(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022062453
(43)【公開日】2022-04-20
(54)【発明の名称】推定装置、及び、推定方法
(51)【国際特許分類】
G01H 17/00 20060101AFI20220413BHJP
F02D 45/00 20060101ALI20220413BHJP
【FI】
G01H17/00 Z
F02D45/00 368A
【審査請求】有
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2020170470
(22)【出願日】2020-10-08
(11)【特許番号】
(45)【特許公報発行日】2021-11-02
(71)【出願人】
【識別番号】000145806
【氏名又は名称】株式会社小野測器
(74)【代理人】
【識別番号】110001807
【氏名又は名称】特許業務法人磯野国際特許商標事務所
(72)【発明者】
【氏名】笠原 太郎
(72)【発明者】
【氏名】渡部 光
(72)【発明者】
【氏名】吉越 洋志
【テーマコード(参考)】
2G064
3G384
【Fターム(参考)】
2G064AA15
2G064AB01
2G064AB02
2G064AB15
2G064AC03
2G064BA02
2G064BD02
2G064CC02
2G064CC41
2G064CC42
2G064CC43
3G384DA55
3G384EA07
3G384EA27
3G384EC01
3G384FA29B
3G384FA29Z
3G384FA58Z
(57)【要約】
【課題】入力物理量をノイズ成分と抽出信号とに良好に分離し、推定信号の精度を向上する。
【解決手段】推定装置(信号処理装置10)は、入力物理量(エンジン近傍音90)からノイズ成分(雑音91b)を除去した抽出信号に伝達関数を掛け合わせて、教師信号と同じ次元の推定信号を推定する装置であって、学習部21と、推定信号推定部(第2推定部31)と、を備える。学習部21は、ニューラルネットワークにより、入力物理量からノイズ成分を除去して抽出信号を抽出するためのマスクを生成するネットワークの重み、及び、伝達関数を学習する際に、マスク、及び、伝達関数に対して、入力物理量に関連する振幅と位相成分を加味して学習する。推定信号推定部は、マスクを用いて、ノイズ成分が除去された抽出信号を取得し、伝達関数を掛け合わせることで抽出信号を推定信号に変換する。
【選択図】
図2
【特許請求の範囲】
【請求項1】
入力物理量からノイズ成分を除去した抽出信号に伝達関数を掛け合わせて、教師信号と同じ次元の推定信号を推定する推定装置であって、
ニューラルネットワークにより、前記入力物理量から前記ノイズ成分を除去して前記抽出信号を抽出するためのマスクを生成するネットワークの重み、及び、前記伝達関数を学習する学習部と、
前記マスクを用いて、前記ノイズ成分が除去された抽出信号を取得し、前記伝達関数を掛け合わせることで抽出信号を推定信号に変換する推定信号推定部と、を備え、
前記学習部は、前記ネットワークの重み、及び、前記伝達関数を学習する際に、前記マスク、及び、前記伝達関数に対して、前記入力物理量に関連する振幅と位相成分を加味して学習する
ことを特徴とする推定装置。
【請求項2】
請求項1に記載の推定装置において、
前記推定信号推定部は、前記ノイズ成分が除去された抽出信号に、振幅と位相成分を加味した前記伝達関数を掛け合わせることで推定信号を推定する
ことを特徴とする推定装置。
【請求項3】
請求項2に記載の推定装置において、
前記推定信号推定部は、前記ノイズ成分が除去された抽出信号に前記伝達関数を掛け合わせることで推定信号の最大値、及び、最大値と最小値との差を推定する
ことを特徴とする推定装置。
【請求項4】
入力物理量からノイズ成分を除去した抽出信号に伝達関数を掛け合わせて、教師信号と同じ次元の推定信号を推定する推定方法であって、
ニューラルネットワークにより、前記入力物理量から前記ノイズ成分を除去して前記抽出信号を抽出するためのマスクを生成するネットワークの重み、及び、前記伝達関数を学習する学習工程と、
前記マスクを用いて、前記ノイズ成分が除去された抽出信号を取得し、前記伝達関数を掛け合わせることで抽出信号を推定信号に変換する推定信号推定工程と、を含み、
前記学習工程において、前記ネットワークの重み、及び、前記伝達関数を学習する際に、前記マスク、及び、前記伝達関数に対して、前記入力物理量に関連する振幅と位相成分を加味して学習する
ことを特徴とする推定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、入力物理量からノイズ成分を除去して抽出信号を抽出するためのマスクを生成するネットワークの重み、及び、伝達関数を学習する際の精度を向上させ、その結果として、入力物理量をノイズ成分と抽出信号とに良好に分離し、推定信号の精度を向上する推定装置、及び、推定方法に関する。
【背景技術】
【0002】
例えば、ガソリンエンジンなどの内燃機関における点火時期は、出力トルクの向上を目的として、ノッキングが発生しないクランク角度の範囲内において可能な限り進角されることが一般的である。そこで、点火時期を調整する過程では、ノッキングが発生しているか否かが試験者又はノッキング判定装置によって判定される。こうしたノッキング判定装置の一例が特許文献1に記載されている。
【0003】
特許文献1に記載のノッキング判定装置は、ノッキングの有無が判定される判定信号と比較される対象信号とを、判定信号との関係(例えば、時間的な関係や運転条件における関係)で定まる条件に基づいて選択する。
【0004】
特許文献1に記載のノッキング判定装置では、ノッキング有無の判定結果しか外部に提示できず、判定結果の裏付けをとることが困難である。そこで、本発明の発明者らによって、判定結果の裏付けとなる所望の物理量を推定することが可能な装置として、特許文献2又は特許文献3に記載の装置が提案された。
【0005】
特許文献2に記載の装置は、「入力物理量に含まれるノイズ成分を除去し、前記ノイズ成分が除去された入力物理量から所望の物理量を推定するための学習装置であって、前記ノイズ成分は、内燃機関で発生するノッキング音以外の雑音であり、前記入力物理量は、前記雑音及び前記ノッキング音が含まれる前記内燃機関の音圧であり、前記所望の物理量は、ノッキング発生時の前記内燃機関の筒内圧であり、ニューラルネットワークにより、前記雑音を除去し、かつ、前記ノッキング音を抽出するマスクを生成するネットワークの重み、及び/又は、前記マスクにより抽出されたノッキング音を前記ノッキング発生時の内燃機関の筒内圧に変換する伝達関数を学習する学習部、を備えることを特徴とする学習装置。」というものである。特許文献2に記載の装置は、ニューラルネットワークにより、入力物理量に含まれるノイズ成分を除去するマスクを生成するネットワークの重み、及び/又は、マスクによりノイズ成分が除去された入力物理量を所望の物理量に変換する伝達関数を学習する学習部を備え、入力物理量に含まれるノイズ成分を除去し、ノイズ成分が除去された入力物理量から所望の物理量を推定し、ノッキングの有無を判定する。
【0006】
特許文献3に記載の装置は、「内燃機関で発生するノッキング音以外の雑音を除去し、前記雑音が除去されたノッキング音を推定するノッキング判定装置であって、ニューラルネットワークにより、前記雑音を除去し、かつ、前記ノッキング音を抽出するマスクを生成するネットワークの重み、及び、前記マスクにより抽出されたノッキング音をノッキング発生時の内燃機関の筒内圧に変換する伝達関数を学習する学習部と、ニューラルネットワークにより、前記マスクを用いて、前記雑音が含まれるノッキング音から前記雑音が除去されたノッキング音を推定する第2推定部と、を備えることを特徴とするノッキング判定装置。」というものである。特許文献3に記載の装置は、ニューラルネットワークにより、マスクを用いて、雑音が含まれるノッキング音から雑音が除去されたノッキング音を推定する。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2017-44148号公報
