IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ゼネラル・エレクトリック・カンパニイの特許一覧

<>
  • 特開-ロータブレードの制振構造 図1
  • 特開-ロータブレードの制振構造 図2
  • 特開-ロータブレードの制振構造 図3
  • 特開-ロータブレードの制振構造 図4
  • 特開-ロータブレードの制振構造 図5
  • 特開-ロータブレードの制振構造 図6
  • 特開-ロータブレードの制振構造 図7
  • 特開-ロータブレードの制振構造 図8
  • 特開-ロータブレードの制振構造 図9
  • 特開-ロータブレードの制振構造 図10
  • 特開-ロータブレードの制振構造 図11
  • 特開-ロータブレードの制振構造 図12
  • 特開-ロータブレードの制振構造 図13
  • 特開-ロータブレードの制振構造 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022058272
(43)【公開日】2022-04-11
(54)【発明の名称】ロータブレードの制振構造
(51)【国際特許分類】
   F01D 5/22 20060101AFI20220404BHJP
   F01D 25/06 20060101ALI20220404BHJP
   F01D 5/16 20060101ALI20220404BHJP
【FI】
F01D5/22
F01D25/06
F01D5/16
【審査請求】未請求
【請求項の数】15
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2021159807
(22)【出願日】2021-09-29
(31)【優先権主張番号】17/038,601
(32)【優先日】2020-09-30
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】390041542
【氏名又は名称】ゼネラル・エレクトリック・カンパニイ
(74)【代理人】
【識別番号】100105588
【弁理士】
【氏名又は名称】小倉 博
(72)【発明者】
【氏名】スラルガヤ・チャクラバルティ
(72)【発明者】
【氏名】チン・リー
(72)【発明者】
【氏名】ジョン・マコーネル・デルヴォー
【テーマコード(参考)】
3G202
【Fターム(参考)】
3G202BB03
3G202DA06
(57)【要約】      (修正有)
【課題】ロータブレードアセンブリの振動を減衰する。
【解決手段】ロータブレードアセンブリは、互いに隣接して位置決めされた第1のロータブレード48及び第2のロータブレード50を含む。第1、第2のロータブレードはそれぞれ、プラットフォームと、プラットフォームに結合された根元から先端まで半径方向外側に延びる翼形部52とを含む。翼形部は、パートスパンシュラウド72、73を含む。パートスパンシュラウドは、翼形部から延び、根元と先端との間に配置される。パートスパンシュラウドは、正圧側表面54から延びる正圧側部分76と、負圧側表面56から延びる負圧側部分74とを含む。ダンパ100は、第1のロータブレードのパートスパンシュラウドと第2のロータブレードのパートスパンシュラウドの両方と干渉ジョイント75にて接触している。ダンパは、第1、第2のロータブレードの両方のパートスパンシュラウドに対して移動可能である。
【選択図】図6
【特許請求の範囲】
【請求項1】
互いに隣接して位置決めされた第1のロータブレード(48)及び第2のロータブレード(50)であって、それぞれ、
プラットフォーム(66)と、
前記プラットフォーム(66)に結合された根元(64)から先端(68)まで半径方向外向きに延びる翼形部(52)であって、正圧側表面(54)、負圧側表面(56)、及び前記翼形部(52)から延び、前記根元(64)と前記先端(68)との間に配置されたパートスパンシュラウド(72、73)であって、正圧側表面(54)から延びる正圧側部分(76)及び負圧側表面(56)から延びる負圧側部分(74)を有し、前記第1のロータブレード(48)の前記パートスパンシュラウド(72、73)の前記負圧側部分(74)及び前記第2のロータブレード(50)の前記パートスパンシュラウド(72、73)の前記正圧側部分(76)は互いに干渉ジョイント(75)を形成する、パートスパンシュラウド(72、73)を含む、翼形部(52)と、
前記干渉ジョイント(75)において前記第1のロータブレード(48)の前記パートスパンシュラウド(72、73)と前記第2のロータブレード(50)の前記パートスパンシュラウド(72、73)の両方に接触するダンパ(100)であって、前記ダンパ(100)は前記第1のロータブレード(48)及び前記第2のロータブレード(50)の両方の前記パートスパンシュラウド(72、73)に対して移動可能である、ダンパ(100)
とを備える、第1のロータブレード(48)及び第2のロータブレード(50)を備える、ターボ機械用のロータブレードアセンブリ(45)。
【請求項2】
前記ダンパ(100)は、前記第1のロータブレード(48)の前記パートスパンシュラウド(72、73)の外面(86)及び前記第2のロータブレード(50)の前記パートスパンシュラウド(72、73)の外面(86)と接触するスリーブダンパ(100)である、請求項1に記載のロータブレードアセンブリ(45)。
【請求項3】
前記スリーブダンパ(100)は、前記第1のロータブレード(48)の前記パートスパンシュラウド(72、73)の前記負圧側部分(74)及び前記第2のロータブレード(50)の前記パートスパンシュラウド(72、73)の前記正圧側部分(76)を取り囲む、請求項2に記載のロータブレードアセンブリ(45)。
【請求項4】
前記スリーブダンパ(100)は、前記第1のロータブレード(48)の前記負圧側表面(56)と前記第2のロータブレード(50)の前記正圧側表面(54)との間に延びる、請求項2に記載のロータブレードアセンブリ(45)。
【請求項5】
前記スリーブダンパ(100)は、1つ又は複数の開口部(104)を定める、請求項2に記載のロータブレードアセンブリ(45)。
【請求項6】
前記ダンパ(100)は、前記第1のロータブレード(48)の前記パートスパンシュラウド(72、73)の内面及び前記第2のロータブレード(50)の前記パートスパンシュラウド(72、73)の内面に接触するインサートダンパ(100)である、請求項1に記載のロータブレードアセンブリ(45)。
【請求項7】
