IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ダイセルの特許一覧 ▶ 学校法人早稲田大学の特許一覧

<>
  • 特開-酢酸の製造方法 図1
  • 特開-酢酸の製造方法 図2
  • 特開-酢酸の製造方法 図3
  • 特開-酢酸の製造方法 図4
  • 特開-酢酸の製造方法 図5
  • 特開-酢酸の製造方法 図6
  • 特開-酢酸の製造方法 図7
  • 特開-酢酸の製造方法 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022034959
(43)【公開日】2022-03-04
(54)【発明の名称】酢酸の製造方法
(51)【国際特許分類】
   C07C 51/47 20060101AFI20220225BHJP
   C07C 53/08 20060101ALI20220225BHJP
【FI】
C07C51/47
C07C53/08
【審査請求】未請求
【請求項の数】20
【出願形態】OL
(21)【出願番号】P 2020138929
(22)【出願日】2020-08-19
(71)【出願人】
【識別番号】000002901
【氏名又は名称】株式会社ダイセル
(71)【出願人】
【識別番号】899000068
【氏名又は名称】学校法人早稲田大学
(74)【代理人】
【識別番号】110002239
【氏名又は名称】特許業務法人後藤特許事務所
(72)【発明者】
【氏名】清水 雅彦
(72)【発明者】
【氏名】齋藤 玲
(72)【発明者】
【氏名】平林 信行
(72)【発明者】
【氏名】竹田 和史
(72)【発明者】
【氏名】松方 正彦
(72)【発明者】
【氏名】酒井 求
【テーマコード(参考)】
4H006
【Fターム(参考)】
4H006AA02
4H006AD19
4H006BC51
4H006BC52
4H006BD60
4H006BS10
(57)【要約】
【課題】アセトアルデヒドとヨウ化メチルを効率よく分離することができ、ヨウ化メチルの損失が低減された酢酸の製造方法を提供する。
【解決手段】酢酸の製造プロセスにおいて、アセトアルデヒド及びヨウ化メチルを含むプロセス流から、ゼオライト膜を用いてアセトアルデヒドに富む流れとヨウ化メチルに富む流れとを分離取得する膜分離工程を備える酢酸の製造方法。前記ゼオライト膜はBEA型ゼオライト膜であることが好ましい。前記プロセス流中のアセトアルデヒド濃度が1~99.9質量%、ヨウ化メチル濃度が0.01~99質量%であることが好ましい。
【選択図】図1
【特許請求の範囲】
【請求項1】
酢酸の製造プロセスにおいて、アセトアルデヒド及びヨウ化メチルを含むプロセス流から、ゼオライト膜を用いてアセトアルデヒドに富む流れとヨウ化メチルに富む流れとを分離取得する膜分離工程を備えた酢酸の製造方法。
【請求項2】
前記ゼオライト膜はBEA型ゼオライト膜である請求項1に記載の酢酸の製造方法。
【請求項3】
前記プロセス流中のアセトアルデヒド濃度が0.1~99.9質量%、ヨウ化メチル濃度が0.01~99質量%である、請求項1又は2に記載の酢酸の製造方法。
【請求項4】
前記プロセス流中のアセトアルデヒドとヨウ化メチルの合計濃度が1質量%以上である、請求項1~3のいずれか1項に記載の酢酸の製造方法。
【請求項5】
金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物を、1以上の蒸発処理及び/又は蒸留処理に付して、少なくとも、金属触媒を含む流れと、酢酸に富む酢酸流と、前記酢酸流よりも低沸成分に富む流れとに分離する分離工程と、
前記低沸成分に富む流れを凝縮して得られる凝縮液の少なくとも一部から、1以上の蒸留処理によりアセトアルデヒドを分離するアセトアルデヒド分離除去システムとを備え、
前記アセトアルデヒド分離除去システムにおいて分離されたアセトアルデヒドに富む流れを前記プロセス流として前記膜分離工程に付す、請求項1~4のいずれか1項に記載の酢酸の製造方法。
【請求項6】
前記膜分離工程により分離取得されるヨウ化メチルに富む流れの一部を前記アセトアルデヒド分離除去システム内のプロセスにリサイクルする、請求項5に記載の酢酸の製造方法。
【請求項7】
前記プロセス流が、前記アセトアルデヒド分離除去システム内において蒸留処理を行う蒸留塔のオーバーヘッド流を含む、請求項5又は6に記載の酢酸の製造方法。
【請求項8】
前記膜分離工程により分離取得されるヨウ化メチルに富む流れの一部を前記蒸留塔に還流する請求項7に記載の酢酸の製造方法。
【請求項9】
前記アセトアルデヒド分離除去工程は、
前記低沸成分に富む流れを凝縮して得られる凝縮液の少なくとも一部を、蒸留に付し、アセトアルデヒドに富む第1オーバーヘッド流と、残液流とを分離取得する蒸留工程(A1)と、
前記第1オーバーヘッド流を凝縮して得られる凝縮液の少なくとも一部を、抽出に付し、アセトアルデヒドに富む水相と、ヨウ化メチルに富む有機相とに分離する抽出工程(B1)と、
前記アセトアルデヒドに富む水相を、蒸留に付し、アセトアルデヒドに富む第2オーバーヘッド流と、水に富む残液流とを分離取得する蒸留工程(C1)と、を備え、
前記第2オーバーヘッド流及び/又は前記第2オーバーヘッド流を凝縮して得られる凝縮液を前記プロセス流として前記膜分離工程に付す、請求項5に記載の酢酸の製造方法。
【請求項10】
前記プロセス流が、前記第2オーバーヘッド流を含む、請求項9に記載の酢酸の製造方法。
【請求項11】
前記膜分離工程において分離して得られた前記ヨウ化メチルに富む流れを、前記蒸留工程(A1)及び/又は前記抽出工程(B1)にリサイクルする、請求項9又は10に記載の酢酸の製造方法。
【請求項12】
前記アセトアルデヒド分離除去工程は、
前記低沸成分に富む流れを凝縮して得られる凝縮液の少なくとも一部を、蒸留に付し、蒸留塔内のヨウ化メチル及びアセトアルデヒドが濃縮される濃縮域から降下する液を側流として抜き取る蒸留工程(A2)と、
前記側流を水相と有機相とに分液させる分液工程(B2)と、
前記水相を蒸留に付し、アセトアルデヒドに富む第3オーバーヘッド流と水に富む缶出液とを分離取得する蒸留工程(C2)とを備え、
さらに、前記アセトアルデヒドに富む第3オーバーヘッド流を抽出蒸留に付し、アセトアルデヒドに富む第4オーバーヘッド流と水に富む缶出液とを分離取得する抽出蒸留工程(D2)を備えていてもよく、
前記第3オーバーヘッド流、前記第3オーバーヘッド流を凝縮して得られる凝縮液、前記第4オーバーヘッド流、及び前記第4オーバーヘッド流を凝縮して得られる凝縮液からなる群より選択される1以上の流れを前記プロセス流として前記膜分離工程に付す、請求項5に記載の酢酸の製造方法。
【請求項13】
前記プロセス流が、前記第4オーバーヘッド流を含む、請求項12に記載の酢酸の製造方法。
【請求項14】
前記プロセス流が気体である、請求項1~13のいずれか1項に記載の酢酸の製造方法。
【請求項15】
前記膜分離工程を、透過側にスイープガスを吹き込みながら行う、請求項14に記載の酢酸の製造方法。
【請求項16】
前記膜分離工程によるヨウ化メチル回収率が1質量%以上である、請求項1~15のいずれか1項に記載の酢酸の製造方法。
【請求項17】
前記膜分離工程により分離取得されるヨウ化メチルに富む流れ中のヨウ化メチル濃度が、前記プロセス流中のヨウ化メチル濃度より高く、且つ1質量%以上である請求項1~16のいずれか1項に記載の酢酸の製造方法。
【請求項18】
前記膜分離工程により分離取得されるアセトアルデヒドに富む流れ中のアセトアルデヒド濃度が、前記プロセス流中のアセトアルデヒド濃度より高く、且つ、0.1質量%以上である請求項1~17のいずれか1項に記載の酢酸の製造方法。
【請求項19】
前記ゼオライト膜は、多孔質基材の少なくとも一方の面に設けられている、請求項1~18のいずれか1項に記載の酢酸の製造方法。
【請求項20】
アセトアルデヒド及びヨウ化メチルを含む混合物から、ゼオライト膜を用いてアセトアルデヒドに富む流れとヨウ化メチルに富む流れとを分離取得する、アセトアルデヒドに富む流れとヨウ化メチルに富む流れを製造する方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、酢酸を製造する方法に関する。
【背景技術】
【0002】
酢酸の工業的製造法としてメタノール法カルボニル化プロセスが知られている。このプロセスでは、例えば、反応槽で、触媒の存在下、メタノールと一酸化炭素とを反応させて酢酸を生成させ、得られた反応混合物を蒸発槽で酢酸及び低沸成分を含む蒸気相と、酢酸及び触媒を含む残液相とに分離し、上記蒸気相を蒸留塔(脱低沸塔)で蒸留して低沸成分を含むオーバーヘッド流と酢酸流とに分離し、上記酢酸流をさらに精製することにより製品酢酸を得る。このプロセスでは、反応中にアセトアルデヒドが副生し、このアセトアルデヒドが製品酢酸の品質を低下させる原因となる。
【0003】
そのため、上記脱低沸塔のオーバーヘッド流の凝縮液をデカンタで水相と有機相とに分液させ、そのうち水相又は有機相を脱アセトアルデヒド塔で蒸留し、そのオーバーヘッド流の凝縮液(アセトアルデヒドとヨウ化メチルを含む)を水で抽出し、さらに抽出により得られる水相を蒸留することによりアセトアルデヒドを分離除去している。
【0004】
また、ヨウ化メチルは、メタノール法カルボニル化プロセスにおいて、ロジウム触媒などの金属触媒の助触媒として作用する有用な成分であり、高価でもある。このため、アセトアルデヒドから分離されたヨウ化メチルは、反応器にリサイクルされて反応工程で再利用されている。しかしながら、アセトアルデヒドとヨウ化メチルは沸点が近いため、アセトアルデヒドとヨウ化メチルを完全に分離することが困難であった。このため、分離できなかったヨウ化メチルはアセトアルデヒドと共に廃棄されていた。そして、ヨウ化メチルの損失を補うために、必要に応じてヨウ化メチルを製造し、新たにヨウ化メチルを反応器に追加する必要があり、作業負担が高い、コストが嵩むなどという問題があった。
【0005】
アセトアルデヒドとヨウ化メチルを効率よく分離する方法としては、例えば、特許文献1~4に開示の方法が知られている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】国際公開第2017/057142号
【特許文献2】特開2006-94764号公報
【特許文献3】特開平9-40590号公報
【特許文献4】特開平9-77697号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献1~4に開示の方法によっても、アセトアルデヒドとヨウ化メチルを完全に分離することはできず、さらに効率よく分離することができる方法が望まれていた。
【0008】
したがって、本開示の目的は、アセトアルデヒドとヨウ化メチルを効率よく分離することができ、ヨウ化メチルの損失が低減された酢酸の製造方法を提供することにある。
【課題を解決するための手段】
【0009】
本開示の発明者らは、上記目的を達成するため鋭意検討した結果、アセトアルデヒドとヨウ化メチルの混合物を、特定の分離膜を用いて分離を行うことで、アセトアルデヒドとヨウ化メチルを効率よく分離することができることを見出した。本開示は、これらの知見に基づき、さらに検討を重ねて完成されたものに関する。
【0010】
すなわち、本開示は、酢酸の製造プロセスにおいて、アセトアルデヒド及びヨウ化メチルを含むプロセス流から、ゼオライト膜を用いてアセトアルデヒドに富む流れとヨウ化メチルに富む流れとを分離取得する膜分離工程を備えた酢酸の製造方法を提供する。
【0011】
上記ゼオライト膜はBEA型ゼオライト膜であることが好ましい。
【0012】
上記プロセス流中のアセトアルデヒド濃度が0.1~99.9質量%、ヨウ化メチル濃度が0.01~99質量%であることが好ましい。
【0013】
上記プロセス流中のアセトアルデヒドとヨウ化メチルの合計濃度は1質量%以上であることが好ましい。
【0014】
上記酢酸の製造方法は、金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応させて酢酸を生成させるカルボニル化反応工程と、
上記カルボニル化反応工程で得られた反応混合物を、1以上の蒸発処理及び/又は蒸留処理に付して、少なくとも、金属触媒を含む流れと、酢酸に富む酢酸流と、上記酢酸流よりも低沸成分に富む流れとに分離する分離工程と、
上記低沸成分に富む流れを凝縮して得られる凝縮液の少なくとも一部から、1以上の蒸留処理によりアセトアルデヒドを分離するアセトアルデヒド分離除去システムとを備え、
上記アセトアルデヒド分離除去システムにおいて分離されたアセトアルデヒドに富む流れを上記プロセス流として上記膜分離工程に付すことが好ましい。
【0015】
上記膜分離工程により分離取得されるヨウ化メチルに富む流れの一部を上記アセトアルデヒド分離除去システム内のプロセスにリサイクルしてもよい。
【0016】
上記プロセス流は、上記アセトアルデヒド分離除去システム内において蒸留処理を行う蒸留塔のオーバーヘッド流を含むことが好ましい。
【0017】
上記膜分離工程により分離取得されるヨウ化メチルに富む流れの一部を上記蒸留塔にリサイクルしてもよい。
【0018】
上記アセトアルデヒド分離除去工程は、
上記低沸成分に富む流れを凝縮して得られる凝縮液の少なくとも一部を、蒸留に付し、アセトアルデヒドに富む第1オーバーヘッド流と、残液流とを分離取得する蒸留工程(A1)と、
上記第1オーバーヘッド流を凝縮して得られる凝縮液の少なくとも一部を、抽出に付し、アセトアルデヒドに富む水相と、ヨウ化メチルに富む有機相とに分離する抽出工程(B1)と、
上記アセトアルデヒドに富む水相を、蒸留に付し、アセトアルデヒドに富む第2オーバーヘッド流と、水に富む残液流とを分離取得する蒸留工程(C1)と、を備え、
上記第2オーバーヘッド流及び/又は上記第2オーバーヘッド流を凝縮して得られる凝縮液を上記プロセス流として上記膜分離工程に付してもよい。
【0019】
上記プロセス流は上記第2オーバーヘッド流を含むことが好ましい。
【0020】
上記膜分離工程において分離して得られた上記ヨウ化メチルに富む流れを、上記蒸留工程(A1)及び/又は上記抽出工程(B1)にリサイクルしてもよい。
【0021】
上記アセトアルデヒド分離除去工程は、
上記低沸成分に富む流れを凝縮して得られる凝縮液の少なくとも一部を、蒸留に付し、蒸留塔内のヨウ化メチル及びアセトアルデヒドが濃縮される濃縮域から降下する液を側流として抜き取る蒸留工程(A2)と、
上記側流を水相と有機相とに分液させる分液工程(B2)と、
上記水相を蒸留に付し、アセトアルデヒドに富む第3オーバーヘッド流と水に富む缶出液とを分離取得する蒸留工程(C2)とを備え、
