(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022058841
(43)【公開日】2022-04-12
(54)【発明の名称】グラフト重合鎖付き基材、およびイオン交換膜
(51)【国際特許分類】
C08F 2/00 20060101AFI20220405BHJP
C08J 5/22 20060101ALI20220405BHJP
【FI】
C08F2/00 C
C08J5/22
【審査請求】有
【請求項の数】2
【出願形態】OL
(21)【出願番号】P 2022014884
(22)【出願日】2022-02-02
(62)【分割の表示】P 2018533556の分割
【原出願日】2017-08-09
(31)【優先権主張番号】P 2016157874
(32)【優先日】2016-08-10
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】390005407
【氏名又は名称】AGCエンジニアリング株式会社
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(72)【発明者】
【氏名】奥屋 珠生
(72)【発明者】
【氏名】田柳 順一
(57)【要約】
【課題】基材シートの寸法変化による不具合を抑制すること。
【解決手段】
幅0.8m以上、長さ1m以上、厚み30~200μmであり、グラフト重合率の最大値が前記グラフト重合率の平均値の115%以下であり、前記グラフト重合率の最小値が前記グラフト重合率の平均値の85%以上である、グラフト重合鎖付き基材。
【選択図】
図2
【特許請求の範囲】
【請求項1】
幅0.8m以上、長さ1m以上、厚み30~200μmであり、グラフト重合率の最大値が前記グラフト重合率の平均値の115%以下であり、前記グラフト重合率の最小値が前記グラフト重合率の平均値の85%以上である、グラフト重合鎖付き基材。
【請求項2】
幅0.8m以上、長さ1m以上、厚み30~200μmであり、イオン交換容量の最大値が前記イオン交換容量の平均値の115%以下であり、前記イオン交換容量の最小値が前記イオン交換容量の平均値の85%以上である、グラフト重合鎖付き基材を有するイオン交換膜。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、グラフト重合鎖付き基材、およびイオン交換膜に関する。
【背景技術】
【0002】
特許文献1に記載の放射線グラフト重合方法は、放射線を照射した基材を支持材料と重ね合わせ、これにモノマー液を含浸させることにより、少なくとも支持材料にモノマー液を保持させ、支持材料から基材にモノマーを供給する。基材と支持材料とは、別々の送り出しロールに装着され、それぞれの送り出しロールから一定速度で送り出され、途中で重ね合わされ、含浸槽中のモノマー液に浸漬される。モノマー液から引き上げられた基材と支持材料は、巻き取りロールによって一緒に巻き取られる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】日本国特開2000-53788号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
第1芯に巻き取られた基材シートと、第2芯に巻き取られた多孔体シートとをそれぞれ巻き出して、第3芯に重ねて巻き取り、多孔体シートに保持される処理液によって基材シートを処理する方法が検討されている。
【0005】
この基材シートの処理方法は、ロールツーロール技術を用いるので、基材シートを連続的に且つ大量に処理できる。また、多孔体シートが処理液を保持する保持層として機能するので、処理ムラを低減できると共に、処理液の使用効率を向上でき、処理液の使用量を削減できる。
【0006】
しかしながら、基材シートの処理が徐々に進行するにつれ、基材シートの寸法が徐々に変化することがある。第3芯に巻き取られた状態で、基材シートが伸びると、または基材シートが縮むと、歪み、折れ込み、またはシワが生じることがある。
【0007】
本発明は、上記課題に鑑みてなされたものであって、基材シートの寸法変化による不具合を抑制した、基材シートの処理方法の提供を主な目的とする。
【課題を解決するための手段】
【0008】
上記課題を解決するため、本発明の一態様によれば、
幅0.8m以上、長さ1m以上、厚み30~200μmであり、グラフト重合率の最大値が前記グラフト重合率の平均値の115%以下であり、前記グラフト重合率の最小値が前記グラフト重合率の平均値の85%以上である、グラフト重合鎖付き基材が提供される。
【発明の効果】
【0009】
本発明の一態様によれば、基材シートの寸法変化による不具合を抑制した、基材シートの処理方法が提供される。
【図面の簡単な説明】
【0010】
【
図1】一実施形態による基材シートの処理方法を示すフローチャートである。
【
図2】一実施形態による第1芯、第2芯および第3芯の装着が完了した時の、処理装置の状態を示す図である。
【
図3】
図2に続く処理装置の状態を示す図であって、第4芯の装着が完了した時の、処理装置の状態を示す図である。
【
図4】
図3に続く処理装置の状態を示す図であって、基材シートの第1芯への巻き取りが完了した時の、処理装置の状態を示す図である。
【
図6】
図4に続く処理装置の状態を示す図であって、基材シートの第3芯への巻き取りが完了した時の、処理装置の状態を示す図である。
【
図7】
図6のVII-VII線に沿った断面図である。
