IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ミツバの特許一覧

<>
  • 特開-回転電機 図1
  • 特開-回転電機 図2
  • 特開-回転電機 図3
  • 特開-回転電機 図4
  • 特開-回転電機 図5
  • 特開-回転電機 図6
  • 特開-回転電機 図7
  • 特開-回転電機 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022052071
(43)【公開日】2022-04-04
(54)【発明の名称】回転電機
(51)【国際特許分類】
   H02K 11/215 20160101AFI20220328BHJP
   H02K 3/46 20060101ALI20220328BHJP
【FI】
H02K11/215
H02K3/46 B
【審査請求】未請求
【請求項の数】3
【出願形態】OL
(21)【出願番号】P 2020158236
(22)【出願日】2020-09-23
(71)【出願人】
【識別番号】000144027
【氏名又は名称】株式会社ミツバ
(74)【代理人】
【識別番号】110002066
【氏名又は名称】特許業務法人筒井国際特許事務所
(72)【発明者】
【氏名】松井 孝典
【テーマコード(参考)】
5H604
5H611
【Fターム(参考)】
5H604AA05
5H604BB01
5H604BB10
5H604BB15
5H604CC01
5H604CC05
5H604CC14
5H604PB03
5H604QA08
5H611AA01
5H611BB01
5H611BB07
5H611PP05
5H611QQ03
5H611RR02
5H611TT01
5H611UA02
(57)【要約】
【課題】センサユニットのステータからの脱落を防止して、組み立て作業の効率向上を図る。
【解決手段】センサユニット40は、複数のティース21bのうちの隣り合うティース21bの先端部21cの間に設けられるセンサ収容部47を備え、インシュレータ22には、ステータ20の周方向に窪んだ係合凹部25が設けられ、センサ収容部47には、係合凹部25に係合される係合凸部47cが設けられている。これにより、係合凹部25と係合凸部47cとの係合により、センサ収容部47がステータ20に対してその軸方向に移動することが阻止され、第1固定部を本体部に対して固定する前に、センサユニット40がステータ20から脱落することを防止できる。よって、係合凹部25および係合凸部47cが抜け止め機構として作用し、ひいては組み立て作業性の効率向上を図ることが可能となる。
【選択図】図8
【特許請求の範囲】
【請求項1】
ステータと、
前記ステータに対して回転し、回転方向にN極およびS極が交互に現れるように並べられた複数のマグネットを有するロータと、
前記ステータに装着され、前記ロータの回転状態を検出するセンサユニットと、
を備えた回転電機であって、
前記ステータは、
環状の本体部と、
前記本体部の径方向外側に放射状に突出された複数のティースと、
前記ティースに装着されたインシュレータと、
前記インシュレータを介して前記ティースに巻装されたコイルと、
を有し、
前記センサユニットは、
前記本体部に固定される固定部と、
センサ素子が電気的に接続されたセンサ基板と、
前記複数のティースのうちの隣り合うティースの先端部の間に設けられ、前記センサ基板を収容するセンサ収容部と、
を備え、
前記インシュレータには、前記ステータの周方向に突出または窪んだ第1係合部が設けられ、
前記センサ収容部には、前記第1係合部に係合される第2係合部が設けられていることを特徴とする、
回転電機。
【請求項2】
請求項1に記載の回転電機において、
前記インシュレータは、
前記ステータの軸方向における前記ティースの一方側を覆う第1被覆部と、
前記ステータの軸方向における前記ティースの他方側を覆う第2被覆部と、
を有し、
前記ステータの軸方向における前記第1被覆部と前記第2被覆部との間に、前記ステータの周方向に窪んだ前記第1係合部が設けられていることを特徴とする、
回転電機。
【請求項3】
前記第1係合部は、隣り合う前記ティースに装着された前記インシュレータのそれぞれに設けられ、
前記第2係合部は、前記ステータの周方向における前記センサ収容部の両側にそれぞれ設けられていることを特徴とする、
請求項1または請求項2に記載の回転電機。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ステータと、ステータに対して回転するロータと、ロータの回転状態を検出するセンサユニットと、を備えた回転電機に関する。
【背景技術】
【0002】
従来、自動二輪車等のエンジンの始動には、スタータまたはACGスタータが用いられている。「ACG」とは、「Alternating Current Generator」の略であり、ACGスタータは、エンジンの始動時にはクランクシャフトを回転させるスタータモータとして作動し、エンジンの始動後には車載バッテリを充電する発電機として作動する。また、ACGスタータは、クランクの位置を検出して、車載コントローラに最適なプラグの点火や燃料の噴射をさせるようにしている。
【0003】
例えば、特許文献1には、エンジンの始動に用いられる回転電機が記載されている。特許文献1に記載の回転電機は、ロータと、ステータと、センサユニットとを備えている。センサユニットには、ステータの軸方向に延びる複数のカバーが設けられ、これらのカバーの内部には、ロータの回転状態を検出するセンサがそれぞれ収容されている。
【0004】
