(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022032831
(43)【公開日】2022-02-25
(54)【発明の名称】情報処理装置及びプログラム
(51)【国際特許分類】
G16Z 99/00 20190101AFI20220217BHJP
G06V 30/412 20220101ALI20220217BHJP
G06V 30/42 20220101ALI20220217BHJP
【FI】
G16Z99/00
G06K9/20 340C
G06K9/00 K
【審査請求】未請求
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2020137068
(22)【出願日】2020-08-14
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.HDMI
(71)【出願人】
【識別番号】515179392
【氏名又は名称】株式会社インフォディオ
(74)【代理人】
【識別番号】110002789
【氏名又は名称】特許業務法人IPX
(72)【発明者】
【氏名】小池 隆司
【テーマコード(参考)】
5B029
5B064
5L049
【Fターム(参考)】
5B029AA01
5B029BB02
5B029BB17
5B029CC26
5B064AA01
5B064AB02
5B064BA01
5B064EA27
5L049EE06
(57)【要約】
【課題】帳票に対する定義をすることなく、機械学習により帳票の記載事項を所定の項目に対応させることのできる情報処理装置及びプログラムを提供すること。
【解決手段】本発明の一態様によれば、テキストマッピングによる帳票の処理を行う情報処理装置が提供される。この情報処理装置は、学習済モデル保持部と、対応判定部と、提供部とを備える。学習済モデル保持部は、帳票の記載事項と該記載事項の項目名との組を教師データとして機械学習した学習済モデルを保持する。対応判定部は、学習済モデルに基づいて、帳票ファイルに含まれる記載事項のそれぞれが所定の項目名のいずれに対応するかを判定可能に構成される。提供部は、対応判定部が判定した記載事項と項目名との組を提供可能に構成される。
【選択図】
図3
【特許請求の範囲】
【請求項1】
テキストマッピングによる帳票の処理を行う情報処理装置であって、
学習済モデル保持部と、対応判定部と、提供部とを備え、
前記学習済モデル保持部は、帳票の記載事項と該記載事項の項目名との組を教師データとして機械学習した学習済モデルを保持し、
前記対応判定部は、前記学習済モデルに基づいて、帳票ファイルに含まれる記載事項のそれぞれが所定の項目名のいずれに対応するかを判定可能に構成され、
前記提供部は、前記対応判定部が判定した記載事項と項目名との組を提供可能に構成される
情報処理装置。
【請求項2】
請求項1に記載の情報処理装置において、
文字判定部を備え、
前記文字判定部は、前記帳票ファイルが画像を含んで構成される場合に、該画像中の文字を光学的認識により判定可能に構成される
情報処理装置。
【請求項3】
請求項1又は請求項2に記載の情報処理装置において、
受付部と、学習部とを備え、
前記受付部は、前記提供部が提供した記載事項と項目名との組に対する確認指示を受け付け可能に構成され、
前記学習部は、前記受付部が確認指示を受け付けた場合に、前記提供部が提供した記載事項と項目名との組を教師データに加えて機械学習を行い、前記学習済モデルを更新可能に構成される
情報処理装置。
【請求項4】
請求項1又は請求項2に記載の情報処理装置において、
受付部と、学習部とを備え、
前記受付部は、前記提供部が提供した記載事項と項目名との組に対する訂正指示を受け付け可能に構成され、
前記学習部は、前記受付部が訂正指示を受け付けた場合に、該訂正指示により訂正された記載事項と項目名との組を教師データに加えて機械学習を行い、前記学習済モデルを更新可能に構成される
情報処理装置。
【請求項5】
請求項1乃至請求項4のいずれか1項に記載の情報処理装置において、
前記対応判定部は、記載事項と項目名との組に対する確信度を算出し、
前記提供部は、前記対応判定部が判定した記載事項と項目名との組とともに、該組に対する確信度を提供する
情報処理装置。
【請求項6】
請求項5に記載の情報処理装置において、
前記提供部は、前記対応判定部が判定した記載事項と項目名との組を、前記確信度に応じて設定された色により表現する
