(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022033786
(43)【公開日】2022-03-02
(54)【発明の名称】接続体及び接続体の製造方法
(51)【国際特許分類】
H01L 21/60 20060101AFI20220222BHJP
C09J 9/02 20060101ALI20220222BHJP
C09J 11/04 20060101ALI20220222BHJP
C09J 201/00 20060101ALI20220222BHJP
C09J 7/35 20180101ALI20220222BHJP
H05K 3/32 20060101ALI20220222BHJP
【FI】
H01L21/60 311S
C09J9/02
C09J11/04
C09J201/00
C09J7/35
H05K3/32 B
【審査請求】有
【請求項の数】12
【出願形態】OL
(21)【出願番号】P 2021187333
(22)【出願日】2021-11-17
(62)【分割の表示】P 2019209099の分割
【原出願日】2014-10-28
(31)【優先権主張番号】P 2014013696
(32)【優先日】2014-01-28
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000108410
【氏名又は名称】デクセリアルズ株式会社
(74)【代理人】
【識別番号】100113424
【弁理士】
【氏名又は名称】野口 信博
(72)【発明者】
【氏名】猿山 賢一
(72)【発明者】
【氏名】阿久津 恭志
(57)【要約】
【課題】回路基板の配線ピッチや電子部品の電極端子がファインピッチ化されても、電子部品と回路基板との導通性を確保するとともに、電子部品の電極端子間におけるショートを防止する。
【解決手段】回路基板12上に異方性導電接着剤1を介して電子部品18が接続された接続体10において、異方性導電接着剤1は、バインダー樹脂3に導電性粒子4が規則的に配列され、電子部品18に形成された接続電極19と回路基板12に形成された基板電極17とが、接続電極19及び基板電極17の配列方向にずれており、接続電極19及び基板電極17の配列方向における最小距離が導電性粒子4の粒子径の4倍未満であり、接続電極19間のスペース23における導電性粒子4同士の粒子間距離は、基板電極17と接続電極19との間に捕捉された導電性粒子4同士の粒子間距離よりも長い。
【選択図】
図1
【特許請求の範囲】
【請求項1】
回路基板上に異方性導電接着剤を介して電子部品が接続された接続体において、
上記異方性導電接着剤は、バインダー樹脂に導電性粒子が配列され、
上記電子部品に形成された接続電極と上記回路基板に形成された基板電極とが、上記接続電極及び上記基板電極の配列方向にずれており、上記接続電極及び上記基板電極の配列方向における最小距離が上記導電性粒子の粒子径の4倍未満であり、
上記電子部品に形成された接続電極間のスペースにおける導電性粒子同士の粒子間距離は、上記回路基板に形成された基板電極と上記接続電極との間に捕捉された上記導電性粒子同士の粒子間距離よりも長い接続体。
【請求項2】
上記異方性導電接着剤は、上記導電性粒子密度が5000個/mm2以上である請求項1記載の接続体。
【請求項3】
上記異方性導電接着剤は、上記基板電極及び上記接続電極の配列方向を長手方向とするフィルム状に形成され、上記導電性粒子が、長手方向にわたって疎、幅方向に亘って密に配列されている請求項1又は2に記載の接続体。
【請求項4】
上記異方性導電接着剤は、上記基板電極及び上記接続電極の配列方向を長手方向とするフィルム状に形成され、上記導電性粒子が、長手方向にわたって密、幅方向に亘って疎に配列されている請求項1又は2に記載の接続体。
【請求項5】
回路基板上に、導電性粒子を含有した接着剤を介して電子部品を搭載し、
上記電子部品を上記回路基板に対して押圧するとともに、上記接着剤を硬化させることにより、上記電子部品を上記回路基板上に接続する接続体の製造方法において、
上記異方性導電接着剤は、バインダー樹脂に導電性粒子が配列され、
上記電子部品に形成された接続電極と上記回路基板に形成された基板電極とが、上記接続電極及び上記基板電極の配列方向にずれており、上記接続電極及び上記基板電極の配列方向における最小距離が上記導電性粒子の粒子径の4倍未満であり、
上記接続電極間のスペースにおける導電性粒子同士の粒子間距離は、上記回路基板に形成された基板電極と上記電子部品に形成された接続電極との間に捕捉された上記導電性粒子同士の粒子間距離よりも長い接続体の製造方法。
【請求項6】
上記異方性導電接着剤は、上記導電性粒子密度が5000個/mm2以上である請求項5記載の接続体の製造方法。
【請求項7】
上記異方性導電接着剤は、上記基板電極及び上記接続電極の配列方向を長手方向とするフィルム状に形成され、上記導電性粒子が、長手方向にわたって疎、幅方向に亘って密に配列されている請求項5又は6に記載の接続体の製造方法。
【請求項8】
上記異方性導電接着剤は、上記基板電極及び上記接続電極の配列方向を長手方向とするフィルム状に形成され、上記導電性粒子が、長手方向にわたって密、幅方向に亘って疎に配列されている請求項5又は6に記載の接続体の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電子部品と回路基板とが接続された接続体及び接続体の製造方法に関し、特に導電性粒子を含有する接着剤を介して電子部品が回路基板に接続された接続体及び接続体の製造方法に関する。
【背景技術】
【0002】
従来から、テレビやPCモニタ、携帯電話やスマートホン、携帯型ゲーム機、タブレット端末やウェアラブル端末、あるいは車載用モニタ等の各種表示手段として、液晶表示装置や有機ELパネルが用いられている。近年、このような表示装置においては、ファインピッチ化、軽量薄型化等の観点から、駆動用ICを直接表示パネルのガラス基板上に実装するいわゆるCOG(chip on glass)が採用されている。