そして、それぞれのカバーは、隣り合うティースの間の隙間部分に、ステータの軸方向から差し込んで固定されている。具体的には、ティースの先端部に、ステータの周方向に突出した突出部が設けられ、当該突出部をステータの径方向から挟むようにしてカバーが装着されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】国際公開第2016/181659号
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、上述の特許文献1に記載された回転電機では、センサユニットをステータに装着する際に、ステータの軸方向一側からセンサユニットを装着し、その状態でステータの軸方向他側から固定ボルトをねじ込む必要があるが、センサユニットおよびステータには、センサユニットのステータからの脱落(落下)を防止する抜け止め機構が無かった。
【0007】
したがって、固定ボルトをねじ込むためにステータをひっくり返した際に、センサユニットがステータから脱落する虞があり、ひいてはカバーの内部に収容されたセンサと電気回路部品との電気的な接続が遮断(断線等)される等、これが組み立て作業の効率低下を招いていた。
【0008】
本発明の目的は、センサユニットのステータからの脱落を防止することができ、組み立て作業の効率向上を図ることが可能な回転電機を提供することにある。
【課題を解決するための手段】
【0009】
本発明の回転電機では、ステータと、前記ステータに対して回転し、回転方向にN極およびS極が交互に現れるように並べられた複数のマグネットを有するロータと、前記ステータに装着され、前記ロータの回転状態を検出するセンサユニットと、を備えた回転電機であって、前記ステータは、環状の本体部と、前記本体部の径方向外側に放射状に突出された複数のティースと、前記ティースに装着されたインシュレータと、前記インシュレータを介して前記ティースに巻装されたコイルと、を有し、前記センサユニットは、前記本体部に固定される固定部と、センサ素子が電気的に接続されたセンサ基板と、前記複数のティースのうちの隣り合うティースの先端部の間に設けられ、前記センサ基板を収容するセンサ収容部と、を備え、前記インシュレータには、前記ステータの周方向に突出または窪んだ第1係合部が設けられ、前記センサ収容部には、前記第1係合部に係合される第2係合部が設けられていることを特徴とする。
【発明の効果】
【0010】
本発明の回転電機によれば、センサユニットは、複数のティースのうちの隣り合うティースの先端部の間に設けられるセンサ収容部を備え、インシュレータには、ステータの周方向に突出または窪んだ第1係合部が設けられ、センサ収容部には、第1係合部に係合される第2係合部が設けられている。
【0011】
これにより、第1係合部と第2係合部との係合により、センサ収容部がステータに対してその軸方向に移動することが阻止され、固定部を本体部に対して固定する前に、センサユニットがステータから脱落することが防止され、ひいてはセンサ素子の損傷やはんだクラックの発生等を防止できる。よって、第1係合部および第2係合部が抜け止め機構として作用し、ひいては組み立て作業性の効率向上を図ることが可能となる。
【図面の簡単な説明】
【0012】
図1】本発明に係る回転電機を示す斜視図である。
図2】スロット数および極数を説明する説明図である。
図3図1の回転電機を側方から見た部分断面図である。
図4】センサ素子とマグネットとの配置関係を説明する説明図である。
図5】センサユニットのハウジングを単体で示す斜視図である。
図6】ステータの一部を拡大して示す斜視図である。
図7】センサユニットのステータへの装着手順を説明する斜視図である。
図8】抜け止め機構の詳細を説明する部分拡大断面図である。
【発明を実施するための形態】
【0013】
以下、本発明の一実施の形態について、図面を用いて詳細に説明する。
【0014】
図1は本発明に係る回転電機を示す斜視図を、図2はスロット数および極数を説明する説明図を、図3図1の回転電機を側方から見た部分断面図を、図4はセンサ素子とマグネットとの配置関係を説明する説明図を、図5はセンサユニットのハウジングを単体で示す斜視図を、図6はステータの一部を拡大して示す斜視図を、図7はセンサユニットのステータへの装着手順を説明する斜視図を、図8は抜け止め機構の詳細を説明する部分拡大断面図をそれぞれ示している。
【0015】
図1ないし図3に示される回転電機10は、所謂ACGスタータであって、自動二輪車等(図示せず)のスタータおよび発電機に用いられるものである。具体的には、回転電機10は、アウターローター型のブラシレスモータと同じ構造を採用している。そして、エンジン(図示せず)を始動する際には、車載バッテリ(図示せず)からの駆動電流の供給によりスタータモータとして作動し、エンジンの始動後には、エンジンの駆動力により発電機として作動する。
【0016】
回転電機10は、その全体が扁平の略円盤形状に形成されており、エンジンを形成するクランクシャフト(図示せず)の軸方向端部に配置されている。具体的には、回転電機10は、クランクケース(図示せず)の内部に設けられた取付ステーST(図3の二点鎖線参照)に固定されるステータ20と、クランクシャフトに固定されてステータ20に対して回転するロータ30と、を備えている。また、ステータ20には、ロータ30の回転状態を検出するセンサユニット40が装着されている。
【0017】
これにより、スタータとしての作動時には、回転電機10に所定のタイミングで駆動電流が供給されて、ロータ30の回転に伴ってクランクシャフトが連れ回される。これとは逆に、発電機としての作動時には、所定の点火タイミングおよび燃料噴射タイミングでエンジンが駆動されて、クランクシャフトの回転に伴ってロータ30が連れ回される。
