(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022044557
(43)【公開日】2022-03-17
(54)【発明の名称】飛行体
(51)【国際特許分類】
B64C 27/28 20060101AFI20220310BHJP
【FI】
B64C27/28
【審査請求】有
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2021129679
(22)【出願日】2021-08-06
(62)【分割の表示】P 2021513484の分割
【原出願日】2020-09-07
(11)【特許番号】
(45)【特許公報発行日】2021-11-24
(71)【出願人】
【識別番号】517331376
【氏名又は名称】株式会社エアロネクスト
(72)【発明者】
【氏名】鈴木陽一
(57)【要約】
【課題】垂直離着陸の実現と燃費の向上を両立させた上で、安定した着陸を実現可能な飛行体を提供すること。
【解決手段】複数の回転翼部と、主翼と、が接続された飛行部を備える飛行体であって、前記主翼は、着陸時に前記主翼が生む揚力が、巡航時に前記主翼が生む揚力に比較して減少する構成である、飛行体。さらに主翼は、前記飛行部に対して前傾して固定されている。さらに回転翼は、巡行時に推進力及び揚力を発生する角度で接続される。さらに回転翼は、巡行時に推進力を発生する角度で接続される。さらに飛行部は、着陸時に回転翼が飛行部または主翼に干渉しない構成である。さらに主翼は、前記飛行部と回動軸を介して接続されており、前記主翼は、着陸時に巡行時よりも前記飛行部に対する角度を回動軸を中心に前傾する構成である。
【選択図】
図3
【特許請求の範囲】
【請求項1】
複数の回転翼部と、主翼と、が接続された飛行部を備える飛行体であって、
前記主翼は、着陸時に前記主翼が生む揚力が、巡航時に前記主翼が生む揚力に比較して減少する構成である、
ことを特徴とする飛行体。
【請求項2】
前記主翼は、前記飛行部に対して前傾して固定されている、
ことを特徴とする請求項1に記載の飛行体。
【請求項3】
前記回転翼は、着陸時に巡行時よりも前記主翼が前傾するように回転軸の角度が制御される、
ことを特徴とする請求項1に記載の飛行体。
【請求項4】
前記回転翼は、巡行時に推進力及び揚力を発生する角度で接続される、
ことを特徴とする請求項1ないし3のいずれかに記載の飛行体。
【請求項5】
前記回転翼は、巡行時に推進力を発生する角度で接続される、
ことを特徴とする請求項1ないし3のいずれかに記載の飛行体。
【請求項6】
前記飛行部は、着陸時に回転翼が飛行部または主翼に干渉しない構成である、
ことを特徴とする請求項1ないし5のいずれかに記載の飛行体。
【請求項7】
前記主翼は、前記飛行部と回動軸を介して接続されており、
前記主翼は、着陸時に巡行時よりも前記飛行部に対する角度を回動軸を中心に前傾する構成である、
ことを特徴とする請求項1に記載の飛行体。
【請求項8】
前記主翼は、前記飛行部と支持部材及びばねを介してさらに接続されており、
前記ばねは、着陸時に前記支持部材による支持が解除されることにより、巡行時よりも前記飛行部に対する前記主翼の角度を回動軸を中心に前傾させる構成である、
ことを特徴とする請求項7に記載の飛行体。
【請求項9】
前記主翼は、緊急墜落時に失速となる迎角に前傾または後傾する構成である、
ことを特徴とする請求項1ないし8のいずれかに記載の飛行体。
【請求項10】
前記緊急墜落時に動作する落下速度を低下させる手段をさらに備える、
ことを特徴とする請求項9に記載の飛行体。
【請求項11】
前記主翼は、着陸時に前記主翼の上方に展開する動翼をさらに備える、
ことを特徴とする請求項1ないし10のいずれかに記載の飛行体。
【請求項12】
着陸時に上方へ後流を生むファンをさらに備える、
ことを特徴とする請求項1ないし11のいずれかに記載の飛行体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、飛行体に関する。
【背景技術】
【0002】
近年、無人および有人ドローン(Drone)や無人航空機(UAV:Unmanned Aerial Vehicle)などの飛行体(以下、「飛行体」と総称する)を用いたサービスの実用化に向けた研究や実証実験が進められている。一般的にマルチコプターと呼ばれる複数の回転翼を備える飛行体(以下、マルチコプターと総称する)は、固定翼を持たないため、常時回転翼により揚力を生む必要があり、燃費の向上が望まれる。