【
図8】一実施形態による処理装置を示すブロック図である。
【発明を実施するための形態】
【0011】
以下、本発明を実施するための形態について図面を参照して説明する。各図面において、同一の又は対応する構成には、同一の又は対応する符号を付して、説明を省略する。
【0012】
[基材シートの処理方法]
図1は、一実施形態による基材シートの処理方法を示すフローチャートである。尚、基材シートの処理方法は、
図1に示すものに限定されない。例えば基材シートの処理方法は、
図1に示す複数のステップのうち、一部のステップのみを有してもよい。また、
図1に示す複数のステップの順序は、特に限定されない。
【0013】
先ず、
図1に示すステップS11では、第1芯21~第4芯24を処理装置30に装着する。ステップS11について、
図2および
図3を参照して説明する。
図2、
図3において、第1貯留槽31、第2貯留槽32を破断して示す。
図4、
図6において同様である。
【0014】
図2は、一実施形態による第1芯、第2芯および第3芯の装着が完了した時の、処理装置の状態を示す図である。
【0015】
第1芯21は、処理装置30に着脱自在とされており、処理装置30への装着前に基材シート10を巻取済みである。第1芯21の装着後、基材シート10の長手方向一端部10aが第3芯23に連結される。
【0016】
基材シート10は、本実施形態では緻密なものであるが、多孔質なものであってもよい。多孔質なものとしては、例えばネット、織布、不織布などが用いられる。基材シート10の材料は、基材シート10の処理の内容に応じて適宜選択される。
【0017】
第2芯22は、処理装置30に着脱自在とされており、処理装置30への装着前に第1多孔体シート11を巻取済みである。第2芯22の装着後、第1多孔体シート11の長手方向一端部が第3芯23に連結される。
【0018】
第1多孔体シート11は、第1処理液41(
図4、
図6参照)を保持する。第1多孔体シート11としては、例えばネット、織布、不織布などが用いられる。第1多孔体シート11の材料は、基材シート10の材料と同じものでもよいし、異なるものでもよい。第1多孔体シート11の材料は、処理の内容に応じて適宜選択される。
【0019】
その後、処理装置30は、第1芯21に巻き取られた基材シート10と、第2芯22に巻き取られた第1多孔体シート11とを巻き出して、
図3に示すように第3芯23に重ねて巻き取る。
【0020】
図3は、
図2に続く処理装置の状態を示す図であって、第4芯の装着が完了した時の、処理装置の状態を示す図である。
【0021】
第4芯24は、処理装置30に着脱自在とされており、処理装置30への装着前に第2多孔体シート12を巻取済みである。第4芯24の装着後、第2多孔体シート12の長手方向一端部が第1芯21に連結される。
【0022】
第2多孔体シート12は、第2処理液42(
図4、
図6参照)を保持する。第2多孔体シート12としては、第1多孔体シート11と同様のものが用いられる。
【0023】
図1に示すステップS12では、処理装置30の内部に窒素ガスなどの不活性ガスを導入し続け、処理装置30の内部の空気を外部に押し出す。これにより、処理装置30の内部に不活性ガスを充てんする。
【0024】
その後、処理装置30は、第3芯23に巻き取られた基材シート10と、第4芯24に巻き取られた第2多孔体シート12とを巻き出して、
図4に示すように第1芯21に重ねて巻き取る。
【0025】
図1に示すステップS13では、第1処理液41および第2処理液42としての改質処理液の液溜めを行う。改質処理液は、基材シート10の改質を行うものである。ここで、改質とは、基材シート10の材料の、組成および/または性質を改良することをいう。ステップS13について、
図4を参照して説明する。
【0026】
図4は、
図3に続く処理装置の状態を示す図であって、基材シートの第1芯への巻き取りが完了した時の、処理装置の状態を示す図である。尚、本実施形態の改質処理液の液溜めは、
図4の状態で行われるが、
図6の状態で行われてもよい。
【0027】
処理装置30は、第2芯22の直下に設置される第1貯留槽31の内部に、第1処理液41を溜める。第2芯22に巻き取られた第1多孔体シート11の巻物の下部が第1処理液41に浸漬される。尚、第1多孔体シート11の巻物のうちの、少なくとも一部が第1処理液41に浸漬されていればよく、全体が第1処理液41に浸漬されていてもよい。
【0028】
第1貯留槽31は、第1貯留槽31に第1処理液41を供給する供給管、第1貯留槽31から第1処理液41を排出する排出管と接続されている。第1処理液41は、複数種類用意されてもよく、状況に応じて使い分けられてよい。
【0029】
また、処理装置30は、第4芯24の直下に設置される第2貯留槽32の内部に、第2処理液42を溜める。第4芯24に巻き取られた第2多孔体シート12の巻物の下部が第2処理液42に浸漬される。尚、第2多孔体シート12の巻物のうちの、少なくとも一部が第2処理液42に浸漬されていればよく、全体が第2処理液42に浸漬されていてもよい。
【0030】
第2貯留槽32は、第2貯留槽32に第2処理液42を供給する供給管、第2貯留槽32から第2処理液42を排出する排出管と接続されている。第2処理液42は、複数種類用意されてもよく、状況に応じて使い分けられてよい。
【0031】