前記インサートダンパ(100)は第1のインサートダンパ(100)であり、前記ロータブレードアセンブリ(45)は第2のインサートダンパ(100)をさらに含む、請求項6に記載のロータブレードアセンブリ(45)。
【請求項8】
前記第1のインサートダンパ(100)が、前記第1のロータブレード(48)の前記パートスパンシュラウド(72、73)の前記負圧側部分(74)から前記翼形部(52)を通り、前記干渉ジョイント(75)を横切って、前記第2のロータブレード(50)の前記パートスパンシュラウド(72、73)の前記負圧側部分(74)まで連続的に延びる、請求項7に記載のロータブレードアセンブリ(45)。
【請求項9】
前記第1のインサートダンパ(100)は、前記第2のインサートダンパ(100)と接触して重複している、請求項8に記載のロータブレード。
【請求項10】
前記ダンパ(100)は、前記第1のロータブレード(48)の前記パートスパンシュラウド(72、73)と前記第2のロータブレード(50)の前記パートスパンシュラウド(72、73)との間に位置決めされ、その間に延びるピンダンパ(100)である、請求項1に記載のロータブレード。
【請求項11】
圧縮機セクション(14)と、
燃焼器セクション(16)と、
タービンセクション(18)と、
前記圧縮機セクション(14)又は前記タービンセクション(18)の一方に設けられたロータディスク(24)であって、第1のロータブレード(48)及び第2のロータブレード(50)が互いに隣接して前記ロータディスク(24)に取り付けられ、前記第1のロータブレード(48)及び前記第2のロータブレード(50)はそれぞれ、
プラットフォーム(66)、並びに
前記プラットフォーム(66)に結合された根元(64)から先端(68)まで半径方向外向きに延びる翼形部(52)であって、正圧側表面(54)、負圧側表面(56)、及び翼形部(52)から延び、前記根元(64)と前記先端(68)との間に配置されたパートスパンシュラウド(72、73)であって、正圧側表面(54)から延びる正圧側部分(76)及び負圧側表面(56)から延びる負圧側部分(74)を有する、パートスパンシュラウド(72、73)を含み、前記第1のロータブレード(48)の前記パートスパンシュラウド(72、73)の前記正圧側部分(76)及び前記第2のロータブレード(50)の前記パートスパンシュラウド(72、73)の前記負圧側部分(74)は互いに干渉ジョイント(75)を形成する、翼形部(52)
を備える、ロータディスク(24)と、
前記干渉ジョイント(75)において前記第1のロータブレード(48)の前記パートスパンシュラウド(72、73)及び前記第2のロータブレード(50)の前記パートスパンシュラウド(72、73)の両方に接触し、前記第1のロータブレード(48)及び前記第2のロータブレード(50)の両方の前記パートスパンシュラウド(72、73)に対して移動可能であるダンパ(100)と
を備える、ターボ機械。
【請求項12】
前記ダンパ(100)は、前記第1のロータブレード(48)の前記パートスパンシュラウド(72、73)の外面(86)及び前記第2のロータブレード(50)の前記パートスパンシュラウド(72、73)の外面(86)に接触するスリーブダンパ(100)である、請求項11に記載のターボ機械。
【請求項13】
前記スリーブダンパ(100)が、前記第1のロータブレード(48)の前記パートスパンシュラウド(72、73)の前記負圧側部分(74)と、前記第2のロータブレード(50)の前記パートスパンシュラウド(72、73)の前記正圧側部分(76)とを取り囲んでいる、請求項12に記載のターボ機械。
【請求項14】
前記スリーブダンパ(100)は、前記第1のロータブレード(48)の前記負圧側表面(56)と前記第2のロータブレード(50)の前記正圧側表面(54)との間に延びる、請求項12に記載のターボ機械。
【請求項15】
前記スリーブダンパ(100)は、1つ又は複数の開口部(104)を定める、請求項12に記載のターボ機械。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般に、ターボ機械のロータブレードに関する。具体的には、本開示は、ターボ機械のロータブレードアセンブリの振動を減衰させるための構造に関する。
【背景技術】
【0002】
ターボ機械は、エネルギ伝達の目的で様々な産業及び用途で利用されている。例えば、ガスタービンエンジンは、一般に、圧縮機セクションと、燃焼セクションと、タービンセクションと、排気セクションとを含む。圧縮機セクションは、ガスタービンエンジンに入る作動流体の圧力を徐々に高め、この圧縮された作動流体を燃焼セクションに供給する。圧縮された作動流体及び燃料(例えば、天然ガス)は、燃焼セクション内で混合され、燃焼チャンバ内で燃焼して、高圧かつ高温の燃焼ガスを生成する。燃焼ガスは、燃焼セクションからタービンセクションに流れ、そこで膨張して仕事を発生させる。例えば、タービンセクションにおける燃焼ガスの膨張は、例えば、発電機に接続されたロータシャフトを回転させ、電気を発生させることができる。次いで、燃焼ガスは、排気セクションを介してガスタービンから排出される。
【0003】
典型的には、ターボ機械のロータブレードは、ロータブレードを振動させる非定常の空力荷重に曝される。これらの振動を適切に減衰させないと、ブレードの高サイクル疲労及び早期故障につながりかねない。すべてのタービン段の中でも、最終段ブレード(LSB)が、高さが最も高く、したがってタービンのうちで最も振動が課題となる構成要素である。タービンブレードの従来からの振動減衰方法として、プラットフォームダンパ、減衰ワイヤ、シュラウドなどが挙げられる。
【0004】
プラットフォームダンパは、ブレードプラットフォームの直下に位置し、ブレードプラットフォームに動きがある中型及び長型のシャンクブレードに効果的である。IGT後段ブレードは、ブレードの重量を減らし、したがってロータへの引張荷重を小さくするために、シャンクが短く、したがってプラットフォームダンパは効果的でなくなる。
【0005】
一般に、ターボ機械のロータブレードは、主にシュラウドから減衰を得る。シュラウドは、ブレード先端にあってよく(先端シュラウド)、あるいはハブと先端との間の部分スパンにあってよい(パートスパンシュラウド)。これらのシュラウドは、隣接するブレードに接触し、互いに擦れ合うときに減衰をもたらす。
【0006】