さらに、上記アセトアルデヒドに富む第3オーバーヘッド流を抽出蒸留に付し、アセトアルデヒドに富む第4オーバーヘッド流と水に富む缶出液とを分離取得する抽出蒸留工程(D2)を備えていてもよく、
上記第3オーバーヘッド流、上記第3オーバーヘッド流を凝縮して得られる凝縮液、上記第4オーバーヘッド流、及び上記第4オーバーヘッド流を凝縮して得られる凝縮液からなる群より選択される1以上の流れを上記プロセス流として上記膜分離工程に付してもよい。
【0022】
上記プロセス流は上記第4オーバーヘッド流を含むことが好ましい。
【0023】
上記プロセス流は気体であることが好ましい。
【0024】
上記膜分離工程を、透過側にスイープガスを吹き込みながら行うことが好ましい。
【0025】
上記膜分離工程によるヨウ化メチル回収率は1質量%以上であることが好ましい。
【0026】
上記膜分離工程により分離取得されるヨウ化メチルに富む流れ中のヨウ化メチル濃度は、上記プロセス流中のヨウ化メチル濃度より高く、且つ1質量%以上であることが好ましい。
【0027】
上記膜分離工程により分離取得されるアセトアルデヒドに富む流れ中のアセトアルデヒド濃度は、上記プロセス流中のアセトアルデヒド濃度より高く、且つ、0.1質量%以上であることが好ましい。
【0028】
上記ゼオライト膜は、多孔質基材の少なくとも一方の面に設けられていることが好ましい。
【0029】
また、本開示は、アセトアルデヒド及びヨウ化メチルを含む混合物から、ゼオライト膜を用いてアセトアルデヒドに富む流れとヨウ化メチルに富む流れとを分離取得する、アセトアルデヒドに富む流れとヨウ化メチルに富む流れを製造する方法を提供する。
【発明の効果】
【0030】
上記酢酸の製造方法によれば、アセトアルデヒドとヨウ化メチルを効率よく分離することができるため、ヨウ化メチルの損失を低減することができる。このため、反応工程に新たにヨウ化メチルを添加する作業負担も低減される。
【図面の簡単な説明】
【0031】
図1】膜分離工程の一例を示す概略フロー図である。
図2】膜分離工程の他の例を示す概略フロー図である。
図3】酢酸製造システムの一実施形態を示す製造フロー図である。
図4】アセトアルデヒド分離除去システムの一例を示す概略フロー図である。
図5】アセトアルデヒド分離除去システムの他の例を示す概略フロー図である。
図6】アセトアルデヒド分離除去システムのさらに他の例を示す概略フロー図である。
図7】アセトアルデヒド分離除去システムのさらに他の例を示す概略フロー図である。
図8】実施例1の分離試験に用いた装置を示す概略図である。
【発明を実施するための形態】
【0032】
本開示の一実施形態に係る酢酸の製造方法は、酢酸の製造プロセスにおいて、アセトアルデヒド及びヨウ化メチルを含むプロセス流から、ゼオライト膜を用いてアセトアルデヒドに富む流れとヨウ化メチルに富む流れとを分離取得する膜分離工程を備える。
【0033】
上記ゼオライト膜は、ゼオライトから形成された膜である。上記ゼオライト膜は、主として、アセトアルデヒドを透過し、ヨウ化メチルを透過させずに濃縮する。すなわち、上記膜分離工程において分離取得される透過流は上記プロセス流(仕込流)よりもアセトアルデヒドに富む流れであり、分離取得される濃縮流は上記プロセス流(仕込流)よりもヨウ化メチルに富む流れである。これは、基本的にゼオライト膜は分子ふるい機能によりアセトアルデヒドを透過させる。一方で、分子ふるい機能のみでは多くのヨウ化メチルも透過させることとなるはずであるが、ゼオライトの吸着特性を利用して、ヨウ化メチルを透過させにくくしていると推測される。このようなゼオライト膜の性能により、アセトアルデヒドとヨウ化メチルとを効率的に分離することができる。
【0034】
上記ゼオライトとしては、例えば、A型、フェリエライト、MCM-22、ZSM-5、ZSM-11、SAPO-11、モルデナイト、BEA型、X型、Y型、L型、FAU型、MFI型、チャバザイト、オフレタイト等の骨格構造を有する合成ゼオライトなどが挙げられる。中でも、アセトアルデヒドとヨウ化メチルとをよりいっそう効率的に分離することができる観点から、BEA型ゼオライト、ZSM-5型ゼオライト、FAU型ゼオライト、MFI型ゼオライトが好ましく、BEA型ゼオライトが特に好ましい。BEA型ゼオライトは表面が親水性であることから、ヨウ化メチルをよりいっそう透過させにくいものと推測される。上記ゼオライトは、一種のみを使用してもよいし、二種以上を使用してもよい。
【0035】
上記ゼオライトは、特に限定されないが、骨格構造中に陽イオンを含んでいてもよい。上記陽イオンとしては、特に限定されないが、例えば、水素イオン;アンモニウムイオン;リチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオン等のアルカリ金属イオン;マグネシウムイオン、カルシウムイオン、バリウムイオン等のアルカリ土類金属イオン;亜鉛イオン、スズイオン、鉄イオン、白金イオン、パラジウムイオン、チタンイオン、銀イオン、銅イオン、マンガンイオン等の遷移金属イオンなどが挙げられる。中でも、上記陽イオンとして、アルカリ金属イオンを含むことが好ましく、より好ましくはカリウムイオンである。上記ゼオライトは上記陽イオンを一種のみ含んでいてもよいし、二種以上を含んでいてもよい。
【0036】
上記ゼオライト膜は、多孔質基材の少なくとも一方の面に設けられていることが好ましい。上記多孔質基材は、上記ゼオライト膜を支持するための基材として作用する。上記多孔質基材は、アセトアルデヒドを透過させることが可能な孔を有する。
【0037】
上記多孔質基材としては、公知乃至慣用のものを使用することができる。上記多孔質基材を構成する材質としては、例えば、シリカ、アルミナ、ムライト、ジルコニア、コージェライト、チタニア、窒化ケイ素、炭化ケイ素、ステンレス鋼、銅、アルミニウム、チタン、セラミック等の無機物などが挙げられる。
【0038】
上記膜分離工程に付すプロセス流は、アセトアルデヒド及びヨウ化メチルを少なくとも含む混合物であればよく、酢酸の製造プロセスにおける、全ての装置及び配管におけるプロセス流から選択される1以上のプロセス流である。また、上記プロセス流は、液体であっても気体であってもよい。
【0039】
上記プロセス流中のアセトアルデヒド濃度は、例えば、0.1質量%以上、1質量%以上、2質量%以上、5質量%以上、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、60質量%以上、70質量%以上、75質量%以上、80質量%以上であってもよい。また、上記プロセス流中のアセトアルデヒド濃度は、例えば、99.9質量%以下、99質量%以下、95質量%以下、90質量%以下、85質量%以下、80質量%以下、70質量%以下、60質量%以下、50質量%以下、40質量%以下、30質量%以下、20質量%以下、10質量%以下、5質量%以下であってもよい。
【0040】
上記プロセス流中のヨウ化メチル濃度は、例えば、0.01質量%以上、0.1質量%以上、0.5質量%以上、1質量%以上、2質量%以上、3質量%以上、5質量%以上、6質量%以上、7質量%以上、10質量%以上、12質量%以上、15質量%以上、20質量%以上、30質量%以上であってもよい。また、上記プロセス流中のヨウ化メチル濃度は、例えば、99質量%以下、95質量%以下、90質量%以下、80質量%以下、70質量%以下、50質量%以下、20質量%以下、10質量%以下、5質量%以下、3質量%以下、1質量%以下、0.1質量%以下であってもよい。
【0041】
上記プロセス流中のアセトアルデヒドとヨウ化メチルの合計濃度は、特に限定されないが、1質量%以上が好ましく、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、60質量%以上、70質量%以上、80質量%以上、85質量%以上であってもよい。上記合計濃度は、例えば、99質量%以下、95質量%以下、90質量%以下、80質量%以下、70質量%以下、60質量%以下、50質量%以下、40質量%以下、30質量%以下、20質量%以下、10質量%以下であってもよい。
【0042】
上記プロセス流は、アセトアルデヒド及びヨウ化メチル以外のその他の成分を含んでいてもよい。上記その他の成分としては、酢酸の製造プロセスで生じ得る成分が挙げられ、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、ギ酸、プロピオン酸、クロトンアルデヒド、2-エチルクロトンアルデヒド、アルカン類、並びに、ヨウ化ヘキシル及びヨウ化デシル等のヨウ化アルキルなどが挙げられる。
【0043】
上記プロセス流中の水濃度は、例えば、0.1質量%以上、0.5質量%以上、1質量%以上、2質量%以上、5質量%以上、7質量%以上、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上であってもよい。また、上記プロセス流中の水濃度は、例えば、95質量%以下、90質量%以下、80質量%以下、70質量%以下、50質量%以下、20質量%以下、15質量%以下、10質量%以下、5質量%以下、1質量%以下であってもよい。
【0044】
上記膜分離工程により得られる上記ヨウ化メチルに富む流れ中のヨウ化メチル濃度は、上記プロセス流中のヨウ化メチル濃度より高く、例えば、1質量%以上、5質量%以上、10質量%以上、15質量%以上、20質量%以上、25質量%以上、30質量%以上、40質量%以上、50質量%以上であってもよい。また、上記ヨウ化メチルに富む流れ中のヨウ化メチル濃度は、例えば、100質量%以下、90質量%以下、70質量%以下、50質量%以下、40質量%以下、30質量%以下、20質量%以下、10質量%以下、5質量%以下であってもよい。
【0045】
上記膜分離工程におけるヨウ化メチルの回収率([濃縮流中のヨウ化メチル流量/仕込流中のヨウ化メチル流量]×100)は、例えば、1質量%以上、5質量%以上、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、95質量%以上、99質量%以上であってもよい。また、上記ヨウ化メチルの回収率は、例えば、100質量%以下、99.5質量%以下、95質量%以下、93質量%以下、90質量%以下、80質量%以下、70質量%以下、60質量%以下、50質量%以下、40質量%以下、30質量%以下、20質量%以下、10質量%以下であってもよい。
【0046】
上記膜分離工程により得られる上記アセトアルデヒドに富む流れ中のアセトアルデヒド濃度は、上記プロセス流中のアセトアルデヒド濃度より高く、例えば、0.1質量%以上、1質量%以上、5質量%以上、10質量%以上、20質量%以上、30質量%以上、50質量%以上、70質量%以上、80質量%以上、90質量%以上であってもよい。また、上記アセトアルデヒドに富む流れ中のアセトアルデヒド濃度は、例えば、100質量%以下、99.5質量%以下、95質量%以下、93質量%以下、90質量%以下、80質量%以下、70質量%以下、60質量%以下、50質量%以下、40質量%以下、30質量%以下、20質量%以下、10質量%以下であってもよい。
【0047】
上記膜分離工程におけるアセトアルデヒドの回収率([透過流中のアセトアルデヒド流量/仕込流中のアセトアルデヒド流量]×100)は、1質量%以上、5質量%以上、10質量%以上、15質量%以上、20質量%以上、30質量%以上、50質量%以上、60質量%以上、80質量%以上、90質量%以上であってもよい。また、上記アセトアルデヒドの回収率は、例えば、100質量%以下、99.5質量%以下、95質量%以下、93質量%以下、90質量%以下、80質量%以下、70質量%以下、60質量%以下、50質量%以下、40質量%以下、30質量%以下、20質量%以下、10質量%以下であってもよい。
【0048】
以下、上記膜分離工程の一実施形態について説明する。図1は、上記膜分離工程に付すプロセス流が気体(プロセスガス)である場合の本開示における上記膜分離工程の一実施形態を示す概略フロー図である。このフローによれば、例えば上記プロセスガスを膜分離工程に付す際、上記プロセスガスはライン60を通じて膜モジュール58に供給される。
【0049】
膜モジュール58において上記膜分離工程が行われる。ゼオライト膜を備える膜モジュール58の透過側には、スイープガス70として窒素やヘリウムなどの不活性ガスを吹き込んでもよい。また、透過側を真空ポンプやエジェクターなどで減圧にしてもよい。これにより、アセトアルデヒドとヨウ化メチルの分圧差を大きくしてヨウ化メチルの回収率を向上させることができる。また、ゼオライト膜を透過する透過流の滞留を防ぐことができる。上記膜分離工程に仕込まれるプロセスガスの温度及び圧力は、プロセス流がガスの状態を維持できる範囲内であれば特に限定されない。
【0050】
上記膜分離工程は、プロセスガスの温度が50~130℃(例えば60~120℃、好ましくは70~110℃、より好ましくは80~100℃)である状態で行われることが好ましい。また、上記膜分離工程は、アセトアルデヒドとヨウ化メチルの分圧差を大きくしてヨウ化メチルの回収率を向上させるため、加圧下で行われることが好ましく、その圧力は、絶対圧で、好ましくは140~300kPa、より好ましくは200~290kPa、さらに好ましくは260~280kPaである。上記温度範囲及び加圧下で上記膜分離工程を行うことにより、濃縮流と透過流とのアセトアルデヒドの分圧差を大きくしてアセトアルデヒドの透過度を上げることができ、アセトアルデヒドがゼオライト膜を透過しやすく、より効率的にアセトアルデヒドとヨウ化メチルとを分離することができる。
【0051】
上記膜分離工程においてゼオライト膜を透過せず濃縮して得られる、ヨウ化メチルに富む流れ(ライン61)は、コンデンサ61aで冷却・凝縮され、凝縮液として受器59に供給される。受器59中の液面が所定の液面を超えたことを液面コントローラー59bが検知した際、バルブ65bを開けて、ポンプ63aにより、ライン63,64,65を通じてヨウ化メチルに富む流れ(ライン66)が得られる。59aはコンデンサ61aの温度コントローラーである。65aはライン65を通過する液の流量計である。
【0052】
ゼオライト膜を透過せず濃縮したヨウ化メチルに富む流れは、直接的又は間接的に反応工程にリサイクルされ、反応工程において助触媒として再利用することができる。上記ヨウ化メチルに富む流れ(ライン66)は、後述のアセトアルデヒド分離除去システム内のプロセスにリサイクルすることが好ましく、後述の蒸留塔91の仕込流(ライン117)、抽出塔92の仕込流(ライン118)、又は蒸留塔94の仕込流(ライン228)にリサイクルすることがより好ましい。
【0053】