第1処理液41と第2処理液42とは、本実施形態では同一の基材シート10に対し同一の処理を行うものであるが、同一の基材シート10に対し異なる処理を行うものでもよい。第2処理液42と第1処理液41とが同一のものである場合、第2貯留槽32と第1貯留槽31とは一体化されてもよい。
【0032】
第1処理液41や第2処理液42は、基材シート10の改質を行う改質処理液であってよい。改質処理液としては、基材シート10にモノマーをグラフト重合させるもの(モノマーを含む液)、基材シート10にイオン交換基を導入するもの(スルホン化剤を含む液、アミノ化剤を含む液等)などが挙げられる。
【0033】
基材シート10は、改質されることで、寸法変化を起こす。一方、第1多孔体シート11や第2多孔体シート12は、改質されないので、殆ど寸法変化しない。そのため、第1多孔体シート11の寸法変化率は、基材シート10の寸法変化率よりも小さい。
【0034】
尚、本実施形態の第1処理液41や第2処理液42は、改質処理液であるが、洗浄処理液などでもよい。洗浄処理液は、キシレン、アセトン、アルコール類に代表される有機溶媒系を用いてもよいし、水系でもよいが、改質処理液に合わせて適宜選択される。洗浄処理液は、第1多孔体シート11や第2多孔体シート12、基材シート10を洗浄する。1回目の洗浄後、さらに洗浄を行うこともできる。同種類の洗浄処理液を用いてもよいし、異種の洗浄処理液を用いてもよい。複数回の洗浄を行うと、第1多孔体シート11や第2多孔体シート12、基材シート10等に付着、含浸された改質処理液はさらに洗浄される。
【0035】
図1に示すステップS14では、基材シート10の往復搬送を行う。ステップS14について、
図4の他、
図5~
図7などを参照して説明する。
図5は、
図4のV-V線に沿った断面図である。
図6は、
図4に続く処理装置の状態を示す図であって、基材シートの第3芯への巻き取りが完了した時の、処理装置の状態を示す図である。
図7は、
図6のVII-VII線に沿った断面図である。
【0036】
処理装置30は、その状態を
図4や
図5の状態から
図6や
図7の状態に移行させる。具体的には、処理装置30は、第1芯21に巻き取られた基材シート10と、第2芯22に巻き取られた第1多孔体シート11とをそれぞれ巻き出して、第3芯23に重ねて巻き取る。
【0037】
第3芯23に巻き取られた基材シート10と第1多孔体シート11とは、
図7に示すように交互に重なっている。よって、第1多孔体シート11に保持される第1処理液41によって基材シート10を処理することができる。
【0038】
この処理方法は、ロールツーロール技術を用いるので、基材シート10を連続的に且つ大量に処理できる。また、第1多孔体シート11が第1処理液41を保持する保持層として機能するので、処理ムラを低減できると共に、第1処理液41の使用効率を向上でき、第1処理液41の使用量を削減できる。
【0039】
ところで、第1処理液41による基材シート10の処理が徐々に進むにつれ、基材シート10の寸法が徐々に変化する。
【0040】
そこで、基材シート10の寸法変化による不具合(例えば歪み、折れ込み、シワなど)を抑制するため、処理装置30は、その状態を
図6や
図7の状態から
図4や
図5の状態に移行させる。具体的には、処理装置30は、第3芯23に重ねて巻き取られた基材シート10および第1多孔体シート11を巻き出して、第1多孔体シート11を第2芯22に巻き取ると共に、基材シート10を第1芯21に巻き取る。基材シート10は、第1多孔体シート11とは異なる寸法変化率を有するので、第1多孔体シート11とは異なる芯に巻き取る。
【0041】
このとき、処理装置30は、第4芯24に巻き取られた第2多孔体シート12を巻き出して、
図4や
図5に示すように第2多孔体シート12および基材シート10を第1芯21に重ねて巻き取る。第2多孔体シート12の表面の凹凸によって、基材シート10の巻き取り時の滑りを抑制できる。また、第2多孔体シート12に保持される第2処理液42によって、基材シート10を処理できる。
【0042】
この処理方法は、ロールツーロール技術を用いるので、基材シート10を連続的に且つ大量に処理できる。また、第2多孔体シート12が第2処理液42を保持する保持層として機能するので、処理ムラを低減できると共に、第2処理液42の使用効率を向上でき、第2処理液42の使用量を削減できる。
【0043】
ところで、第2処理液42による基材シート10の処理が徐々に進むにつれ、基材シート10の寸法が徐々に変化する。
【0044】
そこで、基材シート10の寸法変化による不具合を抑制するため、処理装置30は、その状態を
図4や
図5の状態から
図6や
図7の状態にさらに移行させてよい。具体的には、処理装置30は、第1芯21に重ねて巻き取られた基材シート10および第2多孔体シート12を巻き出し、第2多孔体シート12を第4芯24に巻き取ると共に、基材シート10を第3芯23に巻き取る。基材シート10は、第2多孔体シート12とは異なる寸法変化率を有するので、第2多孔体シート12とは異なる芯に巻き取る。
【0045】
このとき、処理装置30は、第2芯22に巻き取られた第1多孔体シート11を巻き出して、
図6や
図7に示すように第1多孔体シート11および基材シート10を第3芯23に重ねて巻き取る。第1多孔体シート11の表面の凹凸によって、基材シート10の巻き取り時の滑りを抑制できる。また、第1多孔体シート11に保持される第1処理液41によって、基材シート10を処理できる。基材シート10の処理が徐々に進むにつれ、基材シート10の寸法が徐々に変化する。
【0046】