【特許文献2】特許第6605170号公報
【特許文献3】特許第6651040号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、特許文献2及び特許文献3に記載された従来技術は、入力物理量に関連する位相成分を考慮することなく、入力物理量をノイズ成分と抽出信号とに分離する構成になっていた。そのため、従来技術は、入力物理量をノイズ成分と抽出信号とに分離しても、ノイズ成分に抽出信号が混入してしまい、抽出信号を正確に分離できず、推定信号の精度も低下してしまっていた。
【0009】
本発明は、前記した課題を解決するためになされたものであり、位相成分を考慮した構成を実現することにより、入力物理量からノイズ成分を除去して抽出信号を抽出するためのマスクを生成するネットワークの重み、及び、伝達関数を学習する際の精度を向上させる。その結果として、入力物理量をノイズ成分と抽出信号とに良好に分離し、推定信号の精度を向上する推定装置、及び、推定方法を提供することを主な目的とする。
【課題を解決するための手段】
【0010】
前記課題を解決するため、本発明は、入力物理量からノイズ成分を除去した抽出信号に伝達関数を掛け合わせて、教師信号と同じ次元の推定信号を推定する推定装置であって、ニューラルネットワークにより、前記入力物理量から前記ノイズ成分を除去して前記抽出信号を抽出するためのマスクを生成するネットワークの重み、及び、前記伝達関数を学習する学習部と、前記マスクを用いて、前記ノイズ成分が除去された抽出信号を取得し、前記伝達関数を掛け合わせることで抽出信号を推定信号に変換する推定信号推定部と、を備え、前記学習部は、前記ネットワークの重み、及び、前記伝達関数を学習する際に、前記マスク、及び、前記伝達関数に対して、前記入力物理量に関連する振幅と位相成分を加味して学習する構成とする。
【0011】
また、本発明は、入力物理量からノイズ成分を除去した抽出信号に伝達関数を掛け合わせて、教師信号と同じ次元の推定信号を推定する推定方法であって、ニューラルネットワークにより、前記入力物理量から前記ノイズ成分を除去して前記抽出信号を抽出するためのマスクを生成するネットワークの重み、及び、前記伝達関数を学習する学習工程と、前記マスクを用いて、前記ノイズ成分が除去された抽出信号を取得し、前記伝達関数を掛け合わせることで抽出信号を推定信号に変換する推定信号推定工程と、を含み、前記学習工程において、前記ネットワークの重み、及び、前記伝達関数を学習する際に、前記マスク、及び、前記伝達関数に対して、前記入力物理量に関連する振幅と位相成分を加味して学習する構成とする。
その他の手段は、後記する。
【発明の効果】
【0012】
本発明によれば、入力物理量からノイズ成分を除去して抽出信号を抽出するためのマスクを生成するネットワークの重み、及び、伝達関数を学習する際の精度を向上させ、その結果として、入力物理量をノイズ成分と抽出信号とに良好に分離し、推定信号の精度を向上することができる。
【図面の簡単な説明】
【0013】
【
図1】第1実施形態に係る信号処理装置(推定装置)を含む信号処理システムの全体構成を示すブロック図である。
【
図2】第1実施形態に係る信号処理装置(推定装置)の構成を示すブロック図である。
【
図3B】第1実施形態に係る信号処理装置(推定装置)の学習モード時の動作説明図である。
【
図4B】第1実施形態に係る信号処理装置(推定装置)の閾値算出モード時の動作説明図である。
【
図5B】第1実施形態に係る信号処理装置(推定装置)の判定モード時の動作説明図である。
【
図6B】第1実施形態に係る信号処理装置(推定装置)の分離モード時の動作説明図である。
【
図7B】第1実施形態に係る信号処理装置(推定装置)の官能試験モード時の動作説明図である。
【
図8A】学習時におけるノイズ成分と教師信号との関係を表す説明図である。
【
図8B】学習時における抽出信号と教師信号との関係を表す説明図である。
【
図8C】学習時における抽出信号と推定信号との関係を表す説明図である。
【
図9】第1実施形態において、マスクを生成するネットワークの重みを学習するニューラルネットワークの説明図である。
【
図10A】圧力や、振動、音などの位相成分が考慮されていない場合の計算例の説明図である。
【
図10B】圧力や、振動、音などの位相成分が考慮されている場合の計算例の説明図である。
【
図11A】官能試験における信号処理の説明図(1)である。
【
図11B】官能試験における信号処理の説明図(2)である。
【
図11C】官能試験における信号処理の説明図(3)である。
【
図12A】官能試験における信号処理の説明図(4)である。
【
図12B】官能試験における信号処理の説明図(5)である。
【
図12C】官能試験における信号処理の説明図(6)である。
【
図13】第1実施形態において、信号処理装置(推定装置)のデータ収集処理を示すフローチャートである。
【
図14A】第1実施形態において、信号処理装置(推定装置)の学習処理を示すフローチャートである。
【
図14B】学習処理のサブルーチンを示すフローチャートである。
【
図14C】学習処理のサブルーチンの変更例を示すフローチャートである。
【
図15A】第1実施形態において、信号処理装置(推定装置)の閾値算出処理を示すフローチャートである。
【
図15B】第1実施形態において、
図17の分離処理及び
図18の官能試験処理の後に行われる信号処理装置(推定装置)の閾値算出処理を示すフローチャートである。
【
図16】第1実施形態において、信号処理装置(推定装置)の判定処理を示すフローチャートである。
【
図17】第1実施形態において、信号処理装置(推定装置)の分離処理を示すフローチャートである。
【
図18】第1実施形態において、信号処理装置(推定装置)の官能試験処理を示すフローチャートである。
【
図19】第2実施形態に係る信号処理装置(推定装置)の構成を示すブロック図である。
【
図21】第1変形例において、マスクを生成するネットワークの重み及び伝達関数の学習の説明図である。
【
図23】第2変形例において、マスクを生成するネットワークの重み及び伝達関数の学習の説明図である。
【
図24】第3変形例において、マスクを生成するネットワークの重み及び伝達関数の学習の説明図である。
【発明を実施するための形態】
【0014】
以下、図面を参照して、本発明の実施の形態(以下、「本実施形態」と称する)について詳細に説明する。なお、各図は、本発明を十分に理解できる程度に、概略的に示しているに過ぎない。よって、本発明は、図示例のみに限定されるものではない。また、各図において、共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明を省略する。
【0015】
[第1実施形態]
<信号処理装置(推定装置)を含む信号処理システムの全体構成>
以下、
図1を参照して、本第1実施形態に係る信号処理装置10(推定装置)を含む信号処理システム100の全体構成について説明する。
図1は、信号処理装置10(推定装置)を含む信号処理システム100の全体構成を示すブロック図である。
【0016】
信号処理装置10は、信号に対して各種の処理を行う装置である。本実施形態では、信号処理装置10が、ノイズ成分が除去された抽出信号に伝達関数を掛け合わせて、教師信号と同じ次元(単位)の推定信号を推定する推定装置として機能するものとして説明する。また、本実施形態では、ガソリンエンジンなどの内燃機関でノッキングが発生しているか否かを検証する用途に信号処理装置10が用いられるものとして説明する。ただし、信号処理装置10は、このような用途に限らず、様々な用途に用いることができる。
【0017】
図1に示すように、信号処理システム100は、試験対象となるエンジン1のノッキングの有無を判定するものであり、音圧センサ4と、筒内圧センサ5と、データ収集装置6と、モニタ7と、ヘッドホン8と、レベル指定部9と、信号処理装置10とを備える。
【0018】