【0003】
例えばCOG実装方式が採用された液晶表示パネルにおいては、
図12(A)(B)に示すように、ガラス基板等からなる透明基板101に、ITO(酸化インジウムスズ)等からなる透明電極102が複数形成され、これら透明電極102上に液晶駆動用IC103等の電子部品が接続される。液晶駆動用IC103は、実装面に、透明電極102に対応して複数の電極端子104が形成され、異方性導電フィルム105を介して透明基板101上に熱圧着されることにより、電極端子104と透明電極102とが接続される。
【0004】
異方性導電フィルム105は、バインダー樹脂に導電性粒子を混ぜ込んでフィルム状としたもので、2つの導体間で加熱圧着されることにより導電性粒子で導体間の電気的導通がとられ、バインダー樹脂にて導体間の機械的接続が保持される。異方性導電フィルム105を構成する接着剤としては、通常、信頼性の高い熱硬化性のバインダー樹脂が用いられるが、光硬化性のバインダー樹脂又は光熱併用型のバインダー樹脂であってもよい。
【0005】
このような異方性導電フィルム105を介して液晶駆動用IC103を透明電極102へ接続する場合は、先ず、透明基板101の透明電極102上に異方性導電フィルム105を図示しない仮圧着手段によって仮貼りする。続いて、異方性導電フィルム105を介して透明基板101上に液晶駆動用IC103を搭載し仮接続体を形成した後、熱圧着ヘッド106等の熱圧着手段によって液晶駆動用IC103を異方性導電フィルム105とともに透明電極102側へ加熱押圧する。この熱圧着ヘッド106による加熱によって、異方性導電フィルム105は熱硬化反応を起こし、これにより液晶駆動用IC103が透明電極102上に接着される。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特許第4789738号公報
【特許文献2】特開2004-214374号公報
【特許文献3】特開2005-203758号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
近年の液晶表示装置その他の電子機器の小型化、高精細化に伴い、回路基板の配線ピッチや電子部品の電極端子のファインピッチ化も進み、異方性導電フィルムを用いて、電極端子がファインピッチ化された回路基板上にICチップ等の電子部品をCOG接続する場合、狭小化された電極端子間においても確実に導電性粒子が挟持され導通を確保するために、導電性粒子を高密度に充填する必要がある。
【0008】
しかし、
図13に示すように、回路基板の配線ピッチや電子部品の電極端子のファインピッチ化が進むなかで導電性粒子107を高密度に充填すると、電極端子104間に分散された導電性粒子107が連続することによる端子間ショートの発生率が高まる。
【0009】
なお、一般に回路基板に形成される電極は印刷等により数十nm~数μmオーダーの薄さで形成されるため、回路基板側の電極間におけるショートは問題にならない。
【0010】
そこで、本発明は、回路基板の配線ピッチや電子部品の電極端子がファインピッチ化されても、電子部品と回路基板との導通性を確保するとともに、電子部品の電極端子間におけるショートを防止することができる接続体及び接続体の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
上述した課題を解決するために、本発明に係る接続体は、回路基板上に異方性導電接着剤を介して電子部品が接続された接続体において、上記異方性導電接着剤は、バインダー樹脂に導電性粒子が配列され、上記電子部品に形成された接続電極と上記回路基板に形成された基板電極とが、上記接続電極及び上記基板電極の配列方向にずれており、上記接続電極及び上記基板電極の配列方向における最小距離が上記導電性粒子の粒子径の4倍未満であり、上記電子部品に形成された接続電極間のスペースにおける導電性粒子同士の粒子間距離は、上記回路基板に形成された基板電極と上記接続電極との間に捕捉された上記導電性粒子同士の粒子間距離よりも長いものである。
【0012】
また、本発明に係る接続体の製造方法は、回路基板上に、導電性粒子を含有した接着剤を介して電子部品を搭載し、上記電子部品を上記回路基板に対して押圧するとともに、上記接着剤を硬化させることにより、上記電子部品を上記回路基板上に接続する接続体の製造方法において、上記異方性導電接着剤は、バインダー樹脂に導電性粒子が配列され、上記電子部品に形成された接続電極と上記回路基板に形成された基板電極とが、上記接続電極及び上記基板電極の配列方向にずれており、上記接続電極及び上記基板電極の配列方向における最小距離が上記導電性粒子の粒子径の4倍未満であり、上記接続電極間のスペースにおける導電性粒子同士の粒子間距離は、上記回路基板に形成された基板電極と上記電子部品に形成された接続電極との間に捕捉された上記導電性粒子同士の粒子間距離よりも長いものである。
【発明の効果】
【0013】
本発明によれば、隣接する電極端子間の端子間スペースにおける導電性粒子同士の粒子間距離は、接続電極と基板電極との間に捕捉された導電性粒子同士の粒子間距離よりも長い。したがって、ファインピッチ化された接続電極の端子間スペースにおいて導電性粒子が連なることによる端子間ショートを防止することができる。
【図面の簡単な説明】
【0014】
【
図1】
図1は、接続体の一例として示す液晶表示パネルの断面図である。
【
図2】
図2は、液晶駆動用ICと透明基板との接続工程を示す断面図である。
【
図3】
図3は、液晶駆動用ICの電極端子(バンプ)及び端子間スペースを示す平面図である。
【
図4】
図4は、液晶駆動用ICと透明基板において、電極端子及び端子部の配列方向における最小距離Dを示す断面図である。
【
図5】
図5は、異方性導電フィルムを示す断面図である。
【
図6】
図6は、導電性粒子が格子状に規則配列された異方性導電フィルムを示す平面図である。
【
図7】