多くの場合、パートスパンシュラウドの接触荷重が高すぎる可能性があり、これにより、パートスパンシュラウド接触面が摺動して減衰をもたらすことが妨げられる。この問題に対する1つの解決策は、接触荷重を共有するために第2のパートスパンシュラウドを追加することである。これは減衰を改善するために機能するが、追加の重量及び流路内の追加の閉塞による性能の低下を犠牲にする。したがって、流路に対する過度の閉塞なしに減衰を改善する減衰技術を有することが有益となる。さらに、従来のナブスリーブダンパは適切な振動減衰を提供することができるが、シュラウドとシュラウドとの接触がないために剛性が低下し、周波数回避が困難になる。
【0007】
したがって、剛性を失うことなく、かつ流路に大きな閉塞を生じさせることなく、ロータブレードに振動減衰を提供するシステムが、当技術分野において望まれている。
【発明の概要】
【0008】
本開示によるロータブレードアセンブリ及びターボ機械の態様及び利点は、以下の説明に部分的に記載されており、又は説明から明らかとなり、又は本技術の実施を通して学ぶことができる。
【0009】
一実施形態によれば、ターボ機械用のロータブレードアセンブリが提供される。ロータブレードアセンブリは、互いに隣接して位置決めされた第1のロータブレード及び第2のロータブレードを含む。第1のロータブレード及び第2のロータブレードはそれぞれ、プラットフォームと、プラットフォームに結合された根元から先端まで半径方向外側に延びる翼形部とを含む。翼形部は、正圧側表面と、負圧側表面と、パートスパンシュラウドとを含む。パートスパンシュラウドは、翼形部から延び、根元と先端との間に配置される。パートスパンシュラウドは、正圧側表面から延びる正圧側部分と、負圧側表面から延びる負圧側部分とを含む。第1のロータブレードのパートスパンシュラウドの負圧側部分と第2のロータブレードのパートスパンシュラウドの正圧側部分とは、互いに干渉ジョイントを形成する。ダンパが、干渉ジョイントにおいて、第1のロータブレードのパートスパンシュラウド及び第2のロータブレードのパートスパンシュラウドの両方と接触している。ダンパは、第1のロータブレード及び第2のロータブレードの両方のパートスパンシュラウドに対して移動可能である。
【0010】
別の実施形態によれば、ターボ機械が提供される。ターボ機械は、圧縮機セクションと、燃焼器セクションと、タービンセクションとを備える。ロータディスクが、圧縮機セクション又はタービンセクションの一方に設けられる。第1のロータブレード及び第2のロータブレードが、互いに隣接してロータディスクに取り付けられる。第1のロータブレード及び第2のロータブレードはそれぞれ、プラットフォームと、プラットフォームに結合された根元から先端まで半径方向外側に延びる翼形部とを含む。翼形部は、正圧側表面と、負圧側表面と、パートスパンシュラウドとを含む。パートスパンシュラウドは、翼形部から延び、根元と先端との間に配置される。パートスパンシュラウドは、正圧側表面から延びる正圧側部分と、負圧側表面から延びる負圧側部分とを含む。第1のロータブレードのパートスパンシュラウドの負圧側部分と第2のロータブレードのパートスパンシュラウドの正圧側部分とは、互いに干渉ジョイントを形成する。ダンパが、干渉ジョイントにおいて、第1のロータブレードのパートスパンシュラウド及び第2のロータブレードのパートスパンシュラウドの両方と接触している。ダンパは、第1のロータブレード及び第2のロータブレードの両方のパートスパンシュラウドに対して移動可能である。
【0011】
本ロータブレードアセンブリ、及びターボ機械のこれら及び他の特徴、態様、及び利点は、以下の説明及び添付の特許請求の範囲を参照して、よりよく理解されよう。添付の図面は、本明細書に組み込まれ、本明細書の一部を構成するものであるが、本技術の実施形態を例示し、明細書における説明と併せて本技術の原理を説明するのに役立つ。
【0012】
当業者へと向けられた本システム及び方法の作製及び使用の最良の態様を含む、本ロータブレードアセンブリ及びターボ機械の完全かつ実施可能な開示が、添付の図を参照する本明細書に記載される。
【図面の簡単な説明】
【0013】
図1】本開示の実施形態によるターボ機械の概略図である。
図2】本開示の実施形態によるロータブレードアセンブリの斜視図を示す。
図3】本開示の実施形態による、図2に示すロータアセンブリの上面図を示す。
図4】本開示の実施形態による、翼形部の拡大斜視図を示す。
図5】本開示の実施形態による、ダンパスリーブの断面側表面図を示す。
図6】本開示の実施形態による、スリーブダンパが結合されたロータブレードアセンブリの斜視図を示す。
図7】本開示の実施形態による、図6に示すロータアセンブリの上面図である。
図8】本開示の実施形態による、展開されたスリーブダンパを示す。
図9】本開示の実施形態による、スリーブダンパの断面図を示す。
図10】本開示の実施形態による、インサートダンパを有するロータアセンブリの平面図を示す。
図11】本開示の実施形態による、インサートダンパが内部に位置決めされたロータブレードの斜視図を示す。
図12】本開示の実施形態による、第1のインサートダンパ及び第2のインサートダンパを有するロータアセンブリの拡大平面図を示す。
図13】本開示の実施形態による、ピンダンパを有するロータブレードの斜視図を示す。
図14】本開示の実施形態による、ピンダンパを有するロータアセンブリの上面図である。
【発明を実施するための形態】
【0014】
ここで、本ロータブレードアセンブリ及びターボ機械の実施形態を詳細に参照するが、その1つ又は複数の例が図面に示されている。各例は、本技術の説明のために提供するものであって、本技術を限定するものではない。実際に、特許請求される技術の範囲又は趣旨を逸脱することなく、修正及び変更が本技術において可能であることは、当業者にとって明らかであろう。例えば、ある実施形態の一部として図示又は記載された特徴を別の実施形態において使用して、またさらなる実施形態をもたらすことができる。したがって、本開示は、添付の特許請求の範囲及びそれらの均等物の範囲内にあるそのような修正及び変更を包含することを意図している。
【0015】
詳細な説明は、図面の特徴を参照するために、数字及び文字の符号を使用する。図面及び説明における類似又は同様の符号は、本発明の類似又は同様の部分を指すために使用されている。本明細書で使用する場合、「第1の」、「第2の」、及び「第3の」という用語は、ある構成要素を別の構成要素から区別するために交換可能に使用することができ、個々の構成要素の位置又は重要性を示すことを意図するものではない。
【0016】