図1に示すように、試験対象のエンジン1は、車両3に搭載されている。なお、試験対象のエンジン1は、車両3に搭載されない状態、例えば単独の状態で用いられてもよい。エンジン1には、エンジン1の駆動を制御するエンジンECU(Electronic Control Unit)2が接続されている。エンジンECU2は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random access memory)、その他の記憶装置等で構成されている。エンジンECU2は、ROMや記憶装置に記憶されたプログラムをCPUで演算処理することで、エンジン1の駆動制御に必要な各種情報をエンジンECU2の外部から取得しながらエンジン1の駆動を制御する。
【0019】
エンジンECU2は、エンジン1の現在の回転角度を表す角度情報をデータ収集装置6に出力する。角度情報には、例えば回転パルスとクランク角度パルスとが含まれる。回転パルスは、クランク軸における絶対角度が出力される信号であって、例えば、クランク軸が1回転するごとに1パルス出力される。クランク角度パルスは、クランク軸の回転角度が単位角度進むごとに出力される信号であって、例えば、1°毎に1パルスが出力される場合、吸入、圧縮、燃焼及び排気の4行程を1サイクルとする4ストロークエンジンにおいて、1サイクルにクランク軸が回転する2回転の間に720パルス出力される。なお、角度情報がデータ収集装置6に入力されるのであれば、エンジンECU2を介さず、クランク軸の回転角度の原点を検出する原点センサや、クランク軸の回転角度を検出する角度センサからの角度情報がデータ収集装置6に入力されてもよい。
【0020】
エンジン1の近くには、音圧センサ4が設置されている。音圧センサ4は、エンジン1から発生する音を検出し、この検出した音に基づく音圧信号をデータ収集装置6に出力する。詳述すると、音圧センサ4は、エンジン1に発生する筒内圧力変動に基づく物理量の一例である音圧を検出し、検出された音圧の大きさを示す音圧信号を生成する。よって、エンジン1にノッキングが発生していないとき、音圧センサ4から出力される音圧信号には、ノッキングに相関のある音は含まれない。一方、エンジン1にノッキングが発生しているとき、音圧センサ4から出力される音圧信号には、ノッキングに相関のある音が含まれている。
【0021】
エンジン1には、エンジン1の筒内圧を検出する筒内圧センサ5を取り付ける。筒内圧センサ5は、筒内の燃焼ガス振動に応じた波形成分を含む筒内圧信号をデータ収集装置6に出力する。ここで、エンジン1にノッキングが発生していないとき、筒内圧センサ5から出力される筒内圧信号には、ノッキングに相関した成分が含まれない。一方、エンジン1にノッキングが発生しているとき、筒内圧センサ5から出力される筒内圧信号には、ノッキングに相関した成分が含まれている。筒内圧センサ5は、点火プラグと一体化したものを用いてもよいし、点火プラグとは別個に構成されたものを用いてもよい。
【0022】
データ収集装置6は、音圧センサ4からの音圧信号を入力してA/D変換する。また、データ収集装置6は、音圧信号を入力するタイミングで、エンジンECU2から現在の角度情報を取得する。そして、データ収集装置6は、角度情報に基づいてエンジン1の1サイクル分の音圧信号を取得する。よって、4ストローク単気筒エンジンを例とすると、データ収集装置6は、単位時間当たりのエンジン1の回転速度に応じた数、例えば、回転速度が3000[r/min]であれば一分間に1500個の音圧信号を生成する。また、データ収集装置6は、一部又は全部の音圧信号に角度情報を関連付ける。そして、データ収集装置6は、角度情報が関連付けられた音圧信号を信号処理装置10に出力する。なお、データ収集装置6は、音圧信号を一時的に保持したり、一旦蓄えたりしてから信号処理装置10に出力してもよい。また、データ収集装置6は、音圧信号に時刻情報を関連付けてもよい。
【0023】
モニタ7は、信号処理装置10が推定したエンジン1の筒内圧や、信号処理装置10によるノッキング有無の判定結果を表示する。なお、モニタ7の一例として、一般的なフラットパネルディスプレイがある。
【0024】
ヘッドホン8は、音を発する放音部である。ヘッドホン8は、後記する官能試験モードで試験対象物(本実施形態では、エンジン1)の状況を検査する際に、信号処理装置10の操作者の頭部に装着される。
【0025】
レベル指定部9は、信号に対する上昇レベル又は下降レベルを指定するレベル指定情報を受け付ける入力部である。レベル指定部9は、例えばタッチパネルディスプレイや、テンキー、専用のスイッチなどによって構成されている。本実施形態では、抽出信号(抽出ノッキング音91a(
図11B))のレベルを変更してレベル変更抽出信号(レベル変更ノッキング音91aa(
図12A))を生成する場合に、抽出信号の上昇レベル又は下降レベルを指定(入力)するために、信号処理装置10の操作者又はその周囲の人物によってレベル指定部9が操作される。
【0026】
信号処理装置10は、マスクαを生成するネットワークの重みW(
図3B)及び伝達関数H(
図3A)を学習する。ここで、マスクαは、ノイズ成分が含まれている入力物理量からノイズ成分を除去するための実数又は複素数の行列である。マスクαは、入力物理量に合わせて変化する。また、伝達関数Hは、複素数の重みベクトルであり、エンジン1の構造減衰補正量の逆数と解釈する。構造減衰補正量とは、エンジン燃焼時の筒内圧に起因する振動がエンジン1を通り、音となって音圧センサに到達するまでの伝達特性のことである。エンジン1の筒内圧の周波数成分に構造減衰補正量を乗算したものがエンジン1の燃焼騒音レベルとなる。
【0027】
そのため、音圧であるエンジン1の近傍音に含まれる燃焼騒音に構造減衰補正量の逆数を乗算すれば、エンジン1の筒内圧が求められる。したがって、エンジン1の近傍音からエンジン1の筒内圧を推定することができる。
【0028】
エンジン1の近傍音からエンジン1の筒内圧を推定する原理については、例えば、前記した特許文献2に記載されている。例えば、前記した特許文献2によれば、「まず、エンジン1の近傍音yと、教師データ(教師信号)として、実測したエンジン1の筒内圧xとを収集する。……エンジン1の近傍音y及びエンジン1の実測筒内圧xを用いて、未知数であるマスクαを生成するネットワークの重み及び伝達関数Hをニューラルネットワークにより学習する。そして、学習したネットワークが生成したマスクα及び伝達関数Hを用いて、試験時に測定したエンジン1の近傍音yから、エンジン1の筒内圧xを推定する。」と記載されている。
【0029】
信号処理装置10は、学習したネットワークが生成したマスクα及び伝達関数Hを用いて、エンジン1の近傍音からノッキング音を抽出し、エンジン1のノッキング筒内圧を推定し、抽出したノッキング音や推定したエンジン1のノッキング筒内圧に基づいて、ノッキングの有無を判定する。そして、信号処理装置10は、抽出したノッキング音や推定したエンジン1のノッキング筒内圧や、ノッキング有無の判定結果をモニタ7に表示する。
【0030】
ここで、信号処理装置10は、CPU、ROM、RAM、その他の記憶装置等で構成されている。信号処理装置10は、ROMや記憶装置に記憶されているプログラムをCPUで演算処理する。なお、信号処理装置10は、以下の処理を実行するプログラムを有するパーソナルコンピュータ(PC)等であってもよい。
【0031】
本実施形態では、信号処理装置10は、学習モード、閾値算出モード、判定モード、分離モード、官能試験モードという5つの動作モードで動作する。1つ目の学習モードは、マスクα(
図3A)を生成するネットワークの重みW(
図3B)及び伝達関数H(
図3A)を学習する動作モードである。2つ目の閾値算出モードは、マスクαを生成するネットワークの重みW及び伝達関数Hの学習後、ノッキングの有無を閾値判定するときの閾値を算出する動作モードである。3つ目の判定モードは、学習したネットワークに入力物理量を入力することで生成されたマスクαを用いて入力物理量(本実施形態では、エンジン近傍音90)から抽出信号(本実施形態では、抽出ノッキング音91a)を抽出し、ノッキングの有無を判定する動作モードである。4つ目の分離モードは、入力物理量を抽出信号とノイズ成分(本実施形態では、雑音91b)とに分離する動作モードである。5つ目の官能試験モードは、検査者が後記する加工音を聞き取り、検査者の聴感によって検査すべき目的音(本実施形態では、ノッキング音)における閾値算出モードで使用するデータを決定するための動作モードである。5つ目の官能試験モードでは、例えば許容範囲外となった音から閾値を算出する。
