IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 信越ポリマー株式会社の特許一覧 ▶ 国立大学法人信州大学の特許一覧

特開2022-33711金属含有液の処理方法、及び有機溶剤の製造方法
<>
  • 特開-金属含有液の処理方法、及び有機溶剤の製造方法 図1
  • 特開-金属含有液の処理方法、及び有機溶剤の製造方法 図2
  • 特開-金属含有液の処理方法、及び有機溶剤の製造方法 図3
  • 特開-金属含有液の処理方法、及び有機溶剤の製造方法 図4
  • 特開-金属含有液の処理方法、及び有機溶剤の製造方法 図5
  • 特開-金属含有液の処理方法、及び有機溶剤の製造方法 図6
  • 特開-金属含有液の処理方法、及び有機溶剤の製造方法 図7
  • 特開-金属含有液の処理方法、及び有機溶剤の製造方法 図8
  • 特開-金属含有液の処理方法、及び有機溶剤の製造方法 図9
  • 特開-金属含有液の処理方法、及び有機溶剤の製造方法 図10
  • 特開-金属含有液の処理方法、及び有機溶剤の製造方法 図11
  • 特開-金属含有液の処理方法、及び有機溶剤の製造方法 図12
  • 特開-金属含有液の処理方法、及び有機溶剤の製造方法 図13
  • 特開-金属含有液の処理方法、及び有機溶剤の製造方法 図14
  • 特開-金属含有液の処理方法、及び有機溶剤の製造方法 図15
  • 特開-金属含有液の処理方法、及び有機溶剤の製造方法 図16
  • 特開-金属含有液の処理方法、及び有機溶剤の製造方法 図17
  • 特開-金属含有液の処理方法、及び有機溶剤の製造方法 図18
  • 特開-金属含有液の処理方法、及び有機溶剤の製造方法 図19
  • 特開-金属含有液の処理方法、及び有機溶剤の製造方法 図20
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022033711
(43)【公開日】2022-03-02
(54)【発明の名称】金属含有液の処理方法、及び有機溶剤の製造方法
(51)【国際特許分類】
   B01D 15/00 20060101AFI20220222BHJP
   B01J 20/12 20060101ALI20220222BHJP
   C07C 255/03 20060101ALI20220222BHJP
   C07C 253/34 20060101ALI20220222BHJP
   C07C 31/10 20060101ALI20220222BHJP
   C07C 29/94 20060101ALI20220222BHJP
   C07C 43/13 20060101ALI20220222BHJP
   C07C 41/58 20060101ALI20220222BHJP
   C07C 69/16 20060101ALI20220222BHJP
   C07C 67/56 20060101ALI20220222BHJP
【FI】
B01D15/00 J
B01J20/12 A
C07C255/03
C07C253/34
C07C31/10
C07C29/94
C07C43/13 Z
C07C41/58
C07C69/16
C07C67/56
【審査請求】未請求
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2021129944
(22)【出願日】2021-08-06
(31)【優先権主張番号】P 2020137380
(32)【優先日】2020-08-17
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000190116
【氏名又は名称】信越ポリマー株式会社
(71)【出願人】
【識別番号】504180239
【氏名又は名称】国立大学法人信州大学
(74)【代理人】
【識別番号】100161207
【弁理士】
【氏名又は名称】西澤 和純
(74)【代理人】
【識別番号】100152272
【弁理士】
【氏名又は名称】川越 雄一郎
(74)【代理人】
【識別番号】100152146
【弁理士】
【氏名又は名称】伏見 俊介
(72)【発明者】
【氏名】小田嶋 智
(72)【発明者】
【氏名】岡田 友彦
(72)【発明者】
【氏名】古谷 有彩
(72)【発明者】
【氏名】庵 美奈
【テーマコード(参考)】
4D017
4G066
4H006
【Fターム(参考)】
4D017AA03
4D017AA06
4D017BA12
4D017BA13
4D017BA15
4D017CA05
4D017CB01
4D017DA01
4D017EA01
4G066AA63B
4G066BA26
4G066BA36
4G066CA12
4G066CA45
4G066CA46
4G066CA47
4G066CA49
4G066CA50
4G066DA07
4H006AA02
4H006AB84
4H006AD17
4H006AD33
4H006BB14
4H006BB15
4H006BB17
4H006BB21
4H006BP10
4H006FE11
4H006GP01
4H006KC12
(57)【要約】
【課題】有機溶剤に含まれる金属イオンを吸着して除去することが可能な、金属含有液の処理方法及び有機溶剤の製造方法を提供する。
【解決手段】有機溶剤の存在下で、金属イオンを含む処理対象液と、H型マガディアイトとを接触させ、前記金属イオンを前記H型マガディアイトに吸着させることにより、前記処理対象液から前記金属イオンの少なくとも一部が除去された処理済液を得る、金属含有液の処理方法;前記処理方法により、前記有機溶剤を含有する前記処理済液を得て、前記処理済液と、前記処理済液に接触した前記H型マガディアイトとを分離することにより、前記金属イオンの含有量が低減した有機溶剤を得ることを含む、有機溶剤の製造方法。
【選択図】なし
【特許請求の範囲】
【請求項1】
有機溶剤の存在下で、金属イオンを含む処理対象液と、H型マガディアイトとを接触させ、
前記金属イオンを前記H型マガディアイトに吸着させることにより、
前記処理対象液から前記金属イオンの少なくとも一部が除去された処理済液を得ることを含む、金属含有液の処理方法(但し、前記有機溶剤がPGMEAである場合を除く)。
【請求項2】
前記H型マガディアイトはチャンネル構造を備え、前記金属イオンを前記チャンネル構造内に吸着させる、請求項1に記載の金属含有液の処理方法。
【請求項3】
前記チャンネル構造は、酸素八員環骨格を有する、請求項2に記載の金属含有液の処理方法。
【請求項4】
前記処理対象液に酸を含ませることにより、
前記H型マガディアイトの層間が閉じた状態を維持し、前記金属イオンを前記チャンネル構造に対して優先的に吸着させる、請求項2又は3に記載の金属含有液の処理方法。
【請求項5】
前記金属イオンが、遷移金属、アルカリ金属、及びアルカリ土類金属から選択される1種以上のイオンを含む、請求項1~4の何れか一項に記載の金属含有液の処理方法。
【請求項6】