情報処理装置。
【請求項7】
請求項1乃至請求項6のいずれか1項に記載の情報処理装置において、
前記機械学習のための特徴量は、記載事項の絶対座標と、記載事項の相対座標と、項目名の類義語との位置ベクトル位置と、記載事項の文字ベクトルとのいずれか2つ以上の組み合わせである
情報処理装置。
【請求項8】
コンピュータを情報処理装置として動作させるプログラムであって、
コンピュータを請求項1乃至請求項7のいずれか1項に記載の情報処理装置として機能させる
プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、情報処理装置及びプログラムに関する。
【背景技術】
【0002】
企業等の組織においては、多くの帳票が用いられている。一方で、これらの組織においては、コンピュータを利用して業務が遂行されることが多く、帳票の内容をコンピュータで利用可能な電子データとして入力する必要があり、この入力作業が軽減されることが望まれている。
【0003】
このため、帳票の画像からOCR(Optical Character Recognition:光学的文字認識)を利用して文字を認識し、帳票の電子化作業を軽減することが行われており、OCRの制度を向上させるための技術も提案されている(例えば、特許文献1を参照)。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、一般的に、帳票は、項目名と項目内容の組み合わせにより構成されるが、項目名が省略され、項目内容のみが帳票に記載されている場合が多い。例えば、項目名が「帳票種別」であり、項目内容が「請求書」である場合、帳票には、「帳票種別」が省略され、「請求書」の文字列のみが記載される。
【0006】
また、帳票のフォーマットは、統一されておらず、発行者によって異なるフォーマットの帳票が用いられることが一般的である。
【0007】
このため、帳票に記載されている文字や文字列を認識することができたとしても、認識した文字や文字列が、どの項目に相当するものであるか(テキストマッピング)を人の判断に委ねることが多い。
【0008】
また、比較的よく利用されるフォーマットの帳票に対しては、位置指定等の定義を行うことで、自動抽出を行うことが可能であるが、この場合でも、帳票のフォーマット毎の定義が必要であり、フォーマットの些細な変更があった場合でも、定義の変更が必要となる場合が多い。
【0009】
本発明では上記事情を鑑み、帳票に対する定義をすることなく、機械学習により帳票の記載事項を所定の項目に対応させることのできる情報処理装置及びプログラムを提供することとした。
【課題を解決するための手段】
【0010】
本発明の一態様によれば、テキストマッピングによる帳票の処理を行う情報処理装置が提供される。この情報処理装置は、学習済モデル保持部と、対応判定部と、提供部とを備える。学習済モデル保持部は、帳票の記載事項と該記載事項の項目名との組を教師データとして機械学習した学習済モデルを保持する。対応判定部は、学習済モデルに基づいて、帳票ファイルに含まれる記載事項のそれぞれが所定の項目名のいずれに対応するかを判定可能に構成される。提供部は、対応判定部が判定した記載事項と項目名との組を提供可能に構成される。
【0011】
本発明の一態様によれば、予め帳票に対する定義を行うことなく、帳票の記載事項を所定の項目に対応させて抽出することが可能となる。
【図面の簡単な説明】
【0012】
【
図1】本発明の実施形態に係る情報処理装置1と他の装置との接続構成を示した図である。
【
図2】情報処理装置1の構成の概略を示した図である。
【
図3】情報処理装置1の機能的な構成を示すブロック図である。
【
図4】情報処理装置1の動作の流れを示すアクティビティ図である。
【発明を実施するための形態】
【0013】
以下、図面を用いて本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。
【0014】
ところで、本実施形態に登場するソフトウェアを実現するためのプログラムは、コンピュータが読み取り可能な非一時的な記録媒体として提供されてもよいし、外部のサーバからダウンロード可能に提供されてもよいし、外部のコンピュータで当該プログラムを起動させてクライアント端末でその機能を実現(いわゆるクラウドコンピューティング)するように提供されてもよい。