本明細書で使用する場合、「上流」(又は「前方」)、及び「下流」(又は「後方」)という用語は、流体経路における流体の流れに関する相対的な方向を指す。例えば、「上流」は、流体が流れてくる方向を指し、「下流」は、流体が流れていく方向を指す。「半径方向に」という用語は、特定の構成要素の軸方向中心線に実質的に垂直な相対的な方向を指し、「軸方向に」という用語は、特定の構成要素の軸方向中心線に実質的に平行及び/又は同軸に整列する相対的な方向を指し、「円周方向に」という用語は、特定の構成要素の軸方向中心線の周囲に延びる相対的な方向を指す。「ほぼ」、又は「約」などの近似の用語は、記載された値のプラスマイナス10パーセントの範囲内の値を含む。角度又は方向の文脈で使用されるとき、そのような用語は、記載された角度又は方向のプラスマイナス10度の範囲を含む。例えば、「ほぼ垂直」は、垂直から任意の方向、例えば、時計回り又は反時計回りに10度の範囲内の方向を含む。
【0017】
ここで図面を参照すると、図1は、ターボ機械の一実施形態の概略図を示しており、これは、図示の実施形態ではガスタービン10である。産業用又は陸上用のガスタービンが本明細書に示されて説明されているが、本開示は、特許請求の範囲に特に明記されない限り、陸上用及び/又は産業用ガスタービンに限定されない。例えば、本明細書に記載の本発明は、限定はしないが、蒸気タービン、航空機用ガスタービン、又は船舶用ガスタービンを含む任意のタイプのターボ機械に使用することが可能である。
【0018】
図示のように、ガスタービン10は、一般に、入口セクション12と、入口セクション12の下流に配置された圧縮機セクション14と、圧縮機セクション14の下流に配置された燃焼器セクション16内の複数の燃焼器(図示せず)と、燃焼器セクション16の下流に配置されたタービンセクション18と、タービンセクション18の下流に配置された排気セクション20とを含む。加えて、ガスタービン10は、圧縮機セクション14とタービンセクション18との間に結合された1つ又は複数のシャフト22を含むことができる。
【0019】
圧縮機セクション14は、一般に、複数のロータディスク24(そのうちの1つが示されている)と、各ロータディスク24から半径方向外向きに延び、各ロータディスク24に接続された複数のロータブレード26とを含むことができる。次いで、各ロータディスク24は、圧縮機セクション14を通って延びるシャフト22の一部に結合されるか、又はシャフト22の一部を形成してもよい。
【0020】
タービンセクション18は、一般に、複数のロータディスク28(そのうちの1つが示されている)と、各ロータディスク28から半径方向外向きに延び、各ロータディスク28に接続された複数のロータブレード30とを含むことができる。次いで、各ロータディスク28は、タービンセクション18を通って延びるシャフト22の一部に結合されるか、又はシャフト22の一部を形成してもよい。タービンセクション18は、シャフト22の一部及びロータブレード30を円周方向に取り囲む外側ケーシング31をさらに含み、それにより、タービンセクション18を通る高温ガス経路32を少なくとも部分的に画定する。
【0021】
動作時に、空気などの作動流体が入口セクション12を通って圧縮機セクション14に流入し、圧縮機セクション14において空気が徐々に圧縮され、したがって加圧空気が燃焼器セクション16の燃焼器へともたらされる。加圧空気は、燃料と混合され、各々の燃焼器において燃やされて、燃焼ガス34を発生させる。燃焼ガス34は、高温ガス経路32を通って燃焼器セクション16からタービンセクション18に流入し、タービンセクション18においてエネルギ(運動エネルギ及び/又は熱エネルギ)が燃焼ガス34からロータブレード30に伝達されることにより、シャフト22の回転が生じる。次いで、この機械的回転エネルギを、圧縮機セクション14への動力供給及び/又は発電に使用することができる。次いで、タービンセクション18から排出された燃焼ガス34は、排気セクション20を介してガスタービン10から排気することができる。
【0022】
図2は、本開示の実施形態による、タービンセクション18又は圧縮機セクション14の任意の段に組み込むことができるロータブレードアセンブリ45の斜視図を提供し、図3は、ロータアセンブリ45の上面図である。例示的な実施形態において、ロータブレード45は、タービンセクション18において使用することができる。図2及び図3にまとめて示すように、タービンロータブレードアセンブリ45は、本明細書に記載のロータディスク24及び/又はロータディスク28のいずれかを表すことができるロータディスク46を含む。第1のロータブレード48及び第2のロータブレードは、互いに隣接して位置決めされ、ロータディスク46に取り付けられてもよい。例示的な実施形態では、第1のロータブレード48及び第2のロータブレード50は、ロータブレードが第1のロータブレード48と第2のロータブレード50との間に存在しないように、互いに直接隣接して位置決めされてもよい。
【0023】
特定の構成において、ロータブレード48、50の各々は、ロータブレード48、50をロータディスク46に接続及び/又は固定するように形成された取り付け部74(蟻継ぎなど)を含んでもよい。図2に示すように、ロータブレード48、50の各々は、プラットフォーム66と、プラットフォーム66から延びる翼形部52とを含むことができる。多くの実施形態では、翼形部52は、ガスタービン10の軸中心線に対してプラットフォームから半径方向外側に延びてもよい。種々の実施形態において、翼形部52は、正圧側表面54と、反対側の負圧側表面56とを含む。正圧側表面54と負圧側表面56とは、翼形部52の前縁58及び後縁60において出会い、又は交差する。前縁58及び後縁60は、互いに離れて位置することができ、軸方向における翼形部52の末端を定めることができる。翼弦線(図示せず)が、前縁58と後縁60との間に延び、したがって正圧側表面54及び負圧側表面56は、前縁58と後縁60との間を翼弦にわたって又は翼弦方向に延びる。
【0024】
多くの実施形態では、正圧側表面54は、一般に、翼形部52の空気力学的な凹状の外面を定める。同様に、負圧側表面56は、一般に、翼形部52の空気力学的な凸状の外面を定めることができる。翼形部52の前縁58は、高温ガス経路32に沿って燃焼ガスに関与、すなわち曝される翼形部52の最初の部分であり得る。燃焼ガスは、後縁60において排気される前に、翼形部52の空気力学的輪郭に沿って、すなわち負圧側表面56及び正圧側表面54に沿って導くことができる。
【0025】