【0003】
このような状況を鑑みて、例えば特許文献1においては、垂直離着陸と燃費の向上を両立させるため、マルチコプター機構と固定翼を組み合わせることで、垂直離着陸やホバリングを行う際にはマルチコプター機構の回転翼を用い、水平飛行を行う際には主翼の生み出す揚力を用いる。このように、垂直離着陸と燃費の向上を両立させることを目的としたVTOL機体(以下、従来機体と総称する)が開発されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、
図25-
図27に例示されるような従来機体は、水平飛行時に主翼20が最適な迎角となるように設計されている一方で、回転翼及び主翼20はフレームに対して、それぞれ相対的な角度が一定となるように固定されている。したがって、
図25及び
図26のように、水平飛行時の姿勢よりも着陸時の姿勢の方が主翼20の迎角が大きくなる。
【0006】
このように、着陸時に向かい風の成分を含む風が吹いている環境において主翼20が揚力を発生させる迎角を有する構成の場合、飛行体の姿勢が不安定になったり、着陸が困難となったりする。風の強さによっては、着陸姿勢となることによって、主翼20が風により揚力を発生させてしまうため、飛行体が意図せず上向きに進んでしまう可能性もあり、着陸のための下降動作に支障をきたす懸念がある。また、主翼を備える飛行体は、一般的に、ヨー方向の安定性を向上させるための垂直尾翼を備えている。垂直尾翼により風見安定効果を得る飛行体は気流に正対しようとし、主翼20はより揚力を生みやすくなる。
【0007】
そこで、本発明は、マルチコプター機構と主翼を組み合わせ、垂直離着陸と燃費の向上を両立させた上で、安定した着陸を実現可能な飛行体を提供することを一つの目的とする。
【課題を解決するための手段】
【0008】
本発明によれば、複数の回転翼部と、主翼と、が接続された飛行部を備える飛行体であって、前記主翼は、着陸時に前記主翼が生む揚力が、巡航時に前記主翼が生む揚力に比較して減少する構成である、ことを特徴とする飛行体を提供することができる。
【発明の効果】
【0009】
本発明によれば、垂直離着陸の実現と燃費の向上を両立させた上で、安定した着陸を実現可能な飛行体を提供することができる。
【図面の簡単な説明】
【0010】
【
図1】巡航モード時における本発明による飛行体を側面から見た概念図である。
【
図2】本発明による飛行体の機能ブロック図である。
【
図3】
図1の飛行体の着陸モード時の側面図である。
【
図4】
図1の飛行体の着陸モード時の上面図である。
【
図5】本発明による飛行体の巡航モード時の側面図である。
【
図6】
図5の飛行体の着陸モード時の側面図である。
【
図7】本発明による飛行体の構成例の、巡航モード時の側面図である。
【
図8】
図7の飛行体の着陸モード時の側面図である。
【
図9】本発明による飛行体の構成例の、巡航モード時の側面図である。
【
図10】
図9の飛行体の着陸モード時の側面図である。
【
図11】本発明による飛行体の構成例の、巡航モード時の側面図である。
【
図12】
図11の飛行体の回転翼部が着陸モード時へ移行した時の側面図である。
【
図15】本発明による飛行体の回転翼部が着陸モード時へ移行した時の側面図である。
【
図17】本発明による飛行体の構成例の、巡航モード時の側面図である。
【
図19】本発明による飛行体の構成例の、巡航モード時の側面図である。
【
図21】本発明による飛行体の構成例の、巡航モードの側面図である。
【
図24】本発明による飛行体の構成例の、着陸モード時の上面図である。
【
図25】従来機体が巡航している時の側面図である。
【発明を実施するための形態】
【0011】
本発明の実施形態の内容を列記して説明する。本発明の実施の形態による飛行体は、以下のような構成を備える。
[項目1]
複数の回転翼部と、主翼と、が接続された飛行部を備える飛行体であって、
前記主翼は、着陸時に前記主翼が生む揚力が、巡航時に前記主翼が生む揚力に比較して減少する構成である、
ことを特徴とする飛行体。
[項目2]
