(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022061493
(43)【公開日】2022-04-18
(54)【発明の名称】ソイルコンパクタを用いて締固めプロセスを実施する際の土壌の締固め状態に関連する情報を供給するための方法
(51)【国際特許分類】
E01C 19/28 20060101AFI20220411BHJP
【FI】
E01C19/28
【審査請求】有
【請求項の数】15
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2021164053
(22)【出願日】2021-10-05
(31)【優先権主張番号】10 2020 126 084.9
(32)【優先日】2020-10-06
(33)【優先権主張国・地域又は機関】DE
(71)【出願人】
【識別番号】508123375
【氏名又は名称】ハム アーゲー
【氏名又は名称原語表記】Hamm AG
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【弁理士】
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】フリッツ・コプフ
(72)【発明者】
【氏名】ヨハネス・ピストロール
(72)【発明者】
【氏名】マリオ・ハーゲル
(72)【発明者】
【氏名】ディートマー・アダム
(72)【発明者】
【氏名】トビアス・フェアー
(72)【発明者】
【氏名】ヴェルナー・フェルケル
【テーマコード(参考)】
2D052
【Fターム(参考)】
2D052AA03
2D052AA04
2D052AC01
2D052AD15
2D052BB01
2D052BB07
2D052CA07
2D052DA32
2D052DA33
(57)【要約】
【課題】土壌の締固め状態に関連する情報を供給するための方法を提供する。
【解決手段】方法は、a)ソイルコンパクタが土壌の上を移動する際の、振動ローラの前記垂直加速度と水平加速度とを検出するステップと、b)振動周期に関して、土壌接触力F
bと振動ローラの変位s
wとの間の測定関係を、ステップa)で検出された垂直加速度及び水平加速度を用いて決定するステップと、c)振動周期に関して、土壌接触力F
bと変位s
wとの間のシミュレーション関係Z
Sを、少なくとも1つのシミュレーションパラメータを考慮した土壌モデルを用いて決定するステップと、d)シミュレーション関係Z
Sを測定関係と比較するステップと、e)シミュレーション関係Z
Sが測定関係に概ね一致する場合、土壌モデルにおいて考慮される少なくとも1つのシミュレーションパラメータの設定値が、土壌の対応する土壌パラメータを概ね表していると決定するステップと、を含む。
【選択図】
図6
【特許請求の範囲】
【請求項1】
ソイルコンパクタ(10)を用いて締固めプロセスを実施する際の、土壌の締固め状態に関連する情報を供給するための方法であって、
前記ソイルコンパクタ(10)は、少なくとも1つの振動ローラ(24)のローラ回転軸(W)の周りで回転するアンバランス構造(28)を備えた少なくとも1つの振動ローラ(24)を含んでおり、
少なくとも1つの前記振動ローラ(24)に割り当てられて、前記振動ローラ(24)の締固められるべき土壌(12)に対して略直交する垂直加速度(az)と少なくとも1つの前記振動ローラ(24)の締固められるべき土壌(12)に対して略平行な水平加速度(ax)とを検出するための加速度検出アセンブリ(30、32)が設けられており、
前記方法は、
a)前記ソイルコンパクタ(10)が締固められるべき前記土壌(12)の上を移動する際の、少なくとも1つの前記振動ローラ(24)の前記垂直加速度(az)と前記水平加速度(ax)とを検出するステップと、
b)少なくとも1つの振動周期に関して、土壌接触力(Fb)と前記振動ローラ(24)の変位(sw)との間の測定関係(ZM)を、前記ステップa)で検出された前記垂直加速度(az)及び前記水平加速度を用いて決定するステップと、
c)少なくとも1つの前記振動周期に関して、前記土壌接触力(Fb)と前記変位(sw)との間のシミュレーション関係(ZS)を、少なくとも1つのシミュレーションパラメータを考慮した土壌モデルを用いて決定するステップと、
d)前記ステップc)で、少なくとも1つの前記振動周期に関して決定された前記シミュレーション関係(ZS)を、前記ステップb)で、少なくとも1つの前記振動周期に関して決定された前記測定関係(ZM)と比較するステップと、
e)前記ステップd)で実施された比較の結果、少なくとも1つの前記振動周期に関して決定された前記シミュレーション関係(ZS)が、少なくとも1つの前記振動周期に関して決定された前記測定関係(ZM)に概ね一致する場合、前記土壌モデルにおいて考慮される少なくとも1つの前記シミュレーションパラメータの設定値が、締固められるべき前記土壌(12)の対応する土壌パラメータを概ね表していると決定するステップと、を含んでいる方法。
【請求項2】
前記ステップb)及び前記ステップc)において、最大の土壌接触力(Fbmax)の方向に概ね一致する前記振動ローラ(24)の仕事方向(A)における前記変位が考慮されることを特徴とする、請求項1に記載の方法。
【請求項3】
前記ステップc)が、前記振動周期の過程における前記振動ローラ(24)の接触周方向長さ(2b)を決定するための前記ステップc1)を含むこと、及び、前記接触周方向長さ(2b)は、前記土壌モデルのシミュレーションパラメータを生成することを特徴とする、請求項1又は2に記載の方法。
【請求項4】
前記ステップc1)において、前記接触周方向長さ(2b)が、前記ステップa)において決定された前記垂直加速度(az)と前記水平加速度(ax)とに基づいて、及び、前記ソイルコンパクタ(10)の移動方向(B)における前記ソイルコンパクタ(10)の移動速度に基づいて決定されることを特徴とする、請求項3に記載の方法。
【請求項5】
前記ステップc1)において、前記ソイルコンパクタ(10)の移動方向(B)において接触中心に先行する前方の周方向長さ部分(bv)と、前記ソイルコンパクタ(10)の前記移動方向(B)において前記接触中心を追いかける後方の周方向長さ部分(bh)とを有する前記接触周方向長さ(2b)が決定されること、及び、前記前方の周方向長さ部分(bv)の長さと、前記後方の周方向長さ部分(bh)の長さとに基づいて、前記土壌(12)の状態を表す非対称パラメータが生成されることを特徴とする、請求項3又は4に記載の方法。
【請求項6】
前記土壌の弾性係数(Egeo)が、前記土壌モデルのシミュレーションパラメータを生成することを特徴とする、請求項1から5のいずれか一項に記載の方法。
【請求項7】
前記土壌モデルが、少なくともバネの力成分(Fb,k)とダンパの力成分(Fb,c)とによって表される前記土壌の変形挙動を考慮すること、及び、前記ステップc)が、前記バネの力成分(Fb,k)を決定するために前記ステップc2)を含み、前記ダンパの力成分(Fb,c)を決定するために前記ステップc3)を含むことを特徴とする、請求項1から6のいずれか一項に記載の方法。
【請求項8】