【0018】
ステータ20は、複数の鋼板(磁性体)を積層してなるステータコア21を備えている。ステータコア21は、環状に形成された本体部21aと、本体部21aの径方向外側に放射状に突出された複数のティース21bと、を備えている。具体的には、ティース21bは合計18個設けられ、ティース21bの基端部が本体部21aに一体に連結されている。言い換えれば、ステータコア21には、合計18個のスロットSL(図2参照)が設けられている。
【0019】
スロットSLには、U相に対応したU相コイルCuと、V相に対応したV相コイルCvと、W相に対応したW相コイルCwとが、それぞれステータコア21の周方向に順番に配置されている。具体的には、各コイルCu,Cv,Cwは、ロータ30の回転方向に対して、U相コイルCu,V相コイルCv,W相コイルCw,U相コイルCu,V相コイルCv…のように、一相ずつ交互に現れるようにそれぞれティース21bに集中巻で巻装されている(図2参照)。そのため、ステータ20の周方向におけるティース21bの本体部分(コイルが巻装される部分)の厚み寸法は、比較的薄肉となっている。
【0020】
ティース21bの先端部21c(図2参照)には、ステータ20(本体部21a)の周方向両側にそれぞれ突出された突出部21dが一体に設けられている。そして、ステータ20の周方向における突出部21dの厚み寸法(長さ寸法)は、ティース21bの本体部分の厚み寸法よりも肉厚となっている。これにより、突出部21dの部分において、隣り合うティース21bの間隔を狭くすることができる。その結果、ロータ30は、脈動(コギング)が抑えられた状態で、スムーズに回転可能となる。
【0021】
合計18個のティース21bには、特に、図6図7および図8に示されるように、プラスチック等の絶縁体よりなるインシュレータ22がそれぞれ装着されている。インシュレータ22は、ステータ20の軸方向におけるティース21bの一方側(図中上側)を覆う第1被覆部23と、ステータ20の軸方向におけるティース21bの他方側(図中下側)を覆う第2被覆部24と、を有している。具体的には、第1被覆部23および第2被覆部24は、ティース21bの周囲,本体部21aの外周部分および突出部21dの裏面(本体部21a側の面)を覆う薄肉部23a,24aをそれぞれ備えている。
【0022】
また、ステータ20の軸方向における第1被覆部23と第2被覆部24との間で、かつ突出部21dの裏面側の部分には、ステータ20の周方向に窪むようにして、係合凹部(第1係合部)25が設けられている。具体的には、図8に示されるように、係合凹部25は、ステータ20の周方向、つまり図中左右方向に窪んで設けられている。そして、係合凹部25は、ステータ20の周方向両側に突出されたそれぞれの突出部21dの部分に対応して設けられている。すなわち、係合凹部25は、隣り合うティース21bに装着されたそれぞれのインシュレータ22に設けられている。
【0023】
なお、図6および図7に示されるように、突出部21dの先端部分の一部およびティース21bのマグネットMG(図2参照)との対向面(先端部21cの本体部21a側とは反対側の面)の部分は、インシュレータ22で覆われていない。
【0024】
係合凹部25は、第1被覆部23および第2被覆部24とともに、インシュレータ22を構成している。そして、図8に示されるように、ステータ20の軸方向における係合凹部25の幅寸法W(約2.5mm)は、当該係合凹部25に入り込んで係合される後述の係合凸部47cの幅寸法T(約1.5mm)よりも大きくなっている(W>T)。
【0025】
これにより、係合凸部47cは係合凹部25に容易に係合され、ひいてはセンサユニット40のステータ20への組み立て作業性が向上する。なお、係合凹部25の幅寸法Wを係合凸部47cの幅寸法Tよりも大きくすることで、センサユニット40がステータ20に対してガタつくことになるが、係合凹部25および係合凸部47cは、センサユニット40をステータ20に仮固定した状態で「抜け止め機構」として機能するものである。よって、センサユニット40をステータ20に本固定した後は、センサユニット40はステータ20に対してガタつくことは無い。
【0026】
また、ステータ20の周方向における係合凹部25の深さ寸法D(約1.2mm)は、当該係合凹部25に入り込んで係合される係合凸部47cの高さ寸法H(約0.6mm)よりも大きくなっている(D>H)。これにより、ステータ20の周方向において、係合凸部47cおよびティース21bは互いに接触することが無い。よって、センサユニット40を、ステータ20の軸方向に対する規定位置に容易に位置決め可能となっている。
【0027】
このように、インシュレータ22は、ティース21bと各コイルCu,Cv,Cwとの間を絶縁している。すなわち、各コイルCu,Cv,Cwは、インシュレータ22を介してそれぞれのティース21bに巻装されている。ここで、図1では、各コイルCu,Cv,Cwの巻装状態を分かり易くするために、各コイルCu,Cv,Cwにそれぞれ網掛けを施している。
【0028】
図1ないし図3に示されるように、ロータ30はロータ本体31を備えている。ロータ本体31は、比較的厚みのある鋼板(磁性材料)をプレス加工等することで略お椀形状に形成され、略円盤状に形成された底壁部31aと、当該底壁部31aの外周部分から垂直に立ち上がった筒状の側壁部31bと、を備えている。
【0029】