前記主翼は、前記飛行部に対して前傾して固定されている、
ことを特徴とする項目1に記載の飛行体。
[項目3]
前記回転翼は、着陸時に巡行時よりも前記主翼が前傾するように回転軸の角度が制御される、
ことを特徴とする項目1に記載の飛行体。
[項目4]
前記回転翼は、巡行時に推進力及び揚力を発生する角度で接続される、
ことを特徴とする項目1ないし3のいずれかに記載の飛行体。
[項目5]
前記回転翼は、巡行時に推進力を発生する角度で接続される、
ことを特徴とする項目1ないし3のいずれかに記載の飛行体。
[項目6]
前記飛行部は、着陸時に回転翼が飛行部または主翼に干渉しない構成である、
ことを特徴とする項目1ないし5のいずれかに記載の飛行体。
[項目7]
前記主翼は、前記飛行部と回動軸を介して接続されており、
前記主翼は、着陸時に巡行時よりも前記飛行部に対する角度を回動軸を中心に前傾する構成である、
ことを特徴とする項目1に記載の飛行体。
[項目8]
前記主翼は、前記飛行部と支持部材及びばねを介してさらに接続されており、
前記ばねは、着陸時に前記支持部材による支持が解除されることにより、巡行時よりも前記飛行部に対する前記主翼の角度を回動軸を中心に前傾させる構成である、
ことを特徴とする項目7に記載の飛行体。
[項目9]
前記主翼は、緊急墜落時に失速となる迎角に前傾または後傾する構成である、
ことを特徴とする項目1ないし8のいずれかに記載の飛行体。
[項目10]
前記緊急墜落時に動作する落下速度を低下させる手段をさらに備える、
ことを特徴とする項目1ないし9のいずれかに記載の飛行体。
[項目11]
前記主翼は、着陸時に主翼の上方に展開する動翼をさらに備える、
ことを特徴とする項目1ないし10のいずれかに記載の飛行体。
[項目12]
着陸時に上方へ後流を生むファンをさらに備える、
ことを特徴とする項目1ないし11のいずれかに記載の飛行体。
【0012】
<本発明による実施形態の詳細>
以下、本発明の実施の形態による飛行体について、図面を参照しながら説明する。添付図面において、同一または類似の要素には同一または類似の参照符号及び名称が付され、各実施形態の説明において同一または類似の要素に関する重複する説明は省略することがある。また、各実施形態で示される特徴は、互いに矛盾しない限り他の実施形態にも適用可能である。
【0013】
<第1の実施の形態の詳細>
【0014】
図1に示されるように、本発明の実施の形態による飛行体100は垂直離着陸が可能な飛行体(VTOL)である。飛行体100は、飛行を行うために少なくともプロペラ10やモータ11等の要素からなる回転翼部12を複数個と、主翼20を備えている。主翼20は、回転翼部12と本体部60を含む飛行部に接続されている。また、飛行体100は、着陸時に地面と接触する着陸脚30を有している。なお、図示されている飛行体100は、本発明の構造の説明を容易にするため簡略化されて描かれており、例えば、制御部等の詳しい構成や機体本体については、記載を省略している。
【0015】
回転翼部12は、飛行体100に、ティルト可能に接続されており、垂直離陸やホバリング、垂直着陸モードにおいては、回転翼の回転軸40を上方に向けて下降を行い、巡航モードでは、回転翼の回転軸40を垂直着陸モード時より前方に傾けて、水平方向への推進を行う。飛行体100は、複数の回転翼部12を動作させるためのエネルギー(例えば、二次電池や燃料電池、化石燃料等)を搭載していることが望ましい。
【0016】
主翼20は、飛行体100の飛行の補助となる揚力を発生させることが可能である。また、主翼20は、必要に応じて動翼を備えていてもよい。
【0017】
着陸脚30は、地面と接触する接地部を備えており、また、着陸時や飛行体を置く際の衝撃緩和を行うダンパー等を備えていてもよい。
【0018】
飛行体100は、図の矢印Dの方向(-Y方向)を前進方向、矢印Eを下降方向(-Z方向)としている(詳しくは後述する)。
【0019】
なお、以下の説明において、以下の定義に従って用語を使い分けることがある。前後方向:+Y方向及び-Y方向、上下方向(または鉛直方向):+Z方向及び-Z方向、左右方向(または水平方向):+X方向及び-X方向、進行方向(前方):-Y方向、後退方向(後方):+Y方向、上昇方向(上方):+Z方向、下降方向(下方):-Z方向
【0020】