前記ステップc2)では、前記バネの力成分(Fb,k)が、前記土壌の弾性係数(Egeo)及び前記接触周方向長さ(2b)に依存して決定され、又は/及び、前記ステップc3)では、前記ダンパの力成分(Fb,c)が、前記土壌の弾性係数(Egeo)及び前記接触周方向長さ(2b)に依存して決定されることを特徴とする、請求項3を引用する請求項6を引用する請求項7に記載の方法。
【請求項9】
前記ステップc2)において、前記振動周期に関して、前記振動ローラ(24)の前記土壌(12)に進入する深さが増大する位相に関する第1のバネの力成分部分(F1)と、前記振動ローラ(24)の進入する深さが減少する位相に関する第2のバネの力成分部分(F2)とを有する、前記バネの力成分(Fb,k)が決定されることを特徴とする、請求項7又は8に記載の方法。
【請求項10】
前記ステップc2)において、前記第2のバネの力成分部分(F2)が、荷重軽減の剛性係数を考慮して、前記振動ローラ(24)の進入深さが減少する位相から、非接触の位相に移行する際に、前記バネの力成分(Fb,k)と前記ダンパの力成分(Fb,c)とが互いに概ね完全に相殺されるように決定され、前記非接触の位相では、少なくとも1つの前記振動ローラ(24)は、締固められるべき前記土壌(12)に概ね接触しておらず、前記荷重軽減の剛性係数は、前記土壌の状態を表す剛性パラメータを生成し得ることを特徴とする、請求項9に記載の方法。
【請求項11】
前記ステップc)が、前記振動周期に関して、前記ステップc2)で決定された前記バネの力成分(Fb,k)及び前記ステップc3)で決定された前記ダンパの力成分(Fb,c)に基づいて前記土壌接触力(Fb)を決定するために、前記ステップc4)を含んでいることを特徴とする、請求項10に記載の方法。
【請求項12】
前記ステップe)において、前記シミュレーション関係(ZS)の前記測定関係(ZM)からの逸脱が、所定の逸脱基準値を下回らないことが認識される場合、前記ステップc)から前記ステップe)は、前記ステップc)を実施する際に少なくとも1つの前記シミュレーションパラメータを変更しながら、前記シミュレーション関係(ZS)の前記測定関係(ZM)からの逸脱が、前記所定の逸脱基準値を下回るまで繰り返されることを特徴とする、請求項1から11のいずれか一項に記載の方法。
【請求項13】
前記ステップe)において対応する前記土壌パラメータを主に表すものとして決定された前記シミュレーションパラメータと、締固められた前記土壌(12)の前記土壌パラメータの測定値との間の相関係数が決定されること、又は、前記土壌パラメータの現在値を得るために、前記ステップe)において、対応する前記土壌パラメータを主に表すものとして決定された前記シミュレーションパラメータが、前記相関係数と結びつけられることを特徴とする、請求項1から12のいずれか一項に記載の方法。
【請求項14】
前記ステップa)から前記ステップe)が、締固めプロセスを実施する際、前記ソイルコンパクタ(10)の移動中に、繰り返し実施されることを特徴とする、請求項1から13のいずれか一項に記載の方法。
【請求項15】
締固めプロセスを実施する際、締固められるべき前記土壌(12)の上における複数の位置と、前記ステップa)から前記ステップe)を実施する際に前記土壌パラメータを主に表すものとして決定された少なくとも1つの前記シミュレーションパラメータの、前記位置に割り当てられてそれぞれ決定された値と、を備えたデータセットが生成されることを特徴とする、請求項1から14のいずれか一項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ソイルコンパクタを用いて締固めプロセスを実施する際の、土壌の締固め状態に関連する情報を供給するための方法に関する。
【背景技術】
【0002】
このような締固めプロセスを実施するため、例えば土工事において砂利材料を圧縮するため、又は、道路工事においてアスファルト材料等を圧縮するために用いられるソイルコンパクタは、一般的に、少なくとも1つの振動ローラのローラ回転軸の周りに回転するアンバランス構造を有する少なくとも1つの振動ローラを含んでいる。このような振動ローラの運動状態に関する情報を供給可能にするために、このようなソイルコンパクタの少なくとも1つの振動ローラに割り当てて、締固めされるべき土壌に概ね直交する振動ローラの垂直加速度と、締固めされるべき土壌に対して概ね平行な振動ローラの水平加速度と、を検出するための加速度検出アセンブリが設けられている。
【0003】
ローラ回転軸の周りで回転するアンバランス構造を設けることによって、締固めプロセスの実施の際、締固めローラ又は振動ローラの重量と、これらのローラに加わるソイルコンパクタの重量と、によって形成される土壌の静荷重には、ソイルコンパクタが土壌の上を走行する際に、動荷重成分が重ねられ、当該動荷重成分は、土壌の上をソイルコンパクタが走行する際に行われる土壌の締固めに大きな影響を与える。特に、このようなアンバランス構造の回転によって、振動ローラは、締固められるべき土壌から周期的に上昇し、対応して土壌に周期的に衝突するように動作し得る。
【0004】
垂直加速度すなわち当該振動ローラの締固められるべき土壌に対して略直交する加速度の検出と、水平加速度すなわち当該振動ローラの締固められるべき土壌に対して略平行な加速度の検出と、を通じて、運動状態に関する情報と、振動ローラが締固められるべき土壌に接触している位相において土壌と振動ローラとの間で作用する土壌接触力に関する情報と、が供給され得る。当該情報は、総合動的締固め制御(FDVK)の枠内で、例えば締固められるべき土壌の締固め程度に関連する情報を供給するために利用され得る。当該情報に基づいて、締固められるべき土壌が既に十分に締固められているか、又は、ソイルコンパクタのさらなる走行が必要であるか、が決定され得る。さらに、当該情報は、位置付けられ、品質管理のために、保存又は記録され得る。
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明の課題は、ソイルコンパクタを用いて締固めプロセスを実施する際に、土壌の締固め状態に関連する情報を供給するための方法を提供することにあり、当該方法を用いて、締固められた土壌の状態を表す情報を、情報量を増大させ、正確性を高めて供給することが可能である。
【課題を解決するための手段】
【0006】
本発明によると、本課題は、ソイルコンパクタを用いて締固めプロセスを実施する際の、土壌の締固め状態に関連する情報を供給するための方法によって解決され、当該ソイルコンパクタは、少なくとも1つの振動ローラのローラ回転軸の周りで回転するアンバランス構造を備えた少なくとも1つの振動ローラを含んでおり、少なくとも1つの振動ローラに割り当てられて、振動ローラの締固められるべき土壌に対して略直交する垂直加速度と、少なくとも1つの振動ローラの締固められるべき土壌に対して略平行な水平加速度と、を検出するための加速度検出アセンブリが設けられている。
【0007】
本発明に係る方法は、以下のステップを含んでいる:
a)ソイルコンパクタが締固められるべき土壌の上を移動する際の、少なくとも1つの振動ローラの垂直加速度と水平加速度とを検出するステップ、