また、底壁部31aの回転中心には、クランクシャフトの軸方向端部が固定される筒状のボス部32が固定されている。これにより、ロータ本体31の回転に伴ってクランクシャフトが回転される。ここで、ボス部32の肉厚は、ロータ本体31の肉厚よりも厚くなっており、ボス部32の重量は、比較的大きくなっている。これにより、回転電機10とクランクシャフトとの固定強度が十分に確保され、かつ高速回転時等における回転ムラの発生が抑えられて、クランクシャフトおよび回転電機10の双方に掛かる負荷が低減される。
【0030】
筒状に形成された側壁部31bの径方向内側、つまり側壁部31bのステータコア21側には、合計12個のマグネットMGが装着されている。これらのマグネットMGはフェライト磁石を採用している。なお、ネオジウム磁石等の他の磁石を使用することもできる。マグネットMGは、図2の網掛け部分に示されるように、筒状の側壁部31b(図1参照)の形状に倣って略円弧形状に形成されている。なお、これらのマグネットMGは、側壁部31bに対して、接着剤等(図示せず)により強固に固定されている。
【0031】
また、合計12個のマグネットMGは、略筒状に形成されたマグネットホルダHDにより、ロータ本体31の径方向内側から側壁部31bに向けて押さえ付けられている。よって、それぞれのマグネットMGが、側壁部31bから脱落することが防止される。なお、マグネットホルダHDは、可撓性を有する薄いステンレス鋼板やSP材(冷間圧延鋼板)等によって形成され、それぞれのマグネットMGを側壁部31bの周方向に対して等間隔で位置決めする機能も備えている。これにより、各マグネットMGの側壁部31bに対する固定作業を容易にして、回転電機10の組み立て作業性を向上させている。
【0032】
ここで、図4に示されるように、合計12個のマグネットMGのうちの11個は、ステータコア21(各センサSu,Sv,Sw,Sr)と対向する対向部SFに1つの磁極のみを有する標準マグネット33となっている。これに対し、合計12個のマグネットMGのうちのその他の1個は、ステータコア21(各センサSu,Sv,Sw,Sr)と対向する対向部SFに2つの磁極を有する2段マグネット34となっている。
【0033】
そして、これらの複数のマグネットMG(11個の標準マグネット33および1個の2段マグネット34)は、ロータ30の回転方向にN極およびS極が交互に現れるように並べられている。
【0034】
図1および図3に示されるように、ステータコア21の軸方向一側、つまりステータコア21の軸方向における底壁部31a側とは反対側には、センサユニット40が設けられている。センサユニット40は、ステータ20の周方向における一部分を覆うようにして設けられている。
【0035】
センサユニット40は、プラスチック等の絶縁体により略T字形状に形成されたハウジング41を備えている。ハウジング41は、図1および図5に示されるように、第1固定部42,第2固定部43,橋渡し部44およびセンサホルダ部45を備えている。
【0036】
第1固定部42は、本発明における固定部を構成しており、略扇形状に形成されている。そして、第1固定部42は、ステータコア21の本体部21aに対して、固定ボルトBT(図1参照)により強固に固定されている。なお、固定ボルトBTは、ステータ20の軸方向他側(底壁部31a側)から、締結治具(図示せず)によりねじ込まれるようになっている。このように、センサユニット40は、ステータコア21、つまり回転電機10の非回転部分に固定される。
【0037】
第2固定部43は、略環状に形成されており、側壁部31bよりも径方向外側に突出して設けられている(図1参照)。そして、第2固定部43は、クランクケースの内部に設けられた取付ステーST(図3の二点鎖線参照)に対して、固定ボルト(図示せず)により強固に固定される。
【0038】
このように、センサユニット40の橋渡し部44およびセンサホルダ部45を挟む両側の部分が、非回転部分であるクランクケースの内部の取付ステーSTに固定される。すなわち、本実施の形態に係るセンサユニット40は、従前のような所謂「片持ち状態」で支持されず、所謂「両持ち状態」で支持される。
【0039】
図5に示されるように、第1固定部42と第2固定部43との間に、橋渡し部44およびセンサホルダ部45が配置されている。橋渡し部44は、ステータコア21の径方向内側、つまり第1固定部42寄りの部分に設けられ、センサホルダ部45は、ステータコア21の径方向外側、つまり第2固定部43寄りの部分に設けられている。
【0040】
橋渡し部44は、略板状に形成されており、ステータ20を形成する各コイルCu,Cv,Cwの部分を覆うようにして設けられている。そして、橋渡し部44は、センサホルダ部45の内側(第1固定部42側)を支持している。ここで、橋渡し部44は、各コイルCu,Cv,Cwに対して非接触の状態となっており、各コイルCu,Cv,Cwの表面の絶縁被膜(図示せず)を傷付けたりすることは無い。
【0041】
センサホルダ部45は、ステータコア21の径方向外側の部分に設けられ、センサホルダ部45の外側(第2固定部43側)は、第2固定部43によって支持されている。すなわち、センサホルダ部45の径方向内側および径方向外側は、第1固定部42および第2固定部43の双方に支持されている。したがって、センサホルダ部45は、振動等によりステータ20に対してガタつくことが抑えられている。
【0042】
センサホルダ部45は、略円弧形状に形成されたホルダ本体46と、当該ホルダ本体46からステータ20の軸方向に延びた3つのセンサ収容部47と、を備えている。すなわち、第2固定部43は、ホルダ本体46を介して3つのセンサ収容部47に一体に設けられており、これにより3つのセンサ収容部47のステータ20に対するガタつきが効果的に抑えられる。具体的には、3つのセンサ収容部47は、ホルダ本体46からロータ本体31の底壁部31aに向けて延在されている(図3参照)。
