(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022038039
(43)【公開日】2022-03-10
(54)【発明の名称】光学素子用微細突起
(51)【国際特許分類】
G02B 1/118 20150101AFI20220303BHJP
【FI】
G02B1/118
【審査請求】未請求
【請求項の数】13
【出願形態】OL
(21)【出願番号】P 2020142322
(22)【出願日】2020-08-26
(71)【出願人】
【識別番号】000133227
【氏名又は名称】株式会社タムロン
(74)【代理人】
【識別番号】100124327
【弁理士】
【氏名又は名称】吉村 勝博
(72)【発明者】
【氏名】細谷 成紀
(72)【発明者】
【氏名】李 潔
(72)【発明者】
【氏名】福井 俊矢
(72)【発明者】
【氏名】國定 照房
【テーマコード(参考)】
2K009
【Fターム(参考)】
2K009AA01
2K009DD15
(57)【要約】
【課題】本件発明は、広帯域に反射防止特性を有する光学素子用微細突起、及び光学素子用微細突起を備えた反射防止構造付光学素子を提供することを目的とする。
【解決手段】この目的を達成するため、光学素子基材の表面に設け反射防止効果を得るための光学素子用微細突起であって、前記光学素子用微細突起は、先端平面部が形成された第1構造体部と、前記第1構造体部の前記先端平面部の外縁に沿って形成された環状突起である第2構造体部とからなる光学素子用微細突起を採用した。
【選択図】
図1
【特許請求の範囲】
【請求項1】
光学素子基材の表面に設け反射防止効果を得るための光学素子用微細突起であって、
前記光学素子用微細突起は、先端平面部が形成された第1構造体部と、前記第1構造体部の前記先端平面部の外縁に沿って形成された環状突起である第2構造体部とからなることを特徴とする光学素子用微細突起。
【請求項2】
前記第1構造体部の形状は、円錐台状又は角錐台状である請求項1に記載の光学素子用微細突起。
【請求項3】
前記第1構造体部は、以下の条件式を満たす、請求項1又は請求項2に記載の光学素子用微細突起。
0.20≦W1/W2≦0.75 ・・・(1)
0.4≦H/W2<2.0 ・・・(2)
但し、W1:前記第1構造体部の前記先端平面部の幅。
W2:前記第1構造体部の光軸方向の投影面の幅。
H:前記第1構造体部の前記先端平面部の中心から底面部までの光軸に平行な直線の長さ。
【請求項4】
前記第2構造体部は、以下の条件式を満たす、請求項1から請求項3のいずれか一項に記載の光学素子用微細突起。
0<X1/W1≦0.95 ・・・(3)
0.3≦Z/W1≦1.0 ・・・(4)
但し、X1:前記第2構造体部の前記第1構造体部との接触面における内周の幅。
Z:前記第2構造体部の前記第1構造体部との接触面と、前記第2構造体部の先端部とを結ぶ光軸に平行な直線の長さ。
【請求項5】
前記光学素子基材、前記第1構造体部及び前記第2構造体部のそれぞれの屈折率は、以下の条件式を満たす、請求項1から請求項4のいずれか一項に記載の光学素子用微細突起。
第1構造体部の屈折率≦第2構造体部の屈折率≦光学素子基材の屈折率・・・(5)
【請求項6】
請求項1から請求項5のいずれか一項に記載の光学素子用微細突起を、前記光学素子基材の表面の少なくともいずれかの光学面に複数備えることを特徴とする反射防止構造付光学素子。
【請求項7】
請求項6に記載の反射防止構造付光学素子であって、複数の前記光学素子用微細突起の間隔がλ/5以上λ/2以下である反射防止構造付光学素子。
但し、λ:入射光の波長(nm)。
【請求項8】
前記光学素子基材と前記第1構造体部と前記第2構造体部とを形成する材料が同一である請求項6又は請求項7に記載の反射防止構造付光学素子。
【請求項9】
前記光学素子基材の前記光学面の形状が非平面である、請求項6から請求項8のいずれか一項に記載の反射防止構造付光学素子。
【請求項10】
請求項6から請求項9のいずれか一項に記載の反射防止構造付光学素子を備えることを特徴とする光学系。
【請求項11】
請求項6に記載の反射防止構造付光学素子の反転形状を備えることを特徴とする金型。
【請求項12】
請求項6から請求項9のいずれか一項に記載の反射防止構造付光学素子の製造方法であって、
射出成形又は熱プレス成形を用いることを特徴とする反射防止構造付光学素子の製造方法。
【請求項13】
