(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022060132
(43)【公開日】2022-04-14
(54)【発明の名称】水中からマイクロプラスチックを回収する方法及びシステム
(51)【国際特許分類】
C02F 1/28 20060101AFI20220407BHJP
C12N 1/12 20060101ALI20220407BHJP
C12M 1/00 20060101ALN20220407BHJP
【FI】
C02F1/28 Z
C12N1/12 A
C12M1/00 E
【審査請求】有
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2021007907
(22)【出願日】2021-01-21
(62)【分割の表示】P 2020168049の分割
【原出願日】2020-10-02
(11)【特許番号】
(45)【特許公報発行日】2021-10-27
(71)【出願人】
【識別番号】520385537
【氏名又は名称】株式会社ノベルジェン
(74)【代理人】
【識別番号】100105315
【弁理士】
【氏名又は名称】伊藤 温
(72)【発明者】
【氏名】小倉 淳
(72)【発明者】
【氏名】河田 吉弘
(72)【発明者】
【氏名】田端 裕正
【テーマコード(参考)】
4B029
4B065
4D624
【Fターム(参考)】
4B029AA02
4B029AA27
4B029BB04
4B029CC01
4B029DG08
4B065AA83X
4B065AC14
4B065AC20
4B065BC50
4B065CA22
4B065CA54
4D624AA04
4D624AA05
4D624AB05
4D624BA19
4D624BB00
4D624BB08
4D624BC01
4D624BC05
4D624CA01
4D624CA06
4D624DA01
4D624DA03
4D624DA04
(57)【要約】
【課題】 使用エネルギーが大きい等の従来技術が抱えている問題が解消された、被処理水からマイクロプラスチックを効率的に回収する新規な技術を提供することを課題とする。
【解決手段】
マイクロプラスチックを含有する被処理水から前記マイクロプラスチックを回収する方法において、マイクロプラスチック吸着回収能を有する藻類を前記被処理水中に存在させる工程を含むことを特徴とする方法である。
【選択図】 なし
【特許請求の範囲】
【請求項1】
マイクロプラスチックを含有する被処理水から前記マイクロプラスチックを回収する方法において、マイクロプラスチック吸着回収能を有する藻類を前記被処理水中に存在させる工程を含むことを特徴とする方法。
【請求項2】
前記藻類が、粘着性物質を分泌する藻類である、請求項1記載の方法。
【請求項3】
前記粘着性物質が多糖類である、請求項2記載の方法。
【請求項4】
前記藻類が、珪藻、褐藻、渦べん毛藻、クロララクニオン藻、緑藻、紅藻、接合藻、ユーグレナ藻及び藍藻から選択される少なくとも一種である、請求項1~3のいずれか一項記載の方法。
【請求項5】
マイクロプラスチックを含有する被処理水から前記マイクロプラスチックを回収するためのシステムにおいて、前記被処理水から前記マイクロプラスチックを回収する際、マイクロプラスチック吸着回収能を有する藻類を利用することを特徴とするシステム。
【請求項6】
前記藻類が、粘着性物質を分泌する藻類である、請求項5記載のシステム。
【請求項7】
前記粘着性物質が多糖類である、請求項6記載のシステム。
【請求項8】
前記藻類が、珪藻、褐藻、渦べん毛藻、クロララクニオン藻、緑藻、紅藻、接合藻、ユーグレナ藻及び藍藻から選択される少なくとも一種である、請求項5~7のいずれか一項記載のシステム。
【請求項9】
マイクロプラスチックを含有する被処理水から前記マイクロプラスチックを回収する用途にて使用される、マイクロプラスチック吸着回収能を有する藻類組成物。
【請求項10】
前記藻類が、粘着性物質を分泌する藻類である、請求項9記載の藻類組成物。
【請求項11】
前記粘着性物質が多糖類である、請求項10記載の藻類組成物。
【請求項12】