【0015】
また、本実施形態において「部」とは、例えば、広義の回路によって実施されるハードウェア資源と、これらのハードウェア資源によって具体的に実現されうるソフトウェアの情報処理とを合わせたものも含みうる。また、本実施形態においては様々な情報を取り扱うが、これら情報は、例えば電圧・電流を表す信号値の物理的な値、0又は1で構成される2進数のビット集合体としての信号値の高低、又は量子的な重ね合わせ(いわゆる量子ビット)によって表され、広義の回路上で通信・演算が実行されうる。
【0016】
また、広義の回路とは、回路(Circuit)、回路類(Circuitry)、プロセッサ(Processor)、及びメモリ(Memory)等を少なくとも適当に組み合わせることによって実現される回路である。すなわち、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、及びフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等を含むものである。
【0017】
1.全体構成
図1は、本発明の実施形態に係る情報処理装置1と他の装置との接続構成を示した図である。同図に示すように、情報処理装置1は、ネットワーク5に接続されている。ネットワーク5は、例えば、組織内のLAN(Local Area Network)やインターネットである。この情報処理装置1は、ネットワーク5を介して、情報処理端末2、情報処理端末4と通信可能に接続される。
【0018】
情報処理端末2は、帳票の処理を行う担当者等が用いる端末であり、帳票ファイルの情報処理装置1へのアップロードや、当該帳票ファイルから抽出された記載事項の取得等を行うことができるものである。
【0019】
また、情報処理端末2には、スキャナ3が接続されるようにしてもよく、スキャナ3により紙面に印刷された帳票等を光学的に読み取って画像化した帳票ファイルを生成し、生成した帳票ファイルを情報処理端末2から情報処理装置1へアップロードすることができる。なお、スキャナ3は、情報処理端末2を介さずに、直接、帳票ファイルを情報処理装置1へアップロードするようにすることもできる。
【0020】
なお、情報処理端末2は、ウェブブラウザ又は専用のソフトウェアが動作するパーソナルコンピュータ等である。専用のソフトウェアを利用する場合には、情報処理端末2と情報処理装置1との間の通信は、API(Application Programming Interface)を介して行うようにすることができる。
【0021】
情報処理端末4は、情報処理端末2と同様の処理を行うが、カメラが搭載されたスマートフォン、タブレット等であり、搭載されたカメラで、帳票を撮影することで、帳票ファイルを生成する。
【0022】
2.情報処理装置1の構成
図2は、情報処理装置1の構成の概略を示した図である。同図に示すように、情報処理装置1は、処理部11と、記憶部12と、一時記憶部13と、外部装置接続部14と、通信部15とを有しており、これらの構成要素が情報処理装置1の内部において通信バス16を介して電気的に接続されている。
【0023】
処理部11は、例えば、中央処理装置(Central Processing Unit:CPU)により実現されるもので、記憶部12に記憶された所定のプログラムに従って動作し、種々の機能を実現する。
【0024】
記憶部12は、様々な情報を記憶する不揮発性の記憶媒体である。これは、例えばハードディスクドライブ(Hard Disk Drive:HDD)やソリッドステートドライブ(Solid State Drive:SSD)等のストレージデバイスにより実現される。なお、記憶部12は、情報処理装置1と通信可能な別の装置に配するようにすることも可能である。
【0025】
一時記憶部13は、揮発性の記憶媒体である。これは、例えばランダムアクセスメモリ(Random Access Memory:RAM)等のメモリにより実現され、処理部11が動作する際に一時的に必要な情報(引数、配列等)を記憶する。
【0026】
外部装置接続部14は、例えばユニバーサルシリアルバス(Universal Serial Bus:USB)や高精細度マルチメディアインターフェース(High-Definition Multimedia Interface:HDMI)といった規格に準じた接続部であり、モニタ等の表示装置やキーボード等の入力装置を接続可能としている。