図7は、導電性粒子が規則配列された異方性導電フィルムと、ランダム分散された異方性導電フィルムを用いた接続体における電極端子の粒子捕捉数の分布を示すグラフである。
【
図8】
図8(A)は、導電性粒子が長手方向に疎、幅方向に密に配列された異方性導電フィルムを示す平面図であり、
図8(B)は、導電性粒子が長手方向に密、幅方向に疎に配列された異方性導電フィルムを示す平面図である。
【
図9】
図9は、導電性粒子をフィルム長手方向及び幅方向に対して傾斜して配列させた異方性導電フィルムを、フィルム長手方向を端子部の配列方向に沿って端子部上に配置した状態を示す平面図である。
【
図10】
図10は、導電性粒子をフィルム長手方向及び幅方向に対して傾斜して配列させた他の異方性導電フィルムを、フィルム長手方向を端子部の配列方向に沿って端子部上に配置した状態を示す平面図である。
【
図11】
図11は、導電性粒子をフィルム長手方向及び幅方向に対して傾斜して配列させた他の異方性導電フィルムを、フィルム長手方向を端子部の配列方向に沿って端子部上に配置した状態を示す平面図である。
【
図12】
図12は、液晶表示パネルの透明基板にICチップを接続する工程を示す断面図であり、(A)接続前の工程、(B)は接続工程を示す。
【
図13】
図13は、従来の透明基板とICチップとの接続状態を示す断面図である。
【発明を実施するための形態】
【0015】
以下、本発明が適用された接続体及び接続体の製造方法について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
【0016】
[液晶表示パネル]
以下では、本発明が適用された接続体として、ガラス基板に、電子部品として液晶駆動用のICチップが実装された液晶表示パネルを例に説明する。この液晶表示パネル10は、
図1に示すように、ガラス基板等からなる二枚の透明基板11,12が対向配置され、これら透明基板11,12が枠状のシール13によって互いに貼り合わされている。そして、液晶表示パネル10は、透明基板11,12によって囲繞された空間内に液晶14が封入されることによりパネル表示部15が形成されている。
【0017】
透明基板11,12は、互いに対向する両内側表面に、ITO(酸化インジウムスズ)等からなる縞状の一対の透明電極16,17が、互いに交差するように形成されている。そして、両透明電極16,17は、これら両透明電極16,17の当該交差部位によって液晶表示の最小単位としての画素が構成されるようになっている。
【0018】
両透明基板11,12のうち、一方の透明基板12は、他方の透明基板11よりも平面寸法が大きく形成されており、この大きく形成された透明基板12の縁部12aには、電子部品として液晶駆動用IC18が実装されるCOG実装部20が設けられている。なお、COG実装部20には、透明電極17の端子部17a、及び液晶駆動用IC18に設けられたIC側アライメントマーク22と重畳させる基板側アライメントマーク21が形成されている。
【0019】
液晶駆動用IC18は、画素に対して液晶駆動電圧を選択的に印加することにより、液晶の配向を部分的に変化させて所定の液晶表示を行うことができるようになっている。また、
図2に示すように、液晶駆動用IC18は、透明基板12への実装面18aに、透明電極17の端子部17aと導通接続される複数の電極端子19(バンプ)が形成されている。電極端子19は、例えば銅バンプや金バンプ、あるいは銅バンプに金メッキを施したもの等が好適に用いられる。
【0020】
[電極端子]
液晶駆動用IC18は、例えば、
図3に示すように、実装面18aの一方の側縁に沿って電極端子19(入力バンプ)が一列で配列され、一方の側縁と対向する他方の側縁に沿って電極端子19(出力バンプ)が複数列で千鳥状に配列されている。電極端子19と、透明基板12のCOG実装部20に設けられている端子部17aとは、それぞれ同数かつ同ピッチで形成され、透明基板12と液晶駆動用IC18とが位置合わせされて接続されることにより、接続される。
【0021】
なお、近年の液晶表示装置その他の電子機器の小型化、高機能化に伴い、液晶駆動用IC18等の電子部品も小型化、低背化が求められ、電極端子19もその高さが低くなっている(例えば6~15μm)。
【0022】
また、上述したように、近年の液晶表示装置その他の電子機器の小型化、高精細化に伴い、回路基板の配線ピッチや電子部品の電極端子のファインピッチ化も進んでいる。例えば、液晶駆動用IC18は、電極端子19の端子部17aと接続される接続面の大きさが、幅8~60μm、長さ400μm以下で下限が幅と同距離(8~60μm)又は導電性
粒子径の7倍未満とされている。また、電極端子19間の最小距離も、電極端子19の幅に準じ、例えば8~30μmとされる。また、例えば、
図4に示す電極端子19及び端子部17aの配列方向における最小距離D(この距離は、異方性接続が可能な範囲で配列方向にずれていてもよい。)が導電性粒子径の4倍未満とすることができる。
【0023】
また、後述するように、液晶駆動用IC18は、透明基板12のCOG実装部20に実装されることにより、異方性導電フィルム1のバインダー樹脂の流動性が電極端子19上と、隣接する電極端子19間のスペース23とで異なり、この端子間スペース23におけるバインダー樹脂の流動性の方が高く、流動しやすい。この流動性に起因して、液晶表示パネル10は、端子部17aと接続される電極端子19上における導電性粒子4の最も近接する粒子との距離(以下、「粒子間距離」とも言う。)よりも、端子間スペース23における導電性粒子4の粒子間距離が長くなる。
【0024】
また、液晶駆動用IC18は、実装面18aに、基板側アライメントマーク21と重畳させることにより、透明基板12に対するアライメントを行うIC側アライメントマーク22が形成されている。なお、透明基板12の透明電極17の配線ピッチや液晶駆動用IC18の電極端子19のファインピッチ化が進んでいることから、液晶駆動用IC18と透明基板12とは、高精度のアライメント調整が求められている。
【0025】