図2に示されるように、翼形部52は、タービンロータブレード50のプラットフォーム66と交差し、プラットフォーム66から半径方向外側に延びる根元又は第1の端部64を含む。翼形部52は、翼形部52の第2の端部又は先端68を半径方向の末端とする。翼形部52の根元64は、翼形部52とプラットフォーム66との間の交差部に定められ得る。先端68は、根元64の半径方向反対側に配置される。したがって、先端68は、一般に、ロータブレード50の半径方向最外部分を定めることができ、したがって、タービンセクション18の固定のシュラウド又はシール(図示せず)に隣接して位置決めされるように構成され得る。
【0026】
正圧側表面54及び負圧側表面56は、スパンにわたって延び、翼形部52の根元64及び/又はプラットフォーム66と先端68との間の翼形部52のスパン長さ70を定める。換言すれば、各ロータブレード50は、対向する前縁58と後縁60との間に翼弦にわたって又は翼弦方向に延び、翼形部52の根元64と先端68との間にスパンにわたって又はスパン方向70に延びる対向する正圧側表面及び負圧側表面54、56を有する翼形部52を含む。
【0027】
スパン長さ70を、翼形部52の根元64から先端68まで測定することができる。スパン長さ70のパーセンテージを使用して、スパン長さ70に沿った位置を示すことができる。例えば、「0%スパン」は、翼形部52の根元64を指すことができる。同様に、「100%スパン」は、翼形部の先端68を指すことができる。このようにして、部分スパン又は「パートスパン」という用語は、0%スパンと100%スパンとの間であるがそれらを含まない、スパン長さ70に沿った位置を指すことができる。
【0028】
図2及び図3にまとめて示すように、第1のロータブレード48は、第1のパートスパンシュラウド72を含むことができ、第2のロータブレード50は、第2のパートスパンシュラウド73を含むことができる。パートスパンシュラウド72、73の各々は、ロータブレード48、50のそれぞれの翼形部52から延びることができる。多くの実施形態では、パートスパンシュラウド72、73はそれぞれ、それぞれの翼形部52の根元64と先端68との間に配置されてもよい。例えば、ロータブレード48及び50のパートスパンシュラウド72及び73は、それぞれの翼形部52の長さに沿って、例えば翼形部52の根元64と先端68との間の共通の位置に配置することができる。多くの実施形態では、パートスパンシュラウド72、73は、それぞれの翼形部52の根元64及び先端68の両方から離れて位置することができる。パートスパンシュラウド72、73は、隣接するロータブレード48、50を接続するために使用することができる。隣接するロータブレード48、50の連結は、ロータブレード48、50が受ける動作振動を有利に減衰することができ、このことは、ロータブレード48、50が動作中に受ける機械的応力がより小さくなり、よりゆっくりと劣化することを意味する。
【0029】
多くの実施形態では、第1のパートスパンシュラウド72及び第2のパートスパンシュラウド73はそれぞれ、正圧側表面54から延びる正圧側部分76と、負圧側表面56から延びる負圧側部分74とを含むことができる。図示のように、第1のロータブレード48のパートスパンシュラウド72の正圧側部分76は、第2のロータブレード50のパートスパンシュラウド73の負圧側部分74に結合する。多くの実施形態では、各パートスパンシュラウド72、73の正圧側部分76及び負圧側部分74は、互いに対向して延び、隣接するロータブレード48、50のパートスパンシュラウド72、73に結合することができる。様々な実施形態では、正圧側部分76及び負圧側部分74の両方は片持ちであり、翼形部52に接続されたそれぞれの装着端78、79から翼形部52から離れた自由端80、81まで延びる。このようにして、第1のロータブレード48の第1のパートスパンシュラウド72の正圧側部分76の自由端80は、第2のロータブレード50の第2のパートスパンシュラウド73の負圧側部分74の自由端81に少なくとも近接して配置される。例示的な実施形態では、ロータアセンブリが完全に組み立てられると、ロータブレード48、50のパートスパンシュラウド72、73は、円周方向に延び、ロータディスク46と同心のシュラウドリングを定めることができる。
【0030】
図3に示すように、パートスパンシュラウド72、73の負圧側部分74及び正圧側部分76の両方はそれぞれ、互いに反対に向けられたそれぞれの接触面82、84を含むことができる。例えば、第1のパートスパンシュラウド72の負圧側部分74の接触面82は、装着端79から自由端81まで、軸方向に対してほぼ斜めに延びてもよい。同様に、第2のパートスパンシュラウド73の正圧側部分76の接触面84は、装着端78から自由端80まで、軸方向に対してほぼ斜めに延びてもよい。図3に示すように、第1のパートスパンシュラウド72の負圧側部分74の接触面82は、ロータブレード48、50を互いに結合するために、第2のパートスパンシュラウド73の正圧側部分76の接触面84に対応し、接触することができる。多くの実施形態では、接触面82及び84は、互いに対して移動可能であってもよい。例えば、ガスタービン10の動作中、ロータブレード48、50の損傷を引き起こす可能性のある振動を摩擦として散逸させるために、接触面82及び84は互いに擦れ合うことができる。
【0031】
多くの実施形態では、第1のロータブレード48の第1のパートスパンシュラウド72の負圧側部分74及び第2のロータブレード50の第2のパートスパンシュラウド73の正圧側部分76は、互いに干渉ジョイント75を形成することができる。例えば、ガスタービン10の動作中、第1のパートスパンシュラウド72の負圧側部分74及びパートスパンシュラウド73の正圧側部分76は、ロータブレード48、50の損傷を引き起こす可能性のある振動を摩擦として散逸させるために、干渉ジョイント75(パートスパンシュラウド72、73の間に配置される)において互いに擦れ合うことができる。
【0032】
例示的な実施形態では、本明細書に記載のスリーブダンパ100、インサートダンパ200、及び/又はピンダンパ400などの1つ又は複数のダンパは、パートスパンシュラウド72、73の振動減衰を有利に増加させ、ロータブレード48、50の全体的な寿命を延ばすために、干渉ジョイント75においてパートスパンシュラウド72、73の両方と接触してもよい。例えば、多くの実施形態では、ロータブレード48、50の振動を摩擦として散逸させるために、ダンパは、第1のロータブレード48の第1のパートスパンシュラウド72及び第2のロータブレード50の第2のパートスパンシュラウド73に対して移動可能であってもよい。例示的な実施形態では、ロータブレード48、50の振動を摩擦として散逸させるために、ダンパは、第1のロータブレード48の第1のパートスパンシュラウド72及び第2のロータブレード50の第2のパートスパンシュラウド73に対して移動可能及び/又は摺動可能であってもよい。