また、受器59からのヨウ化メチルに富む流れ(ライン63)は、バルブ67bを開くことによりライン67を通して回収してもよい。回収された上記ヨウ化メチルに富む流れ(ライン67)は、ライン60を通して送られる上記プロセスガスを排出するユニット(例えば、後述の蒸留塔93、蒸留塔98などの蒸留塔)にリサイクルしてもよい。67aはライン67を通過する液の流量計である。
【0054】
また、受器59内で発生したガスはライン68を通じてライン71に合流させる。圧力計60aの値に応じてバルブ69aを開き、ライン68,71を通じてライン69から排出される。なお、膜モジュール58において、ゼオライト膜を透過しなかったガスは直接ライン71を通じてライン69から排出されてもよい。ライン69から排出されたガスは、ヨウ化メチルを多く含むため、直接的又は間接的に反応工程、あるいはプロセスの適宜な箇所にリサイクルされ、再利用される。例えば、後述の蒸留塔3,5,6の排出ガスライン32,37,45にリサイクルすることができる。
【0055】
一方、上記膜分離工程においてゼオライト膜を透過したアセトアルデヒドに富む流れは、ライン62を通じて焼却処理に付される。62aは流量計である。
【0056】
以上のようにして、上記膜分離工程により、上記プロセスガス(ライン60)から、アセトアルデヒドに富む流れ(ライン62)とヨウ化メチルに富む流れ(ライン66,67,69)とに分離される。
【0057】
上記膜分離工程の他の実施形態について説明する。図2は、上記膜分離工程に付すプロセス流が液体(プロセス液)である場合の本開示における上記膜分離工程の一実施形態を示す概略フロー図である。このフローによれば、例えば上記プロセス液を膜分離工程に付す際、上記プロセス液はライン60を通じて受器72に供給される。受器72中の液面が所定の液面を超えたことを液面コントローラー72aが検知した際、バルブ74bが開かれ、ポンプ74aにより受器72の缶出からライン74,75を通じて上記プロセス液が受器73に供給される。受器72中に発生したガス分は、ライン76を通じて後述のライン116又はライン227などに接続され、廃棄処分される。
【0058】
受器73中のプロセス液は、ポンプ77aにより受器73の缶出からライン77,78を通じて膜モジュール58に供給される。その際、プロセス液は、温度コントローラー78aにより蒸気量が調整されたヒーター77bにより加熱される。また、このとき、受器73内でライン81を通じて供給される循環液が気化しない圧力を維持するために、圧力コントローラー73aによりバルブ79aを開け、ライン79から窒素を受器73に供給する。運転変調により圧力が必要以上に上昇する場合は受器73内のガス分を、バルブ85aを開けて、ライン85を通じて、後述のライン116又はライン227などに接続され、廃棄処分される。
【0059】
膜モジュール58において上記膜分離工程が行われる。ゼオライト膜を備える膜モジュール58の透過側には、スイープガス70として窒素やヘリウムなどの不活性ガスが吹き込まれてもよい。また、透過側を真空ポンプやエジェクターなどで減圧にしてもよい。これにより、アセトアルデヒドとヨウ化メチルの分圧差を大きくしてヨウ化メチルの回収率を向上させることができる。また、ゼオライト膜を透過する透過流の滞留を防ぐことができる。上記膜分離工程に仕込まれるプロセスガスの温度及び圧力は、プロセス流が液の状態を維持できる範囲内であれば特に限定されない。
【0060】
上記膜分離工程は、プロセス液の温度が10~180℃(例えば20~150℃、好ましくは30~130℃、より好ましくは50~110℃、さらに好ましくは70~90℃)である状態で行われることが好ましい。また、上記膜分離工程は、アセトアルデヒドとヨウ化メチルの分圧差を大きくしてヨウ化メチルの回収率を向上させるため、加圧下で行われることが好ましく、その圧力は、絶対圧で、好ましくは110~2000kPa、より好ましくは200~1800kPa、さらに好ましくは300~1500kPa、さらに好ましくは400~1200kPa、特に好ましくは600~1000kPaである。上記温度範囲及び加圧下で上記膜分離工程を行うことにより、濃縮流の温度を上げることや、濃縮流と透過流とのアセトアルデヒドの分圧差を大きくすることで、アセトアルデヒドの透過度や透過量を増やすことができ、アセトアルデヒドがゼオライト膜を透過しやすく、より効率的にアセトアルデヒドとヨウ化メチルとを分離することができる。
【0061】
ゼオライト膜を透過せず濃縮して得られるヨウ化メチルに富む流れ(ライン80)の一部は、受器73中の液面が所定の液面を超えたことを液面コントローラー73bが検知した際、流量コントローラー82aで流量を調整しつつ、バルブ82cを開けてライン82,83を通じてヨウ化メチルに富む流れが回収される。ライン82,83を通過する際、上記ヨウ化メチルに富む流れはコンデンサ82bにより冷却される。膜モジュール58に流れる量を多くして膜分離の効率(透過度)を上げるために、ライン81を通じてライン80の流れを受器73に戻す。82dはライン82を通過する液の温度計である。
【0062】
ゼオライト膜を透過せず濃縮したヨウ化メチルに富む流れは、直接的又は間接的に反応工程にリサイクルされ、反応工程において助触媒として再利用することができる。上記ヨウ化メチルに富む流れ(ライン83)は、後述のアセトアルデヒド分離除去システム内のプロセスにリサイクルすることが好ましく、後述の蒸留塔91の仕込流(ライン117)、抽出塔92の仕込流(ライン118)、又は蒸留塔94の仕込流(ライン228)にリサイクルすることがより好ましい。
【0063】
一方、ゼオライト膜を透過して分離されたアセトアルデヒドに富む流れはそのままライン84を通じて焼却処理に付される。
【0064】
以上のようにして、上記膜分離工程により、上記プロセス液(ライン60)から、アセトアルデヒドに富む流れ(ライン84)とヨウ化メチルに富む流れ(ライン83)とに分離される。
【0065】
なお、上記膜分離工程は、酢酸の製造プロセス中における一工程として説明したが、このような態様に限定されず、アセトアルデヒド及びヨウ化メチルを含む混合物から、ゼオライト膜を用いてアセトアルデヒドに富む流れとヨウ化メチルに富む流れとを分離取得する、アセトアルデヒドとヨウ化メチルの分離方法、あるいは、アセトアルデヒドに富む流れとヨウ化メチルに富む流れを製造する方法として行うことができる。本分離方法および製造方法における好ましい態様は、上記膜分離工程において説明される態様と同様である。
【0066】
また、それぞれの実施形態において、膜モジュール58にメタノール、酢酸メチル、酢酸、水などの溶媒を通液もしくは膜モジュール58をそれらの溶媒に浸漬させることで、膜性能が低下した場合でも膜性能を回復させることができる。膜モジュール58への溶媒通液はポンプなどを用いた外部循環であってもよく、かけ流し洗浄であってもよい。膜モジュール58の溶媒への浸漬は膜モジュールに溶媒を張り込み、静置させることで行ってもよい。また、溶媒を加熱することで詰まりをより効率的に除去することができる。
【0067】
上記酢酸の製造方法においては、酢酸の製造プロセスが、メタノールと一酸化炭素とを反応させて酢酸を生成させるカルボニル化反応工程と、上記カルボニル化反応工程で得られた反応混合物を、1以上の蒸発処理及び/又は蒸留処理に付して、少なくとも、金属触媒を含む流れと、酢酸に富む酢酸流と、上記酢酸流よりも低沸成分に富む流れとに分離する分離工程と、を有していてもよい。上記カルボニル化反応工程は、例えば、金属触媒及びヨウ化メチルを含む触媒系の存在下で行う。上記カルボニル化反応工程は、さらに、酢酸、酢酸メチル、及び水の存在下で行ってもよい。上記分離工程は、例えば、上記カルボニル化反応工程で得られた反応混合物を蒸発により少なくとも蒸気流と残液流とに分離する蒸発工程と、上記蒸気流を蒸留に付して、少なくとも、低沸成分に富むオーバーヘッド流と、酢酸に富む第1酢酸流とを分離取得する脱低沸工程と、を有することが好ましい。上記第1酢酸流は、サイドカット流であってもよく、塔底流であってもよく、両方であってもよい。上記脱低沸工程では、上記蒸気流を蒸留に付して、低沸成分に富むオーバーヘッド流と、酢酸に富む第1酢酸流(サイドカット流)と、塔底流とに分離することが好ましい。また、上記分離工程は、上記第1酢酸流を蒸留に付して、少なくとも水に富むオーバーヘッド流と、第1酢酸流よりも酢酸が富化された第2酢酸流とを分離取得する脱水工程を有していてもよい。
【0068】
なお、上記分離工程は、上記蒸発工程及び脱低沸工程に代えて、上記カルボニル化反応工程で得られた反応混合物を、上記触媒を含む流れと、上記低沸成分に富むオーバーヘッド流と、酢酸に富む第1酢酸流とに分離する工程(蒸発脱低沸工程)を備えていてもよい。また、上記分離工程は、上記脱低沸工程及び脱水工程に代えて、上記脱水工程の機能も備えた脱低沸工程(いわゆる脱低沸脱水工程)、すなわち、上記蒸気流を蒸留に付して、低沸成分に富むオーバーヘッド流と、上記第2酢酸流と同等の水濃度まで脱水された酢酸流とに分離する工程を備えていてもよい。よって、上記蒸発脱低沸工程は、上記脱水工程の機能も備えた工程(蒸発脱低沸脱水工程)であってもよい。脱低沸脱水工程及び蒸発脱低沸脱水工程から得られる酢酸に富む酢酸流は、上記第2酢酸流に相当する。
【0069】
また、上記酢酸の製造方法は、さらに下記(a)~(c)の少なくとも1つの工程を有していてもよい。
(a)上記分離工程で得られた酢酸に富む酢酸流(例えば、上記第1若しくは第2酢酸流を蒸留して、高沸成分に富む缶出流と、蒸留に付す前の酢酸流よりも酢酸が富化された第3酢酸流とに分離する脱高沸工程
(b)上記分離工程で得られた酢酸に富む酢酸流(例えば、上記第1若しくは第2酢酸流)若しくは第3酢酸流をイオン交換樹脂で処理して第4酢酸流を得る吸着除去工程
(c)上記分離工程で得られた酢酸に富む酢酸流(例えば、上記第1若しくは第2酢酸流)若しくは第3若しくは第4酢酸流を蒸留して、蒸留に付す前の酢酸流よりも酢酸が富化された第5酢酸流を得る製品工程
【0070】
また、上記酢酸の製造方法は、上記低沸成分に富む流れを凝縮して得られる凝縮液の少なくとも一部から、1以上の蒸留処理によりアセトアルデヒドを分離するアセトアルデヒド分離除去システムを有していてもよい。また、上記アセトアルデヒド分離除去システムは、上記1以上の蒸留処理により分離されたアセトアルデヒドの少なくとも一部から、1以上の抽出処理によりアセトアルデヒドを含む水相を分離する抽出工程を含んでいてもよい。
【0071】
上記酢酸の製造方法においては、上記アセトアルデヒド分離除去システムにおける蒸留処理において分離されたアセトアルデヒドに富む流れ、及び/又は、当該アセトアルデヒドに富む流れを抽出処理において分離されたアセトアルデヒドを含む水層を上記プロセス流として上記膜分離工程に付すことが好ましい。特に、上記プロセス流は、上記蒸留処理を行う蒸留塔のオーバーヘッド流であることが好ましい。そして、上記膜分離工程により分離取得されるヨウ化メチルに富む流れの少なくとも一部は、上記アセトアルデヒド分離除去システム内のプロセスにリサイクルすることが好ましく、上記蒸留塔(すなわち、上記プロセス流を排出する蒸留塔)にリサイクルすることが特に好ましい。
【0072】
以下、上記膜分離工程を備える酢酸の製造方法の一実施形態について説明する。図3は、酢酸製造システムの一実施形態を示す製造フロー図(メタノール法カルボニル化プロセス)の一例である。この酢酸製造フローに係る酢酸製造装置は、反応槽1と、蒸発槽2と、蒸留塔3と、デカンタ4と、蒸留塔5と、蒸留塔6と、イオン交換樹脂塔7と、スクラバーシステム8と、アセトアルデヒド分離除去システム9と、コンデンサ1a,2a,3a,5a,6aと、熱交換器2bと、リボイラー3b,5b,6bと、ライン11~56、ポンプ57とを備え、酢酸を連続的に製造可能に構成されている。
【0073】
本実施形態の酢酸の製造方法では、反応槽1、蒸発槽2、蒸留塔3、蒸留塔5、蒸留塔6、及びイオン交換樹脂塔7において、それぞれ、反応工程、蒸発工程(フラッシュ工程)、第1蒸留工程、第2蒸留工程、第3蒸留工程、及び吸着除去工程が行われる。第1蒸留工程は脱低沸工程、第2蒸留工程は脱水工程、第3蒸留工程は脱高沸工程ともいう。なお、本実施形態において、工程は上記に限らず、特に、蒸留塔5、蒸留塔(脱高沸塔)6、イオン交換樹脂塔7、アセトアルデヒド分離除去システム9(脱アセトアルデヒド塔など)の設備は付帯しない場合がある。また、後述するように、イオン交換樹脂塔7の下流に製品塔を設けてもよい。
【0074】
反応槽1は、反応工程を行うためのユニットである。この反応工程は、下記の化学式(1)で示される反応(メタノールのカルボニル化反応)によって酢酸を連続的に生成させるための工程である。酢酸製造装置の定常稼働状態において、反応槽1内には、例えば撹拌機によって撹拌されている反応混合物が存在する。反応混合物は、原料であるメタノール及び一酸化炭素と、金属触媒と、助触媒と、水と、製造目的である酢酸と、各種の副生成物とを含み、液相と気相とが平衡状態にある。
CH3OH + CO → CH3COOH (1)
【0075】
反応混合物中の原料は、液体状のメタノール及び気体状の一酸化炭素である。メタノールは、メタノール貯留部(図示略)からライン11を通じて反応槽1に連続的に供給される。一酸化炭素は、一酸化炭素貯留部(図示略)からライン12を通じて反応槽1に連続的に供給される。一酸化炭素は必ずしも純粋な一酸化炭素でなくてもよく、例えば窒素、水素、二酸化炭素、酸素等の他のガスが少量(例えば5質量%以下、好ましくは1質量%以下)含まれていてもよい。
【0076】
反応混合物中の金属触媒は、メタノールのカルボニル化反応を促進するためのものであり、例えばロジウム触媒やイリジウム触媒を使用することができる。ロジウム触媒としては、例えば、化学式[Rh(CO)22-で表されるロジウム錯体を使用することができる。イリジウム触媒としては、例えば化学式[Ir(CO)22-で表されるイリジウム錯体を使用することができる。金属触媒としては金属錯体触媒が好ましい。反応混合物中の触媒の濃度(金属換算)は、反応混合物の液相(反応混合液)全体に対して、例えば200~10000質量ppmであり、好ましくは300~5000質量ppm、さらに好ましくは400~2500質量ppmである。
【0077】