プロペラ10~10dは、モータ11~11dからの出力を受けて回転する。プロペラ10が回転することによって、飛行体100を出発地から離陸させ、移動させ、目的地に着陸させるための推進力が発生する。なお、プロペラ10は、右方向への回転、停止及び左方向への回転が可能である。
【0021】
本発明の飛行体100が備えるプロペラ10は、1以上の羽根を有している。任意の羽根(回転子)の数(例えば、1、2、3、4、またはそれ以上の羽根)でよい。また、羽根の形状は、平らな形状、曲がった形状、よじれた形状、テーパ形状、またはそれらの組み合わせ等の任意の形状が可能である。なお、羽根の形状は変化可能である(例えば、伸縮、折りたたみ、折り曲げ等)。羽根は対称的(同一の上部及び下部表面を有する)または非対称的(異なる形状の上部及び下部表面を有する)であってもよい。羽根はエアホイル、ウイング、または羽根が空中を移動される時に動的空気力(例えば、揚力、推力)を生成するために好適な幾何学形状に形成可能である。羽根の幾何学形状は、揚力及び推力を増加させ、抗力を削減する等の、羽根の動的空気特性を最適化するために適宜選択可能である。
【0022】
また、本発明の飛行体が備えるプロペラは、固定ピッチ、可変ピッチ、また固定ピッチと可変ピッチの混合などが考えられるが、これに限らない。
【0023】
モータ11a~11dは、プロペラ10~10dの回転を生じさせるものであり、例えば、駆動ユニットは、電気モータ又はエンジン等を含むことが可能である。羽根は、モータによって駆動可能であり、モータの回転軸(例えば、モータの長軸)の周りに回転する。
【0024】
羽根は、すべて同一方向に回転可能であるし、独立して回転することも可能である。羽根のいくつかは一方の方向に回転し、他の羽根は他方方向に回転する。羽根は、同一回転数ですべて回転することも可能であり、夫々異なる回転数で回転することも可能である。回転数は移動体の寸法(例えば、大きさ、重さ)や制御状態(速さ、移動方向等)に基づいて自動又は手動により定めることができる。
【0025】
飛行体100は、フライトコントローラやプロポ等により、風速と風向に応じて、各モータの回転数や、飛行角度を決定する。これにより、飛行体は上昇・下降したり、加速・減速したり、方向転換したりといった移動を行うことができる。
【0026】
飛行体100は、事前または飛行中に設定されるルートやルールに準じた自律的な飛行や、プロポを用いた操縦による飛行を行うことができる。
【0027】
上述した飛行体100は、
図2に示される機能ブロックを有している。なお、
図2の機能ブロックは最低限の参考構成である。フライトコントローラは、所謂処理ユニットである。処理ユニットは、プログラマブルプロセッサ(例えば、中央処理ユニット(CPU))などの1つ以上のプロセッサを有することができる。処理ユニットは、図示しないメモリを有しており、当該メモリにアクセス可能である。メモリは、1つ以上のステップを行うために処理ユニットが実行可能であるロジック、コード、および/またはプログラム命令を記憶している。メモリは、例えば、SDカードやランダムアクセスメモリ(RAM)などの分離可能な媒体または外部の記憶装置を含んでいてもよい。カメラやセンサ類から取得したデータは、メモリに直接に伝達されかつ記憶されてもよい。例えば、カメラ等で撮影した静止画・動画データが内蔵メモリ又は外部メモリに記録される。
【0028】
処理ユニットは、回転翼機の状態を制御するように構成された制御モジュールを含んでいる。例えば、制御モジュールは、6自由度(並進運動x、y及びz、並びに回転運動θx、θy及びθz)を有する回転翼機の空間的配置、速度、および/または加速度を調整するために回転翼機の推進機構(モータ等)を制御する。制御モジュールは、搭載部、センサ類の状態のうちの1つ以上を制御することができる。
【0029】
処理ユニットは、1つ以上の外部のデバイス(例えば、端末、表示装置、または他の遠隔の制御器)からのデータを送信および/または受け取るように構成された送受信部と通信可能である。送受信機は、有線通信または無線通信などの任意の適当な通信手段を使用することができる。例えば、送受信部は、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、赤外線、無線、WiFi、ポイントツーポイント(P2P)ネットワーク、電気通信ネットワーク、クラウド通信などのうちの1つ以上を利用することができる。送受信部は、センサ類で取得したデータ、処理ユニットが生成した処理結果、所定の制御データ、端末または遠隔の制御器からのユーザコマンドなどのうちの1つ以上を送信および/または受け取ることができる。