基板側アライメントマーク21及びIC側アライメントマーク22は、組み合わされることにより透明基板12と液晶駆動用IC18とのアライメントが取れる種々のマークを用いることができる。
【0026】
COG実装部20に形成されている透明電極17の端子部17a上には、回路接続用接着剤として異方性導電フィルム1を用いて液晶駆動用IC18が接続される。異方性導電フィルム1は、導電性粒子4を含有しており、液晶駆動用IC18の電極端子19と透明基板12の縁部12aに形成された透明電極17の端子部17aとを、導電性粒子4を介して電気的に接続させるものである。この異方性導電フィルム1は、熱圧着ヘッド33により熱圧着されることによりバインダー樹脂が流動化して導電性粒子4が端子部17aと液晶駆動用IC18の電極端子19との間で押し潰され、この状態でバインダー樹脂が硬化する。これにより、異方性導電フィルム1は、透明基板12と液晶駆動用IC18とを電気的、機械的に接続する。
【0027】
また、両透明電極16,17上には、所定のラビング処理が施された配向膜24が形成されており、この配向膜24によって液晶分子の初期配向が規制されるようになっている。さらに、両透明基板11,12の外側には、一対の偏光板25,26が配設されており、これら両偏光板25,26によってバックライト等の光源(図示せず)からの透過光の振動方向が規制されるようになっている。
【0028】
[異方性導電フィルム]
次いで、異方性導電フィルム1について説明する。異方性導電フィルム(ACF:Anisotropic Conductive Film)1は、
図5に示すように、通常、基材となる剥離フィルム2上に導電性粒子4を含有するバインダー樹脂層(接着剤層)3が形成されたものである。異方性導電フィルム1は、熱硬化型あるいは紫外線等の光硬化型の接着剤であり、液晶表示パネル10の透明基板12に形成された透明電極17上に貼着されるとともに液晶駆動用IC18が搭載され、熱圧着ヘッド33により熱加圧されることにより流動化して導電性粒子4が相対向する透明電極17の端子部17aと液晶駆動用IC18の電極端子19との間で押し潰され、加熱あるいは紫外線照射により、導電性粒子が押し潰された状態で硬化する。これにより、異方性導電フィルム1は、透明基板12と液晶駆動用IC18とを接続し、導通させることができる。
【0029】
また、異方性導電フィルム1は、膜形成樹脂、熱硬化性樹脂、潜在性硬化剤、シランカップリング剤等を含有する通常のバインダー樹脂層3に導電性粒子4が所定のパターンで規則的に配列されている。
【0030】
バインダー樹脂層3を支持する剥離フィルム2は、例えば、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methylpentene-1)、PTFE(Polytetrafluoroethylene)等にシリコーン等の剥離剤を塗布してなり、異方性導電フィルム1の乾燥を防ぐとともに、異方性導電フィルム1の形状を維持する。
【0031】
バインダー樹脂層3に含有される膜形成樹脂としては、平均分子量が10000~80000程度の樹脂が好ましい。膜形成樹脂としては、エポキシ樹脂、変形エポキシ樹脂、ウレタン樹脂、フェノキシ樹脂等の各種の樹脂が挙げられる。中でも、膜形成状態、接続信頼性等の観点からフェノキシ樹脂が特に好ましい。
【0032】
熱硬化性樹脂としては、特に限定されず、例えば、市販のエポキシ樹脂、アクリル樹脂等が挙げられる。
【0033】
エポキシ樹脂としては、特に限定されないが、例えば、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂等が挙げられる。これらは単独でも、2種以上の組み合わせであってもよい。
【0034】
アクリル樹脂としては、特に制限はなく、目的に応じてアクリル化合物、液状アクリレート等を適宜選択することができる。例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタンアクリレート、エポキシアクリレート等を挙げることができる。なお、アクリレートをメタクリレートにしたものを用いることもできる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
【0035】
潜在性硬化剤としては、特に限定されないが、例えば、加熱硬化型、UV硬化型等の各種硬化剤が挙げられる。潜在性硬化剤は、通常では反応せず、熱、光、加圧等の用途に応じて選択される各種のトリガにより活性化し、反応を開始する。熱活性型潜在性硬化剤の活性化方法には、加熱による解離反応などで活性種(カチオンやアニオン、ラジカル)を生成する方法、室温付近ではエポキシ樹脂中に安定に分散しており高温でエポキシ樹脂と相溶・溶解し、硬化反応を開始する方法、モレキュラーシーブ封入タイプの硬化剤を高温で溶出して硬化反応を開始する方法、マイクロカプセルによる溶出・硬化方法等が存在する。熱活性型潜在性硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素-アミン錯体、スルホニウム塩、アミンイミド、ポリアミン塩、ジシアンジアミド等や、これらの変性物があり、これらは単独でも、2種以上の混合体であってもよい。中でも、マイクロカプセル型イミダゾール系潜在性硬化剤が好適である。
【0036】
シランカップリング剤としては、特に限定されないが、例えば、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系等を挙げることができる。シランカップリング剤を添加することにより、有機材料と無機材料との界面における接着性が向上される。
【0037】
[導電性粒子]