【0032】
これら5つの動作モードは、任意に切り替えることができる。例えば、図示を省略した管理装置により、CAN(Controller Area Network)を介して、信号処理装置10の動作モードを切り替えることができる。また、図示を省略したマウス、キーボード等の操作手段を用いて、信号処理装置10の動作モードを切り替えてもよい。
【0033】
学習モードの場合、ノッキングが発生する運転条件、及び、ノッキングが発生しない運転条件でそれぞれエンジン1を運転し、データ収集装置6が、教師データ(教師信号)として、筒内圧信号を収集する。このとき、データ収集装置6は、筒内圧センサ5からの筒内圧信号を入力してA/D変換し、これを音圧信号に関連付けておく。
【0034】
閾値算出モードの場合、ノッキングが発生しない運転条件でエンジン1を運転し、データ収集装置6が、音圧信号を収集する。
【0035】
判定モードの場合、学習したネットワークにより生成されたマスクαを用いてエンジン近傍音90(入力物理量)から抽出ノッキング音91a(抽出信号)を抽出し、信号処理装置10が、閾値に基づいてノッキングの有無を判定する。
【0036】
なお、閾値算出モード又は判定モードの場合、データ収集装置6が、筒内圧信号を収集する必要はない。また、学習モードの場合、音圧センサ4と筒内圧センサ5の双方が動作するが、判定モードの場合、音圧センサ4のみが動作する。
【0037】
分離モードの場合、エンジン1を運転し、信号処理装置10が、エンジン近傍音90(入力物理量)を学習したネットワークに入力してマスクαを生成し、雑音91b(ノイズ成分)と抽出ノッキング音91a(抽出信号)とに分離する。その際に、信号処理装置10は、雑音91b(ノイズ成分)をノイズ成分記憶部26cに、抽出ノッキング音91a(抽出信号)を抽出信号記憶部26dに、それぞれ記憶する。本発明では、入力物理量に関連する振幅と位相を考慮して、マスクαを生成するネットワークの重みW及び伝達関数Hを学習することにより分離性能が向上している。マスクαは実数又は複素数、伝達関数Hは複素数で実装する。これにより、信号処理装置10は、入力物理量をノイズ成分と抽出信号とに良好に分離することができる。
【0038】
官能試験モードの場合、信号処理装置10が、レベル指定部9からレベル指定情報を受け付け、レベル指定情報に基づいて、雑音91b(ノイズ成分)と抽出ノッキング音91a(抽出信号)とを用いて加工音を生成する。
【0039】
仮に振幅スペクトルが同じだとしても、位相スペクトルによって信号波形は大きく変わるため、聴感印象に多大な影響を及ぼす。そのため、品質の良い加工音を生成するには、位相を考慮して、加工音に用いる抽出信号(本実施形態では、抽出ノッキング音91a)を取得することが重要である。換言すると、信号処理装置10は、入力物理量に関連する振幅と位相を考慮して、マスクαを生成するネットワークの重みW及び伝達関数Hを学習することにより分離性能が向上し、品質の良い加工音(聴感上、ノッキング音が自然な加工音)を生成することができる。
【0040】
<信号処理装置(推定装置)の構成>
以下、
図2を参照して、信号処理装置10(推定装置)の構成について説明する。
図2は、信号処理装置10(推定装置)の構成を示すブロック図である。
図2に示すように、信号処理装置10は、信号切出部11と、スペクトログラム算出部12と、信号記憶部13と、スイッチ14と、学習処理部20(学習装置)と、判定処理部30と、分離部40と、信号合成部50と、を備える。ここで、信号処理装置10は、データ収集装置6から、音圧信号と、この音圧信号に関連付けられた角度情報とが入力される。さらに、学習モードの場合、信号処理装置10は、データ収集装置6から筒内圧信号が入力される。
【0041】
信号切出部11は、データ収集装置6から入力された角度情報に基づいて、入力された音圧信号から所定の切出角度範囲の音圧信号を切り出す。例えば、切出角度範囲はATDC(After Top Dead Center)の約-10~90°の角度範囲である。本実施形態では、TDC(Top Dead Center)を基準として切り出されているため、点火タイミングが変更されても切出角度範囲は固定されたままであるが、点火タイミングの変更に応じて切出角度範囲を変更してもよい。信号切出部11は、音圧信号を切り出すと、切り出した音圧信号をスペクトログラム算出部12に出力する。
【0042】
スペクトログラム算出部12は、信号切出部11が切り出した音圧信号に対して短時間フーリエ変換(STFT:Short Time Fourier Transform)を行い、音圧信号のスペクトログラムを算出する。短時間フーリエ変換は、例えば、離散フーリエ変換を高速に計算する高速フーリエ変換(FFT:Fast Fourier Transform)により行われる。
その後、スペクトログラム算出部12は、音圧信号のスペクトログラムを信号記憶部13に書き込む。
【0043】
信号記憶部13は、スペクトログラム算出部12が変換した音圧信号のスペクトログラムを記憶するメモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)等の記憶装置である。なお、学習モードの場合、信号記憶部13は、データ収集装置6から入力された筒内圧信号(観測ノッキング筒内圧93(
図3A))を、教師データ(教師信号)として記憶する。ここで、「ノッキング筒内圧」とは、筒内圧信号に重畳したノッキング成分を表す。ノッキング筒内圧は、筒内圧をノッキングの周波数成分以上の周波数帯を通過させるハイパスフィルタ処理することで得られる。
【0044】
スイッチ14は、前記した5つの動作モードに対応する学習モード用接続部M1、閾値算出モード用接続部M2、判定モード用接続部M3、分離モード用接続部M4、官能試験モード用接続部M5に任意に切り替えることができる。信号処理装置10は、信号処理装置10の動作モードに応じてスイッチ14を切り替えることにより、信号記憶部13に記憶されている信号を任意の出力先に出力することができる。
【0045】
例えば学習モードの場合、信号処理装置10は、スイッチ14を学習モード用接続部M1に接続して、信号記憶部13に記憶されている音圧信号のスペクトログラム及び筒内圧信号を後記する学習部21に出力する。また、例えば閾値算出モードの場合、信号処理装置10は、スイッチ14を閾値算出モード用接続部M2に接続して信号記憶部13に記憶されている音圧信号のスペクトログラムを後記する第1推定部23に出力する。また、例えば判定モードの場合、信号処理装置10は、スイッチ14を判定モード用接続部M3に接続して、信号記憶部13に記憶されている音圧信号のスペクトログラムを後記する第2推定部31(推定信号推定部)に出力する。また、例えば分離モードの場合、信号処理装置10は、スイッチ14を分離モード用接続部M4に接続して、信号記憶部13に記憶されている音圧信号のスペクトログラムを後記する分離部40に出力する。また、例えば官能試験モードの場合、信号処理装置10は、スイッチ14を官能試験モード用接続部M5に接続して、官能試験モードの実行指示信号を後記する信号調整部51に出力する。
【0046】
<学習処理部>
学習処理部20は、学習モードにおいて、マスクαを生成するネットワークの重みW及び伝達関数Hを学習する学習処理(
図14A)を行い、閾値算出モードにおいて、エンジン1の抽出したノッキング音の閾値判定に用いる閾値を算出する閾値算出処理(
図15A)を行う。
図2に示すように、学習処理部20は、学習部21と、学習済みパラメータ記憶部22と、第1推定部23と、閾値算出部24と、閾値記憶部25と、教師信号記憶部26aと、推定信号記憶部26bと、ノイズ成分記憶部26cと、抽出信号記憶部26dと、を備える。