前記藻類が、珪藻、褐藻、渦べん毛藻、クロララクニオン藻、緑藻、紅藻、接合藻、ユーグレナ藻及び藍藻から選択される少なくとも一種である、請求項9~11のいずれか一項記載の藻類組成物。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水中(例えば、海水中、河川水中)からマイクロプラスチックを回収する方法及びシステムに関する。
【背景技術】
【0002】
プラスチックは、生活において必要不可欠な素材の一つである。他方、該プラスチックが砕ける等して生成したマイクロプラスチックは、環境に与える問題が大きく、生態系をも脅かしている。マイクロプラスチックは、食物連鎖や様々な経路から人の体内に侵入し、少しずつ蓄積していくといわれている。
【0003】
ここで、マイクロプラスチックを回収する技術として、超音波振動を使う技術が提案されている(非特許文献1)。しかしながら、該技術は、使用エネルギーが大きく現実的ではない。更に、マイクロプラスチックを回収する技術として、浸透膜やフィルター等で物理的に回収する方法があるが、該方法では、夾雑物が多い通常環境では目詰まりが容易に起こるため現実的ではない。
【先行技術文献】
【非特許文献】
【0004】
【非特許文献1】https://www.sciencedirect.com/science/article/abs/pii/S0925400519315278
【発明の概要】
【発明が解決しようとする課題】
【0005】
そこで、本発明は、超音波振動法では使用エネルギーが大きい・夾雑物が多く物理的回収法では目詰まりが容易に起こる等の従来技術が抱えている問題が解消された、被処理水からマイクロプラスチックを効率的に回収する新規な技術を提供することを課題とする。
【課題を解決するための手段】
【0006】
本発明(1)は、マイクロプラスチックを含有する被処理水から前記マイクロプラスチックを回収する方法において、マイクロプラスチック吸着回収能を有する藻類を前記被処理水中に存在させる工程を含むことを特徴とする方法である。
本発明(2)は、前記藻類が、粘着性物質を分泌する藻類である、前記発明(1)の方法である。
本発明(3)は、前記粘着性物質が多糖類である、前記発明(2)の方法である。
本発明(4)は、前記藻類が、珪藻、褐藻、渦べん毛藻、クロララクニオン藻、緑藻、紅藻、接合藻、ユーグレナ藻及び藍藻から選択される少なくとも一種である、前記発明(1)~(3)のいずれか一つの方法である。
本発明(5)は、マイクロプラスチックを含有する被処理水から前記マイクロプラスチックを回収するためのシステムにおいて、前記被処理水から前記マイクロプラスチックを回収する際、マイクロプラスチック吸着回収能を有する藻類を利用することを特徴とするシステムである。
本発明(6)は、前記藻類が、粘着性物質を分泌する藻類である、請求項(5)のシステムである。
本発明(7)は、前記粘着性物質が多糖類である、前記発明(7)のシステムである。
本発明(8)は、前記藻類が、珪藻、褐藻、渦べん毛藻、クロララクニオン藻、緑藻、紅藻、接合藻、ユーグレナ藻及び藍藻から選択される少なくとも一種である、前記発明(5)~(7)のいずれか一つのシステムである。
本発明(9)は、マイクロプラスチックを含有する被処理水から前記マイクロプラスチックを回収する用途にて使用される、マイクロプラスチック吸着回収能を有する藻類組成物である。
本発明(10)は、前記藻類が、粘着性物質を分泌する藻類である、前記発明(9)の藻類組成物である。
本発明(11)は、前記粘着性物質が多糖類である、前記発明(10)の藻類組成物である。
本発明(12)は、前記藻類が、珪藻、褐藻、渦べん毛藻、クロララクニオン藻、緑藻、紅藻、接合藻、ユーグレナ藻及び藍藻から選択される少なくとも一種である、前記発明(9)~(11)のいずれか一つの藻類組成物である。
【発明の効果】
【0007】
本発明によれば、超音波振動法では使用エネルギーが大きい・夾雑物が多く物理的方法では目詰まりが容易に起こる等の従来技術が抱えている問題が解消された、被処理水からマイクロプラスチックを効率的に回収する新規な技術を提供することが可能となる。
【図面の簡単な説明】
【0008】
【
図1】
図1は、マイクロプラスチック回収システムの一例を示した概念図である。
【
図2】
図2は、マイクロプラスチック回収システムの制御ブロック図の一例である。
【
図3】
図3は、マイクロプラスチック回収システムにおける制御フロー図の一例である。
【