【0033】
図4は、本開示の実施形態による、第1のロータブレード48の拡大斜視図を示す。図示のように、スリーブダンパ100は、翼形部52のパートスパンシュラウド72に摺動可能に結合することができ、それにより、スリーブダンパ100はパートスパンシュラウド72に対して移動することができる。多くの実施形態では、スリーブダンパ100は、パートスパンシュラウド72を取り囲む中空構成要素とすることができる。例えば、スリーブダンパ100は、軸方向及び半径方向にパートスパンシュラウド72を囲むことができる。様々な実施形態では、スリーブダンパ100は、パートスパンシュラウド72の外部形状に対応する(又は模倣する)形状を有することができる。スリーブダンパ100の断面図を示す図5に示すように、ダンパスリーブ100は、パートスパンシュラウド72の全体に接触してロータブレード48、50間の動きをよりよく活用し、振動を摩擦として散逸させるために、パートスパンシュラウド72の外面86に対応する(又は模倣する)内面102を含むことができる。
【0034】
図5に示すように、スリーブダンパ100は涙滴形状の開口部104を定めることができる。例えば、スリーブダンパ100は、ほぼ丸みを帯びた形状を有する前縁106と、ほぼ丸みを帯びた形状を有し、前縁から軸方向に分離された後縁108と、前縁106と後縁108との間でほぼ真っ直ぐに延びる一対の側部109とを含むことができる。スリーブダンパ100の前縁106及び後縁108の両方は、スリーブダンパ100の軸方向端を形成するほぼ丸みを帯びた、半円形形状であってもよい。多くの実施形態では、スリーブダンパ100の幅110は、スリーブダンパ100の前縁106から後縁108まで先細となってもよく、それにより、一対の側部109は、軸方向Aに互いに向かってほぼ収束する。
【0035】
図6は、本開示の実施形態による、スリーブダンパ100が結合されたロータブレードアセンブリ45の斜視図であり、図7は、図6に示すロータアセンブリ45の上面図である。図6及び図7に示すように、ダンパスリーブ100によって覆われているパートスパンシュラウド72、73の部分は、明確にするために破線で示されている。図示のように、第1のロータブレード48及び第2のロータブレード50が完全なロータアセンブリ45に設置されると、ダンパスリーブ100は、第1のパートスパンシュラウド72の一部及び第2のパートスパンシュラウド73の一部の両方を取り囲んでもよく、それにより、ダンパスリーブ100は、ロータブレード48、50の第1及び第2のパートスパンシュラウド72、73の両方に部分的に接触する。このようにして、ダンパスリーブ100は、ロータブレード48、50のパートスパンシュラウド72、73間の相対運動を活用して、それらの間の摩擦減衰を増加させる。このようにして、ダンパスリーブ100は、動作中にロータブレード48、50が受ける振動を有利に低減するように構成される。例えば、ダンパスリーブ100は、パートスパンシュラウド72、73の両方と接触する表面積を増加させ、パートスパンシュラウド72、73間の摩擦減衰の量を有利に増加させ、それによってロータブレード48、50に損傷を引き起こす可能性のある振動の量を低減する。
【0036】
例示的な実施形態では、スリーブダンパ100は、第1のパートスパンシュラウド72の外面86及び第2のパートスパンシュラウド73の外面87と接触してもよく、それにより、スリーブダンパ100は燃焼ガス34の流れの中に位置決めされ、その流れに直接曝される。そのような実施形態では、パートスパンシュラウド72、73上の燃焼ガス34の流れに閉塞(又は障害)を生じさせることなくロータブレード48、50に摩擦減衰を提供するために、スリーブダンパ100は、パートスパンシュラウド72、73の外面86、87の輪郭に対応する外面112を含むことができる。
【0037】
特定の実施形態では、スリーブダンパ100は、第1のパートスパンシュラウド72の負圧側部分74及び第2のパートスパンシュラウド73の正圧側部分76を取り囲んでもよい。図7に示すように、スリーブダンパ100は、第1のロータブレード48の負圧側表面56と第2のロータブレード50の正圧側表面54との間に延びてもよい。このようにして、隣接するロータブレード48、50の負圧側表面56及び正圧側表面54は、スリーブダンパ100の境界を形成する。例えば、スリーブダンパ100は、隣接するロータブレード48、50のパートスパンシュラウド72、73の外面86、87上で移動可能及び/又は摺動可能であってもよいが、翼形部52の負圧側表面56及び正圧側表面54は、スリーブダンパ100が遠くへと摺動しすぎてパートスパンシュラウド72、73から分離するのを防止する境界を形成する。
【0038】
図8は、スリーブダンパ100の上に定めることができる1つ又は複数の切り欠き又は開口部114を示すために、スリーブが展開されたスリーブダンパ100の代替実施形態を示す。そのような実施形態において、開口部は、有利には、スリーブダンパ100の重量を低減するのに役立つ。図8に示すように、開口部は、スリーブダンパ重量の大部分を除去するために、スリーブダンパ100の一対の側部109内に定めることができる。
【0039】
図9は、スリーブダンパ100の別の代替実施形態の断面図を示す。図示のように、スリーブダンパ100の全重量を低減するために、一対の側部109のうちの一方の側部109を完全に取り外すことができる。そのような実施形態では、スリーブダンパ100は、前縁106と後縁108との間に延びる側部109のみを含むことができる。図示のように、スリーブダンパ100は、スリーブダンパ100の前縁106と後縁108との間にギャップ115を定めることができる。
【0040】
上述したスリーブダンパ100に代えて、又はこれに加えて、パートスパンシュラウド72、73の振動減衰を有利に増加させ、ロータブレード48、50の全体的な寿命を延ばすために、ロータアセンブリ45は、第1のロータブレード48の第1のパートスパンシュラウド72及び第2のロータブレード50の第2のパートスパンシュラウド73の両方と接触するインサートダンパ200をさらに含んでもよい。例えば、インサートダンパ200は、ロータブレード48、50のパートスパンシュラウド72、73の内面のみと接触してもよく、それにより、インサートダンパ200は、パートスパンシュラウド72、73の外部を通過する燃焼ガス34に曝されない。