b)少なくとも1つの振動周期に関して、土壌接触力と振動ローラの変位との間の測定関係を、ステップa)で検出された垂直加速度及び水平加速度を用いて決定するステップ、
c)少なくとも1つの振動周期に関して、土壌接触力と変位との間のシミュレーション関係を、少なくとも1つのシミュレーションパラメータを考慮した土壌モデルを用いて決定するステップ、
d)ステップc)で、少なくとも1つの振動周期に関して決定されたシミュレーション関係を、ステップb)で、少なくとも1つの振動周期に関して決定された測定関係と比較するステップ、
e)ステップd)で実施された比較の結果、少なくとも1つの振動周期に関して決定されたシミュレーション関係が、少なくとも1つの振動周期に関して決定された測定関係に概ね一致する場合、土壌モデルにおいて考慮される少なくとも1つのシミュレーションパラメータの設定値が、締固められるべき土壌の対応する土壌パラメータを概ね表していると決定するステップ。
【0008】
本発明に係る方法では、検出された振動ローラの加速度を考慮して決定された、振動ローラと締固められるべき土壌との間に作用する土壌接触力と関連する振動ローラの動きは、振動周期において、すなわち例えばアンバランス構造が完全に一周する間に、振動周期中の振動ローラの動きと、又は、土壌モデル及び土壌モデルにおいて用いられる少なくとも1つのシミュレーションパラメータを考慮して決定される、振動ローラと土壌との間に作用する土壌接触力と比較される。
【0009】
土壌モデルに基づく土壌接触力と変位との関係すなわちシミュレーション関係と、加速度の検出に基づく従って振動ローラの実際の運動状態を描写している関係すなわち測定関係と、の間に、例えば最良適合プロセスにおいて決定され得るような十分に良好な一致が得られている場合、土壌モデルが、土壌モデルにおいて考慮される1つ又は複数のシミュレーションパラメータで、締固められた土壌の実際の状態を高い正確性でもって表していると想定される。これはやはり、土壌モデルにおいて考慮される1つ又は複数のシミュレーションパラメータが、各パラメータ値に関して、実際に締固められた土壌の対応する1つ又は複数のパラメータの1つ又は複数の値と非常に良好に一致しているという、納得のいく仮定の基盤として用いられ得る。
【0010】
従って、シミュレーション関係と測定関係との間に非常に良好な一致が存在することは、土壌モデルの定義の際に行われた、各パラメータ値又はモデルにおいて考慮されるシミュレーションパラメータの選択の正しさを証明している。このようなシミュレーションパラメータすなわちこのようなモデルにおいて考慮される複数のパラメータは、総合動的締固め制御の枠内で、締固められた土壌の状態を描写する変数として考慮かつ保存され、又は、他の方法で、各パラメータ値が割り当てられて決定されている締固められた土壌の上での場所若しくは位置との関連においても記録され得る。
【0011】
本発明に係る方法において、締固めプロセスを実施する際、ソイルコンパクタが移動方向において先行して移動し、従って、締固められるべき土壌に進入する際に、アンバランス構造の作用のもとで、周期的に上下に動く振動ローラの作用方向又は仕事方向が、正確な垂直方向からは逸脱することを考慮するために、ステップb)及びc)において、最大の土壌接触力の方向に概ね一致する振動ローラの仕事方向における変位を考慮することが提案される。
【0012】
振動ローラの周期的な上下運動及び当該上下運動に伴う周期的な振動ローラの土壌からの上昇の際、振動ローラと土壌との接触が生じた後、振動ローラが土壌中への進入を進めるのにつれて、対応して増大した接触面が生じる。振動ローラが土壌中に深く進入する、又は、進入することが可能であるほど、振動ローラのローラシェルの軸方向と周方向とに広がる接触面は大きくなる。従って、さらに、ステップc)が、振動周期の過程における振動ローラの接触(Aufstands-)周方向長さを決定するためのステップc1)を含むことが提案される。接触周方向長さは、振動ローラと土壌との接触面の軸方向の広がりに関連して振動ローラが土壌中に進入している程度を表す変数であり、従って、本発明によると、土壌モデルにおいて考慮されるべきシミュレーションパラメータを生成することが可能である。
【0013】
このために、例えば、ステップc1)において、接触周方向長さを、ステップa)において検出された垂直加速度と水平加速度とに基づいて、及び、ソイルコンパクタのソイルコンパクタ移動方向における移動速度又は走行速度に基づいて決定する、と規定してよい。垂直加速度及び水平加速度に基づいて、及び、ソイルコンパクタの移動方向における移動速度に基づいて、振動ローラが進入する土壌の幾何学的条件を考慮して、接触周方向長さが算出され得る。従って、本発明に基づいて作成されるべき土壌モデルにおいて、シミュレーションパラメータの内の1つとして考慮され得る接触周方向長さは、土壌モデルを定義する際に任意に選択される変数ではなく、実際に存在するセンサによって検出されたソイルコンパクタ又は振動ローラの運動状態から計算によって導出される変数である。この計算の基盤は、様々な単純化する仮定であってよく、例えば振動ローラが土壌に対して平行に移動する、すなわち振動ローラの軸方向の全長にわたって同じ程度で土壌に進入する、というような仮定であってよい。この場合、土壌と振動ローラとの接触面は、ローラシェルの接触周方向長さと軸方向長さとの積であると仮定し得る。より複雑ではあるが、数学的に考慮可能である運動モデルにおいて、例えば振動ローラがぐらつき、全長領域にわたって同じ深さでは土壌に進入していないという仮定において、振動ローラの様々な軸方向領域に関する接触周方向長さに対して、様々な値を想定することができる。これは、例えば、軸方向の両方の端部において検出された、垂直方向及び水平方向における加速度値を考慮して行われ得る。
【0014】
接触周方向長さを、土壌モデルの入力変数の1つとして用いる場合、ソイルコンパクタ及び振動ローラの実際に存在する運動状態から数学的に導出される接触周方向長さが、例えばソイルコンパクタの移動速度並びにアンバランス構造の回転速度及び回転方向等の当該運動状態を特徴付けるパラメータを考慮すると特に有利である。当該モデル、又は、当該モデルを考慮して行われる振動ローラの加速度から導出される変数自体との比較は、このような運動状態を特徴付ける変数からは独立しているので、本発明に係る方法では、土壌の状態に関する第1の表出を行うことが可能であり、当該表出は、例えば、締固めプロセスを実施する際にソイルコンパクタがどのような速度で締固められるべき土壌の上を移動するかには依存しないか、又は、ほとんど依存していない。
【0015】