図4】
図4は、マイクロプラスチック回収システムにおける制御フロー図の一例である。
【
図5】
図5は、
図4の制御とは異なる制御を実行可能な別システムにおける制御フロー図の一例である。
【
図6】
図6は、
図4の制御とは異なる制御を実行可能な別システムにおける制御フロー図の一例である。
【
図7】
図7は、
図4の制御とは異なる制御を実行可能な、更なる別システムにおける制御フロー図の一例である。
【
図8】
図8は、
図4の制御とは異なる制御を実行可能な、更なる別システムにおける制御フロー図の一例である。
【
図9】
図9は、実施例における、マイクロプラスチック吸着後に沈殿物が確認された様子を示す図(写真)である。
【
図10】
図10は、藻類が分泌する粘着性物質の量の測定手順を示した図である。
【
図11】
図11は、実施例にて使用した各種藻類の拡大写真である。
【
図12】
図12は、濾過装置(フィルター等)を用いた、従来の回収システムと本発明の一形態の回収システムとの相違を示した図である。
【
図13】
図13は、マイクロプラスチック回収に用いられた藻類の一利用例を示した図である。
【
図14】
図14は、下水処理に本発明を利用した際の概念図である。
【発明を実施するための形態】
【0009】
≪マイクロプラスチックの回収方法≫
本発明は、マイクロプラスチックを含有する被処理水から前記マイクロプラスチックを回収する方法において、マイクロプラスチック吸着回収能を有する藻類を前記被処理水中に存在させる工程を含むことを特徴とする方法である。また、本発明の一態様は、マイクロプラスチックを含有する被処理水から前記マイクロプラスチックを回収する方法において、粘着性物質を分泌する藻類を前記被処理水中に存在させる工程を含むことを特徴とする方法である。以下、各構成要素について詳述する。
【0010】
<被処理水>
被処理水は、特に限定されず、例えば、マイクロプラスチックが存在する水又は存在する可能性のある水であり、海水、淡水、汽水等を挙げることができる。より具体的な例としては、人間や動物が摂取又接触する可能性のある水(例えば、養殖用海水、養殖用淡水、バラスト水、飲料水等)を調製する際の原水である。
【0011】
<マイクロプラスチック>
本発明にいう「マイクロプラスチック」とは、0.1μm以上5000μm以下の粒子を指す(最大長部分)。但し、処理の対象である被処理中に存在する(又は存在する可能性のある)プラスチックとしては、マイクロプラスチックのみならず、0.1μm未満や5000μmを超えるプラスチック粒子を含んでいても構わない。また、マイクロプラスチックの実態としては、大半(例えば、全粒子個数の80%以上、90%以上、95%以上)が、例えば、0.1μm以上、0.5μm以上、1μm以上、2μm以上、3μm以上、4μm以上、5μm以上、6μm以上、7μm以上、10μm以上、50μm以上、100μm以上、500μm以上、1000μm以上、2500μm以上;2500μm以下、1000μm以下、500μm以下、100μm以下、50μm以下、10μm以下、9μm以下、8μm以下、7μm以下、6μm以下、5μm以下、4μm以下、3μm以下である(最大長部分)。尚、周知のように、マイクロプラスチックとしては、一次マイクロプラスチック(マイクロサイズで製造されたプラスチック:例えば、洗顔剤・柔軟剤・緩効性肥料のカプセル等に利用)及び二次マイクロプラスチック(大きなプラスチックが、自然環境で破砕細分化されてマイクロサイズになったもの)とがある。
【0012】
<藻類>
本発明にいう「マイクロプラスチック吸着回収能を有する藻類」とは、藻類を存在させた場合における被処理水中のマイクロプラスチック濃度が、藻類を存在させない場合における被処理水中のマイクロプラスチック濃度と比較し、所定量(例えば、10%、20%、30%、40%、50%、60%、70%、80%、90%、95%)以上低下させることが可能な藻類を指す。ここで、このような性質を有する藻類としては、例えば、粘着性物質を分泌するストラメノパイルに属する珪藻・褐藻、アルベオラータに属する渦べん毛藻、リザリアに属するクロララクニオン藻、アーケプラスチダに属する緑藻・紅藻、接合藻、エクスカバータに属するユーグレナ藻、 真正細菌に属する藍藻;マイクロプラスチックを捕捉する物理的構造(例えば、多孔質構造、凹凸構造)を有する藻類(例えば、珪藻);マイクロプラスチックと逆電荷に帯電した藻類、を挙げることができる。例えば、微細藻類は形状もサイズも様々だが、表面積の大きな多孔性藻類や、糸状の群体を形成する物が存在する。このような構造にもマイクロプラスチックをからめとる機能がある。