導電性粒子4としては、異方性導電フィルム1において使用されている公知の何れの導電性粒子を挙げることができる。導電性粒子4としては、例えば、ニッケル、鉄、銅、アルミニウム、錫、鉛、クロム、コバルト、銀、金等の各種金属や金属合金の粒子、金属酸化物、カーボン、グラファイト、ガラス、セラミック、プラスチック等の粒子の表面に金属をコートしたもの、或いは、これらの粒子の表面に更に絶縁薄膜をコートしたもの等が挙げられる。樹脂粒子の表面に金属をコートしたものである場合、樹脂粒子としては、例えば、エポキシ樹脂、フェノール樹脂、アクリル樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂、ジビニルベンゼン系樹脂、スチレン系樹脂等の粒子を挙げることができる。導電性粒子4の大きさは1~10μmが好ましいが、本発明はこれに限定されるものではない。
【0038】
[導電性粒子の規則配列]
異方性導電フィルム1は、導電性粒子4が平面視において所定の配列パターンで規則的に配列され、例えば
図6に示すように、格子状かつ均等に配列されるものがある。平面視において規則的に配列されることにより、異方性導電フィルム1は、導電性粒子4がランダムに分散されている場合に比して、液晶駆動用IC18の隣接する電極端子19間がファインピッチ化し端子間面積が狭小化するとともに、導電性粒子4が高密度に充填されていても、液晶駆動用IC18の接続工程において、導電性粒子4の凝集体による電極端子19間のショートを防止することができる。
【0039】
また、異方性導電フィルム1は、導電性粒子4が規則的に配列されることにより、バインダー樹脂層3に高密度に充填した場合にも、導電性粒子4の凝集による疎密の発生が防止されている。したがって、異方性導電フィルム1によれば、ファインピッチ化された端子部17aや電極端子19においても導電性粒子4を捕捉することができる。導電性粒子4の均等配列パターンは、任意に設定することができる。液晶駆動用IC18の接続工程については後に詳述する。
【0040】
このような異方性導電フィルム1は、例えば、延伸可能なシート上に粘着剤を塗布し、その上に導電性粒子4を単層配列した後、当該シートを、所望の延伸倍率で延伸させる方法、導電性粒子4を基板上に所定の配列パターンに整列させた後、剥離フィルム2に支持されたバインダー樹脂層3に導電性粒子4を転写する方法、あるいは剥離フィルム2に支持されたバインダー樹脂層3上に、配列パターンに応じた開口部が設けられた配列板を介して導電性粒子4を供給する方法等により製造することができる。
【0041】
[粒子個数密度]
ここで、透明基板12の透明電極17の配線ピッチや液晶駆動用IC18の電極端子19のファインピッチ化が進んでいることから、透明基板12上に液晶駆動用IC18をCOG接続する場合、ファインピッチ化された電極端子19及び端子部17aとの間においても確実に導電性粒子が挟持され導通を確保するために、異方性導電フィルム1は、導電性粒子4が高密度で配列されている。
【0042】
具体的に、異方性導電フィルム1は、導電性粒子4が5000~60000個/mm2の個数密度で配列されている。粒子個数密度が5000個/mm2よりも少ないとファインピッチ化された電極端子19及び端子部17aとの間における粒子捕捉数が減少し、導通抵抗が上がってしまう。また、粒子個数密度が60000個/mm2よりも多いと狭小
化された電極端子19間の端子間スペース23にある導電性粒子4が連なってしまい、隣接する電極端子19間をショートさせるおそれがある。なお、これらは一例であり、粒子個数密度は導電性粒子4の大きさから任意に調整するものであり、本発明はこれに限定されるものではない。
【0043】
なお、異方性導電フィルム1の形状は、特に限定されないが、例えば、
図5に示すように、巻取リール6に巻回可能な長尺テープ形状とし、所定の長さだけカットして使用することができる。
【0044】
また、上述の実施の形態では、異方性導電フィルム1として、バインダー樹脂層3に導電性粒子4を規則配列した熱硬化性樹脂組成物をフィルム状に成形した接着フィルムを例に説明したが、本発明に係る接着剤は、これに限定されず、例えばバインダー樹脂3のみからなる絶縁性接着剤層と導電性粒子4を規則配列したバインダー樹脂3からなる導電性粒子含有層とを積層した構成とすることができる。また、異方性導電フィルム1は、導電性粒子4が平面視で規則配列されていれば、
図5に示すように単層配列されている他、複数のバインダー樹脂層3にわたって導電性粒子4が配列されるとともに平面視において規則配列されるものでもよい。また、異方性導電フィルム1は、多層構成の少なくとも一つの層内で、所定距離で単一に分散されたものでもよい。
【0045】
[接続工程]
次いで、透明基板12に液晶駆動用IC18を接続する接続工程について説明する。先ず、透明基板12の端子部17aが形成されたCOG実装部20上に異方性導電フィルム1を仮貼りする。次いで、この透明基板12を接続装置のステージ上に載置し、透明基板12の実装部上に異方性導電フィルム1を介して液晶駆動用IC18を配置する。
【0046】
次いで、バインダー樹脂層3を硬化させる所定の温度に加熱された熱圧着ヘッド33によって、所定の圧力、時間で液晶駆動用IC18上から熱加圧する。これにより、異方性導電フィルム1のバインダー樹脂層3は流動性を示し、液晶駆動用IC18の実装面18aと透明基板12のCOG実装部20の間から流出するとともに、バインダー樹脂層3中の導電性粒子4は、液晶駆動用IC18の電極端子19と透明基板12の端子部17aとの間に挟持されて押し潰される。
【0047】
その結果、電極端子19と端子部17aとの間で導電性粒子4を挟持することにより電気的に接続され、この状態で熱圧着ヘッド33によって加熱されたバインダー樹脂が硬化する。これにより、液晶駆動用IC18の電極端子19と透明基板12に形成された端子部17aとの間で導通性を確保された液晶表示パネル10を製造することができる。
【0048】
電極端子19と端子部17aとの間にない導電性粒子4は、隣接する電極端子19間の端子間スペース23においてバインダー樹脂に分散されており、電気的に絶縁した状態を維持している。これにより、液晶駆動用IC18の電極端子19と透明基板12の端子部17aとの間のみで電気的導通が図られる。なお、バインダー樹脂として、ラジカル重合反応系の速硬化タイプのものを用いることで、短い加熱時間によってもバインダー樹脂を速硬化させることができる。また、異方性導電フィルム1としては、熱硬化型に限らず、加圧接続を行うものであれば、光硬化型もしくは光熱併用型の接着剤を用いてもよい。