【0043】
3つのセンサ収容部47は、何れも同様の形状に形成されており、図3および図5に示されるように、ステータ20の軸方向に延びる中空の棒状となっている。センサ収容部47の基端部は、ホルダ本体46に一体に連結されており、センサ収容部47は、その基端部から先端部に亘って略同じ横断面形状に形成されている。そして、センサ収容部47の内部には、センサ素子としての各センサSu,Sv,Sw,Srが実装されたセンサ基板SBが収容されている。
【0044】
なお、各センサSu,Sv,Sw,Srが実装されたセンサ基板SBは、硬化されたモールド樹脂MR(図1参照)により、センサ収容部47の内部の規定位置に精度良く位置決めされている。また、センサ基板SBに実装された各センサSu,Sv,Sw,Sr側が、ロータ30のマグネットMGと対向している。
【0045】
ホルダ本体46の長手方向におけるセンサ収容部47の両側には、第1当接部47aおよび第2当接部47bが、それぞれ一体に設けられている。これらの第1,第2当接部47a,47bは、センサ収容部47の両側からそれぞれ所定の高さで突出されており、ホルダ本体46の短手方向における第1当接部47aと第2当接部47bとの間の窪み部分に、ティース21bの突出部21dにおける先端部分が入り込むようになっている。なお、第1当接部47aおよび第2当接部47bは、何れもセンサ収容部47の長手方向全域に亘って設けられている。
【0046】
ここで、センサ収容部47の第1当接部47aにおいては、ステータ20の径方向内側から、ティース21bの突出部21dに対してインシュレータ22を介して当接されている。これに対し、センサ収容部47の第2当接部47bにおいては、ステータ20の径方向外側から、ティース21bの突出部21dに対して直に当接されている。より具体的には、第1当接部47aはインシュレータ22に対して略線接触され、第2当接部47bは突出部21dに対して略線接触されている。
【0047】
これにより、ステータ20に装着されたセンサユニット40の特に3つのセンサ収容部47の部分が、ステータ20に対してその径方向にそれぞれガタつくことが防止される。
【0048】
また、突出部21dと第1当接部47aとの間にインシュレータ22を介在させ、かつ両者を略線接触させている。したがって、隣り合うティース21bの先端部21cの間に、センサ収容部47を装着する際の装着荷重を小さくすることができる。よって、センサユニット40のステータ20への装着作業を容易にすることができる。このとき、特に第1当接部47aはインシュレータ22に摺接されるので、第1当接部47aのすり減り等が効果的に抑えられる。
【0049】
図5に示されるように、3つのセンサ収容部47には、それぞれ一対の係合凸部47cが一体に設けられている(図示では片方のみ示す)。これらの係合凸部47cは、略三角形形状に形成され、本発明における第2係合部を構成している。そして、係合凸部47cは、ステータ20に設けられた係合凹部25に入り込んで係合するようになっている。係合凸部47cは、ホルダ本体46の長手方向(ステータ20の周方向)におけるセンサ収容部47の両側に配置され、かつ第1当接部47aに一体に設けられている。また、係合凸部47cは、センサ収容部47の長手方向中央部よりも先端部寄りに配置されている。
【0050】
ここで、センサ収容部47は、ステータ20の軸方向から、隣り合うティース21bの突出部21dの間に差し込まれる(図7参照)。このとき、図8に示されるように、係合凸部47cの高さ寸法Hは約0.6mmに設定され、係合凸部47cは、インシュレータ22を形成する第1被覆部23の薄肉部23aに摺接しつつ、当該薄肉部23aを若干弾性変形させるようになっている。なお、センサ収容部47の両側と薄肉部23aとの間には、それぞれ微小隙間δS(0.2mm程度)が形成されており、これらの微小隙間δSを加えても、係合凸部47cの高さ寸法H(約0.6mm)を超えることは無い。
【0051】
図3に示されるように、ホルダ本体46に設けられた3つのセンサ収容部47にそれぞれ収容されたセンサ基板SBには、それぞれU相用センサSu,V相用センサSv,W相用センサSwが実装されている。また、W相に対応したセンサ基板SB(図3の最も左側)には、点火タイミングおよび燃料噴射タイミングを検出(クランクの位置を検出)するための回転センサSrも実装されている。つまり、これらの4つのセンサSu,Sv,Sw,Srは、それぞれセンサ基板SBに電気的に接続されている。
【0052】
ここで、U相用,V相用,W相用センサSu,Sv,Swの3つは、センサ収容部47の先端側の部分で、かつステータ20の軸方向における係合凹部25の部分に設けられ、かつロータ30の回転方向に並んで配置されている。すなわち、3つのセンサSu,Sv,Swおよび係合凹部25は、それぞれ基準線LE上に設けられている。また、回転センサSrは、センサ収容部47の基端側の部分に配置されている。
【0053】
これらの4つのセンサSu,Sv,Sw,Srは、それぞれ同じ構成のホール素子(センサ素子)となっている。具体的には、磁極(N極/S極)によりオン/オフが切り替わる交番検知型(バイポーラ)のホール素子を採用している。例えば、N極を検出すると「オン信号(1)」を発生し、S極を検出すると「オフ信号(0)」を発生する。
【0054】
これにより、合計12個のマグネットMG(図4参照)を有するロータ30の回転に伴って、各センサSu,Sv,Sw,Srは、それぞれ矩形波信号(図示せず)を出力する。よって、車載コントローラ(図示せず)は、これらの矩形波信号の入力に基づいて、ロータ30の回転状態を把握して、各コイルCu,Cv,Cwに対して最適なタイミングで駆動電流を供給することができる。また、車載コントローラは、点火タイミングおよび燃料噴射タイミングを把握して、イグナイターや燃料ポンプ(図示せず)を制御することができる。