【0013】
本発明の一態様にいう「粘着性物質を分泌する藻類」とは、例えば、ストラメノパイルに属する珪藻・褐藻、アルベオラータに属する渦べん毛藻、リザリアに属するクロララクニオン藻、アーケプラスチダに属する緑藻・紅藻、接合藻、エクスカバータに属するユーグレナ藻、 真正細菌に属する藍藻を挙げることができる。ここで、微細藻類は、細胞外に様々な粘質性物質を放出することが知られている。粘着性物質は、典型的には多糖類であり、例えばテングサ等の紅藻、接合藻類であればアガロースやポルフィラン、コンブ等の褐藻類であればアルギン酸やフコース含有多糖といった物質である。
【0014】
ここで、藻類の大きさは、特に限定されない。但し、処理対象のマイクロプラスチックのサイズが0.1μm以上5000μm以下であることを踏まえると、5000μm以上であること(例えば、連なったり群がったりした藻類の場合、これら連なったり群がったりした大きさ)が好適である。但し、藻類の大きさを被処理水に存在するマイクロプラスチックの主たる大きさに依存させてもよく、この場合、想定される藻類の大きさは、例えば、0.1μm以上、1μm以上、2μm以上、5μm以上、10μm以上、50μm以上、100μm以上、500μm以上、1000μm以上、2500μm以上、5000μm以下、2500μm以下、1000μm以下、500μm以下、250μm以下、100μm以下、50μm以下、25μm以下、20μm以下、10μm以下、5μm以下、1μm以下である。尚、ここでの「大きさ」は、最大径部分(例えば、棒状の藻類である場合には、長径部分)を指す。また、系内には様々な大きさの藻類が存在するが、ここでいう「大きさ」は、ランダムに取得した100個の藻類の大きさの平均値を指す。
【0015】
加えて、藻類が分泌する粘着性物質の量は、細胞サイズに比べて、細胞外に分泌した粘着物質の容積が0.25倍以上であることが好適である。尚、容積の測定方法は下記の通りである。スライドガラス上に培養した微細藻類培養液10μL添加する。5倍に希釈した墨汁を10μL添加して、墨汁と微細藻類培養液をよく混ぜ、カバーガラスをかけて顕微環境下で微細藻類の細胞容積と細胞外粘質物の容積を測定した。Kishimoto et al.の手法{Kishimoto N., Ichise S., Suzuki K., Yamamoto C.: Analysis of long-term variation in phytoplankton biovolume in the northern basin of Lake Biwa. Limnology 14: 117-128(2013)}に則り、各藻類を楕円柱、楕円形、直方体及びこれらの組み合わせで近似し、細胞容積の算出を行った。細胞外粘質物容積に関しては、墨汁で染色されなかった部分を含む容積を算出し、細胞容積を除算することによって細胞外粘質物容積を求めた。
図10は、上記手順を示した図である。また、系内には様々な大きさの藻類が存在するが、ここでいう「量」は、ランダムに取得した100個の藻類の大きさの平均値を指す。
【0016】
<回収条件>
次に、マイクロプラスチックを含有する被処理水から前記マイクロプラスチックを回収する方法における好適な回収条件を説明する。
【0017】
(マイクロプラスチック濃度と藻類濃度との関係)
系内における好適な藻類濃度は、マイクロプラスチック濃度・マイクロプラスチックの大きさ・使用する藻類の種類等により変動する。この条件設定は、例えば実施例に記載されたモデル実験を実行することにより決定可能である。
【0018】
(回収時間)
系内における好適な回収時間は、マイクロプラスチック濃度・マイクロプラスチックの大きさ・使用する藻類の種類・低減目標とするマイクロプラスチック濃度等により変動する。この条件設定は、例えば実施例に記載されたモデル実験を実行することにより決定可能である。
【0019】
≪藻類組成物≫