【0047】
学習部21は、学習モードにおいて、ニューラルネットワーク94(
図3A)により、エンジン近傍音90(入力物理量)から雑音91bを除去し、かつ、抽出ノッキング音91a(抽出信号)を抽出するマスクαを生成するネットワークの重みWと、生成されたマスクαで抽出した抽出ノッキング音91a(抽出信号)をノッキング発生時のエンジン1の推定ノッキング筒内圧92に変換する伝達関数Hとを学習する。本実施形態では、学習部21は、信号記憶部13から入力された音圧信号のスペクトログラム及び筒内圧信号を用いて、マスクαを生成するネットワークの重みW及び伝達関数Hを学習する。その後、学習部21は、学習したマスクαを生成するネットワークの重みW及び伝達関数Hを学習済みパラメータ記憶部22に書き込む。
【0048】
学習済みパラメータ記憶部22は、学習済みのパラメータ(マスクαを生成するネットワークの重みW及び伝達関数H)を記憶するメモリ、HDD、SSD等の記憶装置である。
【0049】
第1推定部23は、閾値算出モードにおいて、ニューラルネットワーク94により生成されたマスクαを用いて、音圧信号のスペクトログラムからエンジン1のノッキング音(抽出信号)を抽出する。この第1推定部23が抽出したノッキング音(抽出信号)は、後記する閾値を算出するときに利用される。具体的には、第1推定部23は、学習済みパラメータ記憶部22のマスクαを生成するネットワークの重みWが反映されたニューラルネットワーク94に、信号記憶部13から入力された音圧信号のスペクトログラムを入力する。すると、学習したネットワークにより生成されたマスクαが音圧信号のスペクトログラムからノッキング音(抽出信号)を抽出する。その後、第1推定部23は、ノッキング音(抽出信号)を閾値算出部24に出力する。
【0050】
閾値算出部24は、第1推定部23が抽出したエンジン1のノッキング音(抽出信号)に基づいて閾値を算出する。具体的には、閾値算出部24は、ノッキング音(抽出信号)のスペクトログラムの絶対値を所定時間(例えば、エンジン1の1サイクル)毎に総和する。例えば、複数の気筒を有するエンジン1では、ノッキング音(抽出信号)を総和すると、気筒別に1つのスコアが求められる。続いて、閾値算出部24は、所定時間毎に総和したノッキング音(抽出信号)の中央値を算出する。例えば、閾値算出部24は、全てのサイクルについて、ノッキング音(抽出信号)の総和の中央値を算出する。このとき、閾値算出部24は、任意の値で予め設定したマージンを中央値に加算し、閾値とする。なお、閾値算出部24は、気筒毎にノッキング音(抽出信号)を総和して中央値を求め、気筒毎の閾値を算出してもよい。一方、閾値算出部24は、各気筒でノッキング音(抽出信号)を総和し、全気筒で中央値を求め、全気筒で共通の閾値を算出してもよい。また、後述する官能試験にて、検査者により許容不可能と判断された加工音91cのノッキング音(抽出信号)の総和を求め、総和値以下の任意の値を閾値としてもよい。その後、閾値算出部24は、算出した閾値を閾値記憶部25に書き込む。
【0051】
閾値記憶部25は、閾値算出部24が算出した閾値を記憶するメモリ、HDD、SSD等の記憶装置である。
【0052】
教師信号記憶部26aは、教師信号(本実施形態では、観測ノッキング筒内圧93(
図3A))を記憶するメモリ、HDD、SSD等の記憶装置である。
【0053】
推定信号記憶部26bは、推定信号(本実施形態では、推定ノッキング筒内圧92(
図3A))を記憶するメモリ、HDD、SSD等の記憶装置である。
【0054】
ノイズ成分記憶部26cは、入力物理量に含まれているノイズ成分(本実施形態では、雑音91b(
図6A))を記憶するメモリ、HDD、SSD等の記憶装置である。
【0055】
抽出信号記憶部26dは、ノイズ成分が含まれている入力物理量からノイズ成分を除去した抽出信号(本実施形態では、抽出ノッキング音91a(
図6A))を記憶するメモリ、HDD、SSD等の記憶装置である。
【0056】
<判定処理部>
判定処理部30は、判定モードにおいて、音圧信号のスペクトログラムからエンジン1のノッキング音を抽出し、ノッキングの有無を判定する判定処理(
図16)を行う。
図2に示すように、判定処理部30は、第2推定部31(推定信号推定部)と、閾値判定部32とを備える。
【0057】
第2推定部31(推定信号推定部)は、判定モードにおいて、ニューラルネットワーク94により生成されたマスクαを用いて、音圧信号のスペクトログラムから抽出ノッキング音91a(抽出信号)を抽出する。この第2推定部31が抽出した抽出ノッキング音91a(抽出信号)は、後記する閾値判定に利用される。なお、第2推定部31の処理内容は、第1推定部23と同様のため、説明を省略する。
その後、第2推定部31は、抽出した抽出ノッキング音91a(抽出信号)を閾値判定部32に出力する。
【0058】
閾値判定部32は、判定モードにおいて、閾値記憶部25に記憶されている閾値と、第2推定部31が抽出したノッキング音(抽出信号)との閾値判定により、ノッキングの有無を判定する。具体的には、閾値判定部32は、閾値算出部24と同様、ノッキング音(抽出信号)のスペクトログラムの絶対値を所定時間毎に総和する。そして、閾値判定部32は、総和したノッキング音(抽出信号)と閾値とを比較し、総和したノッキング音(抽出信号)が閾値を超える場合にはノッキング有りと判定し、総和したノッキング音(抽出信号)が閾値以下の場合にはノッキング無しと判定する。その後、閾値判定部32は、ノッキング有無の判定結果と、第2推定部31から入力されたノッキング音(抽出信号)をモニタ7(
図1)に出力する。
【0059】
<分離部>
分離部40は、入力物理量をノイズ成分と抽出信号とに分離する。本実施形態では、
図6Aに示すように、分離部40は、入力物理量としてのエンジン近傍音90をノイズ成分である雑音91bと抽出信号である抽出ノッキング音91aとに分離する。
【0060】
<信号合成部>
信号合成部50は、各種の信号を合成して加工音を生成する。本実施形態では、
図11A乃至
図12Cに示すように、信号合成部50は、抽出信号(抽出ノッキング音91a)のレベルを変更して、入力物理量(エンジン近傍音90)から分離されたノイズ成分(雑音91b)と合成して加工音を生成する。信号合成部50は、信号調整部51と、信号出力部52とを有している。信号調整部51は、レベル指定部9で指定(入力)された信号の上昇レベル又は下降レベルに応じて信号のレベルを変更し、レベル変更信号とノイズ成分とを合成して加工音を生成する。信号出力部52は、加工音(信号)を放音部(ヘッドホン8)に出力して、放音部に加工音を放音させる。
【0061】
<学習モード時の動作>
以下、
図3A、
図3B、
図8A、
図8B、
図8C、及び
図9を参照して、信号処理装置10の学習モード時の動作について説明する。
図3Aは、学習モードの説明図である。
図3Bは、信号処理装置10の学習モード時の動作説明図である。
図8Aは、学習時におけるノイズ成分と教師信号との関係を表す説明図である。
図8Bは、学習時における抽出信号と教師信号との関係を表す説明図である。
図8Cは、学習時における抽出信号と推定信号との関係を表す説明図である。
図9は、第1実施形態において、マスクαを生成するネットワークの重みWを学習するニューラルネットワーク94の説明図である。
【0062】
図3Aに示すように、学習モード時において、信号処理装置10の学習部21は、エンジン近傍音90(入力物理量)を雑音91b(ノイズ成分)と抽出ノッキング音91a(抽出信号)とに分離する。その際に、学習部21は、エンジン近傍音90(入力物理量)にマスクαを掛け合わせて抽出ノッキング音91a(抽出信号)を取得する。また、学習部21は、エンジン近傍音90(入力物理量)から抽出ノッキング音91a(抽出信号)を差し引くことで、雑音91b(ノイズ成分)を取得する。本実施形態では、マスクαは、エンジン近傍音90(入力物理量)に含まれるノッキング音の割合と位相成分(位相の修正量)を表す。位相成分については、
図10A及び