助触媒は、上述の触媒の作用を補助するためのヨウ化物であり、例えば、ヨウ化メチルやイオン性ヨウ化物が使用される。ヨウ化メチルは、上述の触媒の触媒作用を促進する作用を示し得る。ヨウ化メチルの濃度は、反応混合物の液相全体に対して例えば1~20質量%であり、好ましくは5~15質量%である。イオン性ヨウ化物は、反応液中でヨウ化物イオンを生じさせるヨウ化物(特に、イオン性金属ヨウ化物)であり、上述の触媒を安定化させる作用や、副反応を抑制する作用を示し得る。イオン性ヨウ化物としては、例えば、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウムなどのアルカリ金属ヨウ化物などが挙げられる。反応混合物中のイオン性ヨウ化物の濃度は、反応混合物の液相全体に対して、例えば1~25質量%であり、好ましくは5~20質量%である。また、例えばイリジウム触媒などを用いる場合は、助触媒として、ルテニウム化合物やオスミウム化合物を用いることもできる。これらの化合物の使用量は総和で、例えばイリジウム1モル(金属換算)に対して、0.1~30モル(金属換算)、好ましくは0.5~15モル(金属換算)である。
【0078】
反応混合物中の水は、メタノールのカルボニル化反応の反応機構上、酢酸を生じさせるのに必要な成分であり、また、反応系の水溶性成分の可溶化のためにも必要な成分である。反応混合物中の水の濃度は、反応混合物の液相全体に対して、例えば0.1~15質量%であり、好ましくは0.5~10質量%、より好ましくは1~6質量%、さらに好ましくは1.5~4質量%である。水濃度は、酢酸の精製過程での水の除去に要するエネルギーを抑制して酢酸製造の効率化を進める観点では15質量%以下が好ましい。水濃度を制御するために、反応槽1に対して水を連続的に供給してもよい。
【0079】
反応混合物中の酢酸は、酢酸製造装置の稼働前に反応槽1内に予め仕込まれた酢酸、及び、メタノールのカルボニル化反応の主生成物として生じる酢酸を含む。このような酢酸は、反応系では溶媒として機能し得る。反応混合物中の酢酸の濃度は、反応混合物の液相全体に対して、例えば50~90質量%であり、好ましくは60~80質量%である。
【0080】
反応混合物に含まれる主な副生成物としては、例えば酢酸メチルが挙げられる。この酢酸メチルは、酢酸とメタノールとの反応によって生じ得る。反応混合物中の酢酸メチルの濃度は、反応混合物の液相全体に対して、例えば0.1~30質量%であり、好ましくは1~10質量%である。
【0081】
反応混合物に含まれる副生成物としては、ヨウ化水素も挙げられる。このヨウ化水素は、上述のような触媒や助触媒が使用される場合、メタノールのカルボニル化反応の反応機構上、不可避的に生じることとなる。反応混合物中のヨウ化水素の濃度は、反応混合物の液相全体に対して、例えば0.01~2質量%である。
【0082】
また、副生成物としては、例えば、水素、メタン、二酸化炭素、アセトアルデヒド、クロトンアルデヒド、2-エチルクロトンアルデヒド、ジメチルエーテル、アルカン類、ギ酸、及びプロピオン酸、並びに、ヨウ化ヘキシル及びヨウ化デシル等のヨウ化アルキルなどが挙げられる。また、反応混合物には、装置の腐食により生じる鉄、ニッケル、クロム、マンガン、モリブデンなどの金属(以下、「腐食性金属」と称する場合がある)、及びその他の金属としてコバルトや亜鉛、銅などが含まれ得る。上記腐食性金属とその他の金属とを併せて「腐食金属等」と称する場合がある。
【0083】
以上のような反応混合物が存在する反応槽1内において、反応温度は例えば150~250℃に設定され、全体圧力としての反応圧力は例えば1.5~3.5MPa(絶対圧)に設定され、一酸化炭素分圧は、例えば0.4~1.8MPa(絶対圧)、好ましくは0.6~1.6MPa(絶対圧)、さらに好ましくは0.9~1.4MPa(絶対圧)に設定される。
【0084】
装置稼働時の反応槽1内の気相部の蒸気には、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸、及びプロピオン酸などが含まれる。この蒸気は、反応槽1内からライン13を通じて抜き取ることが可能である。蒸気の抜き取り量の調節によって、反応槽1内の圧力を制御することが可能であり、例えば、反応槽1内の圧力は一定に維持される。反応槽1内から抜き取られた蒸気は、コンデンサ1aへと導入される。
【0085】
コンデンサ1aは、反応槽1からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸、及びプロピオン酸などを含み、コンデンサ1aからライン14を通じて反応槽1へと導入され、リサイクルされる。ガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、及びギ酸などを含み、コンデンサ1aからライン15を通じてスクラバーシステム8へと供給される。
【0086】
なお、図3では、コンデンサ2aからのガス分(ライン20)、コンデンサ3aからのガス分(ライン32)、コンデンサ5aからのガス分(ライン37)、及びコンデンサ6aからのガス分(ライン45)が全てライン15に合流してスクラバーシステム8へ供給されているが、コンデンサ1aからのガス分のみをライン15を通じてスクラバーシステム8に供給されてもよく、そしてコンデンサ3a,5a,6aからのガス分(ライン32,37,45)は全てライン20に合流してスクラバーシステム8に供給されてもよい。
【0087】
装置稼働時の反応槽1内では、上述のように、酢酸が連続的に生成する。そのような酢酸を含む反応混合物が、連続的に、反応槽1内から抜き取られてライン16を通じて次の蒸発槽2へと導入される。
【0088】
蒸発槽2は、蒸発工程(フラッシュ工程)を行うためのユニットである。この蒸発工程は、ライン16(反応混合物供給ライン)を通じて蒸発槽2に連続的に導入される反応混合物を、部分的に蒸発させることによって蒸気流(揮発相)と残液流(低揮発相)とに分けるための工程である。
【0089】
反応混合物を加熱することなく圧力を減じることによって蒸発を生じさせてもよいし、反応混合物を加熱しつつ圧力を減じることによって蒸発を生じさせてもよい。蒸発工程において、蒸気流の温度は例えば100~260℃、好ましくは120~200℃であり、残液流の温度は例えば80~200℃、好ましくは100~180℃であり、槽内圧力は例えば50~1000kPa(絶対圧)である。
【0090】
また、蒸発工程にて分離される蒸気流及び残液流の割合に関しては、質量比で、例えば10/90~50/50(蒸気流/残液流)である。本工程で生じる蒸気は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸、及びプロピオン酸、並びに、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル及びヨウ化デシル等のヨウ化アルキルなどを含み、蒸発槽2内からライン17(蒸気流排出ライン)に連続的に抜き取られる。
【0091】
蒸発槽2内から抜き取られた蒸気流の一部はコンデンサ2aへと連続的に導入され、当該蒸気流の他の一部はライン21を通じて次の蒸留塔3へと連続的に導入される。上記蒸気流の酢酸濃度は、例えば40~85質量%(好ましくは50~85質量%)、より好ましくは50~75質量%(例えば55~75質量%)であり、ヨウ化メチル濃度は、例えば2~50質量%(好ましくは5~30質量%)、水濃度は、例えば0.2~20質量%(好ましくは1~15質量%)、酢酸メチル濃度は、例えば0.2~50質量%(好ましくは2~30質量%)である。なお、上記蒸気流のヨウ化ヘキシル濃度は、例えば0.1~10000質量ppb、通常0.5~1000質量ppbであり、1~100質量ppb(例えば2~50質量ppb)であることが多い。
【0092】
本工程で生じる残液流は、反応混合物に含まれていた触媒及び助触媒(ヨウ化メチル、ヨウ化リチウムなど)や、本工程では揮発せずに残存する水、酢酸メチル、酢酸、ギ酸、及びプロピオン酸などを含み、ポンプ57を用い、連続的に蒸発槽2からライン18を通じて熱交換器2bへと導入される。熱交換器2bは、蒸発槽2からの残液流を冷却する。降温した残液流は、連続的に熱交換器2bからライン19を通じて反応槽1へと導入され、リサイクルされる。なお、ライン18とライン19とを併せて残液流リサイクルラインと称する。上記残液流の酢酸濃度は、例えば55~90質量%、好ましくは60~85質量%である。
【0093】
コンデンサ2aは、蒸発槽2からの蒸気流を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸、及びプロピオン酸などを含み、コンデンサ2aからライン22,23を通じて反応槽1へと導入され、リサイクルされる。ガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、及びギ酸などを含み、コンデンサ2aからライン20,15を通じてスクラバーシステム8へと供給される。上述の反応工程での酢酸の生成反応は発熱反応であるところ、反応混合物に蓄積する熱の一部は、蒸発工程(フラッシュ工程)において、反応混合物から生じた蒸気に移行する。この蒸気のコンデンサ2aでの冷却によって生じた凝縮分が反応槽1へとリサイクルされる。すなわち、この酢酸製造装置においては、メタノールのカルボニル化反応で生じる熱がコンデンサ2aにて効率よく除去されることとなる。
【0094】
蒸留塔3は、第1蒸留工程を行うためのユニットであり、本実施形態ではいわゆる脱低沸塔に位置付けられる。第1蒸留工程は、蒸留塔3に連続的に導入される蒸気流を蒸留処理して低沸成分を分離除去する工程である。より具体的には、第1蒸留工程では、上記蒸気流を蒸留して、ヨウ化メチル及びアセトアルデヒドから選択された少なくとも一種の低沸成分に富むオーバーヘッド流と、酢酸に富む酢酸流とに分離する。
【0095】
蒸留塔3は、例えば、棚段塔及び充填塔などの精留塔よりなる。蒸留塔3として棚段塔を採用する場合、その理論段は例えば5~50段であり、還流比は理論段数に応じて例えば0.5~3000である。蒸留塔3の内部において、塔頂圧力は例えば80~160kPaGに設定され、塔底圧力は、塔頂圧力より高く、例えば85~180kPaGに設定される。蒸留塔3の内部において、塔頂温度は、例えば、設定塔頂圧力での酢酸の沸点より低い温度であって90~130℃に設定され、塔底温度は、例えば、設定塔底圧力での酢酸の沸点以上の温度であって120~165℃(好ましくは125~160℃)に設定される。
【0096】
蒸留塔3に対しては、蒸発槽2からの蒸気流がライン21を通じて連続的に導入され、蒸留塔3の塔頂部からは、オーバーヘッド流としての蒸気がライン24に連続的に抜き取られる。蒸留塔3の塔底部からは、缶出液がライン25に連続的に抜き取られる。3bはリボイラーである。蒸留塔3における塔頂部と塔底部との間の高さ位置からは、側流としての酢酸流(第1酢酸流;液体)がライン27より連続的に抜き取られる。
【0097】
蒸留塔3の塔頂部から抜き取られる蒸気は、酢酸よりも沸点の低い成分(低沸点成分)を蒸留塔3からの上記缶出液及び側流と比較して多く含み、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール、アセトアルデヒド、及びギ酸などを含む。この蒸気には酢酸も含まれる。このような蒸気は、ライン24を通じてコンデンサ3aへと連続的に導入される。
【0098】
コンデンサ3aは、蒸留塔3からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、及びギ酸などを含み、コンデンサ3aからライン28を通じてデカンタ4へと連続的に導入される。デカンタ4に導入された凝縮分は水相(上相)と有機相(ヨウ化メチル相;下相)とに分液される。
【0099】
水相には、水と、例えば、ヨウ化メチル、ヨウ化水素、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、及びギ酸などが含まれる。有機相には、例えば、ヨウ化メチルと、例えば、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、及びギ酸などが含まれる。
【0100】
本実施形態では、水相の一部はライン29を通じて蒸留塔3に還流され、水相の他の一部は、ライン29,30,23を通じて反応槽1に導入されてリサイクルされる。有機相の一部はライン31,23を通じて反応槽1に導入されてリサイクルされる。有機相の他の一部、及び/又は、水相の他の一部は、ライン31,50、及び/又は、ライン30,51を通じてアセトアルデヒド分離除去システム9に導入される。
【0101】
アセトアルデヒド分離除去システム9を用いたアセトアルデヒド分離除去工程では、上記低沸成分に富むオーバーヘッド流を凝縮して得られる凝縮液の少なくとも一部(例えば、有機相及び/又は水相)に含まれるアセトアルデヒドを公知の方法、例えば、蒸留、抽出、又はこれらの組み合わせにより分離除去する。分離されたアセトアルデヒドはライン53を通じて装置外へ排出される。また、有機相及び/又は水相に含まれる有用成分(例えば、ヨウ化メチルなど)は、ライン52,23を通じて反応槽1へとリサイクルされて再利用される。
【0102】
図4はアセトアルデヒド分離除去システムの一例を示す概略フロー図である。このフローによれば、例えば上記有機相をアセトアルデヒド分離除去工程にて処理する場合は、有機相(仕込流)をライン101を通じて蒸留塔(第1脱アセトアルデヒド塔)91に供給して蒸留し、アセトアルデヒドに富む第1オーバーヘッド流(ライン102)と、ヨウ化メチルに富む残液流(ライン103)とを分離取得する(蒸留工程(A1))。上記第1オーバーヘッド流をコンデンサ91aにて凝縮させ、凝縮液の一部を蒸留塔91の塔頂部に還流させ(ライン104)、凝縮液の他の部分を抽出塔92に供給する(ライン105)。上記仕込流(ライン101)には、ライン117を通じて、上記膜分離工程により分離取得されたヨウ化メチルに富む流れを合流させてもよい。これにより、上記ヨウ化メチルに富む流れを蒸留工程(A1)にリサイクルすることができる。
【0103】
上記抽出塔92に供給された凝縮液(仕込流)はライン109から導入された水によって抽出処理される(抽出工程(B1))。抽出処理により、アセトアルデヒドに富む水相(ライン107)と、ヨウ化メチルに富む有機相(ライン108)とに分離される。抽出処理により得られたアセトアルデヒドに富む水相(抽出液)はライン107を通じて蒸留塔(第2脱アセトアルデヒド塔)93に供給して蒸留し、アセトアルデヒドに富む第2オーバーヘッド流(ライン112)と水に富む残液流(ライン113)とを分離取得する(蒸留工程(C1))。そして、アセトアルデヒドに富む第2オーバーヘッド流をコンデンサ93aにて凝縮させ、凝縮液の一部を蒸留塔93の塔頂部に還流させ(ライン114)、凝縮液の他の部分は系外に排出する(ライン115)。上記抽出塔92への仕込流(ライン105)には、ライン118を通じて、上記膜分離工程により分離取得されたヨウ化メチルに富む流れを合流させてもよい。これにより、上記ヨウ化メチルに富む流れを抽出工程(B1)にリサイクルすることができる。また、上記ヨウ化メチルに富む流れを蒸留工程(C1)にリサイクルしてもよい。