本発明に係る方法やシステムに用いる藻類は、藻類組成物であってもよい。具体的には、同種又は異種の藻類の群れである。ここで、該藻類の群れは、例えば、該藻類が生存可能な状態(例えば液体培地内)にて容器等に収納されていることが好適である。また、フリーズドライしても生存可能な藻類については、乾燥形態で取り扱ってもよい。尚、必要に応じ、該組成物は、藻類以外の成分を含有していてもよい。
【0020】
≪マイクロプラスチック回収システム≫
次に、本形態に係るマイクロプラスチック回収システムを説明する。尚、本明細書及び本特許請求の範囲にいう「システム」とは、装置やプラントを包含する概念である。まず、本システムは、被処理水から前記マイクロプラスチックを回収する際、マイクロプラスチック吸着回収能を有する藻類(又は粘着性物質を分泌する藻類)を利用することを特徴とするシステムである限り、特に限定されず、様々なシステムが想定される(例えば、
図14は、下水処理に本発明を利用した際の概念図である)。
図12は、あくまで一例であるが、濾過装置(フィルター等)を用いた、従来の回収システムと本発明の一形態の回収システムとの相違である。該図から分かるように、従来技術ではマイクロプラスチックが少量しか回収できなかったのに対し、本発明の一形態ではマイクロプラスチックが藻類に付着して塊状となるためより多く回収できるようになる。以下、該システムの一例を説明する。
【0021】
<システム構成>
ここで、
図1は、マイクロプラスチック回収システムの一例を示した概念図である。
図1に示すように、該システム1は、水を貯留可能なマイクロプラスチック回収部1-1と、藻類を含む水をマイクロプラスチック回収部1-1に導入する藻類導入部1-2と、マイクロプラスチックを含む可能性がある被処理水をマイクロプラスチック回収部1-1に導入する被処理水導入部1-3と、マイクロプラスチック回収部1-1にて処理された水を濾過して藻類等を除去する濾過部1-4と、を有する。
【0022】
<システム機能>
次に、
図2は、該マイクロプラスチック回収システムの制御ブロック図の一例である。該処理システム1は、藻類導入手段2を制御してマイクロプラスチック回収部1-1内に藻類を含む水の導入制御を司る藻類導入制御手段1-1と、被処理水導入手段3を制御してマイクロプラスチック回収部1-1内に被処理水の導入制御を司る被処理水導入制御手段1-2と、マイクロプラスチック回収部1-1内のプラスチックの存在及び/又は量を測定するMP量測定手段の制御を司るMP量測定制御手段1-3と、マイクロプラスチック回収部1-1内の水(被処理水+藻類)を攪拌する攪拌手段5の攪拌制御を司る攪拌制御手段1-4と、被処理水の処理が完了したかを判定する処理完了判定手段1-5と、被処理水の処理後に該水をマイクロプラスチック回収部1-1から排水させる排水手段6の排水制御を司る排水制御手段1-6と、を有する。
【0023】
<制御>
次に、
図3及び
図4は、該マイクロプラスチック回収システムにおける制御フロー図の一例である。まず、ステップ1で、被処理水導入制御手段1-2は、被処理水導入手段3を制御し、マイクロプラスチック回収部1-1への被処理水の導入を開始する。次に、ステップ3で、被処理水導入制御手段1-2は、マイクロプラスチック回収部1-1に所定量の被処理水が導入されたか否かを判定する。ステップ3でYesの場合、被処理水導入制御手段1-2は、被処理水導入手段3を制御し、マイクロプラスチック回収部1-1への被処理水の導入を完了する。尚、ステップ3でNoの場合には、被処理水の導入を継続する。次に、ステップ7で、MP量測定制御手段1-3は、MP量測定手段4を用いてマイクロプラスチック回収部1-1中のMP量の測定制御を実行する。そして、ステップ9で、MP量測定制御手段1-3は、被処理水中のマイクロプラスチック量に応じ、マイクロプラスチック回収部1-1内に導入する藻類量を決定する。次に、ステップ11で、藻類導入制御手段1-1は、藻類導入手段2を制御し、例えばマイクロプラスチック回収部1-1とは別に設けられた藻類貯留部{例えば、藻類を有する水(例えば、真水、海水)が蓄えられた、例えば藻類を培養する機能を有する貯留部}からマイクロプラスチック回収部1-1に藻類を含有する水の導入を開始する。次に、ステップ13で、藻類導入制御手段1-1は、ステップ9にて決定した藻類導入量に到達したか否かを判定する。ステップ13でYesの場合、ステップ15で、藻類導入手段1-1は、藻類貯留部からのマイクロプラスチック回収部1-1への藻類の導入を終了する。