成形に請求項11に記載の金型を用いる、請求項12に記載の反射防止構造付光学素子の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本件発明は、反射防止特性を有する光学素子用微細突起、光学素子用微細突起を備えた反射防止構造付光学素子及び光学系、及び反射防止構造付光学素子の製造方法に関する。
【背景技術】
【0002】
ガラス、プラスチックなどの光透過性材料を用いた光学素子は、入射光の表面反射による透過光の損失を低減させるため、光入射面および光出射面に反射防止膜を設けるなどの表面処理が施されている。この反射防止膜は、光学素子を構成する基材より低屈折率の物質からなる単層膜、又は、低屈折率の物質と高屈折率の物質とが交互に積層した多層膜であり、蒸着法、スパッタリング法、塗装法などにより形成されている。
【0003】
このような反射防止膜の反射防止効果を向上させるためには、精密な膜厚の制御が必要である。そのため、反射防止膜の製造においては、精密な膜厚の制御が可能な高精度プロセスを用いる場合があり、製造コストが上昇する要因となっている。
【0004】
また、反射防止膜の反射防止効果は、各膜の表面及び界面で発生する反射光の干渉を利用するものであることから、反射防止膜の反射防止性能には波長依存性がある。このため、デジタルカメラやプロジェクター装置など広い波長帯域を用いる光学機器に対し、良好な反射防止効果を提供することは困難である。さらに、反射防止膜は光の入射角度依存性を有するため、レンズ等の曲率を持つ光学素子に対しては、光入射面及び光出射面の全体で良好な反射防止効果を得ることが困難である。
【0005】
そこで、以上に述べた反射防止膜に代わる反射防止手段として、入射光の波長以下の大きさを持つ微細凹凸構造を光学素子表面に設ける方法が検討されてきた。この微細凹凸構造の突起形状として、基材側から空気層に近づくにつれて徐々に断面積が小さくなるような円錐や四角錐等の錐形状を採用すると、空気層と光学素子表面との界面における急激な屈折率の変化を抑制できる。その結果、波長帯域特性や入射角度特性に優れた反射防止性能が期待できるためである。
【0006】
ここで、この微細突起は、入射光の波長以下の大きさであることから非常に微細である。さらに、空気層と光学素子表面との界面で屈折率を滑らかに変化させるために、この微細突起は、先端ほど細く尖った構造である。このことから、物理的な接触によって破損しやすく、耐擦傷性が悪かった。
【0007】
そこで、特許文献1には、可視光以下の間隔で配置された微細突起において、構造を円錐台および角錐台とし、微細突起の上端を平面化した微細突起が開示されている。
【先行技術文献】
【特許文献】
【0008】
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、特許文献1に記載の微細突起構造は、その構造体の先端に平面部を備えているため、空気層と微細突起の平面部との界面において屈折率が急に変化する。そのため、屈折率の連続的で滑らかな変化が不十分であり、反射防止性能が十分ではない。また、先端の平面部と、微細突起間の平面部との2層の反射光からなる干渉によっても反射防止効果を得ているが、反射防止効果があるのは、特定の波長に限られるため、広帯域に反射防止効果を得ることができない。
【0010】
本件発明は、上記に鑑みてなされたものであって、広帯域に反射防止特性を有する光学素子用微細突起、及び光学素子用微細突起を備えた反射防止構造付光学素子を提供することを目的とする。
【課題を解決するための手段】
【0011】
上述した課題を解決するために、鋭意研究の結果、以下の発明に想到した。
本件発明に係る光学素子用微細突起は、光学素子基材の表面に設け反射防止効果を得るための光学素子用微細突起であって、前記光学素子用微細突起は、先端平面部が形成された第1構造体部と、前記第1構造体部の前記先端平面部の外縁に沿って形成された環状突起である第2構造体部とからなることを特徴としている。
【発明の効果】
【0012】
本件発明に係る光学素子用微細突起は、先端平面部が形成された第1構造体部と、第1構造体部の先端平面部の外縁に沿って形成された環状突起である第2構造体部とからなることによって、光学素子用微細突起が存在する界面において、屈折率を滑らかに変化する。そして、本件発明に係る反射防止構造付光学素子は、当該光学素子用微細突起を光学面に複数備えることにより、広帯域に反射率を低減させることが可能である。