【0104】
また、第1脱アセトアルデヒド塔91の缶出液であるヨウ化メチルに富む残液流、抽出塔92で得られたヨウ化メチルに富むラフィネート(ライン108)、及び第2脱アセトアルデヒド塔93の缶出液である水に富む残液流は、それぞれ、ライン103,111,113を通じて反応槽1へリサイクルされるか、あるいはプロセスの適宜な箇所にリサイクルされ、再利用される。例えば、抽出塔92で得られたヨウ化メチルに富むラフィネートはライン110を通じて蒸留塔91にリサイクルすることができる。113の液は、通常、排水として外部に排出される。コンデンサ91a、93aで凝縮しなかったガス(ライン106,116)はスクラバーシステム8で吸収処理されるか、あるいは廃棄処分される。
【0105】
また、図4のフローにより上記水相をアセトアルデヒド分離除去工程にて処理する場合は、例えば、水相(仕込流)をライン101を通じて蒸留塔(第1脱アセトアルデヒド塔)91に供給して蒸留し、アセトアルデヒドに富む第1オーバーヘッド流(ライン102)と、水に富む残液流(ライン103)とを分離取得する(蒸留工程(A1))。上記第1オーバーヘッド流をコンデンサ91aにて凝縮させ、凝縮液の一部を蒸留塔91の塔頂部に還流させ(ライン104)、凝縮液の他の部分を抽出塔92に供給する(ライン105)。上記仕込流(ライン101)には、ライン117を通じて、上記膜分離工程により分離取得されたヨウ化メチルに富む流れを合流させてもよい。これにより、上記ヨウ化メチルに富む流れを蒸留工程(A1)にリサイクルすることができる。
【0106】
上記抽出塔92に供給された凝縮液(仕込流)はライン109から導入された水によって抽出処理される(抽出工程(B1))。抽出処理により、アセトアルデヒドに富む水相(ライン107)と、ヨウ化メチルに富む有機相(ライン108)とに分離される。抽出処理により得られたアセトアルデヒドに富む水相(抽出液)はライン107を通じて蒸留塔(第2脱アセトアルデヒド塔)93に供給して蒸留し、アセトアルデヒドに富む第2オーバーヘッド流(ライン112)と水に富む残液流(ライン113)とを分離取得する。そして、アセトアルデヒドに富む第2オーバーヘッド流をコンデンサ93aにて凝縮させ、凝縮液の一部を蒸留塔93の塔頂部に還流させ(ライン114)、凝縮液の他の部分は系外に排出する(ライン115)。上記抽出塔92への仕込流(ライン105)には、ライン118を通じて、上記膜分離工程により分離取得されたヨウ化メチルに富む流れを合流させてもよい。これにより、上記ヨウ化メチルに富む流れを抽出工程(B1)にリサイクルすることができる。
【0107】
また、第1脱アセトアルデヒド塔91の缶出液である水に富む残液流、抽出塔92で得られたヨウ化メチルに富むラフィネート(ライン108)、及び第2脱アセトアルデヒド塔93の缶出液である水に富む残液流は、それぞれ、ライン103,111,113を通じて反応槽1へリサイクルされるか、あるいはプロセスの適宜な箇所にリサイクルされ、再利用される。例えば、抽出塔92で得られたヨウ化メチルに富むラフィネートはライン110を通じて蒸留塔91にリサイクルすることができる。113の液は、通常、排水として外部に排出される。コンデンサ91a、93aで凝縮しなかったガス(ライン106,116)はスクラバーシステム8で吸収処理されるか、あるいは廃棄処分される。
【0108】
アセトアルデヒドに富む第1オーバーヘッド流(ライン102)、当該第1オーバーヘッド流を凝縮して得られる凝縮液(ライン104,105)、抽出液(107)、アセトアルデヒドに富む第2オーバーヘッド流(ライン112)、及び当該第2オーバーヘッド流を凝縮して得られる凝縮液(ライン114,115)のうちの1以上は、アセトアルデヒドに富む流れであり、上記プロセス流として上記膜分離工程に付してもよい。中でも、ヨウ化メチルが充分に分離回収された後でありこれ以上蒸留塔の従来の精製ではヨウ化メチルの分離取得が困難であることから、上記膜分離工程に付すプロセス流は第2オーバーヘッド流及び/又は第2オーバーヘッド流を凝縮して得られる凝縮液であることが好ましく、ゼオライト膜がヨウ化メチルの回収率により優れる観点、設備数を比較的少なくすることができる観点からは、気体である第2オーバーヘッド流(特に、ライン112)が好ましい。ライン112は、蒸留工程(C1)のオーバーヘッド流である。また、上記プロセス流は、アセトアルデヒドとヨウ化メチルの分圧差を大きくできる観点から、液体である第2オーバーヘッド流を凝縮して得られる凝縮液(特に、ライン115)としてもよい。
【0109】
上記低沸成分に富むオーバーヘッド流を凝縮して得られる凝縮液の少なくとも一部(例えば、有機相及び/又は水相)に含まれるアセトアルデヒドは、上記方法のほか、蒸留に付し、蒸留塔内のヨウ化メチル及びアセトアルデヒドが濃縮される濃縮域から降下する液を側流として抜き取る、抽出蒸留や共沸蒸留などを利用した蒸留工程(蒸留工程(A2))により分離除去することもできる。抽出蒸留の場合、具体的には、例えば、蒸留塔3の塔頂部から抜き取られる蒸気の凝縮液を分液させて得られた有機相及び/又は水相(仕込液)を蒸留(抽出蒸留)に付し、蒸留塔内のヨウ化メチル及びアセトアルデヒドが濃縮される濃縮域(例えば、塔頂から仕込液供給位置までの空間)に抽出溶媒(通常、水)を導入し、上記濃縮域から降下する液(抽出液)を側流(サイドカット流)として抜き取る。次に、この側流を水相と有機相とに分液させ(分液工程(B2))、上記水相を蒸留に付し、アセトアルデヒドに富む第3オーバーヘッド流と水に富む缶出液とを分離取得し(蒸留工程(C2))、アセトアルデヒドを系外に排出することができる。さらに、上記アセトアルデヒドに富む第3オーバーヘッド流を抽出蒸留に付し、アセトアルデヒドに富む第4オーバーヘッド流と水に富む缶出液とを分離取得し(抽出蒸留工程(D2))、アセトアルデヒドをさらに濃縮して系外に排出することもできる。
【0110】
なお、蒸留塔内に比較的多くの水が存在する場合は、上記抽出溶媒を蒸留塔に導入することなく、上記濃縮域から降下する液を側流として抜き取ってもよい。例えば、この蒸留塔に上記濃縮域から降下する液を受けることのできるユニット(チムニートレイなど)を配設し、このユニットで受けた液を側流として抜き取ることができる。
【0111】
抽出溶媒の導入位置は上記仕込液の供給位置よりも上方が好ましく、より好ましくは塔頂付近である。側流の抜き取り位置は、塔の高さ方向において、抽出溶媒の導入位置よりも下方であって、上記仕込液の供給位置よりも上方が好ましい。この方法によれば、抽出溶媒(通常、水)によって、ヨウ化メチルとアセトアルデヒドの濃縮物からアセトアルデヒドを高濃度に抽出できるとともに、抽出溶媒の導入部位とサイドカット部位との間を抽出域として利用するので、少量の抽出溶媒によりアセトアルデヒドを効率よく抽出できる。そのため、例えば、抽出蒸留による抽出液を蒸留塔(抽出蒸留塔)の塔底部から抜き取る方法と比較して蒸留塔の段数を大幅に低減できるとともに、蒸気負荷も低減できる。また、少量の抽出溶媒を用いて、上記図4の脱アルデヒド蒸留と水抽出とを組み合わせる方法よりも、水抽出液中のアセトアルデヒドに対するヨウ化メチルの割合(MeI/AD比)を小さくできるので、ヨウ化メチルの系外へのロスを抑制できる条件でアセトアルデヒドを除去可能である。
【0112】
上記側流中のアセトアルデヒド濃度は、上記仕込液及び缶出液(塔底液)中のアセトアルデヒド濃度よりも格段に高い。また、上記側流中のヨウ化メチルに対するアセトアルデヒドの割合は、仕込液及び缶出液中のヨウ化メチルに対するアセトアルデヒドの割合よりも大きい。
【0113】
なお、上記側流を分液させて得られる有機相(ヨウ化メチル相)をこの蒸留塔にリサイクルしてもよい。この場合、上記側流を分液させて得られる有機相のリサイクル位置は、塔の高さ方向において上記側流抜き取り位置よりも下方が好ましく、上記仕込液の供給位置よりも上方が好ましい。
【0114】
また、蒸留塔3の塔頂部から抜き取られる蒸気の凝縮液を分液させて得られた有機相を構成する成分(例えば、酢酸メチルなど)に対する混和性溶媒をこの蒸留塔に導入してもよい。上記混和性溶媒として、例えば、酢酸、酢酸エチルなどが挙げられる。上記混和性溶媒の導入位置は、塔の高さ方向において、上記側流抜き取り位置よりも下方が好ましく、上記仕込液の供給位置よりも上方が好ましい。また、上記混和性溶媒の導入位置は、上記側流を分液させて得られる有機相をこの蒸留塔にリサイクルする場合はそのリサイクル位置よりも下方が好ましい。
【0115】
上記側流を分液させて得られる有機相を蒸留塔へリサイクルしたり、上記混和性溶媒を蒸留塔へ導入することにより、側流として抜き取られる液中の酢酸メチル濃度を低下させることができ、上記液を分液させて得られる水相中の酢酸メチル濃度を低減でき、もって水相へのヨウ化メチルの混入を抑制できる。
【0116】
上記蒸留塔の理論段は、例えば1~100段、好ましくは2~50段、より好ましくは3~30段、さらに好ましくは5~20段であり、従来の脱アセトアルデヒドに用いる蒸留塔や抽出蒸留塔の80~100段と比較して、少ない段数で効率よくアセトアルデヒドを分離除去できる。
【0117】
抽出溶媒の流量と仕込液(プロセス流を分液させて得られた有機相及び/又は水相)の流量との質量割合(前者/後者)は、0.0001/100~100/100の範囲から選択してもよいが、通常、0.0001/100~20/100、好ましくは0.001/100~10/100、より好ましくは0.01/100~8/100、さらに好ましくは0.1/100~5/100である。
【0118】
上記蒸留塔の塔頂温度は、例えば、15~120℃、好ましくは20~90℃、より好ましくは20~80℃、さらに好ましくは25~70℃である。塔頂圧力は、絶対圧力で、例えば0.1~0.5MPa程度である。上記蒸留塔の他の条件は、従来の脱アセトアルデヒドに用いる蒸留塔や抽出蒸留塔と同様であってもよい。
【0119】
図5は上記の抽出蒸留を利用したアセトアルデヒド分離除去システムの一例を示す概略フロー図である。この例では、蒸留塔3の塔頂部から抜き取られる蒸気の凝縮液を分液させて得られた有機相及び/又は水相(仕込流)を供給ライン201を通じて蒸留塔94の中段(塔頂と塔底との間の位置)に供給するとともに、必要に応じて塔頂付近より水をライン202を通じて導入し、蒸留塔94内で蒸留を行う(蒸留工程(A2))。上記仕込流(ライン201)には、ライン228を通じて、上記膜分離工程により分離取得されたヨウ化メチルに富む流れを合流させてもよい。これにより、上記ヨウ化メチルに富む流れを蒸留工程(A2)にリサイクルすることができる。
【0120】
蒸留塔94の上記仕込流の供給位置より上方には、塔内のヨウ化メチル及びアセトアルデヒドが濃縮される濃縮域から降下する液(抽出液)を受けるためのチムニートレイ200が配設されている。この抽出蒸留においては、チムニートレイ200上の液を好ましくは全量抜き取り、ライン208を通じてデカンタ95に導入して分液させる。
【0121】
デカンタ95における水相(アセトアルデヒドを含む)をライン212を通じて冷却クーラー95aに導入して冷却し、水相に溶解していたヨウ化メチルを2相分離させ、デカンタ96にて分液させる。なお、デカンタ95における分液及びデカンタ96における分液のいずれも分液工程(B2)に相当する。分液工程(B2)及び/又は蒸留工程(C2)には、上記膜分離工程により分離取得されたヨウ化メチルに富む流れを合流させてもよい。
【0122】
デカンタ96における水相をライン216を通じて蒸留塔97(脱アセトアルデヒド塔)に供給して蒸留し、アセトアルデヒドに富む第3オーバーヘッド流(ライン217)と、水に富む缶出流(ライン218)とに分離する(蒸留工程(C2))。上記第3オーバーヘッド流をライン217を通じてコンデンサ97aに導いて凝縮させ、凝縮液(主にアセトアルデヒド及びヨウ化メチル)の一部は蒸留塔97の塔頂に還流させ(ライン219)、残りは廃棄するか、あるいはライン220を通じて蒸留塔98(抽出蒸留塔)に供給する。
【0123】
蒸留塔98の塔頂付近から水をライン222を通じて導入し、抽出蒸留に付し、アセトアルデヒドに富む第4オーバーヘッド流(ライン223)と、水に富む缶出流(ライン224)とに分離する(抽出蒸留工程(D2))。上記第4オーバーヘッド流はライン223を通じてコンデンサ98aに導いて凝縮させ、凝縮液(主にヨウ化メチル)の一部は塔頂部に還流させ(ライン225)、残りはライン226を通じて反応系にリサイクルするが、系外除去する場合もある。デカンタ95における有機相(ヨウ化メチル相)は、好ましくは全量をライン209,210を通じて蒸留塔94のチムニートレイ200の位置より下方にリサイクルする。デカンタ95の水相の一部、及びデカンタ96の有機相は、それぞれ、ライン213,210、ライン214,210を通じて蒸留塔94にリサイクルするが、リサイクルしない場合もある。デカンタ95の水相の一部は蒸留塔94における抽出溶媒(水)として利用してもよい。デカンタ96の水相の一部はライン210を通じて蒸留塔94にリサイクルしてもよい。また、上記ヨウ化メチルに富む流れを抽出蒸留工程(D2)にリサイクルしてもよい。
【0124】
場合により(例えば、上記仕込流中に酢酸メチルが含まれている場合など)、蒸留塔3の塔頂部から抜き取られる蒸気の凝縮液を分液させて得られた有機相を構成する成分(例えば、酢酸メチルなど)に対する混和性溶媒(酢酸、酢酸エチル等)をライン215を通じて蒸留塔94に仕込み、蒸留効率を向上させることもできる。混和性溶媒の蒸留塔94への供給位置は上記仕込流供給部(ライン201の接続部)よりも上方で且つリサイクルライン210の接続部よりも下方である。蒸留塔94の缶出液は反応系にリサイクルする。
【0125】
蒸留塔94の塔頂の蒸気はライン203を通じてコンデンサ94aに導いて凝縮させ、凝縮液をデカンタ99で分液させ、有機相はライン206を通じて蒸留塔94の塔頂部に還流させ、水相はライン207を通じてデカンタ95に導く。
【0126】
蒸留塔97の缶出液(水が主成分)や蒸留塔98(抽出蒸留塔)の缶出液(少量のアセトアルデヒドを含む水)は、それぞれライン218,224を通じて系外除去するか、反応系にリサイクルする。コンデンサ94a、97a,98aで凝縮しなかったガス(ライン211,221,227)はスクラバーシステム8で吸収処理されるか、あるいは廃棄処分される。
【0127】
図6は上記の抽出蒸留を利用したアセトアルデヒド分離除去システムの他の例を示す概略フロー図である。この例では、蒸留塔94の塔頂の蒸気の凝縮液をホールドタンク100に導き、その全量をライン206を通じて蒸留塔94の塔頂部に還流する。これ以外は図5の例と同様である。
