学習カレンダーとして、「問:03、問:21」を設定し、いずれも学習予定であることから「今回区分」に「予定」を設定する。
【0118】
このような状態において、1月6日に、1月6日が学習予定である「問:01」と1月20日が学習予定である「問:21」が学習されたとする。すると、学習スケジュール生成部23は、1月7日時点における1月6日用の学習カレンダーに対して、「問:01」の「今回区分」に「実行」を設定するとともに、「問:21」を追加して「今回区分」に「前実行」設定する。その一方で、学習スケジュール生成部23は、1月7日時点における1月20日用の学習カレンダーに対して、「問:03、問:21」のうち「問:21」を削除する。
【0119】
このようにすることで、学習管理サーバ10は、受講者の予定等により問題の前倒し実行が発生した場合であっても、正確に学習スケジュールを管理することができるので、やり残しややり過ぎなどのトラブル発生を抑制することができる。なお、学習管理サーバ10は、受講者の要求や設定によって、一般的なカレンダーと同じ表示形式を用いた学習カレンダーを表示することができる。例えば、学習管理サーバ10は、ある学習予定日(例えば、1月1日)の学習カレンダーのみを生成して表示することもできる。また、学習管理サーバ10は、例えばある1週間に属する1月1日から1月7日の各学習カレンダーを生成し、1月1日から1月7日の各日と各日の学習カレンダーとを対応付けて表示することもできる。なお、学習管理サーバ10は、1週間単位に限らず、月単位や年単位についても同様に表示することができる。
【実施例0120】
次に、学習管理サーバ10が提供する進捗管理画面と、各管理画面の画面遷移について説明する。図32は、実施例5にかかる画面遷移を説明する図である。図32に示すように、学習管理サーバ10のユーザ認証部21は、認証画面50上で「ユーザIDとパスワード」の入力を受け付けて、認証を許可する。
【0121】
認証を許可すると、ユーザ認証部21は、図7に示した初期画面55において、本日の学習開始ボタン51と本日の問題一覧ボタン52と全部の問題一覧ボタン53が含まれる初期画面55を生成して表示する。そして、画面表示部24は、初期画面55上で全部の問題一覧ボタン53が選択されると、学習プラン進捗管理表100を生成して、Webブラウザに出力することで、受講者に表示する。なお、本日の問題一覧ボタン52が選択された場合は、日ベースの学習予定表120を生成してWebブラウザにおいて同様の表示を行うことができる。
【0122】
図33は、実施例5にかかる学習プラン進捗管理表を説明する図である。図33に示すように、画面表示部24は、上記各実施例で説明した処理で得られる情報を用いて、「問番号」と「前回の学習結果」とを含む学習プラン進捗管理表100を生成して表示する。
【0123】
ここで、画面表示部24は、「問番号」には、受講者の選択に応じて問題の表示を実行するリンク情報を含める。また、画面表示部24は、学習スケジュールDB16から、最新の回答日(学習日)に関する「学習回数、正誤判定、自信度、学習の完了日」を取得して、「前回の学習結果」に含めて表示する。なお、学習回数は、現在までの学習回数であり、正誤判定は、最新(前回)の回答に対する正誤判定の結果であり、自信度は、最新の回答に対する自信であり、学習の完了日は、最新の学習日である。
【0124】
そして、画面表示部24は、図33に示す学習プラン進捗管理表100において、各問番号に対応付けられる「学習回数」の選択を受け付けると、学習が実行された実行日と正誤判定と自信度と次回予定日とを少なくとも含む学習スケジュール表を表示する。図34は、学習プラン進捗管理表で学習回数を選択したときの表示例を説明する図である。図34に示すように、画面表示部24は、「問:01」の「学習回数=6」が選択された場合、選択された「問:01」からのプルダウンメニュー形式で、「問:01」の学習スケジュール表を表示する。ここで表示される学習スケジュール表は、実施例1で説明した学習スケジュール表と同じなので、詳細な説明は省略する。
【0125】
また、画面表示部24によって、図33に示す学習プラン進捗管理表100において「問へのリンク」への選択が受け付けられた場合、出題制御部22は、選択された問題を出題する。図35は、学習プラン進捗管理表100で問へのリンクが選択されたときの画面遷移例を説明する図である。図35に示すように、出題制御部22は、「問:01」が選択された場合、「問:01」の問題画面110を表示することで、受講者に出題を実行する。なお、問題画面110は、実施例1等で説明した情報と同じなので、詳細な説明は省略する。