前記処理対象液に含まれる前記金属イオンが錯体を形成している、請求項1~5の何れか一項に記載の金属含有液の処理方法。
【請求項7】
前記錯体に水分子が含まれる、請求項6に記載の金属含有液の処理方法。
【請求項8】
前記有機溶剤が極性有機溶剤である、請求項1~7の何れか一項に記載の金属含有液の処理方法。
【請求項9】
請求項1~8の何れか一項に記載の処理方法により、前記有機溶剤を含有する前記処理済液を得て、前記処理済液と、前記処理済液に接触した前記H型マガディアイトとを分離することにより、前記金属イオンの含有量が低減した有機溶剤を得ることを含む、有機溶剤の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、金属含有液の処理方法、及び有機溶剤の製造方法に関する。
【背景技術】
【0002】
水溶液中に含まれる金属イオンを吸着する金属イオン吸着剤及びその製造方法が特許文献1に開示されている。この金属イオン吸着剤は、磁性粒子内包シリカ中空粒子表面に、金属イオンを吸着可能な官能基をもつシラン化合物がシロキサン結合されたものである。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2014-171929号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1では、水溶液中の金属イオンを吸着する実用的な材料として、陽イオン交換性の粘土鉱物が挙げられており、このような粘土鉱物に対して特許文献1の金属イオン吸着剤の方が水溶液中からの回収が容易であるとされている。その一方、粘土鉱物や層状ポリケイ酸塩(層状ケイ酸塩)等の層構造を有する無機物は、天然から産出し、簡便な合成法も確立されているので、入手が容易な金属吸着剤の材料としての魅力は相変わらず大きい。
【0005】
ところで、粘土鉱物や層状ポリケイ酸塩の金属吸着剤としての適用は、水溶液に含まれる金属イオンに対して専ら行われてきた。本発明者らは、有機溶剤に含まれる金属イオンを除去することが、今後の産業に資するところが大きいと考え、鋭意検討した。
その結果、層状ポリケイ酸塩を酸処理することにより得られるH型マガディアイトは、有機溶剤存在下で、層構造の厚さが増加すること、すなわち層内のチャンネル構造の内部空間が膨らむことを見出した。さらに検討を進めたところ、膨らんだチャンネル構造の中に金属イオンを吸着可能であることを見出し、本発明を完成させた。
【0006】
本発明は、有機溶剤に含まれる金属イオンを吸着して除去することが可能な、金属含有液の処理方法及び有機溶剤の製造方法を提供する。
【課題を解決するための手段】
【0007】
[1] 有機溶剤の存在下で、金属イオンを含む処理対象液と、H型マガディアイトとを接触させ、前記金属イオンを前記H型マガディアイトに吸着させることにより、前記処理対象液から前記金属イオンの少なくとも一部が除去された処理済液を得ることを含む、金属含有液の処理方法(但し、前記有機溶剤がPGMEAである場合を除く)。
[2] 前記H型マガディアイトはチャンネル構造を備え、前記金属イオンを前記チャンネル構造内に吸着させる、[1]に記載の金属含有液の処理方法。
[3] 前記チャンネル構造は、酸素八員環骨格を有する、[2]に記載の金属含有液の処理方法。
[4] 前記処理対象液に酸を含ませることにより、前記H型マガディアイトの層間が閉じた状態を維持し、前記金属イオンを前記チャンネル構造に対して優先的に吸着させる、[2]又は[3]に記載の金属含有液の処理方法。
[5] 前記金属イオンが、遷移金属、アルカリ金属、及びアルカリ土類金属から選択される1種以上のイオンを含む、[1]~[4]の何れか一項に記載の金属含有液の処理方法。
[6] 前記処理対象液に含まれる前記金属イオンが錯体を形成している、[1]~[5]の何れか一項に記載の金属含有液の処理方法。
[7] 前記錯体に水分子が含まれる、[6]に記載の金属含有液の処理方法。
[8] 前記有機溶剤が極性有機溶剤である、[1]~[7]の何れか一項に記載の金属含有液の処理方法。
[9] [1]~[8]の何れか一項に記載の処理方法により、前記有機溶剤を含有する前記処理済液を得て、前記処理済液と、前記処理済液に接触した前記H型マガディアイトとを分離することにより、前記金属イオンの含有量が低減した有機溶剤を得ることを含む、有機溶剤の製造方法。
【0008】
以下、本発明に関連する態様である。
[10] 有機溶剤と、H型マガディアイトとを含む金属吸着剤組成物。
[11] H型マガディアイトと、前記H型マガディアイトのチャンネル構造内に含まれる有機化合物と、を備えた金属吸着剤。
[12] [10]に記載の金属吸着剤組成物又は[11]に記載の金属吸着剤を収めた処理容器を備えた金属吸着装置。
[13] H型マガディアイトと、前記H型マガディアイトのチャンネル構造内に含まれる、Naイオン以外の金属イオンと、を備えた複合体。
[14] H型マガディアイトと、前記H型マガディアイトのチャンネル構造内に含まれるNaイオン以外の金属イオン及び溶媒化合物と、を備えた複合体に対して、前記チャンネル構造内から前記溶媒化合物を除去する処理を行うことにより、前記複合体中で、前記金属イオンの化学状態を変化させた金属含有物を得ることを含む、金属含有物の製造方法。
【発明の効果】
【0009】
本発明の金属含有液の処理方法によれば、金属含有液に含まれる金属イオンをH型マガディアイトに吸着させることができる。
本発明の有機溶剤の製造方法によれば、金属イオンの少なくとも一部が除去された有機溶剤を得ることができる。
本発明に関連する金属吸着剤組成物および金属吸着剤によれば、処理対象液や処理対象ガスに含まれる金属イオンを吸着することができる。
本発明に関連する複合体は、チャンネル構造内に含まれる金属イオンを反応させる反応場として利用し得る。ただし、Naイオンはマガディアイトが本来的に有する金属イオンなので、本発明の複合体が有する金属イオンには該当しない。
本発明に関連する金属含有物の製造方法にあっては、H型マガディアイトを金属イオンの反応場として利用することにより、金属イオンの化学状態を変化させてなる金属含有物を得ることができる。
【図面の簡単な説明】
【0010】
図1】マガディアイト(Na型)を酸処理することによりH型マガディアイトが得られることを表した、マガディアイトの層構造を示す模式図である。
図2】H型マガディアイトを有機溶剤存在下で金属イオンと接触させることにより、H型マガディアイトのチャンネル構造内に金属イオンが吸着することを表した、マガディアイトの層構造を示す模式図である。
図3】H型マガディアイトの格子面間隔d(001)が、アセトニトリルの滴下によって増加し、乾燥によって減少したことを示すXRD回折の測定結果である。
図4】鉄アコ錯体を吸着したH型マガディアイトの室温乾燥試料にはアセトニトリルが残留していないことを示す、FT-IRの測定結果である。
図5】鉄アコ錯体を吸着したH型マガディアイトの120℃乾燥試料にはアセトニトリルが残留していないことを示す、FT-IRの測定結果である。