その後、処理装置30は、その状態を、
図6の状態と
図4の状態との間で繰り返し移行させてよい。
【0047】
このように、処理装置30は、第1芯21に巻き取られた基材シート10を巻き出し、第3芯23に巻き取り、再び第1芯21に巻き取ることを、複数回繰り返してよい。基材シート10の処理を進めると共に、基材シート10の寸法変化による不具合の発生を抑制できる。
【0048】
この間、処理装置30は、第3芯23から巻き出された後、第3芯23に再び巻き取られるまでの間に、第1多孔体シート11に対し第1処理液41を補給してよい。これにより、第1多孔体シート11に含まれる第1処理液41の有効成分の濃度を回復でき、基材シート10の処理を促進できる。
【0049】
処理装置30は、第1多孔体シート11に対する第1処理液41の供給(補給を含む)を、第1多孔体シート11が基材シート10から分離された位置で行ってよい。基材シート10に対する第1処理液41の供給を、第1多孔体シート11を介してのみ行うことができる。
【0050】
尚、本実施形態の第1処理液41は、第2芯22の直下に設置された第1貯留槽31の内部に溜められているが、第1処理液41の供給場所や供給方法は特に限定されない。例えば、第1貯留槽31は、第1多孔体シート11の搬送経路(第2芯22と第3芯23との間の搬送経路)の途中に設置されてもよい。また、第1処理液41を溜める第1貯留槽31の代わりに、第1処理液41を噴射するスプレーなどが用いられてもよい。
【0051】
また、処理装置30は、第3芯23に巻き取られた基材シート10を巻き出し、第1芯21に巻き取り、再び第3芯23に巻き取ることを、複数回繰り返してよい。基材シート10の処理を進めると共に、基材シート10の寸法変化による不具合の発生を抑制できる。
【0052】
この間、処理装置30は、第1芯21から巻き出された後、第1芯21に再び巻き取られるまでの間に、第2多孔体シート12に対し第2処理液42を補給してよい。これにより、第2多孔体シート12に含まれる第2処理液42の有効成分の濃度を回復でき、基材シート10の処理を促進できる。
【0053】
処理装置30は、第2多孔体シート12に対する第2処理液42の供給(補給を含む)を、第2多孔体シート12が基材シート10から分離された位置で行ってよい。基材シート10に対する第2処理液42の供給を、第2多孔体シート12を介してのみ行うことができる。
【0054】
尚、本実施形態の第2処理液42は、第4芯24の直下に設置された第2貯留槽32の内部に溜められているが、第2処理液42の供給場所や供給方法は特に限定されない。例えば、第2貯留槽32は、第2多孔体シート12の搬送経路(第4芯24と第1芯21との間の搬送経路)の途中に設置されてもよい。また、第2処理液42を溜める第2貯留槽32の代わりに、第2処理液42を噴射するスプレーなどが用いられてもよい。
【0055】
処理装置30は、第3芯23と第1芯21との間において、第1多孔体シート11および第2多孔体シート12から分離した基材シート10をエキスパンダーロール33に抱き付かせることで、基材シート10に対し幅方向に張力を加えてもよい。基材シート10の歪み、折れ込み、シワを低減できる。基材シート10は、第1多孔体シート11や第2多孔体シート12とは異なる寸法変化率を有するので、単独でエキスパンダーロール33に抱き付かせる。
【0056】
尚、本実施形態では、基材シート10を改質する際に、第1多孔体シート11や第2多孔体シート12を改質しないが、改質してもよい。この場合、第1多孔体シート11や第2多孔体シート12も寸法変化する。
【0057】
そこで、第3芯23と第2芯22との間において、基材シート10から分離した第1多孔体シート11をエキスパンダーロールに抱き付かせることで、第1多孔体シート11に対し幅方向に張力を加えてもよい。
【0058】
同様に、第1芯21と第4芯24との間において、基材シート10から分離した第2多孔体シート12をエキスパンダーロールに抱き付かせることで、第2多孔体シート12に対し幅方向に張力を加えてもよい。
【0059】
エキスパンダーロール33は、一般的なものであってよく、例えばゴム紐ロールなどであってよい。ゴム紐ロールは、回転中心線に平行なゴム紐を、回転中心線の周りに間隔をおいて複数有する。複数のゴム紐は、回転に伴って独立に伸縮される。各ゴム紐は、基材シート10と接触している間は徐々に伸び、基材シート10から離れると縮む。尚、ゴム紐ロールは、基材シート10の蛇行修正に用いることも可能である。
【0060】
エキスパンダーロール33は、基材シート10に対し長手方向に作用する張力を制御するための、ダンサーロールの役割を兼ねてもよい。尚、ダンサーロールは、エキスパンダーロール33とは別に設けられてもよい。
【0061】
ダンサーアーム34は、ダンサーロールが取り付けられる一端部34aと、カウンターバランスが取り付けられる他端部34bとを有し、両端部34a、34bの間に設けられる支点34cを中心に揺動自在とされる。ダンサーロールの位置が一定になるように、第1芯21の回転速度や第3芯23の回転速度を制御することで、基材シート10に対し長手方向に作用する張力を一定に制御できる。ダンサーロールの位置は、例えば変位センサ35(
図8参照)によって検出可能である。
【0062】