【0126】
また、画面表示部24は、受講者との間で確立されるWeb画面上でスワイプ操作を受け付けることで、画面の切替を実行することができる。図36図37図38は、学習プラン進捗管理表100上でのスワイプ操作時の画面遷移例を説明する図である。
【0127】
図36に示すように、画面表示部24は、学習プラン進捗管理表100上で左右へのスワイプ操作を検出した場合、日ベースの学習予定表120の表示に切り替えて表示することができる。日ベースの学習予定表120は、操作された日に出題対象となっている問題一覧が表示される。図36に示すように、日ベースの学習予定表120には、「問数、問番号、学習回数、正誤判定、自信度」が含まれる。なお、「問数」は、出題順であり、「問番号」は、出題される問題の番号であり、「学習回数」は、問題の学習回数であり、「正誤判定」は、前回学習時の正誤判定結果であり、「自信度」は、前回学習時の自信度である。これらの情報は、上記実施例で説明した手法により取得することができる。図36の例では、「2月2日」の学習予定表を示しており(今回区分=予定)、「問:01」は、2月1日に学習が完了していることから、2月2日以降の学習予定表には表示されない。また、「予定」に限らず、学習済みである「今回区分=実行」が設定される過去の学習予定表を表示するように設定を変更することもできる。また、画面表示部24は、図36で表示される日ベースの学習予定表120を、図30図31で説明した処理により学習予定が調整および設定された学習カレンダーを用いて生成することもできる。
【0128】
また、図37に示すように、画面表示部24は、日ベースの学習予定表120上で左右へのスワイプ操作を検出した場合、学習プラン進捗管理表100の表示に切り替える。このように、画面表示部24は、スワイプ操作により、画面を簡単に切り替えるインタフェースを提供することができる。
【0129】
さらに、図38に示すように、画面表示部24は、2月2日の日ベースの学習予定表120上で下へのスワイプ操作を検出した場合、翌日である2月3日の日ベースの学習予定表121の表示に切り替える。また、画面表示部24は、2月3日の日ベースの学習予定表121上で上へのスワイプ操作を検出した場合、前日である2月2日の日ベースの学習予定表120の表示に切り替える。このように、画面表示部24は、下へのスワイプ操作を繰り返すことで、予定されている各日の学習カレンダーを表示するインタフェースを提供することができる。
【0130】
なお、スワイプ操作の向き等は、一例であり、任意に変更することができる。また、画面表示部24は、各日の問題を表示する日ベースの学習予定表120、各月の問題を表示する月ベースの学習予定表120、各年の問題を表示する年ベースの学習予定表120を生成して表示することもできる。また、画面表示部24は、これらの各ベースの学習予定表120をスワイプ操作などの切替操作や設定などにより、表示切替を実行することができる。
【0131】
ところで、学習プラン進捗管理表100は、図33に示した情報に限らず、学習スケジュールDB16に記憶される情報や各実施例で説明した処理により、表示項目を任意に変更することができる。図39は、学習プラン進捗管理表の別例を説明する図を示す図である。図39に示すように、画面表示部24は、「虚偽表示」などの学習種別ごとに、「学習項目、前回学習結果(学習回数、正誤判定、自信度、学習度の累計)、次回予定」を含む学習プラン進捗管理表200を表示して生成することもできる。
【0132】
「学習項目」は、学習種別に含まれる各問題のタイトルなどであり、問題へのリンク情報が含まれる。例えば、「基礎知識・例題1/2」が選択されると、「基礎知識・例題1/2」の例題が出題される。なお、マスク問題とは、過去問題について正解を導出するために必要な部分を残し、回答者に誤った答えを選択させるヒッカケ記述の部分をマスキングすることにより過去問題の一部をマスキングした問題の一例である。
【0133】
前回学習結果は、各問題の最新(前回)の学習結果である。「学習回数」は、現在までの学習回数であり、この学習回数が選択されると、図34と同様、学習スケジュール表が表示される。「正誤判定」は、前回の回答に対する正誤判定結果であり、「自信度」は、前回の回答時の自信度であり、「学習度の累計」は、現在までの学習度の累計である。「次回予定日」は、当該問題の次の学習日である。