ステップc1)では、ソイルコンパクタの移動方向において接触中心に先行する前方の周方向長さ部分と、ソイルコンパクタの移動方向において接触中心を追いかける後方の周方向長さ部分と、を有する接触周方向長さが、決定され得る。前方の周方向長さ部分の長さと、後方の周方向長さ部分の長さと、に基づいて、土壌の状態を表す非対称パラメータが生成され得る。締固められるべき土壌の上をソイルコンパクタが移動することによって、前方の周方向長さ部分と後方の周方向長さ部分との間に、このような非対称性が生じる。このような非対称性、すなわち例えば両方の周方向長さ部分の長さの差異、又は、両方の周方向長さ部分の長さの互いに対する比は、ソイルコンパクタが移動する土壌の状態に依存しており、従って、土壌の状態を特徴付けるパラメータとしても考慮又は記録され得る。当該パラメータ自体は、納得のいく仮定によって定義されるべき土壌モデルの入力変数を生成せず、接触周方向長さを決定する際に、上述した土壌の幾何学的条件と、ソイルコンパクタ又は振動ローラの運動状態と、を考慮して、測定値に基づいて数学的に決定可能であると共に、例えばモデルに関する入力変数として設定される1つ若しくは複数のシミュレーションパラメータと結びついて、土壌の状態を特徴付けるものとして利用され得る、又は、モデルに関して設定されたシミュレーションパラメータの妥当性検査にも用いられ得る変数を供給している。
【0016】
土壌の弾性係数は、土壌の状態、特に締固め状態を基本的に特徴付ける物理的変数であり、従って、本発明の有利な態様によると、土壌モデルのシミュレーションパラメータを生成し得る。
【0017】
締固められるべき土壌の上をソイルコンパクタが走行する際に、土壌は圧縮され、土壌は、ソイルコンパクタによる荷重ひいては圧縮に抵抗する反力を生じさせる。従って、本発明に基づいて作成されるべき土壌モデルでは、少なくともバネの力成分とダンパの力成分とによって表される土壌の変形挙動を考慮することが可能であり、ステップc)は、当該変形挙動を考慮して、バネの力成分を決定するためにステップc2)を含むことが可能であり、ダンパの力成分を決定するためにステップc3)を含むことが可能である。当該土壌モデルにおいて、例えば変形した土壌の質量等の、変形挙動に影響を与える他の変数も考慮され得ることを指摘しておく。
【0018】
ステップc2)では、バネの力成分が、土壌の弾性係数及び接触周方向長さに依存して決定され得る。ステップc3)でも、ダンパの力成分が、土壌の弾性係数及び接触周方向長さに依存して、例えば変形又は進入にも依存して、決定され得る。従って、土壌の挙動に重要な影響を与える又は土壌の挙動を表している2つの変数が、土壌モデルに入力される。
【0019】
本発明に係る方法において、荷重を加えられた土壌が、荷重付加位相と荷重軽減位相とで特にそのバネの力成分に関して異なる挙動を示し得ることを考慮するために、さらに、ステップc2)において、振動周期に関して、振動ローラの土壌に進入する深さが増大する位相に関する第1のバネの力成分部分と、振動ローラの進入する深さが減少する位相に関する第2のバネの力成分部分と、を有する、バネの力成分を決定することが提案される。
【0020】
特に、異なる力の挙動は、ステップc2)において、第2のバネの力成分部分が、荷重軽減の剛性係数を考慮して、振動ローラの進入深さが減少する位相から、非接触の位相に移行する際に、バネの力成分とダンパの力成分とが互いに概ね完全に相殺されるように決定されることを通じて考慮され得るものであり、非接触の位相では、少なくとも1つの振動ローラは、締固められるべき土壌に概ね接触していない。荷重軽減の剛性係数は、土壌の状態を表す剛性パラメータを生成し得る。従って、このような荷重軽減の剛性係数は、両方の部分におけるバネの力成分に関する、基本的に同じ数学的関係を考慮する際、容易に、異なる力の挙動を表現することが可能であり、非接触の位相に移行する時点で、両方の力成分が互いに相殺されるという条件は、荷重軽減の剛性係数の決定にとって重要な境界条件である。
【0021】
土壌モデルにおいては、両方の力成分、すなわちバネの力成分とダンパの力成分とが、土壌接触力を主に決定する因子として設けられていてよく、従って、ステップc)は、ステップc4)を、振動周期に関して、ステップc2)で決定されたバネの力成分及びステップc3)で決定されたダンパの力成分に基づいて土壌接触力を決定するために含み得る。
【0022】
ステップe)において、シミュレーション関係の測定関係からの逸脱が、所定の逸脱基準値を下回らないことが認識される場合、すなわち、両方の関係を比較して、大きすぎる逸脱が認識される場合、ステップc)からステップe)は、ステップc)を実施する際に少なくとも1つのシミュレーションパラメータを変更しながら、シミュレーション関係の測定関係からの逸脱が、所定の逸脱基準値を下回るまで繰り返され得る。従って、土壌モデルを考慮したシミュレーションから決定されるシミュレーション関係を、専ら測定データを考慮して得られる測定関係に、両者が略一致するまで繰り返し近づけることが行われ得る。
【0023】
シミュレーションパラメータに関して、土壌モデルを考慮して得られる値と、シミュレーションパラメータの当該値に関して実際に存在する、締固められた土壌の状態と、の一致をさらに改善するために、ステップe)において対応する土壌パラメータを主に表すものとして決定されたシミュレーションパラメータと、締固められた土壌の土壌パラメータの測定値と、の間の相関係数が決定され得る。このために、例えば実験において、例えばアスファルト材料等の土壌が締固められ、1つ又は複数のシミュレーションパラメータに関して、シミュレーションから生じる値が提示された後、加工された土壌が、実験室の条件下で、又は、現場での比較実験において調査され、これによって、対応する土壌パラメータの実際に存在する値が決定される。シミュレーション又は土壌モデルから生じる値と、例えば実験室内で測定技術的に決定される値と、の間における差異から、これら両方の値を結びつける相関係数が決定され得る。このような相関係数が、調査の結果に基づいて存在する場合、本発明に係る方法では、土壌パラメータの現在値を得るために、ステップe)において、対応する土壌パラメータを主に表すものとして決定されたシミュレーションパラメータが、このような既知の相関係数と結びつけられ得る。
【0024】
本発明に係る方法を実施する際に供給される、締固められた土壌の状態に関する情報を、締固め動作中にも考慮することを可能にするために、ステップa)からステップe)は、締固めプロセスを実施する際に、ソイルコンパクタが移動する間、繰り返し実施され得る。土壌の状態に関する情報は、制御プロセスにおいてリアルタイムに、締固められるべき土壌に関して、締固めプロセスの実施前に出された要求を満たす土壌パラメータが得られるように、ソイルコンパクタを動作させるために利用され得る。
【0025】
特に品質管理のために、締固めプロセスを実施する際、締固められるべき土壌の上における複数の位置と、ステップa)からステップe)を実施する際に土壌パラメータを主に表すものとして決定された少なくとも1つのシミュレーションパラメータの、当該位置に割り当てられてそれぞれ決定された値と、を備えたデータセットが生成され得る。このようなデータセットは、実施される締固めプロセスの記録の基盤として用いられ得る。
【0026】
以下において、添付された図面を用いて、本発明を説明する。示されているのは以下の図である。
【図面の簡単な説明】
【0027】
【
図1】簡略化した形で図示されたソイルコンパクタの側面図である。
【
図2】振動周期の過程で、
図1に係るソイルコンパクタの振動ローラに生じる、締固められるべき土壌の表面に直交する加速度と、当該表面に対して平行な加速度と、を示すグラフである。
【
図3】仕事方向における振動ローラの振動経路にわたって描画された土壌接触力を伴う、