【0041】
図10は、本開示の実施形態による、インサートダンパ200を有するロータアセンブリ45の実施形態を示す。図10に示すように、第1のロータブレード48の第1のパートスパンシュラウド72及びロータブレード50の第2のパートスパンシュラウド73はそれぞれ、1つ又は複数の内部キャビティ、例えば、パートスパンシュラウド72、73の正圧側部分76内に定められた第1の内部キャビティ202、及びパートスパンシュラウド72、73の負圧側部分74内に定められた第2の内部キャビティ203を定めることができる。図10に示すように、ロータブレード48、50がロータディスク46上に互いに隣接して位置決めされると、パートスパンシュラウド72、73の内部キャビティ202、203が一緒になって内部チャンバ204を形成する。例えば、図示のように、第1のパートスパンシュラウド72の正圧側部分76は、第2のパートスパンシュラウド73の負圧側部分74と連結してもよく、それにより、それぞれの内部キャビティ202、203が整列して内部チャンバ204を形成する。1つ又は複数のインサートダンパ200を内部チャンバ204内に位置決めすることができる。例えば、図示のように、1つ又は複数のインサートダンパ200は、インサートダンパ200が第1のパートスパンシュラウド72の内面及び第2のパートスパンシュラウド73の内面の両方に接触するように、第1のキャビティ202と第2のキャビティ203との間に延びてもよい。このようにして、インサートダンパ200は、パートスパンシュラウド72及び73内に収容され、それらと接触しており、有利には、インサートダンパ200が燃焼ガス34の流れを塞ぐことなくロータブレード48、50に摩擦減衰を提供することを可能にする。
【0042】
図11は、内部に位置決めされたインサートダンパ300を有する第1のロータブレード48のさらに別の実施形態の斜視図を示す。図11には第1のロータブレード48のみが示されているが、第1のロータブレード48を参照して図示及び説明された特徴は、第2のロータブレード50に組み込まれてもよいことが理解される。図11に示すように、インサートダンパ300は、第1のパートスパンシュラウド72の全体を通って延びてもよい。例えば、図示するように、インサートダンパ300は、パートスパンシュラウド72の負圧側部分76から翼形部52を通って、パートスパンシュラウド72の正圧側部分74まで延びてもよい。
【0043】
図12は、ロータアセンブリ45を示し、第1のロータブレード48及び第2のロータブレード50は、互いに直接隣接して位置決めされ、例えば、ロータブレードが第1のロータブレード48と第2のロータブレード50(図2)との間に位置決めされないようにロータディスク46上に互いに直接隣接して取り付けられる。図示のように、インサートダンパ300は、第1のパートスパンシュラウド72内に位置決めされた第1のインサートダンパ300であってもよく、ロータアセンブリは、第2のパートスパンシュラウド73内に位置決めされた第2のインサートダンパ302をさらに含んでもよい。例示的な実施形態では、第1のインサートダンパ300及び第2のインサートダンパ302は、燃焼ガス34に曝されることなくロータブレード48、50に摩擦減衰を提供するように、パートスパンシュラウド72、73内に収容されてもよい。第1のインサートダンパ300及び第2のインサートダンパ302の両方は、第1のパートスパンシュラウド72、第2のパートスパンシュラウド73、及び互いに対して摺動可能に移動可能であってもよい。
【0044】
特定の実施形態では、図示するように、第1のインサートダンパ300は、第1のロータブレードの翼形部52を通って干渉ジョイント75を横切って連続的に延びてもよく、第2のインサートダンパ302は、第2のロータブレード50の翼形部52を通って連続的に延びてもよい。例えば、第1のインサートダンパ300は、第1のパートスパンシュラウド72内及び第2のパートスパンシュラウド73内へと連続的に、すなわち破損又は分離することなく延びてもよい。例えば、図示するように、第1のインサートダンパ300は、第1のパートスパンシュラウドの負圧側部分76の自由端81に配置された第1の端部304から、第1のロータブレード48の翼形部52を通り、干渉ジョイント75を横切って、第2のパートスパンシュラウド73の負圧側部分76内に配置された第2の端部306まで延びることができる。このようにして、第1のインサートダンパ300は、第1のパートスパンシュラウド72と第2のパートスパンシュラウド73との間に連続的に延びてもよい。同様に、第2のインサートダンパ302は、第2のパートスパンシュラウド72内で連続的に、すなわち破損又は分離することなく延びてもよい。例えば、図示するように、第2のインサートダンパ302は、第2のパートスパンシュラウドの負圧側部分76の自由端81に配置された第1の端部308から、第2のロータブレード50の翼形部52を通って第2の端部310まで延びてもよい。図12には2つのロータブレード48、50のみが示されているが、タービン18のシャフト22を中心として円周方向に延びる完全なロータアセンブリでは、各ロータブレードのパートスパンシュラウドは、パートスパンシュラウド内において、隣接するパートスパンシュラウド内に延びるインサートダンパを含むことができ、それにより、インサートダンパは、タービン18のシャフト22の周りに円周方向リングを形成する。
【0045】
多くの実施形態では、図12に示すように、第1のインサートダンパ300は、第2のインサートダンパ302と接触していてもよく、重複してもよい。例えば、第2のインサートダンパ302の第1の端部308は、第1のインサートダンパ300の半径方向外面312が第2のインサートダンパ302の半径方向内面314に接触するように、第1のインサートダンパ300の第2の端部306と円周方向に重複してもよい。このようにして、インサートダンパ300、302は、第1のパートスパンダンパ72の内面及び第2のパートスパンダンパ73の内面と可動接触することができ、これにより、第1のインサートダンパ300、302は、パートスパンシュラウド72、73間の相対運動を活用してロータブレード48、50に摩擦減衰を提供することができる。例えば、インサートダンパ300、302は、動作中にロータブレード48、50が受ける振動を有利に低減するように構成される。例えば、インサートダンパ300、302は、パートスパンシュラウド72、73の両方の内部と接触する表面積を増加させ、パートスパンシュラウド72、73間の摩擦減衰の量を有利に増加させ、それによってロータブレード48、50に損傷を引き起こす可能性のある振動の量を低減する。さらに、インサートダンパ300、302は、パートスパンシュラウド72、73内に位置決めされているため、翼形部52上の燃焼ガス34の流れに閉塞又は障害を生じさせない。