【0134】
このように、学習プラン進捗管理表は、各実施例で説明した処理により生成される情報を用いて、受講者のニーズに応じて、任意にカスタマイズすることができる。
【0135】
また、初期画面55に各種ボタン等を表示させることで、上述した各種画面の表示を切り替えることができる。例えば、画面表示部24は、初期画面55に本日の学習開始ボタン51、本日の問題一覧ボタン52、全部の問題一覧ボタン53のそれぞれを表示させて、本日の学習開始ボタン51の選択を検出した場合は、図8に示す問題画面60を表示し、本日の問題一覧ボタン52の選択を検出した場合は、図18に示す当日の学習予定表90を表示し、全部の問題一覧ボタン53の選択を検出した場合は、図18に示す学習予定表120を表示する。
【0136】
また、画面表示部24は、本日の学習開始ボタン51の選択を検出した場合に、日ベースの学習予定表120を表示し、日ベースの学習予定表120の問題が選択された後に、問題画面60を表示することもできる。
【0137】
また、画面表示部24は、初期画面55に、「学習予定表を表示する」ボタンと「学習管理表を表示する」とを表示し、「学習予定表を表示する」ボタンが選択された場合に、図36に示す日ベースの学習予定表120を表示し、「学習管理表を表示する」ボタンが選択された場合に、図33の学習プラン進捗管理表100を表示することもできる。このように、初期画面55に表示させるボタンの数や画面遷移の順も任意に変更することができる。
【実施例0138】
さて、これまで本発明の実施例について説明したが、本発明は上述した実施例以外にも、種々の異なる形態にて実施されてよいものである。
【0139】
[数値等]
上記実施例で用いた問題例、問題数、日付、各種設定値、各種閾値、ボタンの名称、画面遷移の順番、スワイプ操作の方向等は、あくまで一例であり、任意に変更することができる。また、資格の勉強に限らず、学校でのオンライン授業や各種スポーツなどにも適用することができる。
【0140】
また、出題される問題は、テキストデータに限らず、音声や動画でもよい。その場合、音声やテキストにより、自信度を受付けることができる。また、上記実施例では、Webブラウザを用いた例を説明したが、これに限定されず、専用のアプリケーションなどを用いることもできる。
【0141】
また、学習管理サーバ10が問題を記憶している例で説明したが、これに限定されることなく、例えば問題は他のサーバが記憶しており、学習管理サーバ10が他のサーバから問題を取得して表示することもできる。
【0142】
[スタート画面例]
図7図18図32等で説明した初期画面55から各種画面への遷移は、任意に設定変更することができる。図40は、初期画面の設定例を説明する図である。図40に示すように、学習管理サーバ10は、「学習プラン進捗管理」ボタン80と、「日ベースの学習予定表」ボタン81とを有する初期画面55を生成して表示する。
【0143】
そして、学習管理サーバ10は、「学習プラン進捗管理」ボタン80が選択されると、図33に示す学習プラン進捗管理表100や図39に示す学習プラン進捗管理表200などを表示する。また、学習管理サーバ10は、「日ベースの学習予定表」ボタン81が選択されると、図36に示す日ベースの学習予定表120などを表示する。
【0144】
また、学習管理サーバ10は、図35と同様、学習プラン進捗管理表100上で「問:01」が選択された場合、「問:01」の問題画面110を表示することで、受講者に出題を実行する。また、学習管理サーバ10は、日ベースの学習予定表120上で「問:02」が選択された場合、「問:02」の問題画面を表示することで、受講者に出題を実行する。
【0145】
[システム]
上記文書中や図面中で示した処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。
【0146】
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散や統合の具体的形態は図示のものに限られない。つまり、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。
【0147】
さらに、各装置にて行なわれる各処理機能は、その全部または任意の一部が、CPUおよび当該CPUにて解析実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現され得る。