【図面の簡単な説明】
【0013】
【
図1】光学素子上に形成された本実施の形態における複数の光学素子用微細突起の一部を抽出した縦断面の略図である。
【
図2】第2構造体が環状突起であることを示す略立体図である。
【
図3】光学素子用微細突起の構造を説明するための略断面図である。
【
図4】本件発明に係る光学素子の一例を示す略断面図である。
【
図5】本実施の形態の反射防止構造付光学素子を示す略断面図である。
【
図6】実施例及び比較例における反射率特性の評価結果である。
【発明を実施するための形態】
【0014】
以下、本件発明に係る光学素子用微細突起、反射防止構造付光学素子及び反射防止構造付光学素子の製造方法の実施の形態を説明する。
【0015】
1.光学素子用微細突起の構造における実施の形態
本件発明に係る光学素子用微細突起は、光学素子基材の表面に設け反射防止効果を得るための光学素子用微細突起であって、前記光学素子用微細突起は、先端平面部が形成された第1構造体部と、第1構造体部の先端平面部の外縁に沿って形成された環状突起である第2構造体部とからなることを特徴としている。
図1に、光学素子上に形成された本実施の形態における複数の光学素子用微細突起から抽出した一部の光学素子用微細突起であって、当該光学素子用微細突起の縦断面の略図を示す。
【0016】
なお、本明細書においては、第1構造体部の、基材と接触する面とは反対側の面を、第1構造体部の「先端平面部」というものとする。そして、第1構造体部の基材と接触する境界面を、第1構造体部の「底面部」というものとする。また、「縦断面」を次のように定義する。光学素子の光学中心を通り光軸に平行な直線を含む平面であって、かつ、当該平面が第1構造体部の先端平面部の中心点を含むとき、当該平面によって切り取られる光学素子用微細突起又は第1構造体部の断面を「縦断面」というものとし、光学素子用微細突起の「縦断面」、第1構造体部の「縦断面」というように用いるものとする。
【0017】
光学素子を形成する基材11は光学材料を用いて形成されたものであれば、ガラス製であってもよいし、プラスチック製であってもよく、その材質に特に限定はない。そして、基材11の表面には、先端平面部が形成された突起状の第1構造体部21と、第1構造体部21の先端平面部の外縁に沿って形成された環状突起である第2構造体部22とからなる複数の光学素子用微細突起20が設けられている。
【0018】
第1構造体部21は、第1構造体部21の光軸方向に対して垂直な断面における断面積が、基材側から空気層に近づくにつれて徐々に小さくなるように変化する形状である。そして、先端面に平面部、すなわち先端平面部が形成された円錐台状又は角錐台状であることが好ましい。第1構造体部21の先端が尖っていると、先端平面部の面積が極端に狭くなるので、第2構造体部の形成が困難になる。また、円錐台状又は角錐台状である第1構造体部21の錐台の斜面の変化の程度は、線形であっても良いし、2次関数などで表される曲線状であっても良い。
【0019】
さらに、第1構造体部21の先端平面部の外縁に沿って環状突起である第2構造体部22が形成されている。
図2に、第1構造体部21が円錐台状である場合の、第2構造体部22が環状突起であることを示す略立体図を示す。第2構造体部22は、
図2に示すように、第1構造体部21の平面部の外縁に沿って形成された環状の突起である。
【0020】
第2構造体部22は、第1構造体部21の先端平面部の外縁に沿って形成される環状突起であることから、第2構造体部22の第1構造体部との接触面は環状となる。そして、第2構造体部22の第1構造体部との接触面の外周の形状と大きさは、第1構造体部の先端平面部の外周と同じ形状と大きさになる。また、第2構造体部22の第1構造体部との接触面の内周形状は、当該外周形状の略相似形である。第2構造体部の当該外周と当該内周とによって形成される環状突起の光軸方向に対して垂直な面における断面において、当該断面の断面積は、第1構造体部と接触する面側から空気層に近づくにつれて徐々に小さくなるように変化する。
【0021】