【0030】
本実施の形態によるセンサ類は、慣性センサ(加速度センサ、ジャイロセンサ)、GPSセンサ、近接センサ(例えば、ライダー)、またはビジョン/イメージセンサ(例えば、カメラ)を含み得る。
【0031】
図1に例示されるように、本発明における飛行体100は、巡航モード時に、回転翼部12が生む推進力だけでなく、主翼20が生む揚力をあわせて利用することにより、巡航時の燃費の向上が期待できる。
【0032】
ここで、従来機体について再度説明する。
図25のような巡航モードにおける主翼20の姿勢と、
図26における着陸モードにおける主翼20の姿勢を比較したとき、着陸モード時に、主翼20のプラス方向の迎角がより大きくなる構成となっている。
【0033】
プラスの迎角が大きくなると、主翼20の生む揚力は、失速迎角を迎えるまで増加する。そのため、従来機体のように、着陸モード時の主翼20が巡航モードより揚力を生みやすい飛行体の構成では、着陸に時間を要したり、着陸が困難となったり、強風下においては機体が浮き上がってしまう等の可能性がある。特に、宅配事業等の効率を重視した運用が望まれるケースにおいては、着陸にかかる時間の増加は欠点となる。
【0034】
空気の流れがなければ主翼20は揚力を生まないため、無風下や微風下であれば主翼20の生む揚力が着陸に影響を及ぼす可能性は低いが、実際の飛行体着陸時の環境において常に無風や微風とすることは困難である。
【0035】
本発明による飛行体100においては、屋外等の風の影響を受ける環境においても安定した着陸を行い、また、従来機体では着陸が困難な強風下において着陸を可能にするため、着陸モード時に主翼20が生む揚力は、水平飛行時に主翼20が生む揚力に比較して少なくなるように設けられている。
【0036】
図1及び
図3に例示されるとおり、第1の実施の形態では、垂直着陸時に主翼20が生む揚力を、巡航モード時に主翼20が生む揚力に比較して減少させるために、着陸モード時の主翼の迎角21を、巡航モード時よりも、着陸モード時にマイナス方向に傾く角度で飛行部に固定する。
【0037】
上記の構成において、巡航モード時の回転翼の回転軸40の角度が適切な角度となるよう、回転翼部12のティルト角度を所定の角度に設定する必要がある。例えば、
図5及び
図6における回転翼部12のティルト角度は25度であり、また、
図1及び
図3-4における回転翼部12のティルト角度は90度であるが、主翼20が飛行部に同じ角度で設けられた飛行体100において、巡航モード時の回転軸40の角度を、より水平に近付ける必要がある場合には、必要なティルト角度が増加する。
【0038】
例えば、
図7及び
図8に示されるように、巡航モード時には、回転軸40を略水平として回転翼を推進用のみに用い、飛行に必要な揚力を主翼20によって得る場合、機体を空中に留めるために回転翼の力を用いないため、
図1及び
図5に示されるような回転軸の傾きで用いる場合に比較して、燃費の向上が期待できる。回転翼を推進用のみに用いる構成においては、着陸時モード時に回転軸40は略垂直方向上方とし、主翼20の迎角は巡航モード時よりもマイナス方向となるように設ける場合、ティルト角は90度を超えた角度となる。
【0039】
図9及び
図10に示されるように、プロペラ10が主翼等に干渉することを避ける形状としてもよい。飛行体100が備える回転翼部12は、その取り付け位置及び着陸モードに変位する際のティルト角度によっては、巡航モード時と着陸モード時のプロペラ10がフレームやアーム、主翼等に干渉する可能性がある。これを避けるために、例えばフレームやアームが曲がった形状(屈曲や湾曲等)にしてもよく、例えば
図9及び
図10に示されるように、プロペラ10の設置側にフレームやアームの一部をずらした形状にしてもよい。また、同様の目的で、モータマウント(不図示)を高くするようにしてもよい。
【0040】
<第2の実施の形態の詳細>
本発明による第2の実施の形態の詳細において、第1の実施の形態と重複する構成要素は同様の動作を行うので、再度の説明は省略する。