処理装置30は、第3芯23と第1芯21との間で基材シート10に対し長手方向に作用する張力T1を、第3芯23と第2芯22との間で第1多孔体シート11に対し長手方向に作用する張力T2よりも小さく制御してよい。また、処理装置30は、第3芯23と第1芯21との間で基材シート10に対し長手方向に作用する張力T1を、第4芯24と第1芯21との間で第2多孔体シート12に対し長手方向に作用する張力T3よりも小さく制御してよい。基材シート10の意図しない変形を抑制できる。
【0063】
図8は、一実施形態による処理装置を示すブロック図である。処理装置30は、第1モータ51と、第2モータ52と、第3モータ53と、第4モータ54とを有する。第1モータ51は第1芯21を、第2モータ52は第2芯22を、第3モータ53は第3芯23を、第4モータ54は第4芯24をそれぞれ回転させる。また、処理装置30は、第1モータ51、第2モータ52、第3モータ53、および第4モータ54を制御するコントローラ60を有する。
【0064】
コントローラ60は、CPU(Central Processing Unit)61と、メモリなどの記憶媒体62と、入力インターフェイス63と、出力インターフェイス64とを有する。コントローラ60は、記憶媒体62に記憶されたプログラムをCPU61に実行させることにより、各種の制御を行う。また、コントローラ60は、入力インターフェイス63で外部からの信号を受信し、出力インターフェイス64で外部に信号を送信する。
【0065】
コントローラ60は、変位センサ35などの各種検出器の検出結果に基づいて、第1モータ51、第2モータ52、第3モータ53、および第4モータ54を制御する。各種検出器としては、変位センサ35の他に、例えば、第1モータ51の回転速度を検出するエンコーダ71、第3モータ53の回転速度を検出するエンコーダ73などが用いられる。
【0066】
例えば、コントローラ60は、エンコーダ71、73や変位センサ35の検出結果に基づき第1モータ51や第3モータ53を制御することで、基材シート10に対し長手方向に作用する張力T1を制御する。
【0067】
また、コントローラ60は、基材シート10の厚み、第1多孔体シート11の厚み、および第3芯23の回転量から、第3芯23に巻き取られる巻物の外径を算出し、その外径と目標張力とに基づいて第2モータ52を制御することで、第1多孔体シート11に対し長手方向に作用する張力T2を制御する。
【0068】
また、コントローラ60は、基材シート10の厚み、第2多孔体シート12の厚み、および第1芯21の回転量から、第1芯21に巻き取られる巻物の外径を算出し、その外径と目標張力とに基づいて第4モータ54を制御することで、第2多孔体シート12に対し長手方向に作用する張力T3を制御する。
【0069】
基材シート10の両端部のうち第3芯23寄りの端部が第3芯23に巻き取られてから第3芯23から巻き出されるまでの、経過時間が上限を超えないように、基材シート10の搬送速度や
図6の状態での停止時間が設定される。第3芯23に巻き取られてから第3芯23から巻き出されるまでの、基材シート10の最大寸法変化率を許容範囲内に収めることができる。
図6の状態での停止時間は、ゼロでもよい。
【0070】
同様に、基材シート10の両端部のうち第1芯21寄りの端部が第1芯21に巻き取られてから第1芯21から巻き出されるまでの、経過時間が上限を超えないように、基材シート10の搬送速度や
図4の状態での停止時間が設定される。第1芯21に巻き取られてから第1芯21から巻き出されるまでの、基材シート10の最大寸法変化率を許容範囲内に収めることができる。
図4の状態での停止時間は、ゼロでもよい。
【0071】
基材シート10の寸法変化率と、経過時間との関係は、予め試験などで求められる。試験では、例えば基材シート10と同じ材質かつ同じ厚さで100mm角の正方形のシートを、第1処理液41または第2処理液42に浸漬し、所定時間ごとに処理液から取り出して寸法を測定する。
【0072】
第1芯21または第3芯23に巻き取られてから巻き出されるまでの、基材シート10の最大寸法変化率は、例えば-1.0%~1.0%、好ましくは-0.3%~0.3%である。この許容範囲に基づき、経過時間の上限が設定される。
【0073】
処理装置30は、
図4の状態と
図6の状態とのどちらの状態で、基材シート10の処理を終了してもよい。
【0074】
図1に示すステップS15では、第1処理液41や第2処理液42としての改質処理液の液抜きを行う。これにより、処理装置30の状態は、
図2の状態または
図3の状態に戻る。
【0075】
その後、基材シート10は、第1多孔体シート11および第2多孔体シート12とは別に、第1芯21または第3芯23に巻き取られ、処理装置30の外部に搬出される。これにより、基材シート10を改質した改質基材シートが得られる。
【0076】
尚、基材シート10は、第1多孔体シート11および第2多孔体シート12とは別に処理装置30の外部に搬出されるが、第1多孔体シート11または第2多孔体シート12と共に巻き取られ処理装置30の外部に搬出されてもよい。
【0077】
[改質基材シートの製造方法]
上記実施形態の基材シートの処理方法は、基材シート10の改質に用いられてよく、例えば下記(1)のステップおよび下記(2)のステップの少なくとも一方に用いられてよい。
【0078】