図2に係るグラフから導出される性能図である。
【
図4】
図1に係るソイルコンパクタの振動ローラの、複数の振動周期にわたる運動を示す図である。
【
図5】締固められるべき土壌の物理的な代替モデルを示す図である。
【
図6】土壌接触力と、仕事方向における振動ローラの振動経路と、の間のシミュレーション関係の
図3に対応する描写の図である。
【発明を実施するための形態】
【0028】
図1では、ソイルコンパクタが全体として、参照符号10で示されている。移動方向Bにおいて、締固められるべき土壌12の上を移動するソイルコンパクタ10は、後側車両14と、旋回可能に後側車両に支持された前側車両16と、を有するように構成されている。後側車両14には、駆動ユニットと、駆動ユニットによってソイルコンパクタ10を移動方向Bに又は当該方向とは反対の方向に移動させるために駆動される駆動輪18と、が設けられている。さらに、後側車両14には、ソイルコンパクタ10を操作する運転者のための運転台20が設けられている。運転台から、運転者は、締固めプロセスを実施するためにソイルコンパクタ10を動作させることが可能であり、運転者には、締固めプロセスに関連する情報が、表示ユニット22に表示され得る。
【0029】
前側車両16では、締固め工具として、締固めローラ又は振動ローラ24が、
図1の投影面に直交するローラ回転軸Wの周りに回転可能に支持されている。締固めローラ24又は締固めローラのシェル26の両方の軸方向端部領域において、締固めローラ24は、弾性懸架装置を通じて前側車両16に、振動ローラ24が前側車両16に対して、ローラ回転軸Wに対して横方向に変位し得るように懸架されている。締固めローラ24には、ローラ回転軸Wの周りで回転するように締固めローラ24を駆動するために、駆動モータが配設されていてよい。
【0030】
振動ローラ24のこのような変位は、振動ローラ24の内部に配置されたアンバランス構造28によって引き起こされ得るものであり、アンバランス構造28は、ローラ回転軸Wの周りに回転するように駆動可能な少なくとも1つのアンバランスマスを備えており、アンバランスマスは、ローラ回転軸Wに対して偏心な重心を有している。ローラ回転軸Wの周りにおけるアンバランス構造28の回転と、その際に生じ、振動ローラ24に伝達される、ローラ回転軸Wに直交して作用する遠心力と、は、前側車両16に対する振動ローラ24の周期的な変位を生じさせる。当該変位、又は、アンバランス構造28の回転の際に振動ローラ24に作用する力は、振動ローラ24に配設された加速度センサ30、32によって検出され得る。この際、加速度センサ30は、垂直加速度azすなわち締固められるべき土壌12の表面に略直交するように方向付けられている加速度を検出するように構成され又は配置されていてよい。加速度センサ32は、並進的な水平加速度axすなわち締固められるべき土壌12の表面に対して略平行に方向付けられている加速度を検出するように構成され又は配置されていてよい。例えば、両方の加速度センサ30、32は、振動ローラ24をその軸方向端部領域において前側車両16に対して回転可能に支承する軸受の軸受胴に設けられていてよい。例えば、振動ローラ24の両方の軸方向端部領域にも、このような加速度センサ30、32の一対が設けられていてよく、これによって、振動ローラ24に作用する加速度又は力が、両方の軸方向端部領域において検出され得ることを指摘しておく。
【0031】
図2は、振動周期の過程で、すなわち例えばアンバランス構造28が完全に回転する間に、加速度センサ30、32によって生じる垂直加速度a
z及び水平加速度a
xを具体的に示している。この際、
図2のグラフは、アンバランス構造28によって生成される力に基づいて、振動ローラ24が周期的に、各振動周期に際して、締固められるべき土壌12から一時的に上昇し、その後再び土壌12に衝突し、その際、締固められるべき土壌12に進入する動作状態を示している。
【0032】
時点t
1において、振動ローラ24は締固められるべき土壌12から上昇するので、振動ローラ24に作用する力は、主に、振動ローラ24の質量及び各時点において生じる加速度の積から、並びに、振動励起及び静的軸重による力から決定されている。時点t
2において、振動ローラ24は、締固められるべき土壌12に再び接触し、この運動の過程で土壌12への進入を深め、この際、土壌12を締固める。この振動ローラ24が土壌12に接触する位相において、すなわち時点t
2と時点t
1との間において、土壌12と振動ローラ24との間には、土壌接触力F
bが作用し、土壌接触力F
bは、基本的に、土壌12によって、振動ローラ24を通じて加えられる荷重に対して生じさせられる反応によっても決定されている。振動ローラ24の、締固められるべき土壌12への進入が進行するにつれて、土壌接触力F
bは、時点t
3において土壌接触力F
bがその最大値F
bmaxに達するまで増大する。
図2において明らかに認識されることに、最大の土壌接触力F
bmaxの状態において、力は、土壌12に対して正確に直交するように方向付けられているのではなく、わずかに前方に向かって傾斜しており、この傾斜は主に、ソイルコンパクタ10が、このような振動周期中に、移動方向Bにおいて前に移動し、従って、振動ローラ24は、土壌12に下降する運動の際に、前に向かって傾斜し過ぎるように方向付けられて土壌12に進入することに起因するものである。最大の土壌接触力F
bmaxの方向に概ね一致する方向は、仕事方向Aと見なされる。仕事方向Aに直交する方向は、仕事方向A上の垂線方向Nと見なされる。
【0033】
図2からさらに認識されることに、振動周期にわたって、加速度の変化を示す推移は、振動ローラ24で静止している前側車両16の荷重、又は、後側車両14の荷重にも起因して、当該荷重係数を表す一定のオフセットVの分だけ下に向かってシフトしており、ここでも、土壌12の表面に対して直交して一定に作用する荷重成分が考慮される。
【0034】
図2のグラフにおいて、振動周期に関して描写された、又は、測定技術的に検出された加速度の二重積分によって、各振動周期に関して、仕事方向Aにおける振動ローラ24の変位s
wを表す振動経路を決定することができる。この振動周期の各時点に関して決定可能な振動ローラ24の変位s
wから、及び、同様に振動周期の各時点に関して知られた土壌接触力F
bから、
図3に示された、土壌接触力F
bと変位s
wとの測定関係Z
Mが決定され得る。当該測定関係Z
Mは、性能図であり、測定関係Z
Mを表す曲線によって包囲された面は、行われた締固め作業を表している。
【0035】
図3のグラフでは、時点t
1は、振動ローラ24が土壌12との接触を失い、土壌から上昇する時点を再び表している。時点t
2において、振動ローラ24は、土壌12と再び接触する。進入運動が行われている間、土壌接触力F
bは、時点t
3においてその最大値F
bmaxに到達するまで増加する。時点t
4において、土壌12に最も深く進入した状態が得られ、時点t
1で振動ローラ24が再び土壌12から上昇するまで、移動方向の反転が行われる。従って、振動ローラ24は、振動周期において、仕事方向Aにおける変位s
wの中心点に対して振幅A
sを有する運動を行う。
【0036】
図3に示された関係は、土壌12の状態に関する情報を得るために評価され得る。例えば、時点t