第1構造体部21の先端平面部に第2構造体部22が無く、すべて平面である場合、主に第1構造体部21の先端平面部と、複数の光学素子用微細突起の間における平面部との、2層の反射光による干渉によってのみ反射防止効果を得るため、広帯域に反射防止効果を得ることができない。第1構造体部21の先端平面部に第2構造体部22を設けることによって、光学素子用微細突起20の先端部分においても、屈折率が連続的になめらかに変化する。これによって、第1構造体部21の先端平面部に第2構造体部が無く、すべて平面である場合に比べ、広帯域に反射防止の効果を得ることができる。また、光学素子用微細突起20における第1構造体部21の先端平面部に第2構造体部22を設けているため、光学素子用微細突起20の先端が針状の構造と比べて破損しにくく、耐擦傷性が高い。
【0022】
また、第1構造体部21及び第2構造体部22からなる光学素子用微細突起20は、本実施形態では後述するように金型により基材11の光学有効面(有効光束を通過させる光学面)の成形と同時に当該光学有効面に成形されることから、基材11と同一の光学材料からなることが好ましい。
【0023】
1-1.第1構造体部
図3を用いて第1構造体部及び第2構造体部の構造を説明する。
図3の破線Opは光軸方向を表しており、当該光学素子の曲率の中心軸に平行な直線である。ここで、
図3(a)は基材11の表面と光軸方向Opとが垂直の関係にある場合の第1構造体部21及び第2構造体部22からなる光学素子用微細突起20の縦断面を示している。そして、
図3(b)は基材11の表面と光軸方向Opとが垂直以外の関係にある場合の第1構造体部21及び第2構造体部22からなる光学素子用微細突起20の縦断面を示している。このとき、上述の第1構造体部21は、以下の条件式(1)、(2)のうち、少なくとも1つの条件式を満たすことが好ましい。
【0024】
まず、条件式(1)について説明する。以下に示す条件式(1)は第1構造体部21の構造を特定するための、第1構造体部21の先端平面部の幅と投影面の幅との比を規定する式である。なお、本明細書においては、第1構造体部を光軸方向に投影した面を「投影面」というものとする。
0.20≦W1/W2≦0.75 ・・・(1)
但し、W1:第1構造体部21の先端平面部の幅。
W2:第1構造体部21の投影面の幅。
【0025】
W1/W2が0.20未満である場合、後述の第2構造体部の形成が困難になるため好ましくない。また、W1/W2が0.75を越える場合、反射防止効果が低くなるため好ましくない。
【0026】
なお、条件式(1)の下限値は、0.38であることが好ましく、0.41であることがより好ましい。また、条件式(1)の上限値は、0.52であることが好ましく、0.47であることがより好ましい。
【0027】
次に、条件式(2)について説明する。以下に示す条件式(2)は第1構造体部21の構造を特定するための、第1構造体部21における構造体の高さと底面部の幅との比を規定する式である。
0.4≦H/W2<2.0 ・・・(2)
但し、H:第1構造体部21の先端平面部の中心から底面部までの光軸に平行な直線の長さ。
【0028】
H/W2が0.4未満である場合、反射防止効果が十分でなくなるため好ましくない。また、H/W2が2.0以上である場合、構造体が破損しやすくなるため好ましくない。
【0029】
なお、条件式(2)の下限値は、0.56であることが好ましく0.65であることがより好ましい。また、条件式(2)の上限値は、0.95であることが好ましく、0.75であることが更に好ましい。
【0030】
更に、第1構造体部21は、条件式(1)、(2)の全てを満たすことによって、より反射防止効果が高くなる。
【0031】
1-2.第2構造体部
図3における第2構造体部22は、以下の条件式(3)、(4)のうち、少なくとも1つの条件式を満たすことが好ましい。
【0032】
条件式(3)について説明する。以下に示す条件式(3)は第2構造体部22の構造を特定するための、第2構造体部22の第1構造体部との接触面の内周形状の幅と、第1構造体部21における先端平面部の幅との比を規定する式である。
0<X1/W1≦0.95 ・・・(3)
但し、X1:第2構造体部22の、第1構造体部との接触面における内周の幅。
【0033】
第2構造体22は環状突起であることから、X1/W1は0を超える数値となる。またX1/W1が0.95を越える場合、第2構造体部22の第1構造体部との接触面において、外周の大きさと内周の大きさとの差が少なくなることから、厚みの少ない環状突起となり、破損しやすくなるため好ましくない。
【0034】
なお、空気層と光学素子用微細突起との界面における屈折率の変化を滑らかにできることから、X1/W1はより小さいのが望ましい。
【0035】