【0041】
図11-
図14に示されるように、第2の実施の形態による飛行体100が備える主翼20は、着陸モード時、主翼20の生む揚力を減少させるために、マイナスの迎角方向に飛行部との接続角度を変位してもよい。
【0042】
主翼20と飛行部の接続部分に回動軸22を設けることにより、主翼の迎角21の変更が可能となる。回動軸22は、飛行や離着陸に耐え得る強度を持ち、且つ、軽量であることが望ましい。例えば、プラスチックや金属、FRPなどのシャフトやパイプ、ベアリング等を選択して使用し得る。これらの素材は、飛行部に含まれるフレームやアームと同じ素材であってもよいし、異なる素材であってもよい。
【0043】
着陸モードに移行し、主翼20の角度を変更する場合には、サーボやモータ、ガス、ばね、搭載物50の自重等の力を利用して、所定の角度まで回動させる方法がある。搭載物50は、輸送の対象物や、飛行に使用するバッテリー等を利用し、重量の増加を最低限とすることが望ましい。
図15-
図16に示されるように、搭載物50と主翼20の一部が接続された状態で搭載物50を下降させることで、主翼20の迎角21が変化する。
【0044】
着陸後、メンテナンス等を介さずに再度離陸や飛行を行うケースにおいては、主翼20の角度を着陸モードの角度に切り替えた後、再び巡航モードの角度に戻すように制御可能としておくことが望ましい。例えば、宅配等の業務で使用され、一度の飛行において複数の配達先を回る場合などは、巡航モードと着陸モードを複数回切り替える必要がある。
【0045】
しかし、着陸後に再度飛行を行うまでの間に、着陸モードに変更した主翼20を手動で巡航モードの主翼20の迎角21に戻すことができるケースにおいては、一度着陸モードの角度へと変更した主翼20を再度巡航モードに戻す動作を、人の手やメンテナンスロボットなどの外部からの作用で行うことができるように、主翼20の固定を解除可能な構成としておくことが望ましい。これにより、飛行体100が備える機構の単純化および軽量化が期待できる。
【0046】
例えば、
図17及び
図18に示されるように、主翼20は回動軸22を介して飛行部と接続しており、主翼20は、主翼20の前側と飛行部の下方とをつなぐように取り付けられた引張りばね24の力により、常に着陸モード時の角度となるように引っ張られている。巡航モード時には、主翼はピン等の支持部材23によって、ばね24の力に逆らって姿勢を固定され、所定の角度より迎角がマイナス方向に傾かないよう保持される。巡航モードから着陸モードへと切り替える際には、サーボ等により主翼20からピン23を抜き取ることで、主翼20の角度は、ばね24の力にしたがいマイナスの迎角へと変化する。
【0047】
また、主翼20をマイナスの迎角方向に飛行部との接続角度を変位させる機構は、平時の飛行体着陸時に着陸を安定させる他に、飛行体100の障害時等に墜落範囲を限定させたり、緊急着陸をさせたりすることを可能にする。
【0048】
揚力を発生し得る主翼を備えるVTOL機体においては、主翼の生みだす揚力を利用することで燃費が向上する利点がある一方、飛行体に障害が起きた時などに、回転翼の回転を止めても滑空して前進し続けるため、墜落場所を限定することが困難になり得る。
【0049】
緊急墜落モードにおいては、飛行中の主翼20の迎角を、ゼロ揚力角よりも更にマイナスの迎角とし、積極的に失速させることで、急速に飛行体100の高度を下げ、強制的に墜落させる。例えば、飛行体100に異常が起こった地点が緊急墜落地点として好適な場所(人家の無いエリアや、水上等)であった場合には、人家の上や、機体の落下による被害が甚大となる場所まで機体が移動する前に、より迅速にその場に墜落させることが重要である。
【0050】
反対に、機体に異常が起こった地点では墜落させることが難しい場合には、主翼20による滑空によりその場から離れ、落下に好適な地点の上空にて緊急墜落モードへ切り替えることで、機体の落下による被害を防ぐことが可能である。また、飛行体の落下時には、パラシュート等の落下速度を低下させる手段をさらに用いることで、更に落下地点への影響を減少させることも可能である。
【0051】
緊急着陸モード時における、主翼のマイナス方向の迎角もしくはプラス方向の迎角を失速角を越える角度まで大きくすると、失速に入らせるとともに、主翼20の抗力の増加による飛行速度の低下も期待できる。