【0148】
[ハードウェア]
次に、ハードウェア構成例を説明する。図41は、ハードウェア構成例を説明する図である。図41に示すように、学習管理サーバ10は、通信装置10a、HDD(Hard Disk Drive)10b、メモリ10c、プロセッサ10dを有する。また、図41に示した各部は、バス等で相互に接続される。
【0149】
通信装置10aは、ネットワークインタフェースカードなどであり、他のサーバとの通信を行う。HDD10bは、図2に示した機能を動作させるプログラムやDBを記憶する。
【0150】
プロセッサ10dは、図2に示した各処理部と同様の処理を実行するプログラムをHDD10b等から読み出してメモリ10cに展開することで、図2等で説明した各機能を実行するプロセスを動作させる。例えば、このプロセスは、学習管理サーバ10が有する各処理部と同様の機能を実行する。具体的には、プロセッサ10dは、ユーザ認証部21、出題制御部22、学習スケジュール生成部23、画面表示部24等と同様の機能を有するプログラムをHDD10b等から読み出す。そして、プロセッサ10dは、ユーザ認証部21、出題制御部22、学習スケジュール生成部23、画面表示部24等と同様の処理を実行するプロセスを実行する。
【0151】
このように、学習管理サーバ10は、プログラムを読み出して実行することで学習管理サーバ方法を実行する情報処理装置として動作する。また、学習管理サーバ10は、媒体読取装置によって記録媒体から上記プログラムを読み出し、読み出された上記プログラムを実行することで上記した実施例と同様の機能を実現することもできる。なお、この他の実施例でいうプログラムは、学習管理サーバ10によって実行されることに限定されるものではない。例えば、他のコンピュータまたはサーバがプログラムを実行する場合や、これらが協働してプログラムを実行するような場合にも、本発明を同様に適用することができる。
【0152】
このプログラムは、インターネットなどのネットワークを介して配布することができる。また、このプログラムは、ハードディスク、フレキシブルディスク(FD)、CD-ROM、MO(Magneto-Optical disk)、DVD(Digital Versatile Disc)などのコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行することができる。
【符号の説明】
【0153】
10 学習管理サーバ
11 通信部
12 記憶部
13 ユーザDB
14 問題DB
15 設定情報DB
16 学習スケジュールDB
20 制御部
21 ユーザ認証部
22 出題制御部
23 学習スケジュール生成部
24 画面表示部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33
図34
図35
図36
図37
図38
図39
図40
図41
【手続補正書】
【提出日】2020-12-25
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
コンピュータに、
同一の問題を受講者に複数回出題し、
出題する度毎に、前記問題に対する回答と、前記回答に対する自己評価とを前記受講者から受け付け、
出題する度毎に、前記回答の正誤と前記自己評価とに基づき、前記受講者の学習度を数値化し、
出題する度毎に、過去に出題した前記問題に対する前記受講者の数値化された学習度を累計した前記受講者の理解度を数値化した値に、今回の前記受講者の学習度を数値化した値をさらに累計して前記受講者の現在の理解度を算出し、
前記算出された前記受講者の現在の理解度に基づき、前記受講者に対する前記問題の出題要否決定するとともに、前記受講者の現在の理解度に対応して予め準備された次回学習予定日算出用テーブルを参照して、今回の前記受講者の回答の正誤と回答に対する自己評価に基づく前記受講者が前記問題を次に学習する次回予定日を決定する
処理を実行させることを特徴とする学習管理プログラム。
【請求項2】
前記受け付ける処理は、前記問題に対する回答として回答候補の一覧から選択させるとともに、前記回答に対する自己評価として予め指定された評価一覧から選択させることで、前記回答と前記自己評価とを受け付け、