図6】鉄アコ錯体を吸着したH型マガディアイトの室温乾燥試料の格子面間隔d(001)が増加していることを示すXRD回折の測定結果である。
図7】鉄アコ錯体を吸着したH型マガディアイトの120℃乾燥試料の格子面間隔d(001)が増加していることを示すXRD回折の測定結果である。
図8】鉄アコ錯体を吸着したH型マガディアイトの比表面積が減少していることを示す窒素吸着試験の測定結果である。
図9】Langmuir型吸着等温式である。
図10】鉄アコ錯体のH型マガディアイトへの吸着等温線を示すグラフである。
図11】鉄アコ錯体のH型マガディアイトへの吸着に関するLangmuirプロットである。
図12】鉄アコ錯体が脱離したH型マガディアイトの乾燥試料の格子面間隔d(001)が減少していることを示すXRD回折の測定結果である。
図13】H型マガディアイトの格子面間隔d(001)が、IPA、PGMEの滴下によって増加したことを示すXRD回折の測定結果である。
図14】H型マガディアイトの格子面間隔d(001)が、銀イオンを含むIPA又はPGMEを処理した後で増加したことを示すXRD回折の測定結果である。
図15】銀イオンを含むIPA又はPGMEを処理したH型マガディアイトの内部に溶媒が吸着していないことを示す、FT-IRの測定結果である。
図16】H型マガディアイトの格子面間隔d(001)が、鉄イオン,Alイオンを含むIPA又はPGMEを処理した後で増加したことを示すXRD回折の測定結果である。
図17】鉄イオン,Alイオンを含むIPA又はPGMEを処理したH型マガディアイトの内部に溶媒が吸着していないことを示す、FT-IRの測定結果である。
図18】金属イオンを吸着したH型マガディアイトの比表面積が減少していることを示す窒素吸着試験の測定結果である。
図19】鉄イオンを吸着したH型マガディアイトのUV-Vis吸収スペクトルの測定結果である。
図20】Alイオンを吸着したH型マガディアイトの27Al固体NMRの測定結果である。
【発明を実施するための形態】
【0011】
≪金属含有液の処理方法≫
本発明の第一態様は、有機溶剤の存在下で、金属イオンを含む処理対象液と、H型マガディアイトとを接触させ、前記金属イオンを前記H型マガディアイトに吸着させることにより、前記処理対象液から前記金属イオンの少なくとも一部が除去された処理済液を得ることを含む、金属含有液の処理方法(但し、前記有機溶剤がPGMEAである場合を除く。)である。
【0012】
有機溶剤はH型マガディアイトのチャンネル構造内に含まれていることが好ましい。H型マガディアイトのチャンネル構造内に有機溶剤が含まれると、チャンネル構造の内部空間が拡大し、金属イオンが吸着し易い空間となる。H型マガディアイトのチャンネル構造内に有機溶剤が安定に存在するためには、処理対象液に有機溶剤が充分に含まれていることが好ましい。
【0013】
[処理対象液]
処理対象液に含まれる有機溶剤は特に制限されず、接触したH型マガディアイトの層の厚さを増加させ得る有機溶剤が好ましく、例えば、極性有機溶剤が好ましい。
極性有機溶媒としては、例えば、アセトニトリル、アセトン、酢酸エチル、クロロホルム、ジクロロメタン、ジエチルエーテル、テトラヒドロフラン、酢酸エチル、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性溶剤や、イソプロパノール、エタノール、メタノール、酢酸、プロピレングリコール1-モノメチルエーテル(PGME)等のプロトン性溶剤が挙げられる。
これらの有機溶剤の中でも、H型マガディアイトの層間が閉じた状態を維持し易く、チャンネル構造を優先的に拡げることが容易であることから、非プロトン性溶剤が好ましい。
【0014】
処理対象液に含まれる金属イオンは、1種類でもよいし、2種類以上でもよい。
具体的な金属イオンは特に制限されず、化学的な性質で分類すれば、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等のアルカリ金属;
カルシウム、ストロンチウム、バリウム、ラジウム等のアルカリ土類金属;
ベリリウム、マグネシウム、亜鉛、カドミウム、水銀等のマグネシウム族元素;
アルミニウム、ガリウム、インジウム等のアルミニウム族元素;
イットリウム、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム等の希土類元素;
チタン、ジルコニウム、スズ、ハフニウム、鉛、トリウム等のスズ族元素;
鉄、コバルト、ニッケル等の鉄族元素;
バナジウム、ニオブ、タンタル等の土酸族元素;
クロム、モリブデン、タングステン、ウラン等のクロム族元素;マンガン、レニウム等のマンガン族元素;
銅、銀、金等の貴金属;
ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金等の白金族元素;
ウラン、トリウム、ラジウム、ラドン、アクチノイド等の天然放射性元素;
ネプツニウム、プルトニウム、アメリシウム、キュリウム、バークリウム、カリホルニウム等の超ウラン元素;等のイオンが挙げられる。
【0015】
また、処理対象液に含まれる金属イオンとしては、遷移金属(周期表の第3族~第12族)、アルカリ金属(周期表の第1族)及びアルカリ土類金属(周期表の第2族)から選択される1種以上が挙げられる。
【0016】
処理対象液に含まれる金属イオンは、錯体を形成していてもよい。金属イオンを含む錯体は、金属イオンの正電荷が中和された中性の錯体が好ましい。
錯体を構成する金属イオン以外の配位子は特に制限されず、有機物であってもよいし、無機物であってもよいし、水分子であってもよいし、その他の溶媒の分子であってもよい。
また、処理対象液には金属イオンのカウンターイオン(カウンターアニオン)が含まれてもよい。この場合、H型マガディアイトに吸着した金属イオンの近傍にはカウンターアニオンが存在してもよい。つまり、金属イオンと同時にカウンターアニオンが吸着してもよい。
【0017】
処理対象液には水が含まれていてもよい。処理対象液に含まれる水は、錯体を構成する水分子であってもよいし、溶媒としてのバルクの水であってもよい。
処理対象液に含まれる水は、同じ処理対象液に含まれる有機溶剤と混和していることが好ましい。つまり、処理対象液に含まれる有機溶剤が極性である場合、その有機溶剤と混和した水を含んでいてもよい。
【0018】
処理対象液に水が含まれる場合、処理対象液の総質量に対する水の含有量は、例えば、40質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下がさらに好ましく、10質量%以下が特に好ましい。下限値は0質量%であってもよい。これらの好適な範囲であると、後述する有機溶剤の製造方法において、水分子を除去する手間が少なくなる。
【0019】