【0128】
図7は上記の抽出蒸留を利用したアセトアルデヒド分離除去システムのさらに他の例を示す概略フロー図である。この例では、チムニートレイ200上の液を全量抜き取り、ライン208を通じて、デカンタ95を経ることなく、直接冷却クーラー95aに導入して冷却し、デカンタ96に供給する。これ以外は図6の例と同様である。
【0129】
ヨウ化メチル及びアセトアルデヒドを含む側流(ライン208)、アセトアルデヒドを含む水相(ライン212)、水相(ライン216)、蒸留塔97塔頂の蒸気(ライン217)、その凝縮液(ライン219,220)、第4オーバーヘッド流(ライン223)、及び第4オーバーヘッド流を凝縮して得られる凝縮液(ライン225,226)のうちの1以上は、アセトアルデヒドに富む流れであり、上記プロセス流として上記膜分離工程に付してもよい。中でも、ヨウ化メチルが充分に分離回収された後でありこれ以上蒸留塔の従来の精製ではヨウ化メチルの分離が困難であることから、上記膜分離工程に付すプロセス流は、第3オーバーヘッド流、第3オーバーヘッド流を凝縮して得られる凝縮液、第4オーバーヘッド流、及び第4オーバーヘッド流を凝縮して得られる凝縮液からなる群より選択される1以上の流れであることが好ましく、ゼオライト膜がヨウ化メチルの回収率により優れる観点、設備数を比較的少なくすることができる観点からは、気体である第4オーバーヘッド流(特に、ライン223)が好ましい。また、アセトアルデヒドとヨウ化メチルの分圧差を大きくでき且つスイープガスが不要である観点からは、液体である第3オーバーヘッド流を凝縮して得られる凝縮液(特に、ライン220)及び/又は第4オーバーヘッド流を凝縮して得られる凝縮液(特に、ライン226)が好ましい。ライン217は蒸留工程(C2)のオーバーヘッド流であり、ライン223は、抽出蒸留工程(D2)のオーバーヘッド流である。ライン220は、蒸留工程(C2)から留出する流れであり、ライン226は、抽出蒸留工程(D2)から留出する流れである。
【0130】
上記図3において、コンデンサ3aで生じるガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、及びギ酸などを含み、コンデンサ3aからライン32,15を通じてスクラバーシステム8へと供給される。スクラバーシステム8に至ったガス分中のヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、及びギ酸などは、スクラバーシステム8にて吸収液に吸収される。
【0131】
蒸留塔3の塔底部から抜き取られる缶出液は、酢酸よりも沸点の高い成分(高沸点成分)を蒸留塔3からのオーバーヘッド流及び側流と比較して多く含み、例えば、プロピオン酸、並びに、飛沫同伴の上述の触媒や助触媒を含む。この缶出液には、酢酸、ヨウ化メチル、酢酸メチル、及び水なども含まれる。本実施形態では、このような缶出液の一部は、ライン25,26を通じて蒸発槽2へと連続的に導入されてリサイクルされ、缶出液の他の一部は、ライン25,23を通じて反応槽1へと連続的に導入されてリサイクルされる。
【0132】
蒸留塔3から側流として連続的に抜き取られる第1酢酸流は、蒸留塔3に連続的に導入される蒸気流よりも酢酸が富化されている。すなわち、第1酢酸流の酢酸濃度は上記蒸気流の酢酸濃度よりも高い。第1酢酸流の酢酸濃度は、例えば90~99.9質量%、好ましくは93~99質量%である。また、第1酢酸流は、酢酸に加えて、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸、及びプロピオン酸、並びに、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル、及びヨウ化デシル等のヨウ化アルキルなどを含む。
【0133】
なお、蒸留塔3に対するライン27の連結位置は、蒸留塔3の高さ方向において、図示されているように、蒸留塔3に対するライン21の連結位置より上方であってもよいが、蒸留塔3に対するライン21の連結位置より下方であってもよいし、蒸留塔3に対するライン21の連結位置と同じであってもよい。蒸留塔3からの第1酢酸流は、連続的に、ライン27を通じて次の蒸留塔5へと導入される。なお、蒸留塔3の側流として抜き取られる第1酢酸流や、蒸留塔3の塔底液あるいは蒸留塔3の塔底部の蒸気の凝縮液は、蒸留塔5(脱水工程)を経ずにそのまま後述する蒸留塔6に連続的に導入することもできる。
【0134】
ライン27を通流する第1酢酸流に、ライン55(水酸化カリウム導入ライン)を通じて、水酸化カリウムを供給ないし添加することができる。水酸化カリウムは、例えば水溶液等の溶液として供給ないし添加できる。第1酢酸流に対する水酸化カリウムの供給ないし添加によって第1酢酸流中のヨウ化水素を減少できる。具体的には、ヨウ化水素は水酸化カリウムと反応してヨウ化カリウムと水が生じる。そのことによって、ヨウ化水素に起因する蒸留塔等の装置の腐食を低減できる。なお、水酸化カリウムは本プロセスにおいてヨウ化水素が存在する適宜な場所に供給ないし添加することができる。なお、プロセス中に添加された水酸化カリウムは酢酸とも反応して酢酸カリウムを生じさせる。
【0135】
蒸留塔5は、第2蒸留工程を行うためのユニットであり、本実施形態ではいわゆる脱水塔に位置付けられる。第2蒸留工程は、蒸留塔5に連続的に導入される第1酢酸流を蒸留処理して酢酸を更に精製するための工程である。
【0136】
蒸留塔5は、例えば、棚段塔及び充填塔などの精留塔よりなる。蒸留塔5として棚段塔を採用する場合、その理論段は例えば5~50段であり、還流比は理論段数に応じて例えば0.2~3000である。第2蒸留工程にある蒸留塔5の内部において、塔頂圧力は例えば150~250kPaGに設定され、塔底圧力は、塔頂圧力より高く、例えば160~290kPaGに設定される。第2蒸留工程にある蒸留塔5の内部において、塔頂温度は、例えば、設定塔頂圧力での水の沸点より高く且つ酢酸の沸点より低い温度であって130~160℃に設定され、塔底温度は、例えば、設定塔底圧力での酢酸の沸点以上の温度であって150~175℃に設定される。
【0137】
蒸留塔5の塔頂部からは、オーバーヘッド流としての蒸気がライン33に連続的に抜き取られる。蒸留塔5の塔底部からは、缶出液がライン34に連続的に抜き取られる。5bはリボイラーである。蒸留塔5における塔頂部と塔底部との間の高さ位置から、側流(液体又は気体)がライン34に連続的に抜き取られてもよい。
【0138】
蒸留塔5の塔頂部から抜き取られる蒸気は、酢酸よりも沸点の低い成分(低沸点成分)を蒸留塔5からの上記の缶出液と比較して多く含み、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、及びギ酸などを含む。このような蒸気は、ライン33を通じてコンデンサ5aへと連続的に導入される。
【0139】
コンデンサ5aは、蒸留塔5からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば水及び酢酸などを含む。凝縮分の一部は、コンデンサ5aからライン35を通じて蒸留塔5へと連続的に還流される。凝縮分の他の一部は、コンデンサ5aからライン35,36,23を通じて反応槽1へと連続的に導入され、リサイクルされる。また、コンデンサ5aで生じるガス分は、例えば一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、及びギ酸などを含み、コンデンサ5aからライン37,15を通じてスクラバーシステム8へと供給される。なお、上述したように、コンデンサ5aからのガス分はライン15に合流せずにスクラバーシステム8に供給されてもよい。スクラバーシステム8に至ったガス分中のヨウ化水素は、スクラバーシステム8にて吸収液に吸収され、吸収液中のヨウ化水素とメタノール又は酢酸メチルとの反応によってヨウ化メチルが生じ、そして、当該ヨウ化メチル等の有用成分を含有する液分がスクラバーシステム8からリサイクルライン48,23を通じて反応槽1へとリサイクルされて再利用される。
【0140】
蒸留塔5の塔底部から抜き取られる缶出液(あるいは側流)は、酢酸のほか、酢酸よりも沸点の高い成分(高沸点成分)を蒸留塔5からの上記のオーバーヘッド流と比較して多く含み、例えば、無水酢酸、プロピオン酸、酢酸塩、及びヨウ化カリウムや腐食金属等由来のヨウ化金属塩等のヨウ化物塩、並びに、飛沫同伴の上述の触媒や助触媒などを含む。上記酢酸塩は、例えば、ライン27等に水酸化カリウム等のアルカリを供給した場合に形成される酢酸カリウムなどの酢酸金属塩が挙げられる。また、この酢酸製造装置の構成部材の内壁で生じて遊離した金属などの腐食金属等と酢酸とで形成される酢酸金属塩も挙げられる。上記ヨウ化物塩は、例えば、ライン27等に水酸化カリウム等のアルカリを供給した場合に形成されるヨウ化カリウムが挙げられる。この缶出液には酢酸も含まれうる。このような缶出液は、ライン34を通じて、第2酢酸流をなして次の蒸留塔6に連続的に導入されることとなる。また、蒸留塔5の塔底部から抜き取られる缶出液(あるいは側流)は、上記腐食金属等、及び腐食性ヨウ素に由来するヨウ素と当該腐食金属等との化合物(ヨウ化物塩)も含む。
【0141】
第2酢酸流は、蒸留塔5に連続的に導入される第1酢酸流よりも酢酸が富化されている。すなわち、第2酢酸流の酢酸濃度は第1酢酸流の酢酸濃度よりも高い。第2酢酸流の酢酸濃度は、第1酢酸流の酢酸濃度より高い限りにおいて、例えば99.1~99.99質量%である。また、第2酢酸流は、上記のように、酢酸に加えて、例えば、プロピオン酸、ヨウ化水素などを含みうる。本実施形態では、側流を抜き取る場合、蒸留塔5からの側流の抜き取り位置は、蒸留塔5の高さ方向において、蒸留塔5への第1酢酸流の導入位置よりも低い。
【0142】
ライン34を通流する第2酢酸流に、ライン56(水酸化カリウム導入ライン)を通じて、水酸化カリウムを供給ないし添加することができる。水酸化カリウムは、例えば水溶液等の溶液として供給ないし添加できる。第2酢酸流に対する水酸化カリウムの供給ないし添加によって第2酢酸流中のヨウ化水素を減少できる。具体的には、ヨウ化水素は水酸化カリウムと反応してヨウ化カリウムと水が生じる。そのことによって、ヨウ化水素に起因する蒸留塔等の装置の腐食を低減できる。
【0143】
蒸留塔6は、第3蒸留工程を行うためのユニットであり、本実施形態ではいわゆる脱高沸塔に位置付けられる。第3蒸留工程は、蒸留塔6に連続的に導入される第2酢酸流を精製処理して酢酸を更に精製するための工程である。
【0144】
蒸留塔6は、例えば、棚段塔及び充填塔などの精留塔よりなる。蒸留塔6として棚段塔を採用する場合、その理論段は例えば5~50段であり、還流比は理論段数に応じて例えば0.2~3000である。第3蒸留工程にある蒸留塔6の内部において、塔頂圧力は例えば-100~150kPaGに設定され、塔底圧力は、塔頂圧力より高く、例えば-90~180kPaGに設定される。第3蒸留工程にある蒸留塔6の内部において、塔頂温度は、例えば、設定塔頂圧力での水の沸点より高く且つ酢酸の沸点より低い温度であって50~150℃に設定され、塔底温度は、例えば、設定塔底圧力での酢酸の沸点より高い温度であって70~160℃に設定される。
【0145】
蒸留塔6の塔頂部からは、オーバーヘッド流としての蒸気がライン38に連続的に抜き取られる。蒸留塔6の塔底部からは、缶出液がライン39に連続的に抜き取られる。6bはリボイラーである。蒸留塔6における塔頂部と塔底部との間の高さ位置からは、側流(液体又は気体)がライン46に連続的に抜き取られる。蒸留塔6の高さ方向において、蒸留塔6に対するライン46の連結位置は、図示されているように、蒸留塔6に対するライン34の連結位置より上方であってもよいが、蒸留塔6に対するライン34の連結位置より下方であってもよいし、蒸留塔6に対するライン34の連結位置と同じであってもよい。
【0146】
蒸留塔6の塔頂部から抜き取られる蒸気は、酢酸よりも沸点の低い成分(低沸点成分)を蒸留塔6からの上記の缶出液と比較して多く含み、酢酸のほか、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール、及びギ酸などを含む。このような蒸気は、ライン38を通じてコンデンサ6aへと連続的に導入される。
【0147】
コンデンサ6aは、蒸留塔6からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、酢酸のほか、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール、及びギ酸などを含む。凝縮分の少なくとも一部については、コンデンサ6aからライン40を通じて蒸留塔6へと連続的に還流される。凝縮分の一部(留出分)については、コンデンサ6aからライン40,41,42を通じて、蒸留塔5へと導入される前のライン27中の第1酢酸流へとリサイクルすることが可能である。これと共に或はこれに代えて、凝縮分の一部(留出分)については、コンデンサ6aからライン40,41,43を通じて、蒸留塔3へと導入される前のライン21中の蒸気流へとリサイクルすることが可能である。
【0148】
また、凝縮分の一部(留出分)については、コンデンサ6aからライン40,44,23を通じて、反応槽1へリサイクルしてもよい。さらに、コンデンサ6aからの留出分の一部については、スクラバーシステム8へと供給して当該システム内で吸収液として使用することが可能である。スクラバーシステム8では、有用分を吸収した後のガス分は装置外に排出され、そして、有用成分を含む液分がスクラバーシステム8からリサイクルライン48,23を通じて反応槽1へと導入ないしリサイクルされて再利用される。加えて、コンデンサ6aからの留出分の一部については、装置内で稼働する各種ポンプ(図示略)へと図外のラインを通じて導いて当該ポンプのシール液として使用してもよい。更に加えて、コンデンサ6aからの留出分の一部については、ライン40に付設される抜き取りラインを通じて、定常的に装置外へ抜き取ってもよいし、非定常的に必要時において装置外へ抜き取ってもよい。
【0149】
凝縮分の一部(留出分)が蒸留塔6での蒸留処理系から除かれる場合、その留出分の量(留出量)は、コンデンサ6aで生じる凝縮液の例えば0.01~30質量%であり、好ましくは0.1~10質量%、より好ましくは0.3~5質量%、より好ましくは0.5~3質量%である。一方、コンデンサ6aで生じるガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、及びギ酸などを含み、コンデンサ6aからライン45,15を通じてスクラバーシステム8へと供給される。なお、上述したように、コンデンサ6aからのガス分はライン15に合流せずにスクラバーシステム8に供給されてもよい。