次に、条件式(4)について説明する。以下に示す条件式(4)は第2構造体部22の構造を特定するための、第2構造体部22の第1構造体部との接触面と第2構造体部22の先端部とを結ぶ光軸に平行な直線の長さと、第1構造体部21における先端平面部の幅との比を規定する式である。
0.3≦Z/W1≦1.0 ・・・(4)
但し、Z:第2構造体部22の第1構造体部との接触面と、第2構造体部22の先端部とを結ぶ光軸に平行な直線の長さ。
【0036】
Z/W1が0.3未満である場合、反射防止効果が不十分なため好ましくない。またZ/W1が1.0を越える場合、製造が困難になるうえ、破損しやすくなるため好ましくない。
【0037】
なお、条件式(4)の下限値は、0.35であることが好ましく、0.40であることがより好ましく、0.45であることがさらに好ましい。また、条件式(4)の上限値は、0.7であることが好ましく、0.6であることがより好ましい。
【0038】
更に、第1構造体部21は、条件式(3)、(4)の全てを満たすことによって、より反射防止効果が高くなる。
【0039】
2.反射防止構造付光学素子の構造における実施の形態
本件発明において、光学素子は特に限定されたものではなく、レンズ、フィルタ、ミラー等、種々のものを用いることができる。本実施形態に用いる光学素子の一例として、
図4にメニスカスレンズである光学素子10を示す。光学素子10の基材11の光学面の形状は平面でも非平面でも構わない。非平面であれば、形状は、球面、非球面、自由曲面などどんな形状でも良い。そして、基材11は、結像に寄与する有効光束を通過させる光学面12および光学面13を備えている。一方、基材11の外周部はコバ部14となっている。また、破線Oは光学素子10の曲率の中心軸を示している。
【0040】
本件発明に係る反射防止構造付光学素子は、上述の光学素子用微細突起20を基材の表面の少なくともいずれかの光学面に複数備えることが好ましい。
図5に、本実施の形態の反射防止構造付光学素子30の略断面図を示す。光学面12及び光学面13の表面に、本件発明に係る光学素子用微細突起20を設けている。光学素子用微細突起20の屈折率が微細突起の先端から基材側にかけて連続的に変化すれば反射率は低減することから、光学素子用微細突起20の配置は、一定の間隔に従って配置しても良いし、六方配置でも良いし、間隔が不規則に配置しても良い。
【0041】
本件発明に係る反射防止構造付光学素子30の基材11の表面に光学素子用微細突起20を複数配置する場合、隣り合う光学素子用微細突起20同士の間隔はλ/5以上λ/2以下であることが好ましい。但し、λは入射光の波長(nm)である。隣り合う光学素子用微細突起20同士の間隔がλ/5未満であった場合、微細突起構造を形成するのが困難となるため好ましくない。隣り合う微細突起同士の間隔がλ/2を越える場合、不要な回折光が発生し、好ましくない。
【0042】
また、本件発明に係る反射防止構造付光学素子30は、基材11と光学素子用微細突起20、すなわち第1構造体部21と第2構造体部22とを形成する材料が同一であることが好ましい。基材11と光学素子用微細突起20とを形成する材料が同一であることによって、複数の光学素子用微細突起20を設けた反射防止構造付光学素子30を一体として成形することができる。
【0043】
3.反射防止構造体付光学素子の特性における実施の形態
3-1.第1構造体部
本実施形態の第1構造体部21においては、先端平面部における第1構造体部21と空気の占有比は空気が大きく、基材と接触する部分での第1構造体部21と空気の占有比は第1構造体部21が大きい。そのため、第1構造体部21の先端平面部から底面部にかけて、屈折率が連続的になめらかに変化し、屈折率が大きく変化する部分がない。したがって、第1構造体部21からなる反射防止構造体は反射率が低く、透過率が高い。
【0044】
3-2.第2構造体部
本実施形態の第1構造体部21の先端平面部には第2構造体部22を設けている。第1構造体部21の先端平面部に第2構造体部22が無く、すべて平面である場合、入射光が反射し反射防止効果を損なう。一方、第1構造体部21の平面部に第2構造体部22を設けることによって、第1構造体部21の先端平面部に形成された第2構造体部22においても屈折率が連続的になめらかに変化する。これによって、第1構造体部21の先端平面部に第2構造体部22が無くすべて平面である場合に比べ、光学素子用微細突起20の反射防止効果が改善する。