【0027】
通信部15は、例えばローカルエリアネットワーク(Local Area Network:LAN)規格に準じた通信手段であり、情報処理装置1とローカルエリアネットワークやこれを介したインターネット等のネットワーク5との間の通信を実現する。
【0028】
なお、情報処理装置1には、汎用のサーバ向けのコンピュータやパーソナルコンピュータ等を利用することが可能であり、複数のコンピュータを用いて情報処理装置1を構成することも可能である。
3.情報処理装置の機能
次に、情報処理装置1の機能について説明する。情報処理装置1は、プログラムにしたがって動作することで、後述する各機能部を実現する。このプログラムは、コンピュータを情報処理装置1として動作又は機能させるプログラムである。情報処理装置1は、帳票の処理を行う情報処理装置である。
【0029】
図3は、情報処理装置1の機能的な構成を示すブロック図である。同図に示すように、情報処理装置1は、受付部101と、帳票データ保持部102と、文字判定部103と、学習部104と、学習済モデル保持部105と、対応判定部106と、提供部107とを備える。
【0030】
受付部101は、情報処理端末2や情報処理端末4から処理対象となる帳票ファイルを受け付ける。帳票ファイルは、スキャナ3で読み込まれた画像や情報処理端末4のカメラで撮影された画像であってもよく、テキスト(文字コード)を含むPDF(Portable Document Format)形式等であってもよい。
【0031】
また、受付部101は、提供部107が提供した記載事項と項目名との組に対する確認指示を受け付け可能に構成される。確認指示は、提供部107が提供した記載事項と項目名との組に誤りが無かったことを確認した旨を示す指示である。さらに、受付部101は、提供部107が提供した記載事項と項目名との組に対する訂正指示を受け付け可能に構成される。訂正指示は、提供部107が提供した記載事項と項目名との組に誤りがあった場合に、その訂正を指示するものである。なお、確認指示や訂正指示は、情報処理端末2や情報処理端末4から発せられるものである。
【0032】
帳票データ保持部102は、受付部101が受け付けた帳票ファイルや、この帳票ファイルに対して文字判定部103が文字の判定を行った結果であるテキストに関する情報、対応判定部106が判定した記載事項と項目名との組、提供部107が受け付けた訂正指示に含まれる訂正された記載事項と項目名との組等を、保持する。なお、帳票データ保持部102は、情報処理装置1とは別の情報処理装置に配設することも可能である。
【0033】
文字判定部103は、帳票ファイルが画像を含んで構成される場合に、該画像中の文字を光学的認識により判定可能に構成される。文字判定部103により判定された文字又は文字列は、テキストとして帳票ファイルに関連付けられて、帳票データ保持部102で保持される。
【0034】
学習部104は、受付部101が確認指示を受け付けた場合に、提供部107が提供した記載事項と項目名との組を教師データに加えて機械学習を行い、学習済モデル保持部105が保持している学習済モデルを更新可能に構成される。また、学習部104は、受付部101が訂正指示を受け付けた場合に、該訂正指示により訂正された記載事項と項目名との組を教師データに加えて機械学習を行い、学習済モデル保持部105が保持している学習済モデルを更新可能に構成される。学習済モデルは、帳票の各記載事項が、どのような項目であるのかを判定する際に、対応判定部106が用いるものである。なお、学習及び学習済モデルの例については、後述する。
【0035】
学習済モデル保持部105は、帳票の記載事項と該記載事項の項目名との組を教師データとして機械学習した学習済モデルを保持する。学習済モデル保持部105が保持する学習済モデルは、学習部104で学習が行われる毎に更新される。
【0036】
対応判定部106は、学習済モデル保持部105が保持する学習済モデルに基づいて、帳票ファイルに含まれる記載事項のそれぞれが所定の項目名のいずれに対応するかを判定可能に構成される。このとき、対応判定部106は、記載事項と項目名との組に対する確信度を算出するようにしてもよい。確信度は、記載事項と項目名との組が正しい確率である。
【0037】