尚、ステップ13でNoの場合には、藻類の導入を継続する。次に、ステップ17で、攪拌制御手段1-4は、マイクロプラスチック量又は濃度が所定量以下とするための攪拌時間を決定するための所定パラメータ(例えば、マイクロプラスチック濃度、導入された藻類量)に基づき、攪拌時間(処理時間)を決定する。そして、ステップ19で、攪拌制御手段1-4は、攪拌手段5を制御し、マイクロプラスチック回収部1-1内の水(マイクロプラスチック+藻類を含有する水)の攪拌を開始する。次に、ステップ21で、攪拌制御手段1-4は、ステップ17で決定した決定した攪拌時間(処理時間)に到達したか否かを判定する。ステップ21でYesの場合、攪拌制御手段1-6は、攪拌手段5を制御し、マイクロプラスチック回収部1-1内の水の攪拌を終了する。尚、ステップ21でNoの場合には、マイクロプラスチック回収部1-1内の水の攪拌を継続する。次に、ステップ25で、排水制御手段1-6は、排水手段6を制御し、マイクロプラスチック回収部1-1内の水(処理水)を排水する。尚、該排水は、その後、好適には濾過部に導入され、濾過部にてマイクロプラスチックが付着した藻類が水から除去される。その結果、マイクロプラスチックで汚染された水を、マイクロプラスチックを含まない又は低減された水とすることが可能となる。
【0024】
<他の制御例1>
図5及び
図6は、上記制御とは異なる制御を実行可能な別システムにおける制御フロー図の一例である。ここで、当該制御が前述した制御と異なる点はステップ21での処理である。前述した制御では、攪拌制御手段1-4がステップ17で決定した決定した攪拌時間(処理時間)に到達したか否かを判定する処理を実行している。他方、該制御では、攪拌制御手段1-4は、MP量測定手段4を用いてマイクロプラスチック回収部1-1内におけるマイクロプラスチックの有無又は量を測定し、被処理水中のMP量が所定量以下か否かを判定する。
【0025】
<他の制御例2>
図7及び
図8は、上記制御とは異なる制御を実行可能な、更なる別システムにおける制御フロー図の一例である。ここで、前記のシステムは、マイクロプラスチック回収部1-1内に所定量の藻類(マイクロプラスチック回収部1-1に導入された水中に含まれているマイクロプラスチック量に応じた藻類量)を導入するシステムである。他方、このシステムは、マイクロプラスチック回収部1-1内に藻類を導入(マイクロプラスチック回収部1-1内に導入された水中に含まれているマイクロプラスチックを処理可能な藻類量よりも少ない藻類量)した後に該藻類をマイクロプラスチック回収部1-1内で培養することで、マイクロプラスチック回収部1-1内に導入された水中に含まれているマイクロプラスチックの処理に十分な藻類を該回収部1-1内に存在させる点で前記システムと相違する。これを前提としてこのシステムの処理を説明すると、ステップ7で、藻類導入制御手段1-1は、藻類導入手段2を制御し、マイクロプラスチック処理部1-1内に所定量の藻類を添加する。次に、ステップ9で、MP量測定制御手段1-3がMP量測定手段4を制御してマイクロプラスチック1-1内のマイクロプラスチックの存在及び/又は量を測定し、次いで、処理システム1は「被処理水中のマイクロプラスチック量」と「導入した藻類量」とに基づき、藻類の培養条件を決定する(時間、温度等)。尚、本例では培養条件として時間を例に採り説明する。次に、ステップ13で、処理システム1は、ステップ9で決定した培養時間に到達したか否かを判定する。ステップ13でYesの場合、ステップ15で、処理システム1は、マイクロプラスチック回収部1-1内での藻類の培養を終了する。他方、ステップ13でNoの場合、藻類の培養を継続する。
【0026】
≪有用性≫
本発明は、陸の無農薬(オーガニック)農産物に相当する、NonMicroPlastic水産物・safe and secure seafoodを作る点で有用である。特に、本発明は、環境中のマイクロプラスチックを摂取しないために、陸上養殖施設へ導入が有望である。例えば、海ぶどう、海苔、ヤイトハタ(高級魚)、牡蠣、ウニ、エビといった養殖を挙げることができる。更に、本発明は、消費者にとっては沿岸MPの除去という環境貢献につながる。更に、マイクロプラスチック回収に用いられた藻類は、
図13の用途でも利用可能である。
【実施例0027】