(1)のステップは、基材シート10にモノマーをグラフト重合させるステップである。基材シート10としては、例えばポリエチレン、ポリプロピレンなどのポリオレフィン、ポリ塩化ビニル、ポリテトラフルオロエチレン(PTFE)、塩化ビニルなどのハロゲン化ポリオレフィン類、エチレン-テトラフルオロエチレン共重合体、エチレン-ビニルアルコール共重合体(EVA)などのオレフィン-ハロゲン化オレフィン共重合体などを含み、放射線(α線、β線、γ線、電子線、紫外線等)の照射によってラジカルを生成したものを用いてよい。第1処理液41や第2処理液42としては、例えば、スチレンなどのモノマーと、キシレンなどの溶媒とを含むモノマー液が用いられる。溶媒としては、炭化水素(ベンゼン、キシレン、トルエン、ヘキサン等)、アルコール(メタノール、エタノール、イソプロピルアルコール等)、ケトン(アセトン、メチルイソプロピルケトン、シクロヘキサン等)、エーテル(ジオキサン、テトラヒドロフラン等)、エステル(酢酸エチル、酢酸ブチル等)、含窒素化合物(イソプロピルアミン、ジエタノールアミン、N-メチルホルムアミド、N,N-ジメチルホルムアミド等)等が挙げられる。上記(1)のステップによれば、グラフト重合鎖付き基材が得られる。「グラフト重合鎖」とは、基材を構成する重合体からなる主鎖に結合した1種または数種のブロックからなり、主鎖とは異なる構成上または配置上の特徴を有する鎖をいう。
【0079】
(2)のステップは、基材シート10にイオン交換基を導入するステップである。基材シート10としては、予め上記(1)のステップでモノマーとしてイオン交換基に変換できる基を有するモノマーをグラフト重合させたものを用いてよい。イオン交換基に変換できる基を有するモノマーとしては、アクリロニトリル、アクロレイン、ビニルピリジン、スチレン、クロロメチルスチレン、メタクリル酸グリシジル等が挙げられる。イオン交換基に変換できる基を有するモノマーをグラフト重合によって基材シート10に導入し、次にスルホン化剤を反応させることによってスルホン基を導入したり、又はアミノ化剤を反応させることによってアミノ基を導入することなどによって、イオン交換基を得ることができる。第1処理液41や第2処理液42としては、例えば、亜硫酸ナトリウム、濃硫酸などのスルホン化剤、ジエタノールアミン、トリメチルアミンなどのアミノ化剤が用いられる。上記(2)のステップによれば、イオン交換膜が得られる。イオン交換膜は、陽イオン交換膜、陰イオン交換膜のいずれでもよい。
【0080】
尚、上記(1)のステップで、モノマーとして、イオン交換基に変換できる基を有するモノマーではなく、イオン交換基を有するモノマーを、基材シート10にグラフト重合させてもよい。この場合、上記(1)のステップによってイオン交換膜が得られる。イオン交換基を有するモノマーとしては、アクリル酸、メタクリル酸アクリル酸、メタクリル酸、スチレンスルホン酸ナトリウム、メタリルスルホン酸ナトリウム、アリルスルホン酸ナトリウム、ビニルベンジルトリメチルアンモニウムクロライド、2-ヒドロキシエチルメタクリレート、ジメチルアクリルアミド等が挙げられる。上記(2)のステップにより得られるイオン交換膜は、グラフト重合鎖付き基材を有する。
【0081】
本実施形態の基材シートの処理方法を、上記(1)のステップおよび上記(2)のステップの少なくとも一方に用いる場合、基材シート10の厚みは、薄すぎると搬送が難しくなり、厚すぎると巻取が難しくなるおそれがあるため、好ましくは20~1000μm、より好ましくは25~500μm、特に好ましくは30~200μmである。
【0082】
一般に、基材シート上のグラフト重合が進行するにつれ、基材シートの寸法が徐々に増加する。このため、一度に大面積の基材シートを処理する場合、基材シートを改質処理液に浸漬する等の方法では、改質処理液が大面積の基材シートに均質に接触しないことがあり、基材シート面内の均質性を保持することが難しかった。例えば、特開2000-53788号公報記載の方法では、基材シートの寸法変化に対して基材シートを支持する多孔体シートが寸法変化を起こさないため、基材シートに歪み、折れ込み、シワが発生し、改質液の接触の均質性を保つことが難しかった。
【0083】
本実施形態の方法によれば、基材シートの寸法変化に対して第3芯から第1芯に巻戻す際に寸法変化分を巻き直すことにより、基材シートの歪み、折れ込み、シワを伸ばして、基材シートの全体を多孔体シートと接触でき、基材シートの全体を均一に改質できる。また、グラフト重合率が高くなる(すなわち高い寸法変化が発生する)場合においても均質なグラフト重合鎖付き基材を得ることができる。
【0084】
ここで、「グラフト重合率」とは、基材シートに対してモノマーをどの程度重合させたかの指標であり、以下の式によって算出される。
グラフト重合率(%)=(W2-W1)/W1×100
W1:グラフト重合前の基材シートを基材シートの主表面に対し直交する方向から見たとき、縦100mm、横100mmの正方形エリアの質量
W2:グラフト重合後の基材シートを基材シートの主表面に対し直交する方向から見たとき、縦100mm、横100mmの正方形エリアの質量
尚、W1は、測定位置に関係なく一定である。
【0085】
本実施形態の方法によりグラフト重合鎖付き基材を製造すれば、長尺の基材シートの面内のグラフト重合率のムラを低くすることができる。長尺の基材シートの幅は、好ましくは0.8m以上、より好ましくは1m以上である。長尺の基材シートの長さは、好ましくは1m以上、より好ましくは2m以上、より好ましくは10m以上、より好ましくは20m以上、さらに好ましくは100m以上である。グラフト重合率の最大値は、例えばグラフト重合率の平均値の115%以下であり、好ましくはグラフト重合率の平均値の110%以下である。グラフト重合率の最小値は、例えばグラフト重合率の平均値の85%以上であり、好ましくはグラフト重合率の平均値の90%以上である。