2と時点t
3との間における測定関係Z
Mの略線状の推移の勾配から、近似的に、土壌の剛性又は荷重の剛性との関係、ひいては得られる締固め程度との関係も形成され得る。上述したように、測定関係Z
Mによって包囲された面から、締固め作業、ひいては土壌12に導入されたエネルギーも推測され得る。しかしながら、
図3に示したような測定関係Z
Mの当該評価は、総合動的締固め制御に関連して、土壌の状態に関する情報の比較的限定された供給のみを可能にする。特になぜなら、例えばソイルコンパクタ10の走行速度等のプロセスパラメータの変化が、当該関係の変化ももたらし、従って、別の評価結果をもたらすからである。
【0037】
本発明は、
図3で振動周期に関して示したような測定関係Z
Mを考慮して、土壌12の状態に関して、より包括的かつ正確な表出を可能にすることを目指している。このために、本発明によって設けられたステップについて、以下において言及する。
【0038】
図4は、複数の連続する振動周期中における振動ローラ24の運動を示している。この際、このような振動周期は、振動ローラ24の転動に比べて、短時間の事象であることが考慮されるべきである。アンバランス構造28が、毎秒数10回転の回転速度で回転する一方で、ソイルコンパクタ10が移動方向Bにおいて移動する際に、振動ローラ24の完全な回転は、一般的に数秒を要する。これは、振動ローラ24の完全な回転の間に、振動周期の数は、100以上の範囲内にあり得ることを意味している。これはやはり、各振動周期中に生じる振動ローラ24の転動又は回転を考慮せずともよいことを意味している。
【0039】
図4では、曲線Kは、振動ローラ24の中心点、すなわちローラ回転軸Wの連続する振動周期中における水平方向x及び垂直方向zの移動を示している。当該移動は主に、アンバランス構造28の動作によって引き起こされる振動ローラ24の周期的な上下又は前後への移動と、このローラ回転軸Wの軌道運動に概ね一致する運動に重ねられる、ソイルコンパクタ10及び振動ローラ24の移動方向Bにおける運動と、から構成されている。このような振動ローラ24の周期的に上昇する動きの際に生じる運動パターンが明確に認識可能であり、当該運動パターンの場合、各第2の振動周期において、振動ローラ24は、それぞれその間に存在する振動周期におけるよりも大きく土壌12から上昇する。このような運動パターンは、特に、比較的強い土壌12の締固めが得られている場合に生じる。比較的締固めが弱い土壌12の場合、振動ローラ24の運動の各周期において、振動ローラ24は、同じ運動推移を有することが可能であり、すなわち、略同じ程度において、土壌12から上昇することが可能である。
【0040】
曲線Kの推移は、加速度センサ30、32によって検出された加速度az及びaxと、例えば測定技術的に検出された、ソイルコンパクタ10が移動方向Bにおいて移動する速度と、から、計算によって決定され得る。アンバランス構造28の運動によって引き起こされる振動ローラ24の運動が、測定された加速度から生じる推移の二重積分によって導出され得る一方で、当該運動に重ねられる移動方向Bにおける運動は、ソイルコンパクタ10の既知又は検出された速度と時間との乗法によって決定可能であり、従って、各時点に関して、曲線Kによって表される場所と、締固めローラ24の中心の移動方向と、が知られている。
【0041】
ソイルコンパクタ10の移動方向Bにおける加速度a
z及びa
xと移動速度とを考慮して決定された曲線K、又は、当該曲線によって表される、連続する振動周期中の振動ローラ24の運動を用いて、各振動周期に関して、締固められるべき土壌12の幾何学的形状を考慮して、
図4において変数2bで表された各振動周期中の、すなわち振動ローラ24が土壌12に進入して戻るように動く際の、振動ローラ24の接触周方向長さを計算によって決定することが可能になる。
【0042】
図4は、最後に示された振動周期において破線で示された土壌12の表面の推移を用いて、当該推移が、振動ローラ24が最後に示された振動周期において土壌12に衝突する前に、右に認識できる略直線状の、未だ振動ローラ24が衝突していない土壌12の部分と、最後の完全な振動周期及びこの際に生じる土壌12の変形から生じる弧状に湾曲した部分と、によって概ね決定されていることを示している。土壌12の表面のこれら両方の部分の接線Sは、時点t
2において、振動ローラ24が最後に示した振動周期内で、土壌12と接触する領域を表している。
【0043】
領域Sにおける、振動ローラ24又は振動ローラ24のローラシェル26の軸方向長さ全体にわたる近似的に線状の接触から出発して、接触周方向長さ2bは、振動ローラ24の土壌12への進入運動の過程で、すなわち概ね、時点t2と最大の進入深さが得られる時点t4との間において、増大する。接触周方向長さ2bとローラシェル26の軸方向長さ2aとの積は、進入運動の各時点に関して、振動ローラ24が締固められるべき土壌12と接触している面積をもたらす。
【0044】
当該面積又は接触周方向長さ2bは、曲線Kで、振動ローラ24がどのように移動するかが知られているという事情、及び、
図4が示すように、振動ローラ24が各振動周期において土壌と接触する領域において土壌12がどのような幾何学的形状を有するかが基本的に知られているか又は仮定され得るという事情に基づいて、数学的に決定され得る。この際、振動ローラ24が、振動周期の過程において、振動ローラ24の軸方向の長さにわたって一様に土壌12と接触し、従って一様に土壌12に進入する、と容易に仮定することができる。さらに、完全な振動周期の過程において、時点t
1に到達した後、
図3の測定関係Z
Mにおける荷重軽減から接触喪失への移行に際して、土壌12がその形状を概ね維持していると容易に仮定することができる。より複雑なモデルの場合、振動ローラ24がぐらつくこと、すなわち両方の軸方向端部において一様には土壌12に進入しないことを、測定技術又は計算によっても考慮することが可能であり、これは、例えば振動ローラ24の両方の軸方向端部に割り当てて、それぞれセンサ30、32が設けられていることによって検出され得る。振動ローラ24の軸方向長さにわたって、振動ローラ24が、異なる程度において土壌12に進入し、従って、振動ローラ24の長さにわたって、異なる接触周方向長さ2bが生じることを計算によって考慮することも可能である。
【0045】
図4は、接触周方向長さ2bが、基本的に接触中心Zに関して対称ではない、すなわち同じ長さではない2つの周方向長さ部分b
hとb
vとに分割されていることを示している。この際、接触中心Zは、例えば進入が最大の状態において、ローラ回転軸Wを垂直方向zにおいて貫通する線が土壌12に交わる領域によって決定されている。この接触周方向長さ2bの算出からも生じる、又は、導出可能である、両方の周方向長さ部分b
h及びb
vの長さに関する非対称性は、振動ローラ24のシフト作用に関する情報を与えると共に、土壌12の変形挙動にも依存し、従って、締固めの間の土壌12の状態に関する表出を行うために利用され得る。この際、この非対称性に関する認識は、単に、測定技術的に検出可能である変数、すなわち移動方向Bにおけるソイルコンパクタの加速度a
z及びa