【0055】
図3に示されるように、U相用センサSu,V相用センサSv,W相用センサSw,回転センサSrは、それぞれセンサ基板SBを介して、隣り合うティース21bの先端部21cの間(スロットSLの部分)に入り込んでいる。ここで、ステータコア21の軸方向におけるW相用センサSwと回転センサSrとの離間寸法Lは、約5.0mmに設定されている。
【0056】
このように、各センサSu,Sv,Sw,Srは、何れもステータコア21に対して固定され、そのうちの1つの回転センサSrのみが、駆動用の各センサSu,Sv,Swに対して、ロータ30の軸方向にずれて配置されている。ここで、各センサSu,Sv,Sw,Srは、何れも合計12個のマグネットMG(図4参照)に対して、回転電機10の径方向内側から対向するようになっている。これにより、各センサSu,Sv,Sw,Srは、ロータ30の回転に伴う磁極(N極/S極)の変化により、矩形波信号をそれぞれ出力する。
【0057】
図4に示されるように、各センサSu,Sv,Sw,Srは、合計12個のマグネットMGに対して相対移動(相対回転)して、それぞれのマグネットMGのエッジ部分PN,PSに差し掛かったときに、それぞれの磁極を検出する。例えば、各センサSu,Sv,Sw,Srは、N極のエッジ部分PNに差し掛かると「オン信号(1)」を発生し、S極のエッジ部分PSに差し掛かると「オフ信号(0)」を発生する。
【0058】
そして、3つのU相用センサSu,V相用センサSv,W相用センサSwは、それぞれ2段マグネット34の第1対向部34a(S極)と対向するようになっており、1つの回転センサSrは、2段マグネット34の第2対向部34b(N極)と対向するようになっている。
【0059】
合計12個のマグネットMGと、各センサSu,Sv,Sw,Srとの位置関係は、図4に示される位置関係となる。図4は、ロータ本体31の筒状の側壁部31b(図3参照)を平面状に展開した模式図となっている。
【0060】
各マグネットMGの幅寸法Wは約30mmに設定され、各マグネットMGの高さ寸法Hは約25mmに設定されている。また、ロータ30の回転方向における各マグネットMGの間隔寸法Gは約2mmに設定されている。そして、各マグネットMGのエッジ部分PN,PSのピッチP1は30度に設定されている。このピッチP1(30度)は、ロータ30の回転方向における各マグネットMGの配置間隔と一致しており、「360度÷12極」に基づいて得られる。
【0061】
これに対し、駆動用の各センサSu,Sv,SwのピッチP2は20度に設定されている。このピッチP2(20度)は、ロータ30の回転方向における各スロットSL(図2参照)の配置間隔と一致しており、「360度÷18スロット」に基づいて得られる。このように、本実施の形態における回転電機10は、[12極18スロット]のブラシレスモータを形成している。これにより、コギングトルクの発生が抑えられた滑らかな回転駆動が可能となっている。
【0062】
図4に示されるように、標準マグネット33および2段マグネット34において、薄い網掛け部分がS極となっており、濃い網掛け部分がN極となっている。そして、標準マグネット33の対向部SFは1極に着磁され、2段マグネット34の対向部SFは2極に着磁されている。
【0063】
具体的には、2段マグネット34の対向部SFには、大きな表面積を占める第1対向部34aと、第1対向部34aの表面積よりも小さな表面積の第2対向部34bと、が設けられている。そして、第1対向部34aがS極に着磁され、第2対向部34bがN極に着磁されており、第1対向部34aの磁極および第2対向部34bの磁極が互いに異なっている。
【0064】
2段マグネット34の第2対向部34bは、第1対向部34aに比して大分小さくなっている。言い換えれば、第2対向部34bは、ロータ30の回転方向に帯状に延在されている。そして、第1対向部34a(大)と第2対向部34b(小)との間には、磁極の境界を示す境界部BLが設けられている。ここで、2段マグネット34の対向部SF上に設けられる境界部BLは、S極に着磁された第1対向部34aとN極に着磁された第2対向部34bとの境界線となっている。
【0065】
さらに、図3および図4に示されるように、境界部BLの近傍には、仮想線(二点鎖線)で示されるように、検出境界線LNが形成されている。検出境界線LNは、W相用センサSwと回転センサSrとの間の丁度真ん中に配置され、当該検出境界線LNの第1対向部34a側(図中下側)が、駆動用の各センサSu,Sv,Swが磁極の変化を検出し得る第1検出領域AR1となっている。これに対し、検出境界線LNの第2対向部34b側(図中上側)が、回転センサSrが磁極の変化を検出し得る第2検出領域AR2となっている。なお、検出境界線LNは、境界部BLよりも第1対向部34a側に若干オフセットされている(ずれている)。
【0066】
ここで、駆動用の各センサSu,Sv,Swの検出精度および回転センサSrの検出精度をそれぞれ向上させるためにも、ロータ30の軸方向に対する検出境界線LNの位置と境界部BLの位置とを、完全に一致させることが望ましい。このようにすることで、他方の磁極に影響を受けること無く、それぞれの磁極を精度良く検出することが可能となる。しかしながら実際には、構成部品の寸法精度がばらついたり、ステータ20に対するロータ30の軸ずれが生じたりするため、検出境界線LNの位置と境界部BLの位置とを完全に一致させることは困難である。