処理対象液に接触させるH型マガディアイトは、公知の層状ポリケイ酸塩であるマガディアイト(NaSi1429・nHO)が有するNaイオンの少なくとも一部をプロトン(H)に置換したものである。Naイオンが置換されているので厳密には塩ではないとされることもあるが、本明細書では、厳密さを脇において、H型マガディアイトも層状ケイ酸塩と表記する場合がある。
【0020】
マガディアイトは天然に産出し、その水熱合成法も公知である。水熱合成法としては、シリカ材料を含むアルカリ水溶液を耐熱・耐圧容器に収めて、140~160℃で数日間処理する方法が挙げられる。シリカ材料としては、例えば、シリカゲルやコロイダルシリカ等が挙げられる。アルカリ源としては、例えば、水酸化ナトリウムや炭酸ナトリウム及び炭酸水素ナトリウム等の無機アルカリが挙げられる。水熱合成法により得られた結晶がマガディアイトであることはXRD回折パターンを調べることにより確認することができる。
【0021】
マガディアイトの層構造は、単位となる層(単位層)が複数積層してなる。単位層は、SiO四面体が二次元的に重合してなるシートが複数枚積み重なって形成されている。
図1は、マガディアイト(Na-Mag)の第一層と第二層が積層した層構造の一例を表す模式図(便宜上、図示の化学結合は必ずしも正確ではない。)である。各層の表面にはシラノール基(≡Si-OH)と、層間カチオンであるNaイオンと電気的中性を保っているイオン化した酸素(≡Si-O)が存在する。また、各層の内部には、酸素八員環からなるチャンネル構造が存在し、内部には水分子が存在すると考えられている。
【0022】
H型マガディアイト(H-Mag)は、マガディアイトを公知方法で酸処理することにより得られる。その理論的な組成式は、HSi1429・nHO(n<0.3)と考えられている。
酸処理に用いる酸としては、例えば、塩酸、硝酸等の無機酸が挙げられる。
具体的な酸処理の方法としては、マガディアイトを分散した水溶液中に酸を滴下して、イオン交換を行う方法が挙げられる。等量点まで酸を滴下することにより、上記の理論的な組成式に近いH型マガディアイトが得られる。
【0023】
H型マガディアイトにあっては、層間のNaイオンがプロトンに置換されているため、層表面のシラノール基による水素結合や層間のファンデルワールス力により、各層の表面が互いに近づき、層間が閉じた状態となる。このため、層間距離がゼロに近しいので、H型マガディアイトのXRD回折の格子面間隔d(001)は、マガディアイトの単位層の厚さの近似値である。
【0024】
本発明者らは、有機溶剤に接触した状態のH型マガディアイトの格子面間隔d(001)を測定したところ、乾燥状態と比べて、明らかに増加することを見出した。XRD回折の測定結果において、有機溶剤が上記水素結合やファンデルワールス力を打ち破って単位層同士の層間に入り込んだ様子はないので、層間距離ではなく、単位層の厚さが増加したことが分かった。単位層の厚さが増加するためにはチャンネル構造の内部空間が膨らんだと考えるのが妥当である。つまり、有機溶剤がチャンネル構造内に入り、その内部空間を膨らませることが分かった。
【0025】
H型マガディアイトに有機溶剤を含む処理対象液を接触させることにより、H型マガディアイトの層内のチャンネル構造に有機溶剤が流入する。この際、処理対象液に含まれる金属イオンは、有機溶剤とともにチャンネル構造内に収まるか、或いは先行してチャンネル構造内に流入した有機溶剤の一部または全部と交換(置換)されてチャンネル構造内に収まる。この様子の一例を図2の模式図(便宜上、図示の化学結合は必ずしも正確ではない。)に示す。図示例では、金属イオンがチャンネル構造内に吸着した様子を示している。チャンネル構造内において、金属イオンに水和した水が加水分解されて生成する水酸基(OH)が金属イオンの正電荷と中和すると考えられる。
【0026】
処理対象液とH型マガディアイトとを接触させる方法は特に制限されず、例えば、処理対象液にH型マガディアイトの粉末を添加し、攪拌する方法が挙げられる。
処理対象液の総質量に対するH型マガディアイトの添加量は特に制限されず、容易に攪拌する観点から、例えば、1~10質量%とすることができる。
また、別の接触方法として、H型マガディアイトを充填したカラムに、処理対象液を流通させる方法が挙げられる。この際、処理対象液を循環させてカラムに複数回接触させてもよい。
処理対象液とH型マガディアイトとの接触時間は特に制限されず、例えば、数分~数十時間の範囲で、金属イオンの吸着量に応じて適宜調整すればよい。
処理対象液とH型マガディアイトとを接触させる際の温度は特に制限されず、例えば、4℃~40℃の範囲で調整すればよい。
【0027】
後述する実施例で示すように、H型マガディアイトにおける金属イオンの吸着力は非常に優れるので、厚さ1μm~100μmのH型マガディアイトからなる層に、処理対象液を1度通過させるだけで、処理対象液に含まれる金属イオンを充分に吸着させることが可能である。
【0028】
処理対象液には、塩酸、硫酸、硝酸等の無機酸を含ませてもよい。処理対象液を酸性とすることにより、上述のようにH型マガディアイトの層間を確実に閉じることができるので、金属イオンをチャンネル構造内に優先的に吸着させることができる。この観点から、処理対象液に水が含まれる場合、その処理対象液のpHは、4以下が好ましく、3以下がより好ましく、2以下がさらに好ましい。
なお、後述するように、金属イオンを吸着したH型マガディアイトが酸濃度の高い酸性水に接触すると、酸の影響によりH型マガディアイトのチャンネル構造内から金属イオンが脱離する。この脱離を防ぐ観点から、水を含む処理対象液のpHは1以上が好ましい。
【0029】
以上の処理方法により、処理対象液である金属含有液から金属イオンの少なくとも一部をH型マガディアイトに吸着させることにより除去した処理済液を得ることができる。
【0030】
≪有機溶剤の製造方法≫
本発明の第二態様は、第一態様の処理方法により、前記有機溶剤を含有する前記処理済液を得て、前記処理済液と、前記処理済液に接触した前記H型マガディアイトとを分離することにより、前記金属イオンの含有量が低減した有機溶剤を得ることを含む、有機溶剤の製造方法である。
【0031】
第一態様の処理方法において処理対象液にH型マガディアイトを添加した場合、得られた処理済液には金属イオンが吸着したH型マガディアイトが含まれる。このH型マガディアイトを処理済液と分離する方法としては、例えば、濾過、デカンテーション、遠心分離等の公知の固液分離方法を適用することができる。
【0032】
第一態様の処理方法においてH型マガディアイトを充填したカラムに処理対象液を流通させた場合、カラムから流出する処理済液は、カラム内に残るH型マガディアイトと自然に分離される。つまり、カラム方式を採用すると、金属イオンの吸着処理と、処理液とH型マガディアイトの分離処理を連続的に行うことができる。
【0033】