【0045】
また、第1構造体部21の先端平面部に形成されたる第2構造体部22は、第1構造体部21よりも小さいことから、第1構造体部21で効果のある波長よりも短い波長領域での反射防止効果にも寄与する。したがって、第1構造体部21のみである場合と比べて、光学素子用微細突起20の反射防止効果を発揮する波長帯域が広くなる。
【0046】
さらに、環状突起である第2構造体部22の内側は、第1構造体部21の先端平面部の一部が空気層に露出している。この、第2構造体部22の内側に露出した第1構造体部21の先端平面部の一部と、基材11の表面に複数配置された隣り合う光学素子用微細突起20の間の平面部とにおいて、それぞれの平面部からの反射光の干渉効果による反射防止効果も得ることができる。
【0047】
3-3.反射防止構造体付光学素子
本実施形態の反射防止構造体付光学素子30は、光学素子の基材11の表面の少なくともいずれかの光学面に、上述の反射防止構造体である光学素子用微細突起20を複数備えている。そのため、反射率が低く、透過率が高い。この光学素子用微細突起20は、光学薄膜を用いた干渉効果による反射低減方法とは異なり、空気と光学素子との境界面において屈折率が連続的になめらかに変化する特性によって反射を低減する。主に、干渉効果を利用しないため、反射低減効果が及ぶ波長範囲が広く、光の入射角度が変化しても反射率の増加が少ない。
【0048】
そして、光学素子基材11、第1構造体部21及び第2構造体部22のそれぞれの屈折率は、以下の条件式(5)を満たすことが好ましい。条件式(5)を満たすことによって、広帯域で良好な反射防止効果を得ることができる。
第1構造体部の屈折率≦第2構造体部の屈折率≦光学素子基材の屈折率・・・(5)
【0049】
なお、光学素子基材11、第1構造体部21及び第2構造体部22のそれぞれの屈折率は、同じであることがより好ましい。光学素子基材11と第1構造体部21と、第2構造体部22との光学材料を同一とすることができるからである。
【0050】
4.反射防止構造体付光学素子を備えた光学系における実施の形態
本件発明に係る光学系は、本件発明に係る反射防止構造付光学素子30を備えることが好ましい。光学系とは、光の反射や屈折などの性質を利用して物体の像をつくる器具や装置のことであり、カメラや望遠鏡、レーザー機器など光を扱う光学機器の構成要素である。本件発明に係る光学系は、本件発明に係る反射防止構造体付光学素子30を備えるため、広い波長の範囲で低反射率であり、光の入射角度が変化しても反射率の増加が少ない。また、反射防止構造体である光学素子用微細突起20は、第1構造体部21の先端平面部に第2構造体部22を設けているため、耐擦傷性が高い。
【0051】
5.反射防止構造体付光学素子の製造方法における実施の形態
5-1.金型
本件発明に係る金型は、上述した反射防止構造付光学素子30の反転形状を備えていることが好ましい。金型の材料は、硬さがHRC51以上であり、ドライエッチング可能なものであれば良く、炭化タングステン、SiC、グラッシーカーボン、NiPメッキ、窒化ケイ素などが好ましい。部材の離型性を向上させる目的で、金型表面に貴金属、および炭素膜を施しても良い。光学素子用微細突起を形成するためのパターンニング前の金型の製作は、特定の方法に限定されない。
【0052】
次に、金型に光学素子用微細突起を形成するためのパターンニングを行う。例えば、フォトリソグラフィ法を用いて、金型基材にフォトレジストを塗布し、タルボ干渉を利用した露光を用いてパターンを露光する。これを現像したのち、フォトレジストのパターンをもとにドライエッチングで金型にパターンを加工することで、本件発明に係る金型を作成することができる。
【0053】
なお、金型へのパターンニング層の形成は、上述の方法に限定されるものではなく、例えば、次のようなナノインプリントを用いた方法で形成してもよい。まず、表面に光学素子用微細突起の配置パターンを施した平面のマスターモールドから、例えばPDMS(ポリジメチルシロキサン)などの柔らかい樹脂製のレプリカモールドを熱またはUVインプリントで作成する。次に、作成する光学素子の反転形状の金型に、UV硬化性のインプリントレジストをスピンコートする。そして、空圧によるプレス機構を持つインプリント装置を用いて、インプリントレジストを塗布した金型にレプリカモールドを圧着し、レプリカモールドを圧着後のインプリントレジストをUV硬化させた後、レプリカモールドを剥離する。そして、圧着で薄く残存したインプリントレジストをドライエッチングを用いて除去する。