【0150】
蒸留塔6の塔底部からライン39を通じて抜き取られる缶出液は、酢酸よりも沸点の高い成分(高沸点成分)を蒸留塔6からのオーバーヘッド流と比較して多く含み、例えば酢酸塩、無水酢酸、プロピオン酸などを含む。上記酢酸塩は、例えば、ライン34等に水酸化カリウム等のアルカリを供給した場合に形成される酢酸カリウムが挙げられる。また、この酢酸製造装置の構成部材の内壁で生じて遊離した金属などの腐食金属等と酢酸とで形成される酢酸金属塩も挙げられる。蒸留塔6の塔底部からライン39を通じて抜き取られる缶出液は、さらに、上記腐食金属等、及び腐食性ヨウ素に由来するヨウ素と当該腐食金属等との化合物も含む。このような缶出液は、本実施形態では酢酸製造装置外に排出される。
【0151】
蒸留塔6からライン46に連続的に抜き取られる側流は、第3酢酸流として、次のイオン交換樹脂塔7に連続的に導入されることとなる。この第3酢酸流は、蒸留塔6に連続的に導入される第2酢酸流よりも酢酸が富化されている。すなわち、第3酢酸流の酢酸濃度は第2酢酸流の酢酸濃度よりも高い。第3酢酸流の酢酸濃度は、第2酢酸流の酢酸濃度より高い限りにおいて、例えば99.8~99.999質量%である。本実施形態では、蒸留塔6からの側流の抜き取り位置は、蒸留塔6の高さ方向において、蒸留塔6への第2酢酸流の導入位置よりも高い。他の実施形態では、蒸留塔6からの側流の抜き取り位置は、蒸留塔6の高さ方向において、蒸留塔6への第2酢酸流の導入位置と同じかそれよりも低い。なお、蒸留塔6は、単蒸留器(蒸発器)でも代用可能であり、また、蒸留塔5で不純物除去を充分に行えば、蒸留塔6は省略できる。
【0152】
イオン交換樹脂塔7は、吸着除去工程を行うための精製ユニットである。この吸着除去工程は、イオン交換樹脂塔7に連続的に導入される第3酢酸流に微量含まれる主にヨウ化アルキル(例えば、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル、ヨウ化デシルなど)を吸着除去して酢酸を更に精製するための工程である。
【0153】
イオン交換樹脂塔7においては、ヨウ化アルキルに対する吸着能を有するイオン交換樹脂が塔内に充填されてイオン交換樹脂床をなす。そのようなイオン交換樹脂としては、例えば、交換基であるスルホン酸基、カルボキシル基、ホスホン酸基等における脱離性のプロトンの一部が銀や銅などの金属で置換された陽イオン交換樹脂が挙げられる。吸着除去工程では、例えばこのようなイオン交換樹脂が充填されたイオン交換樹脂塔7の内部を第3酢酸流(液体)が通流し、その通流過程において、第3酢酸流中のヨウ化アルキル等の不純物がイオン交換樹脂に吸着されて第3酢酸流から除去される。吸着除去工程にあるイオン交換樹脂塔7において、内部温度は例えば18~100℃であり、酢酸流の通液速度[樹脂容積1m3当たりの酢酸処理量(m3/h)]は、例えば3~15m3/h・m3(樹脂容積)である。
【0154】
イオン交換樹脂塔7の下端部からライン47へと第4酢酸流が連続的に導出される。第4酢酸流の酢酸濃度は第3酢酸流の酢酸濃度よりも高い。すなわち、第4酢酸流は、イオン交換樹脂塔7に連続的に導入される第3酢酸流よりも酢酸が富化されている。第4酢酸流の酢酸濃度は、第3酢酸流の酢酸濃度より高い限りにおいて例えば99.9~99.999質量%又はそれ以上である。本製造方法においては、この第4酢酸流を図外の製品タンクに貯留することができる。
【0155】
この酢酸製造装置においては、イオン交換樹脂塔7からの上記の第4酢酸流を更に精製するための精製ユニットとして、蒸留塔であるいわゆる製品塔ないし仕上塔が設けられてもよい。そのような製品塔が設けられる場合、当該製品塔は、例えば、棚段塔及び充填塔などの精留塔よりなる。製品塔として棚段塔を採用する場合、その理論段は例えば5~50段であり、還流比は理論段数に応じて例えば0.5~3000である。精製工程にある製品塔の内部において、塔頂圧力は例えば-195~150kPaGに設定され、塔底圧力は、塔頂圧力より高く、例えば-190~180kPaGに設定される。製品塔の内部において、塔頂温度は、例えば、設定塔頂圧力での水の沸点より高く且つ酢酸の沸点より低い温度であって50~150℃に設定され、塔底温度は、例えば、設定塔底圧力での酢酸の沸点より高い温度であって70~160℃に設定される。なお、製品塔ないし仕上塔は、単蒸留器(蒸発器)でも代用可能である。
【0156】
製品塔を設ける場合、イオン交換樹脂塔7からの第4酢酸流(液体)の全部または一部が、製品塔に対して連続的に導入される。そのような製品塔の塔頂部からは、微量の低沸点成分(例えば、ヨウ化メチル、水、酢酸メチル、ジメチルエーテル、クロトンアルデヒド、アセトアルデヒド、及びギ酸など)を含むオーバーヘッド流としての蒸気が連続的に抜き取られる。この蒸気は、コンデンサにて凝縮分とガス分とに分けられる。
【0157】
凝縮分の一部は製品塔へと連続的に還流され、凝縮分の他の一部は反応槽1へとリサイクルされるか、系外に廃棄されるか、あるいはその両方であってもよく、ガス分はスクラバーシステム8へと供給される。製品塔の塔底部からは、微量の高沸点成分を含む缶出液が連続的に抜き取られ、この缶出液は、例えば蒸留塔6へ導入される前のライン34中の第2酢酸流へとリサイクルされる。製品塔における塔頂部と塔底部との間の高さ位置からは、側流(液体)が第5酢酸流として連続的に抜き取られる。製品塔からの側流の抜き取り位置は、製品塔の高さ方向において、例えば、製品塔への第4酢酸流の導入位置よりも低い。
【0158】
第5酢酸流は、製品塔に連続的に導入される第4酢酸流よりも酢酸が富化されている。すなわち、第5酢酸流の酢酸濃度は第4酢酸流の酢酸濃度よりも高い。第5酢酸流の酢酸濃度は、第4酢酸流の酢酸濃度より高い限りにおいて例えば99.9~99.999質量%又はそれ以上である。この第5酢酸流は、例えば、図外の製品タンクに貯留される。なお、イオン交換樹脂塔7は、蒸留塔6の下流に設置する代わりに(又はそれに加えて)、製品塔の下流に設置し、製品塔出の酢酸流を処理してもよい。
【0159】
本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本開示の趣旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。また、本開示に係る各発明は、実施形態や以下の実施例によって限定されることはなく、特許請求の範囲によってのみ限定される。
【実施例0160】
以下に、実施例に基づいて本開示の一実施形態をより詳細に説明する。
【0161】
実施例1
図8に示す装置を用いて分離試験を行った。分離膜として、円筒状セラミック製多孔質基材表面に、表1に示すゼオライト膜をコーティングしたものを用いた。上記分離試験では、シリンジ301により、0.3mL/minの流量となるようにサンプル液100mLを管に注入した。サンプル液の組成は、表1に示す通りの混合液である。注入されたサンプル液はリボンヒーター302により加熱されて全量気化され、ガスとして膜ハウジング303内に供給された。膜ハウジング303内に設置された分離膜304内にスイープガス(ヘリウムガス)305を10~100mL/minの流量で吹き込んだ。そして、膜ハウジング303内に注入されたガスのうち、分離膜304を透過したガスの一部を、サンプリングポート306でシリンジにより表1に示すGC打込量を採取し、ガスクロマトグラフィー分析を行った。分離膜304を透過したガスの残部307は液体窒素トラップにより凝縮させて回収した。一方、膜ハウジング303内の分離膜304を透過しなかったガス308は廃棄した。そして、ガスクロマトグラフィー分析により、各種成分の透過度[mol/m2・s・Pa]、透過度比を算出した。透過度比は、[アセトアルデヒドの透過度/ヨウ化メチルの透過度]として求めた。結果を表1に示す。なお、表1~3に示す「AD」はアセトアルデヒド、「MeI」はヨウ化メチルをそれぞれ示す。また、Na-ZSM-5型ゼオライトおよびSilicate-1型ゼオライトは、MFI型ゼオライトの一種である。
【0162】
【表1】
【0163】
表1から分かるように、各種ゼオライト膜を分離膜として用いた場合、ヨウ化メチルの透過度が極めて小さく、ヨウ化メチル回収率が高く、透過度比が高い結果となった。このことから、ゼオライト膜によれば、アセトアルデヒドとヨウ化メチルを効率的に分離することが可能であることが示されている。
【0164】
比較例1
図4に示すアセトアルデヒド分離除去システムを用いて実験を行った。アセトアルデヒド、ヨウ化メチル、及び水を含む混合液を、ライン101を通じて蒸留塔91(棚段塔、実段数:80段、塔頂圧力:0.18MPaG、塔頂温度:52℃)に供給し、蒸留を行った。蒸留塔91での蒸留により分離されたオーバーヘッド流(ライン102)をコンデンサ91aにて凝縮させ、凝縮液の一部を蒸留塔91の塔頂部に還流させ(ライン104)、凝縮液の残部を抽出塔92(充填塔、塔頂圧力:0.25MPaG、塔頂温度:40℃)に供給した(ライン105)。抽出塔92に供給された凝縮液について、ライン109から抽出溶媒として水を導入しつつ抽出処理を行い、抽出処理により分離された抽出液をライン107から、下相をライン108からそれぞれ抜き取った。なお、ライン110を通じた下相のリサイクルは行わなかった。上記抽出液を、ライン107を通じて蒸留塔93(充填塔、塔頂圧力:0.17MPaG、塔頂温度:85℃)に供給して蒸留し、オーバーヘッド流(ライン112)と缶出液(ライン113)とに分離した。ライン112のオーバーヘッド流は、コンデンサ93aにて凝縮させ、凝縮液の一部を蒸留塔93の塔頂部に還流させ(ライン114)、凝縮液の残部をライン115から留出させた。蒸留塔91の還流比は182.2とし、蒸留塔93の還流比は5.0とした。比較例1の実験中の定常状態における、各所における各種成分の流量及び濃度を表2に示す。
【0165】
【表2】
【0166】
実施例2
比較例1と同様にして得られたオーバーヘッド流(ライン112)をプロセスガスとして、図1に示す膜分離工程を用いて実験を行った。上記プロセスガスを、ライン60を通じて膜モジュール58に供給し、温度90℃、スイープガス流量3m3/hの環境下で膜分離を行った。分離膜として、セラミック製多孔質基材上に、表1におけるNo.12のBEA型ゼオライト膜が設けられたものを用いた。膜分離により、透過ガス(ライン62)と濃縮ガス(ライン61)とに分離した。上記濃縮ガスをコンデンサ61aにより凝縮させて受器59に供給した。受器59中の凝縮液の一部は、ライン63及びライン67を通じて、蒸留塔93にリサイクルした。蒸留塔93へのリサイクル位置は、高さ方向において、蒸留塔93の塔頂よりも下方であり、且つ蒸留塔93への仕込位置よりも上方である。そして、受器59中の凝縮液の残部は、ライン66より回収した。リサイクル比[ライン67の流量/ライン66の流量]は5.0とした。受器59内で発生したガスはライン68及び71を通じてライン61に合流させ、圧力計60aが0.17MPaを超える場合は、ライン69を通じた排出を行った。実施例2の実験中の定常状態における、各所における各種成分の流量及び濃度を表3に示す。
【0167】
【表3】
【0168】
表2によれば、上記膜分離工程を有しない比較例1では、ライン115からの留出によりヨウ化メチルが2.1kg/hもの流量で排出されることが認識できる。一方、表3によれば、上記膜分離工程を有する実施例2では、本来排出されるヨウ化メチル2.1kg/hのうち、ライン66から、2.0kg/hもの流量を回収することができることが認識できる。その回収率は、95.2%であり、廃棄される透過ガス(ライン62)中のヨウ化メチル濃度は0.2質量%まで低減されている。このため、本開示の酢酸の製造方法によれば、ヨウ化メチルの損失が大幅に低減される。また、新たにヨウ化メチルを製造・追加する必要性が低減され、作業負担及びコストも低減される。
【0169】
なお、表2及び表3では、アセトアルデヒド、ヨウ化メチル、及び水の合計が100.0質量%となるように各成分の濃度を記載している。但し、実際の酢酸製造プロセスにおいて、アセトアルデヒド分離除去システム内における各プロセス液はアセトアルデヒド、ヨウ化メチル、及び水を主要成分として含む場合があるに過ぎず、その他に、メタノール、ジメチルエーテル、アルカン、クロトンアルデヒド等の過マンガン酸カリウム試験値(過マンガン酸タイム)を悪化させる物質、有機ヨウ素化合物などの微量成分が含まれる場合がある。
【0170】
以下、本開示に係る発明のバリエーションを記載する。
[付記1]酢酸の製造プロセスにおいて、アセトアルデヒド及びヨウ化メチルを含むプロセス流から、ゼオライト膜を用いてアセトアルデヒドに富む流れとヨウ化メチルに富む流れとを分離取得する膜分離工程を備えた酢酸の製造方法。
[付記2]前記ゼオライト膜はBEA型ゼオライト膜である付記1に記載の酢酸の製造方法。
[付記3]前記プロセス流中のアセトアルデヒド濃度が0.1質量%以上(1質量%以上、2質量%以上、5質量%以上、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、60質量%以上、70質量%以上、75質量%以上、又は80質量%以上)である付記1又は2に記載の酢酸の製造方法。
[付記4]前記プロセス流中のアセトアルデヒド濃度が99.9質量%以下(99質量%以下、95質量%以下、90質量%以下、85質量%以下、80質量%以下、70質量%以下、60質量%以下、50質量%以下、40質量%以下、30質量%以下、20質量%以下、10質量%以下、又は5質量%以下)である付記1~3のいずれか1つに記載の酢酸の製造方法。
[付記5]前記プロセス流中のヨウ化メチル濃度が0.01質量%以上(0.1質量%以上、0.5質量%以上、1質量%以上、2質量%以上、3質量%以上、5質量%以上、6質量%以上、7質量%以上、10質量%以上、12質量%以上、15質量%以上、20質量%以上、又は30質量%以上)である付記1~4のいずれか1つに記載の酢酸の製造方法。
[付記6]前記プロセス流中のヨウ化メチル濃度が99質量%以下(95質量%以下、90質量%以下、80質量%以下、70質量%以下、50質量%以下、20質量%以下、10質量%以下、5質量%以下、3質量%以下、1質量%以下、又は0.1質量%以下)である付記1~5のいずれか1つに記載の酢酸の製造方法。
[付記7]前記プロセス流中のアセトアルデヒド濃度が0.1~99.9質量%、ヨウ化メチル濃度が0.01~99質量%である、付記1~6のいずれか1つに記載の酢酸の製造方法。