≪藻類の培養≫
実験に使用する藻類(表1参照)を1Lスケールで培養した。この際、濁度計(CO8000 Biowave)を使用し、濁度を測定、記録した。例えば、スケルトネマ属又は5~10μm程度の藻類は、7000cells/mlを目安とした。尚、 藻類細胞数が7000cells/mlより多い場合は、培地等で希釈した。他方、少ない場合は、2~3時間後に上静を取り除き調整した。その後、よく懸濁した19.648mlの培養液を70ml細胞培養フラスコに入れた(3個用意)。また、コントロールとして19.648 mlの培地を新しい70ml細胞培養フラスコに入れた{4個用意(4個の内1つは検量線作成用)}。更に、紫外可視光分光光度計で吸光度を測定する際のBase line補正用として、よく懸濁した培養液を20ml程度用意した。次に、培養液の入った70ml細胞培養フラスコに2μmのビーズ液352μl(5.68×10
8ビーズ/ml)を入れた。その後、ピペッティングにより混合し、20℃人工気象器に入れ静置培養を行った(1日間)。尚、
図11は、使用した各種藻類の拡大写真である。図中、点線が細胞表面を示しており、実線が粘着性物質の界面を示している。また、表2は、一般的記載にて記載した手法にて算出した粘着性成分の量である。
【0028】
【0029】
【0030】
≪マイクロプラスチック回収試験≫
前記≪藻類の培養≫で得られたフラスコ{上記各藻類が培養された、終濃度1×10
7ビーズ(2μm)/mlの液}を揺らさないように、人工気象器から該フラスコを取り出した。この際、
図9に示すように、沈殿物が確認された。この後、旋回とピペッティングにより懸濁させた。次に、50mlチューブに50μmセルストレーナー(pluriStrainer 50μm)を、コネクターリングを使いセット・ラベルした(検量線用以外の細胞培養フラスコの数用意)。そして、全培養フラスコを各セルストレーナーでシリンジを使い減圧濾過した(検量線用は濾過しない)。その後、一次濾過したサンプルは蓋をして実験台に保管した。そして、検量線を作成し、藻類によるbeads回収率を推定するため、検量線用のbeads希釈系列を作成した。具体的には、beads未添加の培地をbeads濃度0として、ストック濃度1.00×10
7beads/mlから1/2希釈を繰り返して 3.13×10
5beads/ml、6.25×10
5beads/ml、1.25×10
6beads/ml、2.50×10
6beads/ml、5.00×10
6beads/mlを調製した。
【0031】
≪マイクロプラスチック回収測定試験≫
紫外可視光分光光度計BioSpec-Mini(島津製作所)を使用してbeadsの蛍光である267nmの吸光度測定を行った。この際、藻類のbeads回収率を推定するため、検量線用のbeads希釈系列を測定し、検量線を作成して一次回帰式を得た。そして、藻類培養培地+beads溶液の50μmセルストレーナー透過液をsampleとして吸光度測定を行い、検量線によって得られた一次回帰式から透過液中のbeads濃度を算出した。同様の作業を培養していない培地+beads溶液の50μmセルストレーナー透過液をcontrolとして吸光度測定を行い、検量線によって得られた一次回帰式から透過液中のbeads濃度を算出した。そして、sample中のbeads濃度とcontrol中のbeads濃度からbeadsの回収率を算出した。その結果を表3に示す。
【0032】
マイクロプラスチックを含有する被処理水から前記マイクロプラスチックを回収する方法において、マイクロプラスチック吸着回収能を有する藻類を前記被処理水中に存在させる工程を含むことを特徴とする方法。
前記藻類が、珪藻、褐藻、渦べん毛藻、クロララクニオン藻、緑藻、紅藻、接合藻、ユーグレナ藻及び藍藻から選択される少なくとも一種である、請求項1~3のいずれか一項記載の方法。
マイクロプラスチックを含有する被処理水から前記マイクロプラスチックを回収するためのシステムにおいて、前記被処理水から前記マイクロプラスチックを回収する際、マイクロプラスチック吸着回収能を有する藻類を利用することを特徴とするシステム。
前記藻類が、珪藻、褐藻、渦べん毛藻、クロララクニオン藻、緑藻、紅藻、接合藻、ユーグレナ藻及び藍藻から選択される少なくとも一種である、請求項5~7のいずれか一項記載のシステム。