【0049】
[導電性粒子間距離]
ここで、本発明においては、隣接する電極端子19間の端子間スペース23における導電性粒子4同士の粒子間距離は、電極端子19と端子部17aとの間に捕捉された導電性粒子4同士の粒子間距離よりも長い。したがって、液晶表示パネル10は、ファインピッチ化された電極端子19の端子間スペース23において導電性粒子4が連なることによる
端子間ショートを防止することができる。
【0050】
すなわち、本発明においては、異方性導電フィルム1の導電性粒子4が規則的に配置されている。また、熱圧着ヘッド33による熱加圧時において、液晶駆動用IC18は、電極端子19上よりも、端子間スペース23の方がバインダー樹脂の流動性が高く流動しやすい。さらに、電極端子19と端子部17aとの間に捕捉された導電性粒子4は、バインダー樹脂の流動による影響が低い。
【0051】
一方、端子間スペース23における導電性粒子4は、電極端子19や端子部17aに挟持されておらず、熱圧着ヘッド33による熱加圧によって流動するバインダー樹脂の影響を相対的に大きく受ける。このため、端子間スペース23における導電性粒子4は、粒子間距離が相対的に大きくなる。したがって、液晶表示パネル10は、電極端子19と端子部17aとの間に確実に導電性粒子4を捕捉して導通性を確保することができ、かつ、隣接する電極端子19間の端子間スペース23において、粒子間距離を保持するため、電極端子19間のショートを防止することができる。
【0052】
また、上述したように、導電性粒子の個数密度は5000~60000個/mm2とされていることが好ましい。当該個数密度を有することにより、液晶表示パネル10は、狭小化された端子間スペース23において導電性粒子4が連続することによる端子間ショートを防止するとともに、ファインピッチ化された電極端子19と端子部17aとの間に導電性粒子4を確実に捕捉し、導通性を向上させることができる。
【0053】
図7は、導電性粒子4が規則的に配置された異方性導電フィルム1(個数密度:28000個/mm
2)と導電性粒子がランダムに分散されている異方性導電フィルム(個数密度:60000個/mm
2)とを用いてそれぞれ異方性導電接続された接続体における一つの電極端子19の導電性粒子捕捉数の分布を対比したグラフである。電極端子19のサイズは14μm×50μm(=700μm
2)、電極端子19間の距離は14μmである。また、異方性導電フィルム1のバインダー及び接続条件は、下記の実施例及び比較例に準ずる。
【0054】
図7に示すように、異方性導電フィルム1を用いて製造された接続体では、捕捉の確実性が向上されていることがわかる。
【0055】
[フィルム長手方向に疎密配列]
また、
図8(A)に示すように、異方性導電フィルム1は、端子部17a及び電極端子19の配列方向を長手方向とするフィルム状に形成され、導電性粒子4が、長手方向にわたって疎、幅方向に亘って密に配列されていてもよい。
【0056】
異方性導電フィルム1は、長手方向を端子部17a及び電極端子19の配列方向に沿って貼着される。したがって、異方性導電フィルム1は、COG実装部20に貼り合われることにより、導電性粒子4が端子部17a及び電極端子19の配列方向にわたって疎に配列され、端子部17a及び電極端子19の長さ方向にわたって密に配列される。
【0057】
このような異方性導電フィルム1は、相対的に導電性粒子4が端子部17a及び電極端子19の配列方向にわたって疎に配列されることにより、端子間スペース23において隣接する電極端子19間にわたる導電性粒子4の数が減り、粒子間距離が広がるため、より電極端子19間のショートを防止することができる。
【0058】
また、異方性導電フィルム1は、相対的に導電性粒子4が幅方向に亘って密に配列されているため、端子部17a及び電極端子19の間における導電性粒子4の粒子捕捉率が上
がる。したがって、液晶駆動用IC18との導通性を損なうこともない。
【0059】
なお、
図8(B)に示すように、異方性導電フィルム1は、端子部17a及び電極端子19の配列方向を長手方向とするフィルム状に形成され、導電性粒子4が、長手方向にわたって密、幅方向に亘って疎に配列されていてもよい。
【0060】
この場合も、端子間スペース23における導電性粒子4は、熱圧着ヘッド33による熱加圧によって流動するバインダー樹脂の影響を大きく受け、粒子間距離が相対的に大きくなる。そのため、液晶表示パネル10は、電極端子19間のショートを防止することができる。
【0061】
また、液晶表示パネル10は、相対的に導電性粒子4がフィルムの長さ方向に亘って密に配列されているため、端子部17a及び電極端子19の間において導電性粒子4を確実に捕捉することができ、液晶駆動用IC18との導通性を損なうこともない。
【0062】
[高密度充填配列]
また、
図9~
図11に示すように、異方性導電フィルム1は、フィルムの長手方向Lfと直交する幅方向Ltに対して、導電性粒子4を傾斜させて配列し、フィルムの長手方向Lfを端子部17aの配列方向と平行、且つフィルムの幅方向Ltを端子部17aの長手方向と平行に配置させることにより、異方導電性フィルム1の長手方向Lfに直交する方向の、導電性粒子Pの外接線(二点鎖線)が、その導電性粒子Pに隣接する導電性粒子Pc、Peを貫いてもよい。
【0063】
これにより、透明電極17の端子部17aに異方導電性フィルム1を重ねた平面図において、端子部17aの幅方向(フィルムの長手方向Lf)に対する隣接する導電性粒子4の粒子間距離が密となり、ファインピッチ化された端子部17aの接続面に占める導電性粒子4の捕捉率を向上することができる。よって、異方性導電フィルム1は、異方導電接続時に対向する電極端子19との間で挟持されて端子部17aに押し込まれ、電極端子19と端子部17aとの間を導通させる導電性粒子Pの数が不十分になることを防止することができる。