また、濾紙や高分子膜等の液体透過膜上に形成したH型マガディアイトからなる吸着層に処理対象液を流通させてもよい。吸着層の厚さは例えば1μm~1000μmが挙げられ、1μm~100μmとしてもよい。H型マガディアイトの個々の粒子径は1μm~100μm程度であるので、H型マガディアイトの粒子が積み上がらない程度に液体透過膜上に均一に分散させると、1μm~100μm程度の吸着層となる。具体的には、分散媒にH型マガディアイトが分散した分散液を、液体透過膜で濾過することにより、H型マガディアイトが均一に分散した吸着層を形成することができる。
【0034】
処理済液に水が含まれる場合、公知の蒸留方法によって、水を除去した有機溶剤を得ることができる。また、処理済液に複数種類の有機溶剤が含まれる場合においても、公知の蒸留方法によって種類毎に分離することができる。
【0035】
本態様の処理済液から分離されたH型マガディアイトは、そのチャンネル構造内に金属イオンが含まれた複合体である。H型マガディアイトのチャンネル構造内に吸着した金属イオンは、酸性水溶液に接触させることにより脱離させることができる。つまり、酸処理によってH型マガディアイトの吸着力を回復させて、再利用することができる。
前記複合体から金属イオンを脱離させるために使用する酸性水溶液としては、硝酸、塩酸、硫酸等の無機酸水溶液が挙げられる。金属イオンの脱離を促進する観点から、酸性水溶液のpHは1未満であることが好ましい。また、上記無機酸水溶液の酸濃度としては、0.2N以上が好ましく、0.3N以上がより好ましく、0.6N以上がさらに好ましい。
【0036】
≪金属吸着剤組成物≫
本発明に関連する第三態様は、有機溶剤と、H型マガディアイトとを含む金属吸着剤組成物である。
金属吸着剤組成物にあっては、H型マガディアイトは有機溶剤と接触した状態にある。
この状態であると、前述したようにH型マガディアイトの層間は閉じ、有機溶剤が内部に入ったチャンネル構造は拡がった状態にある。このような金属吸着剤組成物に、金属イオンが接触した場合、金属イオンはH型マガディアイトのチャンネル構造内に吸着される。
金属吸着剤組成物を構成する有機溶剤としては、第一態様で例示したものが挙げられる。
金属吸着剤組成物に吸着させ得る金属イオンとしては、第一態様で例示したものが挙げられる。
金属吸収剤組成物を構成する有機溶剤の質量M1とH型マガディアイトの質量M2との質量比は特に制限されず、例えば、M1:M2=1:100~100:1とすることができる。少なくとも、金属吸着剤組成物を構成するH型マガディアイトの全体が有機溶剤によって湿る程度に互いに接触していることが好ましい。
金属吸着剤組成物の使用方法としては、例えば、金属吸着剤組成物と処理対象液とを接触させる方法、前述した処理対象液とは異なる「金属イオンを含む液体又はガス」を金属吸着剤組成物に接触させる方法等が挙げられる。上記液体は有機溶剤を含んでいてもよいし、含んでいなくてもよい。上記液体が有機溶剤を含んでいる場合、その有機溶剤が、金属吸着剤組成物に含まれる前記有機溶剤と同じであると、H型マガディアイトのチャンネル構造の拡がりを維持し易いので好ましい。
【0037】
≪金属吸着剤≫
本発明に関連する第四態様は、H型マガディアイトと、前記H型マガディアイトのチャンネル構造に含まれる有機化合物と、を備えた金属吸着剤である。
本態様の金属吸着剤が、第三態様の金属吸着剤組成物と異なる点は、バルクの有機化合物からなる有機溶剤を必ずしも含まなくてよい点である。つまり、H型マガディアイトのチャンネル構造内に有機化合物が含まれていればよく、H型マガディアイトの外側にこれを含む有機溶剤があってもよいし、なくてもよい。チャンネル構造内に有機化合物が含まれていることにより、チャンネル構造の内部空間が拡がった状態になっている。このように拡がったチャンネル構造を有するH型マガディアイトは、金属吸着剤として金属イオンを吸着し易い。
金属吸着剤を構成する有機化合物としては、第一態様で例示した有機溶剤を構成する有機化合物が挙げられる。
金属吸着剤に吸着させ得る金属イオンとしては、第一態様で例示したものが挙げられる。
金属吸着剤の使用方法としては、例えば、金属吸着剤と処理対象液とを接触させる方法、前述した処理対象液とは異なる「金属イオンを含む液体又はガス」を金属吸着剤に接触させる方法等が挙げられる。上記液体は有機溶剤を含んでいてもよいし、含んでいなくてもよい。上記液体が有機溶剤を含んでいる場合、その有機溶剤を構成する有機化合物が、金属吸着剤に含まれる前記有機化合物と同じであると、H型マガディアイトのチャンネル構造の拡がりを維持し易いので好ましい。
【0038】
≪金属吸着装置≫
本発明に関連する第五態様は、第三態様の金属吸着剤組成物又は第四態様の金属吸着剤を収めた処理容器を備えた金属吸着装置である。
処理容器としては、金属吸着剤と処理対象液とを接触させることが可能なものであれば特に制限されず、例えば、カラム、フラスコ等の液体やガスを取り扱う公知の処理容器が挙げられる。
装置構成の一例として、カラムと、前記カラムに充填した金属吸着剤組成物又は金属吸着剤と、前記カラムの流入口に接続された導入管と、前記カラムの流出口に接続された導出管と、前記導入管又は導出管に接続されたポンプと、を備えた金属吸着装置が挙げられる。
このような金属吸着装置の使用方法としては、例えば次の方法が挙げられる。まず、ポンプにより処理対象液を導入管からカラム内に流入させ、カラム内の金属吸着剤と処理対象液とを接触させ、処理対象液に含まれる金属イオンを金属吸着剤のH型マガディアイトに吸着させる。次に、カラムに接続された導出管から処理済液を排出することにより、金属イオンの少なくとも一部が除去された処理済液を得ることができる。
【0039】
≪複合体≫
本発明に関連する第六態様は、H型マガディアイトと、前記H型マガディアイトのチャンネル構造に含まれる金属イオン(ただし、Naイオンを除く。)と、を備えた複合体である。
本態様の複合体は、例えば、第一態様の金属含有液の処理方法により、H型マガディアイトのチャンネル構造に金属イオンを吸着させたものとして得ることができる。
本態様の複合体において、H型マガディアイトのチャンネル構造内には、金属イオン以外のものが含まれていてもよいし、金属イオンのみが含まれていてもよい。金属イオン以外のものとしては、前記有機溶剤を構成する有機化合物、水分子等が挙げられる。チャンネル構造内に含まれる金属イオン以外のものは、チャンネル構造内に含まれる金属イオンに配位した配位子であってもよいし、配位しないで単に共存するものであってもよい。H型マガディアイトの単一のチャンネル構造内に含まれる金属イオンの数は1つでもよいし、2つ以上でもよい。複数の金属イオンが単一のチャンネル構造内に含まれる場合、それらの金属イオン同士は互いに結合していてもよいし、独立に離れて存在していてもよい。
本態様の複合体において、H型マガディアイトが有する複数のチャンネル構造の総数に対して、金属イオンが含まれるチャンネル構造の数は3%以上が好ましく、5%以上がより好ましく、10%以上がさらに好ましい。
本態様の複合体の総質量に対する金属イオンの含有量は、例えば、0.001質量%以上が好ましく、0.01質量%以上がより好ましく、0.1質量%以上がさらに好ましく、1質量%以上が最も好ましい。
本態様の複合体に含まれる金属イオンの種類は、1種類でもよいし、2種類以上でもよい。