図10Bを用いて後記する。
【0063】
信号処理装置10の学習部21は、マスクαを生成するネットワークの重みW、及び、抽出ノッキング音91a(抽出信号)を観測ノッキング筒内圧93(教師信号)と同じ次元(単位)の推定ノッキング筒内圧92(推定信号)に位相を加味して変換するための伝達関数Hを学習する。換言すると、学習部21は、ネットワークの重みW、及び、伝達関数Hを学習する際に、マスクα、及び、伝達関数Hに対して、入力物理量(エンジン近傍音90)に関連する振幅と位相成分を加味して学習する。本実施形態では、学習部21は、抽出ノッキング音91a(抽出信号)に対して、逆短時間フーリエ変換(ISTFT)と高速フーリエ変換(FFT)とを行い、伝達関数Hを掛け、逆高速フーリエ変換(IFFT)と短時間フーリエ変換(STFT)とを行うことで、抽出ノッキング音91a(抽出信号)を推定ノッキング筒内圧92(推定信号)に変換している。なお、本実施形態では、伝達関数Hは、抽出ノッキング音91a(抽出信号)を推定ノッキング筒内圧92(推定信号)に変換するための振幅(ゲイン)と位相成分である。位相成分については、
図10A及び
図10Bを用いて後記する。
【0064】
本実施形態では、
図3Aに示すように、学習部21は、ノイズ成分(雑音91b)を逆短時間フーリエ変換(ISTFT)して求めた信号波形と教師信号(観測ノッキング筒内圧93)とのコヒーレンスが小さくなるとともに、抽出信号(抽出ノッキング音91a)を逆短時間フーリエ変換(ISTFT)して求めた信号波形と教師信号(観測ノッキング筒内圧93)とのコヒーレンスが大きくなるように、マスクαを生成するネットワークの重みW、及び、伝達関数Hを学習する。これにより、信号処理装置10は、雑音91b(ノイズ成分)から筒内圧に起因する音を除去することができる。
【0065】
図3Bに、信号処理装置10の学習モード時の動作を示す。
図3Bの太枠は学習モード時の作動する構成要素を示している。また、
図3Bの太線矢印は、学習モード時に出力される信号を示している。
【0066】
図3Bに示すように、学習モード時において、信号処理装置10は、スイッチ14を学習モード用接続部M1に接続して、信号記憶部13に記憶されているエンジン近傍音90(入力物理量)のスペクトログラム及び観測ノッキング筒内圧93(教師信号)を学習部21に出力する。
【0067】
これに応答して、学習部21は、ニューラルネットワーク94(
図3A)により、エンジン近傍音90(入力物理量)から雑音91b(ノイズ成分)を除去するマスクαを生成するネットワークの重みWと、生成されたマスクαで抽出した抽出ノッキング音91a(抽出信号)をノッキング発生時のエンジン1の推定ノッキング筒内圧92(推定信号)に変換する伝達関数Hとを学習する。このとき、学習部21は、新しいエンジン近傍音90(入力物理量)が入力される度に、エンジン近傍音90(入力物理量)に対応するマスクαを生成する。
【0068】
そして、学習部21は、学習されたパラメータ(マスクαを生成するネットワークの重みWと伝達関数H)を学習済みパラメータ記憶部22に記憶する。また、学習部21は、観測ノッキング筒内圧93(教師信号)を教師信号記憶部26aに記憶するとともに、推定ノッキング筒内圧92(推定信号)を推定信号記憶部26bに記憶する。
【0069】
<閾値算出モード時の動作>
以下、
図4A及び
図4Bを参照して、信号処理装置10の閾値算出モード時の動作について説明する。
図4Aは、閾値算出モードの説明図である。
図4Bは、信号処理装置10の閾値算出モード時の動作説明図である。
【0070】
図4Bに示すように、閾値算出モード時において、
図3Bの学習モード時と異なり、信号処理装置10の学習部21は、停止した状態になっている。その代わりに、
図4Bに示すように、学習処理部20の第1推定部23と閾値算出部24が作動して、エンジン1の抽出ノッキング音(抽出信号)の閾値判定に用いる閾値Tを算出する。
図4Bの太枠は閾値算出モード時の作動する構成要素を示している。また、
図4Bの太線矢印は、閾値算出モード時に出力される信号を示している。
【0071】
図4Bに示すように、閾値算出モード時において、信号処理装置10は、スイッチ14を閾値算出モード用接続部M2に接続して、信号記憶部13に記憶されているエンジン近傍音90(入力物理量)のスペクトログラムを第1推定部23に出力する。
【0072】
これに応答して、第1推定部23は、学習済みパラメータ記憶部22から、マスクαを生成するネットワークの重みWを取得する。そして、第1推定部23は、ニューラルネットワーク94(
図4A)により生成したマスクαを用いてエンジン近傍音90(入力物理量)からエンジン1の抽出ノッキング音91a(抽出信号)を抽出する。
図4Aは、このときの第1推定部23の動作の概要を示している。この後、第1推定部23は、抽出した抽出ノッキング音91a(抽出信号)を閾値算出部24に出力する。
【0073】
これに応答して、閾値算出部24は、エンジン1の各サイクルで抽出ノッキング音91a(抽出信号)のスペクトログラムの絶対値を総和し、予め設定したマージンを加算して、閾値Tを算出する。そして、閾値算出部24は、閾値Tを閾値記憶部25に記憶する。
【0074】
なお、閾値算出モード時において、第1推定部23は、学習済みパラメータ記憶部22から、マスクαを生成するネットワークの重みWに加え、伝達関数Hを取得してもよい。そして、第1推定部23は、エンジン1の各サイクルで抽出ノッキング音91a(抽出信号)に対して、逆短時間フーリエ変換(ISTFT)と高速フーリエ変換(FFT)とを行い、伝達関数Hを掛け、逆高速フーリエ変換(IFFT)と短時間フーリエ変換(STFT)とを行うことで、抽出ノッキング音91a(抽出信号)を推定ノッキング筒内圧92(推定信号)に変換し、閾値算出部24に出力するようにしてもよい。さらに、閾値算出部24は、推定ノッキング筒内圧92に基づいて閾値Tを算出し、閾値Tを閾値記憶部25に記憶するようにしてもよい。
【0075】
<判定モード時の動作>
以下、
図5A及び
図5Bを参照して、信号処理装置10の判定モード時の動作について説明する。
図5Aは、判定モードの説明図である。
図5Bは、信号処理装置10の判定モード時の動作説明図である。
【0076】
図5Bに示すように、判定モード時において、
図3Bの学習モード時と異なり、信号処理装置10の学習部21は、停止した状態になっている。その代わりに、
図5Bに示すように、判定処理部30の第2推定部31(推定信号推定部)と閾値判定部32が作動して、ノッキングの有無を判定する。
図5Bの太枠は判定モード時の作動する構成要素を示している。また、
図5Bの太線矢印は、判定モード時に出力される信号を示している。
【0077】
図5Bに示すように、判定モード時において、信号処理装置10は、スイッチ14を判定モード用接続部M3に接続して、信号記憶部13に記憶されているエンジン近傍音90(入力物理量)のスペクトログラムを第2推定部31(推定信号推定部)に出力する。
【0078】
これに応答して、第2推定部31は、学習済みパラメータ記憶部22から、マスクαを生成するネットワークの重みWを取得する。そして、第2推定部31は、ニューラルネットワーク94(
図5A)により生成したマスクαを用いてエンジン近傍音90(入力物理量)から抽出ノッキング音91a(抽出信号)を抽出する。
図5Aは、このときの第2推定部31の動作の概要を示している。この後、第2推定部31は、抽出した抽出ノッキング音91a(抽出信号)を閾値判定部32に出力する。
【0079】
これに応答して、閾値判定部32は、閾値記憶部25から閾値Tを取得し、抽出ノッキング音91a(抽出信号)の絶対値の総和と閾値Tを比較してノッキングの有無を判定する。そして、閾値判定部32は、例えば、ノッキングの有無の判定結果や、抽出ノッキング音91a(抽出信号)と閾値Tとの関係を表す波形図等をモニタ7に出力して表示させる。
【0080】