【0086】
グラフト重合率は、基材シートの幅方向に等間隔で並ぶ5点で測定される。これらの5点のうち、1点は基材シートの幅方向一端から0.05m離れた場所に配置され、他の1点は基材シートの幅方向他端から0.05m離れた場所に配置され、これら2点の間に残りの3点が配置される。これらの5点は、基材シートの幅方向に等間隔で配置される。これらの5点は、基材シートの長さが10m以上の場合、基材シートの長手方向に10m毎に設定される。例えば基材シートの長さが100mである場合、測定点は合計で5×10点設定され、設定された50点での測定値から平均値、最大値および最小値を求める。基材シートの幅方向の両端部については、グラフト重合前から欠陥や歪が存在する場合があるので、グラフト重合率の測定点から除く。
【0087】
本実施形態の方法によりイオン交換膜を製造すれば、長尺の基材シートの面内のイオン交換容量のムラを低くすることができる。長尺のイオン交換膜の幅は、好ましくは0.8m以上、より好ましくは1m以上である。長尺のイオン交換膜の長さは、好ましくは1m以上、より好ましくは2m以上、より好ましくは20m以上、さらに好ましくは100m以上である。イオン交換容量の最大値は、例えばイオン交換容量の平均値の115%以下であり、好ましくはイオン交換容量の平均値の110%以下である。イオン交換容量の最小値は、例えばイオン交換容量の平均値の85%以上であり、好ましくはイオン交換容量の平均値の90%以上である。
【0088】
イオン交換容量は、基材シートの幅方向に等間隔で並ぶ5点で測定される。これらの5点のうち、1点は基材シートの幅方向一端部に設定され、他の1点は基材シートの幅方向他端部に設定される。これらの5点は、基材シートの長さが1m以上の場合、基材シートの長手方向に0.5m毎に設定される。例えば基材シートの長さが1mである場合、測定点は合計で5×2点設定され、設定された10点での測定値から平均値、最大値および最小値を求める。各点での測定エリアは、基材シートを基材シートの主表面に対し直交する方向から見たとき、縦50mm、横50mmの正方形エリアである。
【0089】
本実施形態の方法により、膜性能のムラや、膜面内の含水率差による寸法ムラによる膜面の歪み、折れ込み、シワなどの問題を抑制し良好な膜とすることができる。
従来の方法により、長さが1m以上の基材シートに対してグラフト重合させると、グラフト重合率が平均値の85%よりも低いエリア、およびグラフト重合率が平均値の115%よりも高いエリアの少なくとも一方が発生する。
【0090】
本発明において、イオン交換容量は以下のようにして測定できる。
陰イオン交換膜の場合は、まず、採取した50mm角の各々のサンプルを1規定の水酸化ナトリウム水溶液の約200mLに浸漬する操作を数回繰り返し、各サンプルのイオン交換基を強塩基性のOH-型に置換する。
次に、各サンプルを純水500mLに浸漬することを繰り返し実施し、各サンプル内部の過剰の水酸化ナトリウムを取り除く。
次に、各サンプルを200mLビーカーに入れ、5%塩化ナトリウム水溶液の約100mLをビーカーに投入し、1時間浸漬したあと、各サンプルのイオン交換基を中性のCl-型に戻す。この操作を塩化ナトリウム水溶液が中性となるまで繰り返し、使用した塩化ナトリウム水溶液をすべて回収する。
この回収液を濃度既知の塩酸水溶液で中和滴定を行い、得られた滴定量をV(mL)とする。浸漬したサンプルは取り出した後、純水で繰り返し洗浄し、各サンプル中の塩化ナトリウムを除去した後、80℃で2時間乾燥を行い、乾燥重量を測定する。この値をW(g)とする。
使用した塩酸水溶液の濃度(mol/L)をCとすると、イオン交換容量(mmol/乾燥重量g)は、下記式
イオン交換容量(mmol/乾燥重量g)=V×C÷W
で求められる。なお、イオン交換容量の単位は、「乾燥重量」の記載を省略し、「mmol/g」と記載することもある。
【0091】
陽イオン交換膜の場合は、まず、採取した50mm角の各々のサンプルを2規定の塩酸水溶液の約200mLに浸漬する操作を数回繰り返し、各サンプルのイオン交換基を強酸性のH+型に置換する。
次に、各サンプルを純水500mLに浸漬することを繰り返し実施し、各サンプル内部の過剰の塩酸を取り除く。
次に、各サンプルを200mLビーカーに入れ、5%塩化ナトリウム水溶液の約100mLをビーカーに投入し、1時間浸漬したあと、各サンプルのイオン交換基を中性のNa+型に戻す。この操作を塩化ナトリウム水溶液が中性となるまで繰り返し、使用した塩化ナトリウム水溶液をすべて回収する。
この回収液を濃度既知の水酸化ナトリウム水溶液で中和滴定を行い、得られた滴定量をV(mL)とする。浸漬したサンプルは取り出した後、純水で繰り返し洗浄し、各サンプル中の塩化ナトリウムを除去した後、80℃で2時間乾燥を行い、乾燥重量を測定する。この値をW(g)とする。
使用した水酸化ナトリウム水溶液の濃度(mol/L)をCとすると、イオン交換容量(mmol/乾燥重量g)は、下記式
イオン交換容量(mmol/乾燥重量g)=V×C÷W
で求められる。
【実施例0092】
(実施例)
図4および