xと移動速度とから、土壌の幾何学的条件を考慮する際に、土壌の構造に関する何らかの知られていない情報を考慮せずとも、数学的な算出手法を用いて得られることを指摘しておく。
【0046】
締固められるべき土壌12の状態に関する情報を供給するための本発明に係る手順では、土壌に関して、物理的モデルが作成される。
図5において一例として示されたケルビン-フォークトによる土壌モデルでは、土壌は、2つの力成分によって表されている。力成分F
b,kは、バネの力成分に対応しており、主にバネ剛性K
(b)によって表されている。力成分F
b,cは、ダンパの力成分に対応しており、主に減衰パラメータC
(b)によって表されている。従って、当該モデルに従って挙動する土壌と振動ローラ24との間に作用する土壌接触力F
bは、両方の力成分F
b,k及びF
b,cの合計として算出され得る。
【0047】
図5に示された土壌モデルに関しては、例えば、圧縮可能な土壌に関するウォルフの円錐モデルに従って、バネ剛性K
(b)及び減衰パラメータC
(b)が、以下に挙げる2つの式で考慮され得る。
【0048】
【0049】
【0050】
これらの式では、変数bは、接触周方向長さ2bの半分に相当し、既に
図4に関連して述べたように、当該変数の推移は、各振動周期に関して、振動ローラ24が土壌12に衝突した時点から接触を失うまで、計算によって決定され得る。変数aは、振動ローラ24又はローラシェル26の軸方向長さ2aの半分に相当するので、振動ローラ24の半分の軸方向長さaと進入運動の過程で変化する半分の接触周方向長さbとの積は、接触面の概ね4分の1に相当し、当該接触面では、いずれの時点においても振動ローラ24が、振動周期の過程で土壌12に接触している。変数νは、土壌のポアソン比を表しており、モデルにおいて考慮されるべき土壌が圧縮性であるとの前提で、0から約3分の1の値をとり得る。変数ρは、土壌の構成材料の略一定であると仮定されている密度に相当する。
【0051】
ここで指摘しておくべきことに、別のモデルを用いる場合、例えば土壌の質量等の、別の又は付加的な変数も考慮され得る。
【0052】
一般的に剛性率とも称される変数Gは、以下の式を用いて決定され得る。
【0053】
【0054】
式中、変数Egeoは、土壌の弾性係数を表している。
【0055】
これらの変数a、b、ν、ρ、Egeoを考慮して、バネ剛性K(b)及び減衰パラメータC(b)が、既に挙げた式(1)、(2)及び(3)で決定され得る。既知と見なされる、又は、計算によって決定される変数ρ、ν、a及びbの他に、上述した土壌モデルの例では、土壌の状態を主に特徴付ける変数として、土壌の弾性係数Egeo又は当該変数を考慮する剛性率が用いられる。
【0056】
弾性係数E
geoの値に関する納得のいく仮定を用いて、
図6に示したシミュレーション関係Z
Sが決定可能であり、当該シミュレーション関係は、
図5に示された土壌モデル、及び、上述の式(1)から式(3)を用いて例示的に仮定される変数であるバネ剛性K
(b)及び減衰パラメータC
(b)に基づいて決定され得る。
【0057】
例えば
図5に示された、式(1)から式(3)によって表される土壌モデルを考慮して、土壌接触力F
bと仕事方向Aにおける振動ローラ24の変位s
wとの関係を描写する、
図6に示されたシミュレーション関係Z
Sを決定するために、振動周期に関して、力成分F
b,k及びF
b,cが、バネ剛性K
(b)及び減衰パラメータC
(b)に関する式(1)及び(2)を用いて算出される。この際、バネの力成分F
b,kに関連して、それぞれ一点鎖線によって表されたバネの力成分部分F
1及びF
2が、時点t
2と時点t
4との間において、進入深さが増大する位相に関して、及び、時点t
4と時点t
1との間において、進入深さが減少する位相に関して、決定される。これによって、このような土壌が、一方での荷重付加、及び、他方での荷重軽減の際に、互いに異なる剛性挙動を有していることを考慮することが可能であり、これは、荷重軽減の位相、すなわち時点t
4と時点t
1との間において、進入深さが減少する位相に関する荷重軽減の剛性係数の導入によって考慮され得る。
【0058】
荷重付加の位相、すなわち時点t
2と時点t
4との間において、進入深さが増大する位相に関するバネの力成分部分F
1は、バネ剛性K
(b)と、時点t
2と時点t
4との間の位相を通じた、仕事方向Aにおける振動経路と、を乗じることによって算出され得る。この際、
図6は、正確に線状の力推移とは異なる推移が得られることを明確に示している。対応する方法で、時点t
4と時点t
1との間において、進入深さが減少する位相に関する推移を算出することが可能であり、当該時間的間隔にわたって積分されるべきバネ剛性K
(b)と仕事方向Aにおける振動速度との積を、荷重軽減の剛性係数と乗じることによって、付加的に、上述した荷重軽減の剛性係数が用いられる。この際、荷重軽減の剛性係数に関する境界条件として、振動ローラ24と土壌12との接触が終了する時点、すなわち時点t
1で、力の均衡を得るために、バネの力成分F
b,kとダンパの力成分F
b,cとが、互いに相殺すると仮定される。
【0059】
ダンパの力成分F
b,cは、各振動周期に関して、場合によっては材料に応じて選択されるべき減衰係数と乗じられるべき減衰パラメータC
(b)と仕事方向Aにおける振動速度との積の積分によって得られ、
図6において、時点t
2と時点t
1との間の点線によって表されている。この際、明確に認識されることに、時点t
4において、すなわち振動ローラ24が最大の深度で土壌に進入している際に、ダンパの力成分F
b,cはゼロである。なぜなら、この状態において、土壌12は静止しており、従って、速度に比例した力はゼロになるからである。時点t
4と時点t
1との間において、すなわち土壌12の荷重軽減の際に、ダンパの力成分F
b,cは、バネの力成分F
b,kに、時点t
1において、これら両方の力成分F
b,k(t
1)及びF
b,c(t
1)が互いに相殺するまで抵抗する。
【0060】
図6に示されたシミュレーション関係Z
Sは、振動周期に関する土壌モデルに基づいて、土壌接触力F
bと変位s
wとの関係を表しており、振動周期の各位相に関して、バネの力成分F
b,kとダンパの力成分F
b,cとを加算することから得られる。従って、
図3と
図6との比較が明確に示すように、測定関係Z
Mと質的に比較可能であるシミュレーション関係Z
Sが生じる。
【0061】
土壌モデルに入力される変数、特に弾性係数Egeoの適切な選択によって、シミュレーション関係が測定関係に概ね一致するように、シミュレーション関係ZSに影響を与えること、又は、シミュレーション関係を変更することが可能になる。このために、シミュレーション関係ZSが、わずかに変更された入力変数を用いて、特に主なシミュレーションパラメータである弾性係数Egeoを変化させて連続的に決定され、例えば最良適合プロセスにおいて、測定関係ZMと比較され得る。このために、例えば、少なくとも1つの振動周期の時間にわたって平均化された土壌接触力Fbmittelと、当該振動周期中の最大の土壌接触力Fbmaxと、各関係ZM又はZSを表す曲線によって画定される面積と、が、比較パラメータとして互いに比較され得る。この際、平均の土壌接触力Fbmittelが、振動ローラによって加えられる静荷重に概ね一致することが考慮される。なぜなら、平均して、ソイルコンパクタは、上方へも下方へも移動しないからである。