なお、判定モード時において、第2推定部31(推定信号推定部)は、学習済みパラメータ記憶部22から、マスクαを生成するネットワークの重みWに加え、伝達関数Hを取得してもよい。そして、第2推定部31(推定信号推定部)は、抽出ノッキング音91a(抽出信号)に対して、逆短時間フーリエ変換(ISTFT)と高速フーリエ変換(FFT)とを行い、伝達関数Hを掛け、逆高速フーリエ変換(IFFT)と短時間フーリエ変換(STFT)とを行うことで、抽出ノッキング音91a(抽出信号)を推定ノッキング筒内圧92(推定信号)に変換し、推定ノッキング筒内圧92(推定信号)に対して閾値Tを超過する部位の有無を検知することで、ノッキングの有無を判定するようにしてもよい。さらに、閾値判定部32は、例えば、ノッキングの有無の判定結果や、推定ノッキング筒内圧92(推定信号)と閾値Tとの関係を表す波形図等をモニタ7に出力して表示させるようにしてもよい。
【0081】
<分離モード時の動作>
以下、
図6A及び
図6Bを参照して、信号処理装置10の分離モード時の動作について説明する。
図6Aは、分離モードの説明図である。
図6Bは、信号処理装置10の分離モード時の動作説明図である。
【0082】
図6Bに示すように、分離モード時において、
図3Bの学習モード時と異なり、信号処理装置10の学習部21は、停止した状態になっている。その代わりに、
図6Bに示すように、分離部40が作動して、エンジン近傍音90(入力物理量)を抽出ノッキング音91a(抽出信号)と雑音91b(ノイズ成分)とに分離する。
図6Bの太枠は分離モード時の作動する構成要素を示している。また、
図6Bの太線矢印は、分離モード時に出力される信号を示している。
【0083】
図6Bに示すように、分離モード時において、信号処理装置10は、スイッチ14を分離モード用接続部M4に接続して、信号記憶部13に記憶されているエンジン近傍音90(入力物理量)のスペクトログラムを分離部40に出力する。
【0084】
これに応答して、分離部40は、学習済みパラメータ記憶部22から、マスクαを生成するネットワークの重みWを取得する。そして、分離部40は、ニューラルネットワーク94(
図6A)により生成したマスクαを用いて、エンジン近傍音90(入力物理量)を抽出ノッキング音91a(抽出信号)と雑音91b(ノイズ成分)とに分離する。
図6Aは、このときの分離部40の動作の概要を示している。この後、分離部40は、抽出ノッキング音91a(抽出信号)を抽出信号記憶部26dに記憶するとともに、雑音91b(ノイズ成分)をノイズ成分記憶部26cに記憶する。
【0085】
<官能試験モード時の動作>
以下、
図7A及び
図7Bを参照して、信号処理装置10の官能試験モード時の動作について説明する。
図7Aは、官能試験モードの説明図である。
図7Bは、信号処理装置10の官能試験モード時の動作説明図である。官能試験モードは、検査者の聴感に基づく閾値Tを算出するモードである。
【0086】
図7Bに示すように、官能試験モード時において、
図3Bの学習モード時と異なり、信号処理装置10の学習部21は、停止した状態になっている。その代わりに、
図7Bに示すように、信号合成部50の信号調整部51と信号出力部52、並びに、学習処理部20の第1推定部23と閾値算出部24が作動して、検査者の聴感に基づく閾値Tを算出する。
図7Bの太枠は官能試験モード時の作動する構成要素を示している。また、
図7Bの太線矢印は、官能試験モード時に出力される信号を示している。
【0087】
図7Bに示すように、官能試験モード時において、信号処理装置10は、スイッチ14を官能試験モード用接続部M5に接続することで、官能試験モードの実行指示信号を信号調整部51に出力する。
【0088】
これに応答して、信号調整部51は、レベル指定部9からレベル指定情報を受け取るとともに、抽出信号記憶部26dに記憶されている抽出ノッキング音91a(抽出信号)とノイズ成分記憶部26cに記憶されている雑音91b(ノイズ成分)とを取得する。そして、信号調整部51は、レベル指定情報に基づいて、抽出ノッキング音91a(抽出信号)と雑音91b(ノイズ成分)とを用いて加工音91cを生成する。このとき、信号調整部51は、レベル指定情報によって指定された量だけ抽出ノッキング音91a(抽出信号)のレベル(大きさ)を上昇又は下降させてから、雑音91b(ノイズ成分)と合成することによって、加工音91cを生成して信号出力部52に出力する。信号出力部52は、加工音91cをヘッドホン8(放音部)に出力して放音させる。
【0089】
また、信号調整部51は、加工音91cを第1推定部23に出力する。第1推定部23は、学習済みパラメータ記憶部22から、マスクαを生成するネットワークの重みWを取得する。そして、第1推定部23は、ニューラルネットワーク94(
図7A)により生成したマスクαを用いて加工音91cからエンジン1の抽出ノッキング音91a(抽出信号)を抽出する。
図7Aは、このときの第1推定部23の動作の概要を示している。この後、第1推定部23は、抽出した抽出ノッキング音91a(抽出信号)を閾値算出部24に出力する。閾値算出部24は、エンジン1の各サイクルで抽出ノッキング音91a(抽出信号)のスペクトログラムの絶対値を総和し、総和値以下の任意の値を閾値Tとする。そして、閾値算出部24は、閾値Tを閾値記憶部25に記憶する。
【0090】
なお、官能試験モード時において、第1推定部23は、学習済みパラメータ記憶部22から、マスクαを生成するネットワークの重みWに加え、伝達関数Hを取得してもよい。そして、第1推定部23は、エンジン1の各サイクルで抽出ノッキング音91a(抽出信号)に対して、逆短時間フーリエ変換(ISTFT)と高速フーリエ変換(FFT)とを行い、伝達関数Hを掛け、逆高速フーリエ変換(IFFT)と短時間フーリエ変換(STFT)とを行うことで、抽出ノッキング音91a(抽出信号)を推定ノッキング筒内圧92(推定信号)に変換し、閾値算出部24に出力するようにしてもよい。さらに、閾値算出部24は、推定ノッキング筒内圧92(推定信号)に基づいて閾値Tを算出し、閾値Tを閾値記憶部25に記憶するようにしてもよい。
【0091】
ところで、特許文献2及び特許文献3に記載された従来技術は、ニューラルネットワークの学習時における目的関数に音の分離度合いを測る関数を含めていないため、エンジン近傍音(入力物理量)から除去される雑音(ノッキング音以外の音(背景音))の中にノッキング音(目的音)が混入する可能性があった。つまり、特許文献2及び特許文献3に記載された従来技術は、学習時に、推定筒内圧と実測筒内圧(教師データ)との二乗誤差を最小化するだけであるため、「雑音が除去されたエンジン音」が雑音(ノッキング音以外の音(背景音))だけを良好に除去されたものであるか否かを監視するものではなかった。例えば、特許文献3に記載された従来技術は、エンジン近傍音(入力物理量)に関連する位相成分が考慮されていないマスクαをエンジン近傍音に掛けることで、「雑音が除去されたエンジン音」すなわちノッキング音(本実施形態の「抽出信号」に相当)を抽出する。その際に、特許文献3に記載された従来技術は、音の分離度合いを測る関数を用いていないため、雑音(ノッキング音以外の音(背景音))と共に、除去されるべきでないノッキング音(目的音)がエンジン近傍音から除去される可能性があった。したがって、特許文献3に記載された従来技術は、除去されるべきでないノッキング音の成分をもエンジン近傍音から除去してしまう可能性があった。そのため、特許文献3に記載された従来技術は、ノッキングの有無の評価性能を低下させる可能性があった。
【0092】
これに対して、本実施形態に係る信号処理装置10は、学習時に、エンジン近傍音(入力物理量)から除去される雑音(ノッキング音以外の音(背景音))の中にノッキング音(目的音)が混入しているか否かを評価する構成になっている。そのための構成として、本実施形態に係る信号処理装置10は、ノイズ成分(雑音91b)を逆短時間フーリエ変換(ISTFT)して求めた信号波形と教師信号(観測ノッキング筒内圧93)とのコヒーレンスが小さくなるように学習する構成になっている。このような本実施形態に係る信号処理装置10は、特許文献2及び特許文献3に記載された従来技術よりも、ノッキングの有無の評価性能を向上させることができる。