提供部107は、対応判定部106が判定した記載事項と項目名との組を提供可能に構成される。このとき、提供部107は、対応判定部106が判定した記載事項と項目名との組とともに、該組に対する確信度を提供するようにしてもよく、対応判定部106が判定した記載事項と項目名との組を、確信度に応じて設定された色により表現するようにしてもよい。また、提供部107は、記載事項と項目名との組を、CSV(Comma Separated Value)形式等のファイルとして提供してもよい。
【0038】
4.情報処理装置の動作
次に、情報処理装置1の動作について説明する。
図4は、情報処理装置1の動作の流れを示すアクティビティ図である。
【0039】
情報処理装置1は、情報処理端末2又は情報処理端末4から帳票ファイルがアップロードされると、受付部101が当該帳票ファイルを受け付けて(A101)、帳票データ保持部102に保持する。そして、受け付けた帳票ファイルが画像であった場合には、文字判定部103が、OCR処理により文字の判定を行う(A102)。
【0040】
続いて、対応判定部106が、帳票ファイルに含まれる記載事項と項目名との対応を判定し(A103)、その判定結果を提供部107が、情報処理端末2又は情報処理端末4に提供する(A104)。
【0041】
提供部107は、例えば、
図5に示す画面Sを、情報処理端末2又は情報処理端末4に表示させることで、判定結果を提供する。
図5は、判定結果を示す画面例を示した図である。同図に示すように、画面Sには、帳票ファイルに基づく帳票画像501とともに、判定結果を示すテーブルTが表示されている。テーブルTは、例えば、項目名として「請求日」、対応する記載事項として「2020年8月1日」、これらの対応の確信度として「82.5」が表示されている。記載事項の「2020年8月1日」は、帳票画像501中の記載事項C1に対応するものである。
【0042】
また、帳票画像501中の記載事項C1、記載事項C2、記載事項C3は、それぞれ対応する確信度に応じて、異なる色で表示させるようにしてもよい。
【0043】
項目名と記載事項の組に誤りがあった場合、例えば、項目名「請求日」に対する記載事項に誤りがあった場合には、テーブルTの項目名「請求日」が含まれている行を選択した上で、帳票画像中の記載事項C2等を選択することで、情報処理端末2又は情報処理端末4を操作している担当者は、項目名と記載事項の組の訂正を指示することができる。また、訂正が不要である場合には、担当者は、確認指示を通知する操作を行う。この操作は、図示しない確認ボタンの押下により行われる。
【0044】
担当者が、項目名と記載事項の組の訂正を指示した場合には、受付部101が訂正指示を受け付けて、対応判定部106が、当該訂正指示に基づいて、項目名と記載事項の組の訂正を行う(A105)。
【0045】
その後、学習部104が、対応判定部106が判定した項目名と記載事項の組又は訂正された項目名と記載事項の組を教師データとして学習を行い、その結果に応じて、学習済モデル保持部105が保持する学習済モデルを更新し(A106)、情報処理装置1は、A101で受け付けた帳票ファイルに対する処理を終了する。
【0046】
5.学習と判定の例
次に、学習部104による学習と、対応判定部106による判定の例について説明する。
図6乃至
図8は、学習と判定の例を説明するための図である。
【0047】
学習部104は、まず、帳票ファイルに含まれる各記載事項の特徴量を求める。特徴量は、例えば、文字又は文字列の配置された位置、字体(フォント)、内容、色、周辺の罫線の有無等のN種類のものが求められる。具体的には、機械学習のための特徴量は、記載事項の絶対座標と、記載事項の相対座標と、項目名の類義語との位置ベクトル位置と、記載事項の文字ベクトルとのいずれか2つ以上の組み合わせである。したがてって特徴量は、N次元の値となり、これをN次元の空間で表したとすれば、
図6に示すようになる。
図6は、帳票画像502中の記載事項C4、記載事項C5、記載事項C6のそれぞれに対応する特徴量F4、特徴量F5、特徴量F6がN次元空間に配置されている例を示している。なお、特徴量F4、特徴量F5、特徴量F6のN次元空間への配置は、説明のためのものであり、学習部104が特徴量F4、特徴量F5、特徴量F6のN次元空間への配置を行う必要はない。
【0048】
学習部104は、複数の帳票ファイルに含まれる各記載事項の特徴量を求めると、これらの特徴量から各項目が配置されると推定される範囲を特定する。この範囲をN次元空間で表すと、
図7に示すようになる。