【0054】
5-2.製造方法
本件発明に係る反射防止構造付光学素子の製造方法は、上述の反射防止構造体を形成可能であればどのような方法を用いても構わないが、射出成形、又はガラスモールド法と呼ばれる熱プレス成形を用いるのが好ましい。そして本件発明に係る反射防止構造付光学素子の製造に使用する金型は、本件発明に係る金型を用いるのが好ましい。
【0055】
また、上述のように、基材11と第1構造体部21と第2構造体部22とを形成する材料が同一であることが好ましい。同一の材料を使用することによって、基材11と光学素子用微細突起20とを上述の製造方法で同時に成形が可能である。なお、本件発明はこれに限定されるものではなく、例えば基材11とは別の光学材料で形成された光学素子用微細突起20を備える光学素子を基材11と接合する構成を採用することもできる。
【0056】
以上説明した本件発明に係る実施の形態は、本件発明の一態様であり、本件発明の趣旨を逸脱しない範囲で適宜変更可能である。また、以下実施例を挙げて本件発明をより具体的に説明するが、本件発明は、以下の実施例に限定されるものではない。
【実施例0057】
A.光学素子用微細突起
実施例における反射防止構造付光学素子に設ける光学素子用微細突起は、
図1が示すように、第1構造体部と第2構造体部とからなっている。
【0058】
B.非球面
反射防止構造付光学素子の光学面12は、有効径が13.62mmの非球面である。ここで、光軸に垂直に距離R離れた位置での光軸方向の面位置(サグ量)をSag(R)としたときの非球面の定義式を数式1に示す。
【0059】
【数1】
但し、r:曲率半径。
K:円錐常数。
A3~A12:非球面多項式の高次係数。
【0060】
このとき、光学面12は、数式1において、以下の数値を満足する形状である。そして、この面の最大傾斜角は36.8°である。
【0061】
r=12.1367
k=-10.0000
A3=-1.9184E-3
A4=2.5495E-3
A5=-9.0719E-4
A6=2.2378E-4
A7=-2.9361E-5
A8=6.0856E-7
A9=2.5801E-7
A10=-9.3494E-9
A11=-2.6479E-9
A12=1.8505E-10
【0062】
反射防止構造付光学素子の光学面13は、有効径が8.95mmの非球面である。このとき、光学面13は、数式1において、以下の数値を満足する形状である。そして、この面の最大傾斜角は17.6°である。
【0063】
r=13.2858
k=0.6453
A3=0.0
A4=4.029E-5
A5=0.0
A6=1.1353E-5
A7=0.0
A8=-9.7868E-7
A9=0.0
A10=4.7507E-8
A11=0.0
A12=-1.0466E-9
【0064】
C.金型
反射防止構造付光学素子の製造に用いる金型の製造について説明する。まず、金型母材としてSUS鋼材を用い、上述で説明した光学素子の各面の反転形状となるよう加工する。具体的には、円筒材料のSUS鋼材を研削加工機で光学駒の形状に加工を行ったのち、光学面のみ無電解NiPめっきを施した。そして、制御分解能1nmの非球面切削加工機で、上述の光学面となるよう加工した。その後、光学面の光学研磨を行い、最後に有機溶剤での洗浄を行った。このようにして得られた金型母材の表面粗さはZygo Corporation製走査型白色干渉計でRa1.0nmであった。
【0065】
次に、金型表面に、CVD法によって、エッチング層となるSiN層を2000nm成膜した。このとき成膜法は、特にCVD法に限るものではなく、スパッタ法などであっても構わない。その後、SiN膜表面にレジスト膜によるパターンニング層を形成した。パターンニング層の形成方法は特に限定されないが、ここでは、以下のように実施した。まず、ポジ型フォトレジストをSiN膜表面にスピンコートした。次にマスクからのタルボ干渉光を統合できるよう制御された干渉露光装置にピッチ340nmで六方配置に配列されたφ330nmのパターンを持つ位相マスクをセットし、金型上面から露光を行った。最後に現像し、感光部を溶解することで、SiN膜表面に340nmピッチで六方配置された330nmの穴径分布をもつレジスト膜によるパターンニング層を形成した。
【0066】