【0064】
なお、
図9~
図11に示す異方性導電フィルム1は、導電性粒子がフィルム幅方向Ltへの第2配列方向L2がフィルム幅方向Ltに対して傾斜するとともに、フィルムの長手方向Lfへの第1配列方向L1がフィルム長手方向Lfに対して傾斜することにより、端子部17aの幅方向及び長手方向に対する隣接する導電性粒子間距離が密とされ、より捕捉率が向上されている。
【実施例0065】
次いで、本発明の実施例について説明する。本実施例では、導電性粒子が規則配列された異方性導電フィルムと、導電性粒子がランダムに分散された異方性導電フィルムを用いて、評価用ガラス基板に評価用ICを接続した接続体サンプルを作成し、それぞれ評価用ガラス基板に形成された基板電極と評価用ICに形成されたICバンプとの間に捕捉された導電性粒子の数及び導電性粒子の最も近接する粒子との距離(粒子間距離)、隣接するICバンプ間に亘るバンプ間スペースにおける導電性粒子の数及び導電性粒子の最も近接する粒子との距離(粒子間距離)、初期導通抵抗、隣接するICバンプ間のショート発生率を測定した。
【0066】
[異方性導電フィルム]
評価用ICの接続に用いる異方性導電フィルムのバインダー樹脂層は、フェノキシ樹脂(商品名:YP50、新日鐵化学社製)60質量部、エポキシ樹脂(商品名:jER828、三菱化学社製)40質量部、カチオン系硬化剤(商品名:SI‐60L、三新化学工業社製)2質量部を溶剤に加えたバインダー樹脂組成物を調整し、このバインダー樹脂組成物を剥離フィルム上に塗布、焼成することにより形成した。
【0067】
[評価用IC]
評価素子として、外形;1.8mm×20mm、厚み0.5mm、バンプ(Au‐plated);幅30μ×長さ85μm、高さ15μm、バンプ間スペース幅;50μmの評価用ICを用いた。
【0068】
[評価用ガラス基板]
評価用ICが接続される評価用ガラス基板として、外形;30mm×50mm、厚み0.5mm、評価用ICのバンプと同サイズ同ピッチの櫛歯状の電極パターンが形成されたITOパターングラスを用いた。
【0069】
この評価用ガラス基板に異方性導電フィルムを仮貼りした後、ICバンプと基板電極とのアライメントを取りながら評価用ICを搭載し、熱圧着ヘッドにより180℃、80MPa、5secの条件で熱圧着することにより接続体サンプルを作成した。各接続体サンプルについて、ICバンプと基板電極との間に挟持されている導電性粒子の捕捉数及び粒子間距離、隣接するICバンプ間に亘るバンプ間スペースにある導電性粒子の数及び粒子間距離、初期導通抵抗、隣接するICバンプ間のショート発生率を測定した。
【0070】
ICバンプと基板電極との間に挟持されている導電性粒子の捕捉数は、各接続体サンプルについて、基板電極に現れる圧痕を評価用ガラス基板の裏面から観察し、1対のICバンプ及び基板電極の間に捕捉された導電性粒子の数を、任意の100個のICバンプ及び基板電極について計測して、その平均を求めた。同様に、ICバンプと基板電極との間に捕捉された導電性粒子の粒子間距離は、基板電極に現れる圧痕を評価用ガラス基板の裏面から観察し、任意の100個のICバンプ及び基板電極について計測し、その平均及び最小距離を求めた。
【0071】
バンプ間スペースにある導電性粒子の数は、各接続体サンプルについて、評価用ガラス基板の裏面から観察し、任意の100個のバンプ間スペースについて計測し、その平均を求めた。同様に、バンプ間スペースにある導電性粒子の粒子間距離は、評価用ガラス基板の裏面から観察し、任意の100個のバンプ間スペースについて計測し、その平均及び最小距離を求めた。なお、同一観察面において深さ方向でずれているものは、計測値から概算して求めた。
【0072】
また、各接続体サンプルは、初期導通抵抗が0.5Ω以下、ICバンプ間のショート発生率が50ppm以下を良好と評価した。
【0073】
[実施例1]
実施例1では、導電性粒子がバインダー樹脂層に規則配列された異方性導電フィルムを用いた。実施例1で用いた異方性導電フィルムは、延伸可能なシート上に粘着剤を塗布し、その上に導電性粒子を格子状かつ均等に単層配列した後、当該シートを所望の延伸倍率で延伸させた状態で、バインダー樹脂層をラミネートすることにより製造した。使用した導電性粒子(商品名:AUL704、積水化学工業社製)は粒子径4μmで、接続前における粒子間距離は0.5μm、粒子個数密度は28000個/mm2である。
【0074】
[実施例2]
実施例2では、接続前における粒子間距離が1μm、粒子個数密度が16000個/mm2の異方性導電フィルムを用いた他は、実施例1と同じ条件とした。
【0075】
[実施例3]
実施例3では、接続前における粒子間距離が1.5μm、粒子個数密度が10500個/mm2の異方性導電フィルムを用いた他は、実施例1と同じ条件とした。
【0076】
[実施例4]
実施例4では、接続前における粒子間距離が3μm、粒子個数密度が5200個/mm2の異方性導電フィルムを用いた他は、実施例1と同じ条件とした。
【0077】
[実施例5]
実施例5では、接続前における粒子間距離が0.5μm、粒子個数密度が50000個/mm2の異方性導電フィルムを用いた他は、実施例1と同じ条件とした。
【0078】
[比較例1]
比較例1では、バインダー樹脂組成物に導電性粒子を加えて調整し、剥離フィルム上に塗布、焼成することにより、バインダー樹脂層に導電性粒子がランダムに分散されている異方性導電フィルムを用いた。使用した導電性粒子(商品名:AUL704、積水化学工業社製)は粒子径4μmで、粒子個数密度は100000個/mm2である。
【0079】
[比較例2]
比較例2では、粒子個数密度は16000個/mm2である他は、比較例1と同じ条件とした。
【0080】
【0081】