【0040】
≪金属含有物の製造方法≫
本発明に関連する第七態様は、H型マガディアイトと、前記H型マガディアイトのチャンネル構造内に含まれるNaイオン以外の金属イオン及び溶媒化合物と、を備えた複合体に対して、前記チャンネル構造内から前記溶媒化合物を除去する処理を行うことにより、前記複合体中で、前記金属イオンの化学状態を変化させた金属含有物を得ることを含む、金属含有物の製造方法である。
本態様の複合体は、チャンネル構造内に溶媒化合物を含むことが必須である点を除いて、第六態様の複合体と同様である。溶媒化合物としては、第一態様の有機溶剤を構成する有機化合物、水分子、それ以外の公知の溶媒を構成する化合物が挙げられる。ここで、溶媒化合物とは、1気圧、25℃の標準状態で液体である化合物をいう。
本態様で用いる複合体に含まれる金属イオンは1種類でもよいし、2種類以上でもよい。
本態様で用いる複合体に含まれる溶媒化合物は1種類でもよいし、2種類以上でもよい。
前記チャンネル構造に含まれる前記溶媒化合物を除去する処理としては、例えば、乾燥処理、加熱処理が挙げられる。乾燥や加熱により、溶媒化合物をチャンネル構造から脱離させることができる。
【0041】
本態様の一例として、次の実施形態が挙げられる。まず、H型マガディアイトのチャンネル構造内に金属アコ錯体(例えば、鉄アコ錯体)が含まれた複合体を加熱することにより、前記金属アコ錯体の配位子である水分子を分解させ、金属成分をチャンネル構造内に残留させる。続いて、水分子が脱離したチャンネル構造内に空気中の酸素分子が流入すると、酸素分子と金属イオンとが反応し、金属酸化物(例えば、酸化鉄)が生成する。この結果、H型マガディアイトに金属酸化物が含まれた複合体が得られる。
【0042】
本態様の別の一例として、次の実施形態が挙げられる。まず、H型マガディアイトのチャンネル構造内に金属アコ錯体(例えば、鉄アコ錯体)が含まれた複合体を加熱することにより、前記金属アコ錯体の配位子である水分子を分解させ、金属成分をチャンネル構造内に残留させる。この際、例えば窒素ガス等の不活性ガス中に置くと、チャンネル構造内に空気が流入せず、チャンネル構造内の金属成分同士が結合した金属体(例えば、純鉄、鉄化合物等)が生成する。この結果、H型マガディアイトに金属体が含まれた複合体が得られる。上記の例において、複数のチャンネル構造同士が隣接している箇所では、チャンネル構造の範囲を超えて、隣接するチャンネル構造に含まれる金属体が互いに連結し得る。この結果、金属体からなる微小なワイヤやクラスターをH型マガディアイト内に形成することも可能である。
【実施例0043】
<H型マガディアイトの準備>
非特許文献(Y. Asakura, et al., Bull. Chem. Soc. Jpn., 2015, 88, 1241-1249)に記載の公知方法により、粉末状のNa型マガディアイト2gを得た。
Na型マガディアイト2gをイオン交換水に懸濁して、0.2Mの塩酸を200ml滴下し、しばらく攪拌した後、H型マガディアイト1.5gをろ取した。ここで滴下した塩酸の量は、酸塩基滴定で等量点となる量(約1.92mmol/g)としており、ろ液中のNaイオンの化学分析値から、マガディアイトの層間におけるNaイオンはプロトンによってほぼ完全に交換されていることを確認した。
【0044】
<試験例1;H型マガディアイトの面間隔変化>
H型マガディアイトの面間隔が有機溶剤の存在下で変化することを、X線回折装置(RIGAKU社製)を使用し、格子面間隔d(001)について、次のように確認した。
まず、乾燥した粉末状のH型マガディアイトの格子面間隔d(001)は、1.2nmであった。
次に、乾燥した粉末状のH型マガディアイトにアセトニトリルを少量滴下し、粉末の全体をアセトニトリルで湿らせた。このH型マガディアイトの格子面間隔d(001)は、1.32nmであった。
続いて、アセトニトリルで湿らせたH型マガディアイトを乾燥機に入れ、120℃、3時間で乾燥し、アセトニトリルを揮発させた。この乾燥した粉末状のH型マガディアイトの格子面間隔d(001)は、1.27nmであった。
また、アセトニトリルで湿らせたH型マガディアイトを室温(24℃)、48時間で自然に乾燥させ、少なくとも表面的にはアセトニトリルを除去した。この乾燥した粉末状のH型マガディアイトの格子面間隔d(001)は、1.23~1.30nmであった。
これらのXRD測定結果を図3のグラフに示す。
【0045】
XRD測定結果から、アセトニトリルの存在下でH型マガディアイトの格子面間隔d(001)が1.32nmに増加することが分かった。この面間隔は、H型マガディアイトの層間の距離ではなく、SiO四面体からなるシートの複数枚を単位とする層(単位層)の厚さである。
通常、H型マガディアイトの層表面にはシラノール基が存在し、これらが互いに水素結合することにより、層間は閉じている(狭まっている)。一方、アセトニトリルの存在下で格子面間隔d(001)が増加していることから、層間距離ではなく、層内のチャンネル構造(酸素八員環を有する構造)内に、アセトニトリル分子が入り、チャンネル構造の内部空間が拡がったことにより、層厚が増加したと考えられる。
【0046】
<試験例2;有機溶剤存在下での金属イオンの吸着>
まず、上述の通り塩酸滴下を行い、乾燥させ、H型マガディアイトの乾燥粉末を得た。
次に、下表の通り濃度調整した硝酸鉄水溶液0.5mlに対して、アセトニトリル5mlを加え、さらに濃硝酸1.5mlを添加して、処理対象液のpHが1未満になったことを確認した。この処理対象液にH型マガディアイトの乾燥粉末0.1gを加えて、室温(約24℃)で24時間攪拌した後、濾過し、分取したH型マガディアイトの試料を2等分した。
一方の試料Aは室温で48時間乾燥し、他方の試料Bは室温で2時間乾燥した後、乾燥機に入れて120℃、3時間で乾燥させた。
【0047】
【表1】
【0048】
表1において、試料名「H1.5-Fe51」は、上述の通り、濃硝酸1.5mlで処理したH型マガディアイトの乾燥粉末を、硝酸鉄・9水和物を51mg含む処理対象液に添加した試料であることを示す。他の試料名も同様であり、Feの後の数字は処理対象液に含まれる硝酸鉄・9水和物の質量を表す。
【0049】
[FT-IR測定]
上記の試料A,Bについて、アセトニトリルの有無を調べるためにFT-IR測定を行った。その測定結果を図4図5のグラフに示す。
FT-IR測定結果において、2100~2300cm-1の範囲にアセトニトリル基の伸縮振動に起因するピークは観察されないことから、室温乾燥および120℃乾燥により、アセトニトリルは試料から完全に除去されたと考えられる。
【0050】
[色調の観察]
上記の試料Bについて、乾燥過程における色調変化を目視で観察した。
ろ液は基本的に薄い黄色であり、硝酸鉄濃度に応じてろ液の色合いが濃くなるが、分取直後のH型マガディアイトの乾燥粉末の色調は、ろ液の濃度に関係なく、H型マガディアイトの本来的な白色であった。