【0062】
これらの比較パラメータそれぞれに関して、それぞれ設定された基準値より下の逸脱が認識される場合、これら両方の関係ZS及びZMは、互いに概ね一致している、すなわち両者の間の差異は、所定の逸脱基準値を下回ることが認められる。従って、このようなシミュレーション関係を得るために用いられる土壌モデルが、この際に考慮されるシミュレーションパラメータで、ソイルコンパクタ10によって締固められる土壌を、高い正確性で表現することが決定され得る。さらに、例えば弾性係数Egeo等の、モデルにおいて考慮される1つ又は複数のシミュレーションパラメータが、土壌12の対応する土壌パラメータを実際に表しているということが決定され得る。この状態において、このようなシミュレーションパラメータが、総合動的締固め制御の枠内で、土壌の状態を表すパラメータとして保存され得る。この際、土壌モデルにおいて考慮される別の変数、例えば荷重軽減の剛性係数又は減衰係数も、弾性係数に関連して、自明のことながら、各振動周期中にソイルコンパクタ10が存在している場所との関連において、土壌を説明するパラメータとして保存可能である。例えば上述した接触周方向長さ2bの非対称性等の、さらなる変数も、土壌12の質の評価又は判定のために記録され得る。
【0063】
例えば土壌12の沈下、すなわち振動ローラ24の接触前後での土壌12の高さの違い、又は、作用する力若しくは存在する接触面の増加加算によって生じる接触応力等の、さらなる変数も、本発明に係る手順によって、上述した振動ローラ24の土壌12内への進入運動の計算に基づいて決定及び記録され得るか、又は、シミュレーション関係Z
Sの決定の際に考慮され、例えばシミュレーションパラメータとしても変更され得る。本発明に係る手順で決定又は算出される変数から、さらに、例えば仕事方向Aに直交する垂線方向Nにおける振動ローラ24の加速度から、位相位置、又は、アンバランス構造28の回転方向も、例えば測定技術的に検出されない場合には、導出され得る。代替的又は付加的に、特に位相位置、すなわちアンバランス構造28の回転位置に関する情報を供給するために、アンバランス構造28には、センサが配設されていてよく、当該センサの出力信号は、位相位置と、従ってアンバランス構造28の回転方向と、を反映している。当該情報は、例えば
図3に示した測定関係Z
Mの作成にも用いられ得る。
【0064】
上述したシミュレーション関係ZSと測定関係ZMとの比較の際に、各土壌パラメータを表すものとして決定される、例えば弾性係数Egeo等のシミュレーションパラメータを、土壌の実際の状態とより一層一致させるために、実地又は実験室における実験で、このように決定されたシミュレーションパラメータと、この際に締固められた土壌において実際に存在する、対応する土壌パラメータの値と、の間の関係が、これら両方の変数を関連付ける相関係数の形で決定され得る。このような相関係数もまた、総合動的締固め制御の枠内で、当該相関係数が対応するシミュレーションパラメータと関連付けられる、すなわち例えば乗じられることによって考慮され得るものであり、これによって、対応する土壌パラメータの実際の値を高い正確性で表すパラメータが生成され得る。
【0065】
最後に指摘しておくべきことに、高い正確性で、締固められた土壌の状態に関する妥当性を有するパラメータを決定するための本発明に係る手順は、極めて異なる締固めが行われるべき基層に関しても用いられ得る。例えば、本発明に係る手順は、アスファルトの締固めに際して用いられ得るが、同様に、アスファルト層の下に構成される土壌の締固めにも用いられ得る。基本的に、当該手順は、振動ローラで作業を行う当該ソイルコンパクタを用いて締固められ得る、あらゆる粒状又は可塑性の土壌材料に対して用いることが可能である。
【0066】
さらに指摘しておくべきことに、本発明に係る手順は、土壌の締固めプロセスの実施中にリアルタイムで、持続的に締固め箇所に割り当てて、各パラメータを決定かつ記録するためだけではなく、フィードバックにおいて、土壌の締固めプロセスを実施しているソイルコンパクタを、決定された土壌の状態を考慮して、締固め結果が最適化されるように動作させるためにも用いられ得る。すなわち、締固めプロセスを実施する際に、本発明に係る手順を用いて、特定の領域において十分な締固めが依然として得られていないということが認識される場合、当該領域は、ソイルコンパクタの対応する作動によって、増加して、又は、繰り返し走行され得るが、既に十分な締固め程度が存在する領域をさらに走行する必要はない。すなわち、締固め動作の制御が実施可能であり、制御に際して、ソイルコンパクタが、自動制御によって自動的に、締固められるべき土壌の特定の領域に的確に移動するか、又は、コンパクタを操作する運転者に、土壌のどの場所を、どのように締固めるべきか、又は、もはや締固めなくてもよいのか、に関する情報が供給される。例えば、このような情報は、表示ユニット22上に図表を用いて示される。
【0067】
要約すると、ソイルコンパクタを用いて締固めプロセスを実施する際の、土壌の締固め状態に関連する情報を供給するための、本発明に係る方法は、以下のステップを有している:
a)ソイルコンパクタが締固められるべき土壌の上を移動する際の、振動ローラの垂直加速度及び水平加速度を、例えば1つ又は複数のアンバランスセンサを用いて検出するステップ、
b)ステップa)で検出された垂直加速度及び水平加速度を用いて、土壌接触力と、振動周期に関する振動ローラの変位と、の間における測定関係を決定するステップ、
c)少なくとも1つのシミュレーションパラメータを考慮する土壌モデルを用いて、土壌接触力と、振動周期に関する変位と、の間におけるシミュレーション関係を決定するステップ、
d)シミュレーション関係と測定関係とを比較するステップ、
e)シミュレーション関係が、測定関係に概ね一致する場合、土壌モデルにおいて考慮される少なくとも1つのシミュレーションパラメータの設定値が、締固められるべき土壌の対応する土壌パラメータを概ね表していると決定するステップ。
【符号の説明】
【0068】
2a 軸方向長さ
2b 接触周方向長さ
10 ソイルコンパクタ
12 土壌
14 後側車両
16 前側車両
18 駆動輪
20 運転台
22 表示ユニット
24 締固めローラ又は振動ローラ
26 ローラシェル
28 アンバランス構造
30、32 加速度センサ
A 仕事方向
As 振幅
ax 水平加速度
az 垂直加速度
B 移動方向
bh、bv 周方向長さ部分
C(b) 減衰パラメータ
Egeo 弾性係数
F1、F2 バネの力成分部分
Fb 土壌接触力
Fbmax 最大の土壌接触力
Fb,c ダンパの力成分
Fb,k バネの力成分
Fbmittel 平均の土壌接触力
G 剛性率
K 曲線
K(b) バネ剛性
N 垂線方向
ν 土壌のポアソン比
ρ 土壌の構成材料の密度
S 接線、領域
sw 振動ローラ24の変位
t1~t4 時点
W ローラ回転軸
x 水平方向
z 垂直方向
Z 接触中心
ZM 測定関係
ZS シミュレーション関係
【外国語明細書】