図6等に示す処理装置を用いて、電子線を100KGy照射した、幅1m、長さ100mの基材シートを、第1芯から巻き出して第3芯に巻き取ることと、第3芯から巻き出して第1芯に巻き取ることとを交互に休みなく繰り返すことを5時間続けて、重合反応させた。この重合反応では、処理液として、窒素雰囲気下のもと40℃に保持したクロロメチルスチレン、ジビニルベンゼン、キシレンの混合溶液(質量比50:2:50)を用いた。重合反応させた基材シートを、キシレンで十分に洗浄し、メタノールで再度洗浄した。その後、基材シートを十分に乾燥して取り出した。グラフト重合後の基材シートは、後述の比較例で得られたグラフト重合後の基材シートに比べてシワや折れ込みなどを抑制できており、幅1.15m、長さ120mとなっていた。
【0093】
グラフト重合後の基材シートの60点においてグラフト重合率を測定した。グラフト重合率の平均値は105%であり、グラフト重合率の最大値は115%であり、グラフト重合率の最小値は95%であった。グラフト重合率の最大値は、グラフト重合率の平均値の約110%であった。また、グラフト重合率の最小値は、グラフト重合率の平均値の約90%であった。
【0094】
上記で得られた重合膜の両端を0.05mずつ落とし幅1.05m、長さを120mの重合膜とした。このグラフト重合後の基材シートを、
図4および
図6等に示す処理装置を用いて、第1芯から巻き出して第3芯に巻き取ることと、第3芯から巻き出して第1芯に巻き取ることとを交互に休みなく繰り返すことを24時間続けて、処理液と反応させた。この反応では、処理液として、35℃に保持した10%トリメチルアミン水溶液を用いた。これにより、クロロメチルスチレンのクロロメチル基をすべて4級アンモニウム塩に変性した陰イオン交換膜を得た。得られた陰イオン交換膜は、後述の比較例で得られた陰イオン交換膜に比べてシワや折れ込みなどを抑制できており、幅が1.15m長さが130mだった。
【0095】
得られた幅1.15mm長さ130mのイオン交換膜を長手方向に1mの間隔をおいた2箇所で切断し、幅1.15m長さ1mのサンプルを切り出した。このサンプルの10点においてイオン交換容量を測定した。イオン交換容量の平均値は2.85mmol/乾燥重量gであり、イオン交換容量の最大値は2.95mmol/乾燥重量gであり、イオン交換容量の最小値は2.70mmol/乾燥重量gであった。イオン交換容量の最大値は、イオン交換容量の平均値の約104%であった。また、イオン交換容量の最小値は、イオン交換容量の平均値の約95%であった。従って、平坦性も高く均質な膜を得ることができた。尚、得られた陰イオン交換膜から、幅1.15m長さ1mの別のサンプルを切り出し、同様の分析を行ったが、同様の結果であった。
【0096】
(比較例)
特開2000-53788号公報を参考に、電子線を100KGy照射した、幅1m、長さ100mの基材シートを、厚み250μm、目付け50g/m2のポリエチレン不織布とともに巻取り、モノマー液を仕込んだ反応槽内で浸漬を行い、40℃5時間重合を行った。キシレンおよびメタノールで洗浄後、乾燥して得られた基材シートは、幅1.18m、長さ122mとなっていた。基材シートの寸法変化に不織布が追随しておらず、内部で折れ込んだ状態になっていた。また、洗浄液の循環が十分でないため、モノマー、キシレンの残臭が残っていた。
【0097】
グラフト重合後の基材シートの60点においてグラフト重合率を測定した。グラフト重合率の平均値は110%であり、グラフト重合率の最大値は125%であり、グラフト重合率の最小値は60%であった。グラフト重合率の最大値は、グラフト重合率の平均値の約114%であった。また、グラフト重合率の最小値は、グラフト重合率の平均値の約55%であった。グラフト重合率が平均値の85%未満の箇所には、折れ込みが激しい部分が含まれていた。またこのような折れ込み箇所が長さ100m中20箇所以上あることがわかった。折れ込みは、重合の進行に伴う基材シートの寸法変化によって発生し、基材シートと多孔体シートとの接触不良を引き起こし、重合の進行を妨げると考えられる。
【0098】
グラフト重合後の基材シートを上記重合と同じ方法で不織布とともに巻取り、トリメチルアミンの10%水溶液に35℃24時間浸漬して、クロロメチルスチレンのクロロメチル基が4級アンモニウム塩に変性した陰イオン交換膜を得た。
【0099】
得られた陰イオン交換膜から、幅1.15m長さ1mのサンプルを1つ切り出した。このサンプルの10点においてイオン交換容量を測定した。イオン交換容量の平均値は2.90mmol/乾燥重量gであり、イオン交換容量の最大値は3.10mmol/乾燥重量gであり、イオン交換容量の最小値は2.20mmol/乾燥重量gであった。イオン交換容量の最大値は、イオン交換容量の平均値の約107%であった。イオン交換容量の最小値は、イオン交換容量の平均値の約76%であった。イオン交換膜のサンプルは、平坦性が悪く、歪みやシワ、折れ込みのある箇所があった。このイオン交換膜のサンプルを、幅1m、長さ2m程度の大型電気透析槽に装着を試みたが、折れ込みが発生して正常な装填は難しかった。イオン交換膜の性能のばらつきも大きいことが容易に予想される。
【0100】
以上、基材シートの処理方法の実施形態などについて説明したが、本発明は上記実施形態などに限定されず、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。
【0101】
処理装置30の構成は、
図2~
図8に示す構成に限定されない。例えば、上記実施形態では、第1多孔体シート11と第2多孔体シート12の両方を用いるが、いずれか一方のみを用いてもよい。
【0102】
本出願は、2016年8月10日に日本国特許庁に出願した特願2016-157874号に基づく優先権を主張するものであり、特願2016-157874号の全内容を本出願に援用する。