分取後に2時間の室温乾燥を行った後の各粉末の色合いも、全てH型マガディアイトの本来的な白色であった。
その後、120℃、3時間の高温乾燥を行った後の各粉末の色合いは、少し茶色味が増加した。茶色味が増したことは、チャンネル構造内の鉄イオンの水分子が除去されたことにより、酸化鉄又は鉄クラスターが形成されたことを示唆している。
【0051】
[X線回折]
上記の試料A,Bについて、X線回折装置(RIGAKU社製)を使用し、格子面間隔d(001)について確認した。その測定結果を図6図7に示す。
XRD測定結果が示す通り、鉄イオンを含む処理対象液中で攪拌させたH型マガディアイトの単位層の厚さ(面間隔)が増加していることから、処理対象液に含まれる鉄イオンがH型マガディアイトのチャンネル構造内に吸着したと考えられる。
測定結果では、室温乾燥した試料Aの層の方が厚い。この理由は、試料Aのチャンネル構造内には鉄イオンと共に水分子が含まれているのに対して、試料Bにおいては高温乾燥によりチャンネル構造内の水分子が除去されたからであると考えられる。
H型マガディアイトのチャンネル構造内に含まれる鉄イオン及び水分子は、互いに独立して存在していると考えるのは不自然であり、鉄アコ錯体[Fe(HO)]3+を形成していると考えられる。
【0052】
[窒素吸着試験]
上記の試料Bについて、ガス吸着測定装置(マイクロトラックベル社製)を使用し、窒素ガスの吸着量から試料の比表面積を算出した。その測定結果を図8と、下記表2に示す。
試料BのH型マガディアイトのチャンネル構造内には鉄イオンに由来する反応生成物(酸化鉄又は鉄クラスター)が吸着していると考えられる。このため、何も吸着していないH型マガディアイト(H-Mag)の比表面積42.5m-1に比べて、試料Bの比表面積は小さくなっている。
なお、相対的に鉄イオン濃度が高い硝酸鉄溶液に添加した試料(H1.5-Fe305)の比表面積の方が、相対的に鉄イオン濃度が低い硝酸鉄溶液に添加した試料(H1.5-Fe101.5,H1.5-Fe152.3)よりも、大きい比表面積を有する理由は未解明である。
【0053】
【表2】
【0054】
<試験例3;H型マガディアイトに吸着させた金属イオンの脱離>[ICP分析]
試験例2で得た試料Aを、0.2Mの硝酸水溶液30mlに添加し、室温で24時間攪拌した後、室温で5時間静置して、H型マガディアイトを沈殿させ、上澄み液の一部を回収し、ICP分析を行った。沈殿させたH型マガディアイトを濾過により回収し、その乾燥質量を測定した。
沈殿したH型マガディアイト0.025gに吸着していた鉄イオンの全てを脱離させて上澄み液に回収できたと仮定すると、吸着していた鉄イオンの質量は、ICP測定値(ppm)×0.2M硝酸水溶液30mlの積(単位:mg)で求められる。その計算結果を下記表3に示す。
また、試験例2において、H型マガディアイトを添加した各処理対象液に含まれる鉄イオンの量が理論的な最大吸着量であるとしたとき、その最大吸着量に対する実際に吸着した鉄イオンの割合(単位:%)の計算結果を下記表3に示す。
【0055】
【表3】
【0056】
上記のICP分析の測定について、Langmuir型吸着等温式(図9)を適用して作成した、[Fe(HO)]3+のH型マガディアイトへの吸着等温線と、Langmuirプロットを図10図11に示す。
ここで、平衡濃度CおよびH型マガディアイトの1g当たりのFe3+の吸着量は、それぞれ下記の式1、式2で算出した。
【0057】
<式1>
平衡濃度C(mmol/L)=
Fe(NO)・9HOのモル数/CHCN+HO+HNOの容量(L)
<式2>
H型マガディアイト1g当たりのFe3+の吸着量(mmol/g)=吸着したFe3+(mmol)/[0.1g×ICP分析に使用したH型マガディアイトの質量0.025g/鉄イオンが吸着したH型マガディアイトの試料の質量(mg)]
【0058】
これらの結果から、試験例2の吸着条件において、[Fe(HO)]3+のH型マガディアイトへの吸着は飽和に達したと結論でき、その量はLangmuir型吸着等温式から0.35mmol/gである。
【0059】
[X線回折]
上記の硝酸水溶液中に沈殿したH型マガディアイトを濾過により回収し、室温にて48時間乾燥させた粉末試料について、格子面間隔d(001)のX線回折測定を行った。その測定結果を図12に示す。
XRD測定結果が示す通り、各試料の格子面間隔d(001)は硝酸水溶液に添加する前の1.34~1.36nmと比べて減少していた。
この結果からも、チャンネル構造に含まれていた鉄イオンが酸処理により脱離したことが分かった。
なお、試料(H1.5-Fe51)の格子面間隔d(001)が酸処理後においても減少していない理由は未解明である。
【0060】
<試験例4;H型マガディアイトの面間隔変化>
デシケータ内で室温乾燥したH型マガディアイト(H-mag)37mgに対して、イソプロパノール(IPA)、プロピレングリコール1-モノメチルエーテル(PGME)、又はプロピレングリコール1-モノメチルエーテル2-アセテート(PGMEA)を約0.1mL滴下し、粉末X線回折(XRD)装置を使用して、試験例1と同様に、H-magの基本面間隔の変化を測定した。また、比較するために、Na型マガディアイト(Na-Mag)の基本面間隔も測定した。これらの測定結果である回折パターンを図13に示す。
図13の測定結果において、有機溶剤を滴下する前のH-magの基本面間隔は1.20nmであり、IPAを滴下した回折パターン(IPA H-mag)の基本面間隔は1.52nmに増大し、PGMEを滴下した回折パターン(PGME H-mag)の基本面間隔は1.57nmに増大した。一方、PGMEAを滴下した回折パターン(PGMEA H-mag)の基本面間隔はほとんど変化しなかった。
以上から、PGMEAは例外的にH-magのチャンネル構造を拡げることに寄与しないことが分かった。
【0061】
<試験例5;銀イオンの吸着>
AgNO水溶液1.26mlに、IPAまたはPGME5.74mlを添加し、Ag濃度18mmol/Lに調整した溶液を得た。ここにデシケータ内で室温乾燥したH-Mag0.10gを添加し、室温で24時間攪拌した。その後、ろ過してH-Magを回収し、室温で48時間乾燥し、測定用の試料とした。
粉末X線回折装置を使用して、試料の基本面間隔を測定した。この結果を図14に示す。IPAを用いた回折パターン(H-Mag_IPA_Ag)の基本面間隔は1.38nmに増大し、PGMEを用いた回折パターン(H-Mag_PGME_Ag)の基本面間隔は1.40nmに増大した。比較のために、乾燥状態のH-Magの回折パターンも併記しており、その基本面間隔は1.20nmであった。
次に、試料のFT-IRの測定結果を図15に示す。IPAを使用した試料とPGMEを使用した試料の何れにおいても、溶媒に由来するC-H伸縮振動の吸収帯は観測されず、硝酸イオンの存在も確認されなかった。
以上から、銀イオンがH-Magのチャンネル構造内に吸着したことにより、基本面間隔が増大したことが分かった。また、チャンネル構造内に溶媒(IPA、PGME)は含まれていないことも分かった。