表1に示すように、実施例1~5に係る接続体サンプルでは、1対の評価用ICのICバンプ及び評価用ガラス基板の基板電極の間に挟持された導電性粒子の数が平均8.1以上であり、初期導通抵抗が0.4Ω以下と良好であった。1対のICバンプ及び基板電極の間に挟持された導電性粒子の粒子間距離は、平均1.2μm以上で、最小でも0.2μm以上であった。
【0082】
また、実施例1~5に係る接続体サンプルでは、隣接するICバンプ間に亘るバンプ間スペースにおける導電性粒子の数が平均で14.3~194.2と分かれたが、導電性粒子の粒子間距離は、平均で1.4μm以上、最小でも0.3μmとなり、ICバンプ間のショート発生率は50ppmよりも低く、絶縁性も良好であった。
【0083】
一方、比較例1では、個数密度が100000個/mm2で充填された導電性粒子がバインダー樹脂層にランダムに分散されているため、基板電極とICバンプとの間に挟持された導電性粒子数は平均48個、粒子間距離は、平均で0.5μm、最小距離は0μmであり、初期導通抵抗は0.2Ωと問題は無かった。一方、バンプ間スペースにおいては、導電性粒子の数が平均80個、粒子間距離は平均で0.7μm、最小距離は0μm、すなわち導電性粒子同士の接触がみられ、バンプ間ショートの発生率が1000ppm以上となった。
【0084】
また、比較例2では、個数密度が16000個/mm2で充填された導電性粒子がランダムに分散されているため、バンプ間スペースにおいては、導電性粒子の数が平均12.8個、粒子間距離は平均で2.6μm、最小距離は0μm、すなわち導電性粒子同士の接触がみられたが、バンプ間ショートの発生率は50ppm以下となった。一方、基板電極とICバンプとの間に挟持された導電性粒子数は平均7.7個、粒子間距離は、平均で2.1μm、最小距離は0μmであり、導通抵抗が5Ωと高くなった。
【0085】
なお、実施例4では、導電性粒子の個数密度が5000個/mm2であるが、導通抵抗が0.5Ωより大きい場合が不良であるところ、0.4Ωであり、実用上問題なかった。また実施例5では、導電性粒子の個数密度が50000個/mm2であるが、バンプ間のショート数が50ppmより大きい場合が不良であるところ、50ppm以下であり、実用上問題なかった。すなわち、異方性導電フィルムの接着前における導電性粒子の個数密度は、5000~60000個/mm2とすることが好ましいことが分かる。
【0086】
なお、圧痕からバンプに捕捉された導電性粒子の個数をカウントする場合、上述のように基板側から観察するのが一般的である。このとき、バンプ間スペースの導電性粒子は、バンプに捕捉された導電性粒子と同一平面上に存在しているものは少ない。これは、流動による影響と推測される。
1 異方性導電フィルム、2 剥離フィルム、3 バインダー樹脂層、4 導電性粒子、6 巻取リール、10 液晶表示パネル、11,12 透明基板、12a 縁部、13 シール、14 液晶、15 パネル表示部、16,17 透明電極、17a 端子部、18 液晶駆動用IC、18a 実装面、19 電極端子、20 COG実装部、21 基板側アライメントマーク、22 IC側アライメントマーク、23 端子間スペース、33 熱圧着ヘッド
上記異方性導電接着剤はフィルム状に形成され、上記導電性粒子がフィルム幅方向への配列方向がフィルム幅方向に対して傾斜するとともに、フィルムの長手方向への配列方向がフィルム長手方向に対して傾斜している請求項1~3のいずれか1項に記載の接続体。
上記異方性導電接着剤は、上記基板電極及び上記接続電極の配列方向を長手方向とするフィルム状に形成され、上記導電性粒子が、長手方向にわたって疎、幅方向に亘って密に配列されている請求項1~4のいずれか1項に記載の接続体。
上記異方性導電接着剤は、上記基板電極及び上記接続電極の配列方向を長手方向とするフィルム状に形成され、上記導電性粒子が、長手方向にわたって密、幅方向に亘って疎に配列されている請求項1~4のいずれか1項に記載の接続体。
上記異方性導電接着剤はフィルム状に形成され、上記導電性粒子がフィルム幅方向への配列方向がフィルム幅方向に対して傾斜するとともに、フィルムの長手方向への配列方向がフィルム長手方向に対して傾斜している請求項7~9のいずれか1項に記載の接続体の製造方法。
上記異方性導電接着剤は、上記基板電極及び上記接続電極の配列方向を長手方向とするフィルム状に形成され、上記導電性粒子が、長手方向にわたって疎、幅方向に亘って密に配列されている請求項7~10のいずれか1項に記載の接続体の製造方法。
上記異方性導電接着剤は、上記基板電極及び上記接続電極の配列方向を長手方向とするフィルム状に形成され、上記導電性粒子が、長手方向にわたって密、幅方向に亘って疎に配列されている請求項7~10のいずれか1項に記載の接続体の製造方法。
上述した課題を解決するために、本発明に係る接続体は、回路基板上に異方性導電接着剤を介して電子部品が接続された接続体において、上記異方性導電接着剤は、バインダー樹脂に導電性粒子が配列され、上記電子部品に形成された接続電極と上記回路基板に形成された基板電極とが、上記接続電極及び上記基板電極の配列方向にずれており、上記接続電極及び上記基板電極の配列方向における最小距離が上記導電性粒子の粒子径の4倍未満であり、上記電子部品に形成された接続電極間のスペースにおける導電性粒子同士の粒子間距離は、上記基板電極と上記接続電極との間に捕捉された導電性粒子同士の粒子間距離よりも長いものである。
また、本発明に係る接続体の製造方法は、回路基板上に、導電性粒子を含有した接着剤を介して電子部品を搭載し、上記電子部品を上記回路基板に対して押圧するとともに、上記接着剤を硬化させることにより、上記電子部品を上記回路基板上に接続する接続体の製造方法において、上記異方性導電接着剤は、バインダー樹脂に導電性粒子が配列され、上記電子部品に形成された接続電極と上記回路基板に形成された基板電極とが、上記接続電極及び上記基板電極の配列方向にずれており、上記接続電極及び上記基板電極の配列方向における最小距離が上記導電性粒子の粒子径の4倍未満であり、上記接続電極間のスペースにおける導電性粒子同士の粒子間距離は、上記基板電極と上記接続電極との間に捕捉された導電性粒子同士の粒子間距離よりも長いものである。