【0067】
そこで、駆動用の各センサSu,Sv,Swが、より高精度に磁極の変化を検出可能となるように、設計上において、検出境界線LNを中心として、第2対向部34b側に第1対向部34aのS極を少しだけはみ出させている。これにより、駆動用の各センサSu,Sv,Swの検出精度が十分に確保され、回転電機10をスタータモータとして確実に駆動させることが可能となっている。
【0068】
ここで、図4に示されるように、駆動用の各センサSu,Sv,SwのピッチP2は20度となっている。そのため、駆動用の各センサSu,Sv,Swは、1つのマグネットMGに対して同時に対向することが無い。そして、駆動用の各センサSu,Sv,Swが、それぞれ異なるタイミングで矩形波信号を出力することで、車載コントローラはロータ30の回転状態(回転方向や回転速度等)を把握するようになっている。
【0069】
ここで、回転センサSrは、ロータ30が1回転する間に、2段マグネット34の部分において3回連続でN極と対向することになる。つまり、駆動用の各センサSu,Sv,Swが出力する矩形波信号の長さを「1」としたときに、駆動用の各センサSu,Sv,Swは、常に長さが「1」の矩形波信号を出力する。これに対し、回転センサSrは、3回連続してN極と対向すると、長さが「3」の矩形波信号を出力する。したがって、車載コントローラは、回転センサSrからの長い矩形波信号の入力に基づいて、ロータ30が1回転したことを把握することができる。
【0070】
このようにして、本実施の形態に係る回転電機10では、スタータモータとして効率良く回転駆動させることができ、かつ点火タイミングや燃料噴射タイミングを確実に検出することが可能となっている。
【0071】
なお、図4に示されるように、回転センサSrは、ロータ30の軸方向に対して、N極に着磁された第2対向部34bから第1対向部34a側とは反対側に少しだけはみ出た位置に配置されている。これにより、回転センサSrは、検出境界線LNを中心として第2対向部34b側に少しだけはみ出た第1対向部34aのS極の影響を受け難くなっている。よって、回転センサSrの検出精度の低下も効果的に抑えられている。
【0072】
次に、以上のように形成された回転電機10の組み立て手順、特に、センサユニット40のステータ20への装着手順について、図面を用いて詳細に説明する。なお、図7におけるセンサユニット40では、モールド樹脂MR(図1参照)の図示を省略している。
【0073】
まず、図7に示されるように、別の製造工程を経てそれぞれ組み立てられたステータ20およびセンサユニット40を準備する。次いで、センサユニット40に設けられた3つのセンサ収容部47を、ステータ20に対してその軸方向一側(図中上側)から臨ませる。このとき、それぞれのセンサ収容部47の先端部を、隣り合うティース21bにおける先端部21cの間に向けるようにする。その後、矢印M1に示されるように、3つのセンサ収容部47を先端部21cの間にそれぞれ差し込む。
【0074】
これにより、ティース21bの突出部21dが、センサ収容部47の第1当接部47aと第2当接部47bとの間(図5参照)に挟まれるようにして配置される。このとき、第1当接部47aは、インシュレータ22を形成する第1被覆部23の薄肉部23aに摺接され、第2当接部47bは突出部21dに摺接される。そして、係合凸部47cは、薄肉部23aを若干弾性変形させる。
【0075】
ここで、センサ収容部47のステータ20への差し込み部分は、突出部21dの間隔寸法が他の部分(間隔寸法L1)よりも大きい部分である。具体的には、突出部21dの間隔寸法がL2(L2>L1)の部分に、センサ収容部47を差し込むようにする。なお、間隔寸法L2の大きさは、間隔寸法L1の大きさの略2倍となっており、さらには間隔寸法L2の部分がステータ20の周方向に3箇所連続して設けられている。したがって、センサ収容部47が差し込まれる間隔寸法L2の部分は、ステータ20の外観上、目立つようになっており、装着作業性が良好となっている。
【0076】
その後、図8に示されるように、センサ収容部47の係合凸部47cが、インシュレータ22の係合凹部25に入り込んで、係合凸部47cおよび係合凹部25が互いに係合される。これにより、3つのセンサ収容部47の先端部21cの間(突出部21dの間)への差し込み動作が終了する。
【0077】
次いで、差し込み動作を終えた状態、つまり、センサユニット40のステータ20に対する仮固定の状態において、図7の矢印M2に示されるように、固定ボルトBTを用いて、センサユニット40をステータ20に最終的に固定(本固定)する。このとき、固定ボルトBTの締結作業を容易にするために、ステータ20の上下をひっくり返すようにする。これにより、固定ボルトBTをステータ20の上方から目視しつつ、当該固定ボルトBTを容易に締結することが可能となる。そして、固定ボルトBTを締結する前、つまりセンサユニット40のステータ20に対して本固定する前に、ステータ20の上下をひっくり返したとしても、係合凸部47cが係合凹部25に入り込んで係合しているので、係合凸部47cおよび係合凹部25が互いに「抜け止め機構」として機能し、センサユニット40がステータ20から脱落(落下)するようなことが無い。
【0078】
これにより、図8および図1に示されるように、センサユニット40のステータ20への装着が完了する。
【0079】
以上詳述したように、本実施の形態に係る回転電機10によれば、センサユニット40は、複数のティース21bのうちの隣り合うティース21bの先端部21cの間に設けられるセンサ収容部47を備え、インシュレータ22には、ステータ20の周方向に窪んだ係合凹部25が設けられ、センサ収容部47には、係合凹部25に係合される係合凸部47cが設けられている。