図7に示す範囲R1は、特徴量F4と同じ「請求日」に対応する特徴量を多く含む領域であり、範囲R2は、特徴量F5と同じ「請求金額」に対応する特徴量を多く含む領域である。また、範囲R3は、特徴量F6と同じ「銀行口座」に対応する特徴量を多く含む領域である。学習済モデル保持部105が保持する学習済モデルは、範囲R1、範囲R2、範囲R3を示す値となる。
【0049】
一方、対応判定部106は、まず、対象となる帳票ファイルに含まれる各記載事項の特徴量を求める。そして、求めた特徴量が学習済モデルのどの範囲に含まれるかによって、各記載事項に対応する項目名を判定する。例えば、
図8に示すように、帳票画像503の記載事項C7、記載事項C8、記載事項C9のそれぞれから求めた特徴量F7、特徴量F8、特徴量F9が、それぞれ、範囲R1、範囲R2、範囲R3に含まれた場合、範囲R1に含まれる特徴量F7に対応する記載事項C7の項目名は「請求日」であると判定し、範囲R2に含まれる特徴量F8に対応する記載事項C8の項目名は「請求金額」であると判定し、範囲R3に含まれる特徴量F9に対応する記載事項C9の項目名は「銀行口座」であると判定する。
【0050】
また、対応判定部106は、記載事項の特徴量が学習済モデルの範囲中のどの位置に存在するかによって確信度を求めることができる。具体的には、記載事項の特徴量が存在する位置が、学習済モデルの範囲の中心に近いほど、確信度が高くなる。
【0051】
5.その他
本発明は、次に記載の各態様で提供されてもよい。
前記情報処理装置において、文字判定部を備え、前記文字判定部は、前記帳票ファイルが画像を含んで構成される場合に、該画像中の文字を光学的認識により判定可能に構成される情報処理装置。
前記情報処理装置において、受付部と、学習部とを備え、前記受付部は、前記提供部が提供した記載事項と項目名との組に対する確認指示を受け付け可能に構成され、前記学習部は、前記受付部が確認指示を受け付けた場合に、前記提供部が提供した記載事項と項目名との組を教師データに加えて機械学習を行い、前記学習済モデルを更新可能に構成される情報処理装置。
前記情報処理装置において、受付部と、学習部とを備え、前記受付部は、前記提供部が提供した記載事項と項目名との組に対する訂正指示を受け付け可能に構成され、前記学習部は、前記受付部が訂正指示を受け付けた場合に、該訂正指示により訂正された記載事項と項目名との組を教師データに加えて機械学習を行い、前記学習済モデルを更新可能に構成される情報処理装置。
前記情報処理装置において、前記対応判定部は、記載事項と項目名との組に対する確信度を算出し、前記提供部は、前記対応判定部が判定した記載事項と項目名との組とともに、該組に対する確信度を提供する情報処理装置。
前記情報処理装置において、前記提供部は、前記対応判定部が判定した記載事項と項目名との組を、前記確信度に応じて設定された色により表現する情報処理装置。
前記情報処理装置において、前記機械学習のための特徴量は、記載事項の絶対座標と、記載事項の相対座標と、項目名の類義語との位置ベクトル位置と、記載事項の文字ベクトルとのいずれか2つ以上の組み合わせである情報処理装置。
コンピュータを情報処理装置として動作させるプログラムであって、コンピュータを前記情報処理装置として機能させるプログラム。
もちろん、この限りではない。
【0052】
これらの各態様によれば、帳票の処理を行う毎に、学習を行うため、事前に多量の教師データを準備することなく、情報処理装置1を利用することが可能となり、また、帳票の処理を繰り返す毎に、学習の効果が大きくなり、判定に対する確信度が向上することとなる。
【符号の説明】
【0053】
1 :情報処理装置
2 :情報処理端末
3 :スキャナ
4 :情報処理端末
5 :ネットワーク
11 :処理部
12 :記憶部
13 :一時記憶部
14 :外部装置接続部
15 :通信部
16 :通信バス
101 :受付部
102 :帳票データ保持部
103 :文字判定部
104 :学習部
105 :学習済モデル保持部
106 :対応判定部
107 :提供部
501 :帳票画像
502 :帳票画像
503 :帳票画像
C1 :記載事項
C2 :記載事項
C3 :記載事項
C4 :記載事項
C5 :記載事項
C6 :記載事項
C7 :記載事項
C8 :記載事項
C9 :記載事項
F4 :特徴量
F5 :特徴量
F6 :特徴量
F7 :特徴量
F8 :特徴量
F9 :特徴量
R1 :範囲
R2 :範囲
R3 :範囲
S :画面
T :テーブル