【0062】
<試験例6;鉄イオン、アルミニウムイオンの吸着>
Fe(NO・9HOと、Al(NO・9HOに、IPAまたはPGME7.0mlをそれぞれ添加し、Fe濃度とAl濃度がそれぞれ18mmol/Lとなるように調整した溶液を得た。ここにデシケータ内で室温乾燥したH-Mag0.10gを添加し、室温で24時間攪拌した。その後、ろ過してH-Magを回収し、室温で48時間乾燥し、測定用の試料とした。
粉末X線回折装置を使用して、試料の基本面間隔を測定した。この結果を図16に示す。鉄イオンを含むIPAを用いた回折パターン(H-Mag_IPA_Fe)の基本面間隔は1.37nmに増大し、鉄イオンを含むPGMEを用いた回折パターン(H-Mag_PGME_Fe)の基本面間隔は1.42nmに増大した。Alイオンを含むIPAを用いた回折パターン(H-Mag_IPA_Al)の基本面間隔は1.38nmに増大し、Alイオンを含むPGMEを用いた回折パターン(H-Mag_PGME_Al)の基本面間隔は1.44nmに増大した。比較のために、乾燥状態のH-Magの回折パターンも併記しており、その基本面間隔は1.20nmであった。
次に、試料のFT-IRの測定結果を図17に示す。上記5種の試料の何れにおいても、溶媒に由来するC-H伸縮振動の吸収帯は観測されず、硝酸イオンの存在も確認されなかった。
以上から、鉄イオンまたはAlイオンがH-Magのチャンネル構造内に吸着したことにより、基本面間隔が増大したことが分かった。また、チャンネル構造内に溶媒(IPA、PGME)は含まれていないことも分かった。
【0063】
また、試験例6で得た各試料についてガス吸着測定装置(マイクロトラックベル社製)を使用し、窒素ガスの吸着量から試料の比表面積を算出した。その測定結果を図18と、下記表4に示す。
表4の結果において、何も吸着してない試料のBET比表面積が最も大きく、鉄イオンを吸着した試料、Alイオンを吸着した試料の順にBET比表面積が減少している。これらの比表面積の減少は、試料の細孔(チャンネル構造)内に各金属イオンが吸着していることを示している。
【0064】
【表4】
【0065】
また、試験例6で得た各試料から金属イオンを脱離してICP分析した結果を表5に示す。このICP分析の手順は試験例3と同様である。
表5の結果において、吸着量は1gのH-Mag当たりに吸着した各金属イオンのモル数である。鉄イオンよりもAlイオンの方が多く吸着されていることが分かった。
【0066】
【表5】
【0067】
さらに、試験例6で得た鉄を吸着した試料についてUV-Vis吸収スペクトルを測定した結果を図19に示す。
測定結果において270nm付近のピークは[Fe(HO)6-x(OH)(3―x)+の存在を示していると考えられる。ここで、xは1または2である。また、400nm以上のピークはFeのダイマーもしくはFe(III)クラスター、すなわち酸化鉄の存在を示していると考えられる。
【0068】
最後に、試験例6で得たAlを吸着した試料について27Al MAS NMRを測定した結果を図20に示す。
測定結果において0ppmのピークは6配位のAlの存在を示しており、このシグナルがブロードであることは、Al13量体などの重縮合物の存在を示していると考えられる。
【0069】
以上のUV-Vis吸収スペクトル及び27Al固体NMRの結果から、処理対象液に溶存する水が金属イオンに配位し、一部はH-Magのチャンネル内にアコ錯体として吸着され、残りはアコ錯体が重縮合した状態でH-Magの表面(チャンネルの外)に吸着したと考えられる。また、アコ錯体の吸着速度は、アコ錯体の重縮合反応の速度よりも速いと推測される。
【0070】
<試験例7;混合された金属イオンの吸着>
市販のICP標準水溶液にIPA又はPGMEを添加して、表6に記載の濃度に希釈した3種の金属イオン(Fe、Al、Ag)を含む処理対象液を調製した。
第一の処理方法として、処理対象液に予め乾燥したH-Magを表6に記載の量で添加し、室温で2時間攪拌した後、ろ過によりH-Magを除去し、得られた処理済液に含まれる各金属イオン量をICP分析により定量した。
第二の処理方法として、予め乾燥したH-MagをIPAに分散し、これを直径25mmで孔径1μmのメンブレンフィルターに通すことにより、メンブレンフィルター上にH-Magからなる吸着層(厚さ約1μm~100μm程度)を形成した。この吸着層を備えたメンブレンフィルターに処理対象液を1回通過させ、得られた処理済液に含まれる各金属イオン量をICP分析により定量した。これらの結果を表6に併記する。
なお、表中「~%以上」の表記は、処理液に含まれるイオン濃度が分析機器の検出限界を下回っていることを意味している。本試験例における鉄イオンと銀イオンの検出限界は0.02ppm、Alイオンの検出限界は0.01ppmである。
【0071】
【表6】
【0072】
以上の結果から、次のことが分かった。まず、IPAに含まれる金属イオンの除去率の方がPGMEに含まれる金属イオンの除去率よりも高い。また、鉄イオンとAlイオンの除去率は、IPAにおいては同等であり、PGMEにおいては鉄イオンの除去率の方が高い。Alイオンの除去率はIPA及びPGMEの何れにおいても、銀イオンの除去率よりも高い。
また、H-Magからなる薄い吸着層を1回通過しただけで、金属イオンを確実に捉えることができ、特に鉄イオンの除去において優れた効率を示すことが分かった。
【0073】
<まとめ>
以上の試験結果から、少なくとも次のことが理解される。
1.H型マガディアイトの単位層の厚さが有機溶剤の存在下で増加すること。つまり、有機溶剤存在下でH型マガディアイトのチャンネル構造が拡がること。(根拠;試験例1、試験例4)
2.H型マガディアイトのチャンネル構造内に有機溶剤が入り、その後の乾燥によりチャンネル構造内の有機溶剤を除去できること。(根拠;試験例1~2、試験例5~6)
3.有機溶剤の存在下で、金属イオンを含む処理対象液に、H型マガディアイトを接触させることにより、H型マガディアイトのチャンネル構造内に金属イオンを吸着させ得ること。(根拠;試験例2~3、試験例5~7)
4.H型マガディアイトに金属イオンを吸着させると、チャンネル構造が拡がることにより、層厚(格子面間隔d(001))が増加すること。(根拠;試験例2、試験例5~6)
5.H型マガディアイトに吸着させた鉄イオンは鉄アコ錯体を形成していると考えられること(根拠;試験例2、試験例6)
6.鉄アコ錯体を吸着したH型マガディアイトを加熱することにより、チャンネル構造内の水分子が脱離し、鉄イオンが酸化鉄になる又は鉄クラスターになり得ること。(根拠;試験例2、試験例6)
7.金属イオンを吸着したH型マガディアイトを酸性水溶液に接触させることにより、酸性水溶液中に金属イオンを溶出させ得ること、つまり、H型マガディアイトのチャンネル構造内の金属イオンを脱離させ得ること。(根拠;試験例3、試験例6)
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20