【0080】
これにより、係合凹部25と係合凸部47cとの係合により、センサ収容部47がステータ20に対してその軸方向に移動することが阻止され、第1固定部42を本体部21aに対して固定する前に、センサユニット40がステータ20から脱落することを防止できる。また、各センサSu,Sv,Sw,Srの損傷やはんだクラックの発生等を防止できる。よって、係合凹部25および係合凸部47cが抜け止め機構として作用し、ひいては組み立て作業性の効率向上を図ることが可能となる。
【0081】
また、本実施の形態に係る回転電機10によれば、インシュレータ22は、ステータ20の軸方向におけるティース21bの一方側を覆う第1被覆部23と、ステータ20の軸方向におけるティース21bの他方側を覆う第2被覆部24と、を有し、ステータ20の軸方向における第1被覆部23と第2被覆部24との間に、ステータ20の周方向に窪んだ係合凹部25が設けられている。
【0082】
これにより、インシュレータ22を第1被覆部23および第2被覆部24からなる分割構造として、第1被覆部23および第2被覆部24の形状を簡素化しつつ、容易に係合凹部25を設けることが可能となる。
【0083】
さらに、本実施の形態に係る回転電機10によれば、係合凹部25は、隣り合うティース21bに装着されたインシュレータ22のそれぞれに設けられ、係合凸部47cは、ステータ20の周方向におけるセンサ収容部47の両側にそれぞれ設けられているので、センサユニット40のステータ20に対する仮固定の強度を向上させることができる。つまり、センサユニット40をステータ20から脱落し難くすることができ、ひいては組み立て作業性をより向上させることが可能となる。
【0084】
本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、上記実施の形態においては、係合凹部25を、隣り合うティース21bに装着されたインシュレータ22のそれぞれに設け、係合凸部47cを、ステータ20の周方向において、センサ収容部47の両側にそれぞれ設けたものを示したが、本発明はこれに限らず、1つのセンサ収容部47に対応させて、1つの係合凹部25および1つの係合凸部47cのみを設けるようにしても良い。また、ステータ20の軸方向における係合凹部25および係合凸部47cの長さ寸法は任意である。要するに、仮固定の状態において、センサユニット40がステータ20から脱落しないようにできるのであれば、個数や長さ寸法さらには形状の設定について規制が無い。
【0085】
また、上記実施の形態においては、インシュレータ22に、ステータ20の周方向に窪んだ係合凹部25を設けたものを示したが、本発明はこれに限らず、インシュレータに、ステータの周方向に突出された係合凸部(第1係合部)を設けるようにしても良い。つまり、上述の実施の形態に対して、第1係合部および第2係合部の凹凸関係を逆にすることもできる。
【0086】
さらに、上記実施の形態においては、インシュレータ22を、第1被覆部23と第2被覆部24とで構成し、両者間に係合凹部25を設けたものを示したが、本発明はこれに限らず、係合凸部47cが摺接する第1被覆部23の薄肉部23aに、係合凹部を設けるようにしても良い。
【0087】
また、上記実施の形態においては、各センサSu,Sv,Sw,Srを、センサ基板SB上に直に実装したものを示したが、本発明はこれに限らず、センサ素子がリード線を介してセンサ基板に電気的に接続されるものにも適用することができる。
【0088】
さらに、上記実施の形態においては、回転電機10を、「12極18スロット」のブラシレスモータ構造としたものを示したが、本発明はこれに限らず、他の極数および他のスロット数であっても構わない。
【0089】
また、上記実施の形態においては、回転電機10を、自動二輪車等のスタータおよび発電機に用いられるACGスタータとしたものを示したが、本発明はこれに限らず、例えば、耕運機などの農機具や小型船舶の船外機等のエンジンの始動に用いられるACGスタータにも適用することができる。
【0090】
その他、上記実施の形態における各構成要素の材質,形状,寸法,数,設置箇所等は、本発明を達成できるものであれば任意であり、上記実施の形態に限定されない。
【符号の説明】
【0091】
10:回転電機,20:ステータ,21:ステータコア,21a:本体部,21b:ティース,21c:先端部,21d:突出部,22:インシュレータ,23:第1被覆部,23a:薄肉部,24:第2被覆部,24a:薄肉部,25:係合凹部(第1係合部),30:ロータ,31:ロータ本体,31a:底壁部,31b:側壁部,32:ボス部,33:標準マグネット(マグネット),34:2段マグネット(マグネット),34a:第1対向部,34b:第2対向部,40:センサユニット,41:ハウジング,42:第1固定部(固定部),43:第2固定部,44:橋渡し部,45:センサホルダ部,46:ホルダ本体,47:センサ収容部,47a:第1当接部,47b:第2当接部,47c:係合凸部(第2係合部),AR1:第1検出領域,AR2:第2検出領域,BL:境界部,BT:固定ボルト,Cu:U相コイル(コイル),Cv:V相コイル(コイル),Cw:W相コイル(コイル),HD:マグネットホルダ,LE:基準線,LN:検出境界線,MG:マグネット,MR:モールド樹脂,SB:センサ基板,SF:対向部,SL:スロット,Sr:回転センサ(センサ素子),ST:取付ステー,Su:U相用センサ(センサ素子),Sv:V相用センサ(センサ素子),Sw:W相用センサ(センサ素子)
図1
図2
図3
図4
図5
図6
図7
図8