以上のようにしてレジストのパターニング層を形成した金型に対し、ドライエッチング装置にて、ドライエッチングを行う。ドライエッチング装置で、CHF3、CF4ガス下で4分間エッチングを行った。そののち、不要なレジスト膜のパターニング層を除去し、実施例における金型を作成した。
【0067】
D.成形
実施例における反射防止構造付光学素子は、前述の金型を用いた射出成形によって成形する。射出成形装置は、ファナック株式会社製の射出成型機を用いた。射出成形に用いる光学樹脂は、ガラス転移温度が145℃のポリカーボネートである。また、射出成形時の金型温度は155℃、保圧95MPとした。この金型温度を保持した状態で離形を行うことによって、離形中に金型と樹脂との界面において樹脂の変形が起こり、第1構造体部の平面部の外縁に沿って環状突起である第2構造体部が形成された。
【0068】
この構造体の断面形状をAFM(Atomic Force Microscope:原子間力顕微鏡)を用いて測定したところ、円錐台状の構造体の上に、円環状の構造体を持つ構造であった。そして、当該光学素子用微細突起の第1構造体部は、底面の径が330nm、上面の径が220nm、高さが200nmであった。このとき、条件式(1)におけるW1/W2の値は0.67、条件式(2)におけるH/W2の値は0.606であった。また、第2構造体部である環状突起の高さは100nm、幅は10nmであり、環状突起の断面形状は放物線状であった。このとき、条件式(3)におけるX1/W1は0.91、条件式(4)におけるZ/W1は0.455であった。
【0069】
このようにして作成した反射防止構造付光学素子は、使用波長が905nmであり、反射防止構造付光学素子の光学面に、平面部を有する第1構造体部と、第1構造体部の平面部の外縁に沿って設けた環状突起である第2構造体部とからなる光学素子用微細突起を複数備えたものである。そして、光学素子基材と、第1構造体部と、第2構造体部とを形成する材料が同一である。すなわち、光学素子基材、第1構造体部及び第2構造体部のそれぞれの屈折率も同じ値である。
【0070】
〔比較例〕
比較例では、光学素子の形状及び材質は実施例と同一のものとした。また、金型も実施例と同じ条件で作成した。そして、実施例と同じように、金型を用いた射出成形によって反射防止構造体付光学素子を成形した。このとき、射出成形装置は、実施例と同様にファナック株式会社製の射出成型機を用いているが、金型温度を任意に制御できるように温調機を取り付けた。次に、金型温度を155℃、保圧95MPで成型したのち、金型温度を135℃まで下げたうえで離形を行った。金型温度を95℃にすることによって、離形時における上述のような金型と樹脂との界面における樹脂の変形が起こらないようにした。
【0071】
このようにして作成した反射防止構造付光学素子は、その光学面に、先端平面部を有する第1構造体部のみからなる光学素子用微細突起を複数備えたものである。この構造体の断面形状をAFMを用いて測定したところ、円錐台状の構造であり、底面の径は330nm、上面の径は220nm、高さは200nmだった。
【0072】
〔評価結果〕
実施例及び比較例で記載した反射防止構造付光学素子の反射率を、大塚電子株式会社製膜厚測定機FE3000で測定した。
図6に、実施例及び比較例における反射率特性の評価結果を示す。
図6の横軸は波長(nm)、縦軸は反射率(%)を示す。
図6から、実施例の反射防止構造付光学素子は優れた反射率特性を有していることが明らかとなった。一方、比較例の反射防止構造付光学素子は、実施例の反射防止構造付光学素子と比べ、反射率特性が劣っていることが明らかとなった。したがって、本件発明に係る反射防止構造付光学素子は、その光学面に、先端平面部を有する第1構造体部と、第1構造体部の先端平面部の外縁に沿って設けた環状突起である第2構造体部とからなる光学素子用微細突起を複数備えることによって、良好な反射率特性を有することが明らかとなった。
本件発明に係る光学素子用微細突起は、先端平面部を有する第1構造体部と、第1構造体部の先端平面部の外縁に沿って設けた環状突起である第2構造体部とからなることによって、屈折率が連続的になめらかに変化する特性を有し、かつ、耐擦傷性が高い。また、上述の特性を有する光学素子用微細突起を光学面に複数備える本件発明に係る反射防止構造付光学素子は、広い帯域幅において良好な反射防止効果を有し、射出成形などによって作成可能であるため生産性が高い。したがって、車載機器のパネルや光学機器、その他耐擦傷性を必要とされる機器に好適である。