前記数値化する処理は、前記評価一覧に含まれる各自己評価と前記回答の正誤との組合せに対応付けられた点数一覧であって、前記自己評価が高くかつ前記回答が正解である場合に高く、前記自己評価が低くかつ前記回答が不正解である場合に低くなるように設定された前記点数一覧から、受け付けられた前記回答の正誤と前記自己評価との組合せに対応する点数を、前記受講者の学習度として数値化することを特徴とする請求項1に記載の学習管理プログラム。
【請求項3】
前記算出する処理は、前記算出された現在の受講者の理解度を示す数値が閾値以上の場合は、前記問題の学習を終了すると決定し、前記算出された現在の受講者の理解度を示す数値が前記閾値未満の場合は、前記受講者の現在の理解度を示す数値に対応して予め準備された複数の次回学習予定日算出用テーブルのうち、前記受講者の現在の理解度を示す数値に対応する次回学習予定日算出用テーブルを参照して、前記今回の前記受講者の回答の正誤と回答に対する自己評価に基づく前記受講者が前記問題を次に学習する次回予定日が、前記受講者の現在の理解度を示す数値が大きいほど長くなるように前記次回予定日を決定することを特徴とする請求項1または2に記載の学習管理プログラム。
【請求項4】
前記次回予定日を決定する処理は、
前記受講者が学習対象とするそれぞれ異なる複数の問題について前記次回予定日を決定し、
前記次回予定日が重複する前記問題の数である出題数予め決められた学習予定数を超える場合には、前記出題数が前記予め決められた学習予定数を超えないように、前記次回予定日が重複する複数の問題から所定数の問題を選択し、
前記所定数の問題の前記次回予定日を別の日に変更することを特徴とする請求項1から3のいずれか一つに記載の学習管理プログラム。
【請求項5】
それぞれ異なる複数の問題毎に、学習回数と学習した日付と学習時の正誤判定と前記自己評価と前記受講者の理解度と前記次回予定日とを対応付けた学習スケジュール表を生成し、
生成された前記学習スケジュール表を、表示装置に出力することで、前記受講者に表示する処理を、さらに前記コンピュータに実行させることを特徴とする請求項1から4のいずれか一つに記載の学習管理プログラム。
【請求項6】
前記表示する処理は、
前記学習スケジュール表の前記次回予定日に関し、前記受講者の学習度を累計して数値化した理解度が閾値以上である問題については、学習終了を示す情報を設定し、前記受講者の学習度を累計して数値化した理解度が閾値未満である問題については、算出された前記次回予定日の日付を設定することを特徴とする請求項5に記載の学習管理プログラム。
【請求項7】
コンピュータが、
同一の問題を受講者に複数回出題し、
出題する度毎に、前記問題に対する回答と、前記回答に対する自己評価とを前記受講者から受け付け、
出題する度毎に、前記回答の正誤と前記自己評価とに基づき、前記受講者の学習度を数値化し、
出題する度毎に、過去に出題した前記問題に対する前記受講者の数値化された学習度を累計した前記受講者の理解度を数値化した値に、今回の前記受講者の学習度を数値化した値をさらに累計して前記受講者の現在の理解度を算出し、
前記算出された前記受講者の現在の理解度に基づき、前記受講者に対する前記問題の出題要否決定するとともに、前記受講者の現在の理解度に対応して予め準備された次回学習予定日算出用テーブルを参照して、今回の前記受講者の回答の正誤と回答に対する自己評価に基づく前記受講者が前記問題を次に学習する次回予定日を決定する
処理を実行することを特徴とする学習管理方法。
【請求項8】
同一の問題を受講者に複数回出題する出題制御部と、
出題する度毎に、前記問題に対する回答と、前記回答に対する自己評価とを前記受講者から受け付ける受付部と、
出題する度毎に、前記回答の正誤と前記自己評価とに基づき、前記受講者の学習度を数値化する数値化部と、
出題する度毎に、過去に出題した前記問題に対する前記受講者の数値化された学習度を累計した前記受講者の理解度を数値化した値に、今回の前記受講者の学習度を数値化した値をさらに累計して前記受講者の理解度を算出する算出部と、
前記算出部により算出された前記受講者の現在の理解度に基づき、前記受講者に対する前記問題の出題要否決定するとともに、前記受講者の現在の理解度に対応して予め準備された次回学習予定日算出用テーブルを参照して、今回の前記受講者の回答の正誤と回答に対する自己評価に基づく前記受講者が前記問題を次に学習する次回予定日を決定する決定部と、
を有することを特徴とする学習管理サーバ。
【手続補正3】
【補正対象書類名】図面
【補正対象項目名】図5
【補正方法】変更
【補正の内容】
図5
【手続補正4】
【補正対象書類名】図面
【補正対象項目名】図13
【補正方法】変更
【補正の内容】
図13