【0046】
図13は、第1のパートスパンシュラウド72から延びるピンダンパ400を有する第1のロータブレード48の斜視図を示し、図14は、第1のパートスパンシュラウド72と第2のパートスパンシュラウド73との間に位置決めされ、その間に延びるピンダンパ400を有するロータアセンブリ45の上面図を示す。図13及び図14にまとめて示すように、ピンダンパ400は、ロータブレード48、50間の振動を摩擦散逸させるために、パートスパンシュラウド72、73内及びその間に延びるほぼ円筒形のダンパであってもよい。多くの実施形態では、ロータアセンブリ45は、第1のピンダンパ402及び第2のピンダンパ404を含んでもよい。図13に示すように、第1のピンダンパ402及び第2のピンダンパは異なる直径を有してもよく、例えば、第1のピンダンパ402は第2のピンダンパ404よりも小さい直径を有してもよい。第1のピンダンパ402及び第2のピンダンパ404はそれぞれ、第1のロータブレード48の第1のパートスパンシュラウド72及び第2のロータブレード50の第2のパートスパンシュラウド73内に位置決めされ、その間に延びてもよい。図示のように、ピンダンパ402、404の各々は、パートスパンシュラウド72、73間の相対運動を活用し、摩擦減衰を生じさせるために、第1のパートスパンシュラウド72の内面及び第2のパートスパンシュラウド73の内面の両方と接触してもよい。このようにして、ピンダンパ402、404は、動作中にロータブレード48、50が受ける振動を有利に低減するように構成される。例えば、インサートダンパ402、404は、パートスパンシュラウド72、73の両方の内部と接触する表面積を増加させ、パートスパンシュラウド72、73間の摩擦減衰の量を有利に増加させ、それによってロータブレード48、50に損傷を引き起こす可能性のある振動の量を低減する。さらに、ピンダンパ402、404がパートスパンシュラウド72、73内に収容されているので、翼形部52上の燃焼ガス34の流れに閉塞又は障害を生じさせない。
【0047】
様々なダンパ100、200、300、400は、本明細書ではパートスパンシュラウド72、73の文脈で説明されているが、ダンパ100、200、300、400がチップスパンシュラウドに使用され得ることは、本発明の範囲内であると想定される。例えば、剛性を大幅に低下させることなく振動減衰を高めるために、ダンパ100、200、300、400をチップスパンシュラウド上又はチップスパンシュラウド内に位置決めすることができる。
【0048】
本明細書に記載のダンパ100、200、300、400は、従来の設計に比べて多くの利点を有する。例えば、ダンパ100、200、300、400はすべて、剛性を失うことなくロータブレードに振動減衰を提供し、ロータアセンブリに最小限の追加重量を加え、摩耗した場合に容易に交換又は修理することができる。さらに、本明細書に記載のダンパ100、200、300、400は、重量を調整することによって容易に調整することができ、ロータブレード上の燃焼ガスの流れにほとんど又は全く障害をもたらすことなく、パートスパンシュラウド72、73が互いに接触していない場合(部分速度動作条件など)でも振動減衰を提供することができる。さらに、ダンパ100、200、300、400は、低部分速度条件での減衰の増加により、ロータブレードシュラウドの設計の柔軟性を高める。例えば、シュラウド間の接触荷重は、ダンパ100、200、300、400に起因して増加した可撓性を有することができる。
【0049】
本明細書は、最良の態様を含む本発明を開示するため、及びどのような当業者も、任意の装置又はシステムの作製及び使用並びに任意の組み込まれた方法の実行を含む本発明の実践を可能にするために、例を使用している。本発明の特許可能な範囲は、特許請求の範囲によって定義され、当業者が想到する他の実施例を含むことができる。このような他の実施例は、特許請求の範囲の文言との差がない構造要素を含む場合、又は特許請求の範囲の文言との実質的な差がない等価の構造要素を含む場合、特許請求の範囲内にあることを意図している。
【符号の説明】
【0050】
10 ガスタービン
12 入口セクション
14 圧縮機セクション
16 燃焼器セクション
18 タービンセクション
20 排気セクション
22 シャフト
24 ロータディスク
26 ロータブレード
28 ロータディスク
30 ロータブレード
31 外側ケーシング
32 高温ガス経路
34 燃焼ガス
45 ロータアセンブリ、タービンロータブレードアセンブリ
46 ロータディスク
48 第1のロータブレード
50 第2のロータブレード、タービンロータブレード
52 翼形部
54 正圧側表面
56 負圧側表面
58 前縁
60 後縁
64 根元、第1の端部
66 プラットフォーム
68 先端、第2の端部
70 スパン長さ、スパン方向
72 第1のパートスパンダンパ、第1のパートスパンシュラウド
73 第2のパートスパンダンパ、第2のパートスパンシュラウド
74 正圧側部分、負圧側部分、取り付け部
75 干渉ジョイント
76 正圧側部分、負圧側部分
78 装着端
79 装着端
80 自由端
81 自由端
82 接触面
84 接触面
86 外面
87 外面
100 スリーブダンパ、ダンパスリーブ
102 内面
104 開口部
106 前縁
108 後縁
109 側部
110 幅
112 外面
114 開口部
115 ギャップ
200 インサートダンパ
202 第1の内部キャビティ
203 第2の内部キャビティ
204 内部チャンバ
300 第1のインサートダンパ
302 第2のインサートダンパ
304 第1の端部
306 第2の端部
308 第1の端部
310 第2の端部
312 半径方向外面
314 半径方向内面
400 ピンダンパ
402 インサートダンパ、第1のピンダンパ
404 インサートダンパ、第2のピンダンパ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
【外国語明細書】