[付記8]前記プロセス流中のアセトアルデヒドとヨウ化メチルの合計濃度が1質量%以上(10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、60質量%以上、70質量%以上、80質量%以上、又は85質量%以上)である、付記1~7のいずれか1つに記載の酢酸の製造方法。
[付記9]前記プロセス流中のアセトアルデヒドとヨウ化メチルの合計濃度が99質量%以下(95質量%以下、90質量%以下、80質量%以下、70質量%以下、60質量%以下、50質量%以下、40質量%以下、30質量%以下、20質量%以下、又は10質量%以下)である、付記1~8のいずれか1つに記載の酢酸の製造方法。
[付記10]前記プロセス流中の水濃度が0.1質量%以上(0.5質量%以上、1質量%以上、2質量%以上、5質量%以上、7質量%以上、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、60質量%以上、70質量%以上、80質量%以上、又は90質量%以上)である、付記1~9のいずれか1つに記載の酢酸の製造方法。
[付記11]前記プロセス流中の水濃度が95質量%以下(90質量%以下、80質量%以下、70質量%以下、50質量%以下、20質量%以下、15質量%以下、10質量%以下、5質量%以下、又は1質量%以下)である、付記1~10のいずれか1つに記載の酢酸の製造方法。
【0171】
[付記12]前記膜分離工程をプロセス液の温度が10~180℃(例えば20~150℃、好ましくは30~130℃、より好ましくは50~110℃、さらに好ましくは70~90℃)の条件下で行う、付記1~11のいずれか1つに記載の酢酸の製造方法。
[付記13]前記膜分離工程を、加圧下(例えば、絶対圧で110~2000kPa、好ましくは200~1800kPa、より好ましくは300~1500kPa、さらに好ましくは400~1200kPa、特に好ましくは600~1000kPa)の条件下で行う付記1~12のいずれか1つに記載の酢酸の製造方法。
[付記14]金属触媒及びヨウ化メチルを含む触媒系(好ましくは、金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水)の存在下、メタノールと一酸化炭素とを反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物を、1以上の蒸発処理及び/又は蒸留処理に付して、少なくとも、金属触媒を含む流れと、酢酸に富む酢酸流と、前記酢酸流よりも低沸成分に富む流れとに分離する分離工程と、
前記低沸成分に富む流れを凝縮して得られる凝縮液の少なくとも一部から、1以上の蒸留処理によりアセトアルデヒドを分離するアセトアルデヒド分離除去システムとを備え、
前記アセトアルデヒド分離除去システムにおいて分離されたアセトアルデヒドに富む流れを前記プロセス流として前記膜分離工程に付す、付記1~13のいずれか1つに記載の酢酸の製造方法。
[付記15]前記分離工程は、前記カルボニル化反応工程で得られた反応混合物を蒸発により少なくとも蒸気流と残液流とに分離する蒸発工程を有する、付記14に記載の酢酸の製造方法。
[付記16]前記分離工程は、(i)前記分離工程と、前記蒸気流を蒸留に付して、少なくとも、低沸成分に富むオーバーヘッド流と、酢酸に富む第1酢酸流とを分離取得する脱低沸工程とを有するか、又は、(ii)前記蒸発工程及び前記脱低沸工程に代えて、前記カルボニル化反応工程で得られた反応混合物を、少なくとも、金属触媒を含む流れと、低沸成分に富むオーバーヘッド流と、酢酸に富む酢酸流とに分離する蒸発脱低沸工程を有する、付記15に記載の酢酸の製造方法。
[付記17]前記脱低沸工程では、上記蒸気流を蒸留に付して、低沸成分に富むオーバーヘッド流と、サイドカット流と、塔底流とに分離し、前記サイドカット流及び/又は前記塔底流は前記第1酢酸流である、付記16に記載の酢酸の製造方法。
[付記18]前記分離工程は、(iii)前記脱低沸工程と、前記第1酢酸流を蒸留に付して、少なくとも、水に富むオーバーヘッド流と、第1酢酸流よりも酢酸が富化された第2酢酸流とを分離取得する脱水工程とを有するか、(iv)前記脱低沸工程及び前記脱水工程に代えて、前記脱水工程の機能を備える前記脱低沸工程において酢酸に富む酢酸流を分離取得する脱低沸脱水工程を有するか、又は(v)前記蒸発脱低沸工程及び前記脱水工程に代えて、前記脱水工程の機能を備える前記蒸発脱低沸工程において酢酸に富む酢酸流を分離取得する蒸発脱低沸脱水工程を有する、付記16又は17に記載の酢酸の製造方法。
[付記19]さらに下記(a)~(c)の少なくとも1つの工程を有する、付記14~18のいずれか1つに記載の酢酸の製造方法。
(a)前記分離工程で得られた酢酸に富む酢酸流(例えば、前記第1若しくは第2酢酸流)を蒸留して、高沸成分に富む缶出流と、蒸留に付す前の酢酸流よりも酢酸が富化された第3酢酸流とに分離する脱高沸工程
(b)前記分離工程で得られた酢酸に富む酢酸流(例えば、前記第1若しくは第2酢酸流)若しくは第3酢酸流をイオン交換樹脂で処理して第4酢酸流を得る吸着除去工程
(c)前記分離工程で得られた酢酸に富む酢酸流(例えば、前記第1若しくは第2酢酸流)若しくは第3若しくは第4酢酸流を蒸留して、蒸留に付す前の酢酸流よりも酢酸が富化された第5酢酸流を得る製品工程
【0172】
[付記20]上記アセトアルデヒド分離除去システムは、前記1以上の蒸留処理により分離されたアセトアルデヒドの少なくとも一部から、1以上の抽出処理によりアセトアルデヒドを含む水相を分離する抽出工程を含む、付記14~19のいずれか1つに記載の酢酸の製造方法。
[付記21]前記アセトアルデヒド分離除去システムにおける蒸留処理において分離されたアセトアルデヒドに富む流れ、及び/又は、当該アセトアルデヒドに富む流れを抽出処理において分離されたアセトアルデヒドを含む水層を前記プロセス流として前記膜分離工程に付す、付記14~20のいずれか1つに記載の酢酸の製造方法。
[付記22]前記膜分離工程により分離取得されるヨウ化メチルに富む流れの一部を前記アセトアルデヒド分離除去システム内のプロセス(特に、前記プロセス流を排出する蒸留塔)にリサイクルする、付記14~21のいずれか1つに記載の酢酸の製造方法。
[付記23]前記プロセス流が、前記アセトアルデヒド分離除去システム内において蒸留処理を行う蒸留塔のオーバーヘッド流を含む、付記14~22のいずれか1つに記載の酢酸の製造方法。
[付記24]前記膜分離工程により分離取得されるヨウ化メチルに富む流れの一部を前記蒸留処理を行う蒸留塔に還流する付記23に記載の酢酸の製造方法。
[付記25]前記アセトアルデヒド分離除去工程は、
前記低沸成分に富む流れを凝縮して得られる凝縮液の少なくとも一部を、蒸留に付し、アセトアルデヒドに富む第1オーバーヘッド流と、残液流とを分離取得する蒸留工程(A1)と、
前記第1オーバーヘッド流を凝縮して得られる凝縮液の少なくとも一部を、抽出に付し、アセトアルデヒドに富む水相と、ヨウ化メチルに富む有機相とに分離する抽出工程(B1)と、
前記アセトアルデヒドに富む水相を、蒸留に付し、アセトアルデヒドに富む第2オーバーヘッド流と、水に富む残液流とを分離取得する蒸留工程(C1)と、を備え、
前記第1オーバーヘッド流、前記第1オーバーヘッド流を凝縮して得られる凝縮液、前記アセトアルデヒドに富む水相、前記第2オーバーヘッド流、及び前記第2オーバーヘッド流を凝縮して得られる凝縮液のうちの1以上(好ましくは、前記第2オーバーヘッド流及び/又は前記第2オーバーヘッド流を凝縮して得られる凝縮液)を前記プロセス流として前記膜分離工程に付す、付記14~24のいずれか1つに記載の酢酸の製造方法。
[付記26]前記プロセス流が、前記第2オーバーヘッド流を含む、付記25に記載の酢酸の製造方法。
[付記27]前記膜分離工程において分離して得られた前記ヨウ化メチルに富む流れを、前記蒸留工程(A1)、前記抽出工程(B1)、及び前記蒸留工程(C1)のうちの1以上の工程(好ましくは、前記蒸留工程(A1)及び/又は前記抽出工程(B1))にリサイクルする、付記25又は26に記載の酢酸の製造方法。
[付記28]前記アセトアルデヒド分離除去工程は、
前記低沸成分に富む流れを凝縮して得られる凝縮液の少なくとも一部を、蒸留に付し、蒸留塔内のヨウ化メチル及びアセトアルデヒドが濃縮される濃縮域から降下する液を側流として抜き取る蒸留工程(A2)と、
前記側流を水相と有機相とに分液させる分液工程(B2)と、
前記水相を蒸留に付し、アセトアルデヒドに富む第3オーバーヘッド流と水に富む缶出液とを分離取得する蒸留工程(C2)とを備え、
さらに、前記アセトアルデヒドに富む第3オーバーヘッド流を抽出蒸留に付し、アセトアルデヒドに富む第4オーバーヘッド流と水に富む缶出液とを分離取得する抽出蒸留工程(D2)を備えていてもよく、
前記第3オーバーヘッド流、前記第3オーバーヘッド流を凝縮して得られる凝縮液、前記第4オーバーヘッド流、及び前記第4オーバーヘッド流を凝縮して得られる凝縮液からなる群より選択される1以上の流れを前記プロセス流として前記膜分離工程に付す、付記14~24のいずれか1つに記載の酢酸の製造方法。
[付記29]前記蒸留工程(A2)において、抽出溶媒を前記凝縮液の供給位置よりも上方(好ましくは塔頂付近)から供給する付記28に記載の酢酸の製造方法。
[付記30]前記蒸留工程(A2)において、前記側流の抜き取り位置は、蒸留塔の高さ方向において、前記抽出溶媒を導入する場合は抽出溶媒の導入位置よりも下方であって、前記凝縮液の供給位置よりも上方である、付記28又は29に記載の酢酸の製造方法。
[付記31]前記プロセス流が、前記第4オーバーヘッド流を含む、付記28~30のいずれか1つに記載の酢酸の製造方法。
[付記32]前記膜分離工程において分離して得られた前記ヨウ化メチルに富む流れを、前記蒸留工程(A2)、前記分液工程(B2)、前記蒸留工程(C2)、及び前記抽出蒸留工程(D2)のうちの1以上(好ましくは、前記蒸留工程(A2))にリサイクルする、付記28~31のいずれか1つに記載の酢酸の製造方法。
【0173】
[付記33]前記プロセス流が気体である、付記1~32のいずれか1つに記載の酢酸の製造方法。
[付記34]前記膜分離工程を、仕込側にスイープガスを吹き込みながら行う、付記33に記載の酢酸の製造方法。
[付記35]前記膜分離工程によるヨウ化メチル回収率が1質量%以上(5質量%以上、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、95質量%以上、又は99質量%以上)である、付記1~34のいずれか1つに記載の酢酸の製造方法。
[付記36]前記膜分離工程によるヨウ化メチル回収率が100質量%以下(99.5質量%以下、95質量%以下、93質量%以下、90質量%以下、80質量%以下、70質量%以下、60質量%以下、50質量%以下、40質量%以下、30質量%以下、20質量%以下、又は10質量%以下)である、付記1~35のいずれか1つに記載の酢酸の製造方法。
[付記37]前記膜分離工程におけるアセトアルデヒドの回収率が1質量%以上(5質量%以上、10質量%以上、15質量%以上、20質量%以上、30質量%以上、50質量%以上、60質量%以上、80質量%以上、又は90質量%以上)である、付記1~36のいずれか1つに記載の酢酸の製造方法。
[付記38]前記膜分離工程におけるアセトアルデヒドの回収率が100質量%以下(99.5質量%以下、95質量%以下、93質量%以下、90質量%以下、80質量%以下、70質量%以下、60質量%以下、50質量%以下、40質量%以下、30質量%以下、20質量%以下、又は10質量%以下)である、付記1~37のいずれか1つに記載の酢酸の製造方法。
[付記39]前記膜分離工程により分離取得されるヨウ化メチルに富む流れ中のヨウ化メチル濃度が、前記プロセス流中のヨウ化メチル濃度より高く、且つ1質量%以上(5質量%以上、10質量%以上、15質量%以上、20質量%以上、25質量%以上、30質量%以上、40質量%以上、又は50質量%以上)である付記1~38のいずれか1つに記載の酢酸の製造方法。
[付記40]前記膜分離工程により分離取得されるヨウ化メチルに富む流れ中のヨウ化メチル濃度が、前記プロセス流中のヨウ化メチル濃度より高く、且つ100質量%以下(90質量%以下、70質量%以下、50質量%以下、40質量%以下、30質量%以下、20質量%以下、10質量%以下、又は5質量%以下)である付記1~39のいずれか1つに記載の酢酸の製造方法。
[付記41]前記膜分離工程により分離取得されるアセトアルデヒドに富む流れ中のアセトアルデヒド濃度が、前記プロセス流中のアセトアルデヒド濃度より高く、且つ、0.1質量%以上(1質量%以上、5質量%以上、10質量%以上、20質量%以上、30質量%以上、50質量%以上、70質量%以上、80質量%以上、又は90質量%以上)である付記1~40のいずれか1つに記載の酢酸の製造方法。
[付記42]前記膜分離工程により分離取得されるアセトアルデヒドに富む流れ中のアセトアルデヒド濃度が、前記プロセス流中のアセトアルデヒド濃度より高く、且つ、100質量%以下(99.5質量%以下、95質量%以下、93質量%以下、90質量%以下、80質量%以下、70質量%以下、60質量%以下、50質量%以下、40質量%以下、30質量%以下、20質量%以下、又は10質量%以下)である付記1~41のいずれか1つに記載の酢酸の製造方法。
【0174】
[付記43]前記ゼオライト膜は、多孔質基材の少なくとも一方の面に設けられている、付記1~42のいずれか1つに記載の酢酸の製造方法。
[付記44]前記多孔質基材はアルミナ基材である付記43に記載の酢酸の製造方法。
[付記45]アセトアルデヒド及びヨウ化メチルを含む混合物から、ゼオライト膜を用いてアセトアルデヒドに富む流れとヨウ化メチルに富む流れとを分離取得する、アセトアルデヒドに富む流れとヨウ化メチルに富む流れを製造する方法。
【産業上の利用可能性】
【0175】
本開示の酢酸の製造方法によれば、メタノール法カルボニル化プロセス(メタノール法酢酸プロセス)により酢酸を工業的に製造することができる。
【符号の説明】
【0176】
1 反応槽
2 蒸発槽
3,5,6 蒸留塔
4 デカンタ
7 イオン交換樹脂塔
8 スクラバーシステム
9 アセトアルデヒド分離除去システム
16 反応混合物供給ライン
17 蒸気流排出ライン
18,19 残液流リサイクルライン
54 一酸化炭素含有ガス導入ライン
55,56 水酸化カリウム導入ライン
57 触媒循環ポンプ
58 膜モジュール
59,72,73 受器
91 蒸留塔(第1脱アセトアルデヒド塔)
92 抽出塔
93 蒸留塔(第2脱アセトアルデヒド塔)
94 蒸留塔(抽出蒸留塔)
95 デカンタ
96 デカンタ
97 蒸留塔(脱アセトアルデヒド塔)
98 蒸留塔(抽出蒸留塔)
99 デカンタ
200 チムニートレイ
図1
図2
図3
図4
図5
図6
図7
図8