【0052】
例えば、主翼の迎角が-10度で失速となる翼型を用いている場合には、(巡航モード時の主翼の迎角は+5度、墜落モード時は0度、)緊急墜落モードにおいては-20度程度とすることで、緊急墜落モードでの迅速な失速及び墜落、落下が可能である。
【0053】
<第3の実施の形態の詳細>
本発明による第3の実施の形態の詳細において、第1の実施の形態と重複する構成要素は同様の動作を行うので、再度の説明は省略する。
【0054】
図19及び
図20に示されるように、第3の実施の形態による飛行体100が備える主翼20は、揚力低減用の機構として動翼25を備えており、動翼25が動くことにより、主翼20が生む揚力を低減させることが可能である。
【0055】
一般に、動翼を備える固定翼を用いて飛行する垂直着陸機体(例えば、ハリアー、F-35Bなど)は、着陸モード時、より大きな揚力を得る目的で、フラップ(高揚力装置)等を巡航モード時よりも下方に展開する。しかし、本発明による飛行体100は、着陸モード時に得る揚力を減少させることによって安定した着陸をし得る構成であるため、動翼25を巡航モード時よりも上方に展開することで、主翼20の生む揚力の低減効果を得る。
【0056】
動翼25の展開により揚力を変化させる際は、副次的に抗力も増加する。しかし、抗力の増加は、向かい風によって飛行体100が流され、着陸の正確性を低下させる原因となるため、抗力の増加は少ない構成であることが好ましい。したがって、揚力の低下と抗力の増加のバランスを考慮して設計する必要がある。
【0057】
抗力の増加を抑えつつ主翼の生む揚力を低下させる方法として、
図21-
図23に示されるように、主翼20に可変後退翼や可変前進翼の機構を用いて変形させたり、
図24に示されるように、主翼20内にファン26のような上方へ後流を生む機構を設け、着陸モード時にファン26を回転させたりする方法がある。
【0058】
上記、各実施の形態における飛行体の構成は、複数を組み合わせて実施することが可能である。飛行体の製造におけるコストや、飛行体が運用される場所の環境や特性に合わせて、適宜構成を検討することが望ましい。
【0059】
上述した実施の形態は、本発明の理解を容易にするための例示に過ぎず、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができると共に、本発明にはその均等物が含まれることは言うまでもない。
【符号の説明】
【0060】
10a~10d プロペラ
11a~11d モータ
20 主翼
21 主翼の迎角
22 主翼の回動軸
23 支持部材
24 ばね
25 動翼
26 ファン
30 着陸脚
50 搭載物
60 本体部
100 飛行体
110 着陸面
【手続補正書】
【提出日】2021-08-06
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
複数の回転翼と、主翼と、を備える飛行体であって、
前記主翼は、機体に対して前傾して固定されており、
着陸時に、前記回転翼は、当該回転翼の回転軸を上方に向けて駆動され、前記主翼は、水平に対して前傾した状態に維持される、
ことを特徴とする飛行体。
【請求項2】
前記回転翼は、着陸時に巡行時よりも前記主翼が前傾するように回転軸の角度が制御される、
ことを特徴とする請求項1に記載の飛行体。
【請求項3】
前記回転翼は、巡行時に推進力及び揚力を発生する角度で接続されるものを少なくとも含む、
ことを特徴とする請求項1または2のいずれかに記載の飛行体。
【請求項4】
前記回転翼は、巡行時に回転軸が水平となるように接続されるものを少なくとも含む、
ことを特徴とする請求項1または2のいずれかに記載の飛行体。
【請求項5】
前記主翼は、着陸時に前記主翼の上方に展開する動翼をさらに備える、
ことを特徴とする請求項1ないし4のいずれかに記載の飛行体。
【請求項6】
着陸時に上方へ後流を生むファンをさらに備える、
ことを特徴とする請求項1ないし5のいずれかに記載の飛行体。
【請求項7】
複数の回転翼と、主翼と、備える飛行体の着陸方法であって、
前記主翼は、機体に対して前傾して固定されており、
着陸時に、前記回転翼は、当該回転翼の回転軸を上方に向けて駆動され、前記主翼は、水平に対して前傾した状態に維持される、
ことを特徴とする飛行体の着陸方法。