【0093】
図8Aは、雑音91b(ノイズ成分)のスペクトログラムF11と、スペクトログラムF11に対して逆短時間フーリエ変換(ISTFT)を行うことにより得られる信号波形F12と、観測ノッキング筒内圧93(教師信号)の信号波形F93と、を示している。また、
図8Aは、信号波形F12と観測ノッキング筒内圧93(教師信号)の信号波形F93との学習の過程で最小化されるコヒーレンスF13を示している。
【0094】
図8Bは、抽出ノッキング音91a(抽出信号)のスペクトログラムF21と、スペクトログラムF21に対して逆短時間フーリエ変換(ISTFT)を行うことにより得られる信号波形F22と、観測ノッキング筒内圧93(教師信号)の信号波形F93を示している。また、
図8Bは、信号波形F22と観測ノッキング筒内圧93(教師信号)の信号波形F93との学習の過程で最大化されるコヒーレンスF23を示している。
【0095】
コヒーレンスは以下のコヒーレンス関数γ
2によって定義される。コヒーレンス関数γ
2は、系の入力と出力の関連の度合いを示すものである。コヒーレンス関数γ
2は、クロススペクトルの絶対値の2乗を測定入力及び系の出力の各々のパワースペクトルで割り算したものである。
【数1】
【0096】
ここで、Wxyはクロススペクトルの平均値、Wxxはxのパワースペクトルの平均値、Wyyはyのパワースペクトルの平均値を意味している。コヒーレンス関数γ2は、0から1までの間の値をとる。γ2(f)が1の場合、その周波数fにおいて、系の出力がすべて測定入力に起因していることを示している。また、γ2(f)が0の場合、その周波数fにおいて、系の出力が測定入力にまったく関係ないことを示している。また、0<γ2(f)<1の場合、測定とは無関係な信号、系内部で発生しているノイズ、系の非直線性等があるものと考えられる。
【0097】
また、エンジン近傍音(入力物理量)から除去される雑音(ノッキング音以外の音(背景音))の中にノッキング音(目的音)が混入しているか否かを評価する方法としてコヒーレントアウトプットパワーを用いても良い。学習部21は、ノイズ成分(雑音91b)を逆短時間フーリエ変換(ISTFT)して求めた信号波形と教師信号(観測ノッキング筒内圧93)とのコヒーレンス及び/又はコヒーレントアウトプットパワーが小さくなるとともに、抽出信号(抽出ノッキング音91a)を逆短時間フーリエ変換(ISTFT)して求めた信号波形と教師信号(観測ノッキング筒内圧93)とのコヒーレンス及び/又はコヒーレントアウトプットパワーが大きくなるように、マスクαを生成するネットワークの重みW、及び、伝達関数Hを学習する。これにより、信号処理装置10は、ノッキングの有無の評価性能を更に向上させることができる。
【0098】
コヒーレントアウトプットパワーはコヒーレンス関数γ2とyのパワースペクトルの平均値Wyyとの積で定義される。コヒーレントアウトプットパワーは、系の出力に含まれる入力に起因したパワーを示すものである。
【0099】
また、
図3Aに示すように、学習部21は、観測ノッキング筒内圧93(教師信号)に対して短時間フーリエ変換(STFT)を行い求めたスペクトログラムと推定ノッキング筒内圧92(推定信号)との誤差が最小となるように、ニューラルネットワーク94により、マスクαを生成するネットワークの重みW、及び、伝達関数Hを学習する。これにより、信号処理装置10は、マスクαを生成するネットワークの重みWと伝達関数Hの学習精度を向上させることができる。
【0100】
また、学習部21は、観測ノッキング筒内圧93(教師信号)と、抽出信号(抽出ノッキング音91a)に対して、逆短時間フーリエ変換(ISTFT)と高速フーリエ変換(FFT)とを行い、伝達関数Hを掛け、逆高速フーリエ変換(IFFT)を行い求めた推定ノッキング筒内圧92(推定信号)の信号波形との誤差が最小となるように、ニューラルネットワーク94により、マスクαを生成するネットワークの重みW、及び、伝達関数Hを学習しても良い。これにより、信号処理装置10は、マスクαを生成するネットワークの重みWと伝達関数Hの学習精度を更に向上させることができる。
【0101】
図8Cは、抽出ノッキング音91a(抽出信号)を推定ノッキング筒内圧92(推定信号)に変換する際の一例を示している。
図8Cは、抽出ノッキング音91a(抽出信号)のスペクトログラムF31と、スペクトログラムF31に対して逆短時間フーリエ変換(ISTFT)を行うことにより得られる信号波形F32と、さらに高速フーリエ変換(FFT)を行うことにより得られるスペクトルF33と、を示している。また、
図8Cは、スペクトルF33の信号に伝達関数Hを掛けることにより得られる推定ノッキング筒内圧のスペクトルF35と、を示している。なお、
図8Cでは、伝達関数Hの一例として、周波数と係数との対応関係を示す周波数応答特性F34が示されている。また、
図8Cは、スペクトルF35に逆高速フーリエ変換(IFFT)を行うことにより得られる信号波形F36と、さらに、短時間フーリエ変換(STFT)を行うことにより得られる、推定ノッキング筒内圧92(推定信号)のスペクトログラムF37と、を示している。
【0102】
本実施形態では、学習部21は、畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)によりマスクαを生成するネットワークの重みWを学習する。さらに、学習部21は、伝達関数Hとして、抽出信号のスペクトルF33に乗じる重みを学習する。
【0103】
なお、
図9に示すように、マスクαを生成するネットワークの重みWを学習するニューラルネットワーク94の一例として、U-Net95がある。このU-Net95は、Encoder‐Decoderモデルの一種で、画像認識や音の分離に使用されている深層学習の一手法である。音の分離において、U-Net95では、下向きパス96(Encoder)で畳み込み(ストライドは2以上)を行い、階層97が深くなるにつれて音の特徴を抽出する。一方、上向きパス98(Decoder)では、抽出された音の特徴から逆畳み込みとUPサンプリング(膨張)を行うことによりマスクαを生成する。ここまでは、一般的なEncoder‐Decoderモデルの構成である。さらに、U-Net95では、各Encoderの畳み込み層からの出力99をDecoderの畳み込み層にマージする。これにより、U-Net95では、一般的なEncoder‐Decoderモデルよりも高精度なマスクαを生成できる。信号処理装置10は、マスクαを生成し、エンジン近傍音90に掛け合わせることで、抽出信号(抽出ノッキング音91a)を取得できる。
【0104】
このように、学習部21がU-Net95でマスクαを生成するネットワークの重みWを学習するので、学習したネットワークは入力されるエンジン1の近傍音に応じて適切なマスクαを生成するようになる。これにより、信号処理装置10は、エンジン1のノッキング筒内圧を正確に推定することができる。
【0105】
<位相成分の影響>
以下、
図10A及び
図10Bを参照して、位相成分の影響について説明する。
図10Aは、圧力や、振動、音などの位相成分が考慮されていない場合の計算例の説明図である。
図10Bは、圧力や、振動、音などの位相成分が考慮されている場合の計算例の説明図である。
図10A及び
図10Bにおいて、円内の矢印は、圧力や、振動、音などに含まれる位相成分を表している。
【0106】
なお、
図10A及び
図10Bに示す例では、ともに、以下の条件が仮定されている。
・系が線形時不変系(入力と出力との間の伝達特性が線形かつ時間に依存して変化しない系)である。
【0107】
図10Aに示す例では、エンジン1が駆動されると、筒内圧センサ5(
図1)により、観測ノッキング筒内圧93が観測されている。観測ノッキング筒内圧93がエンジン1内を伝搬することで、ノッキング音82が放出される。さらに、ノッキング音82が背景音であるメカニカルノイズ83(ノイズ成分)と合わさることで、音圧センサ4によりエンジン近傍音90(入力物理量)が観測される。
【0108】
図10Aは、以下のように、観測ノッキング筒内圧93、ノッキング振動81、ノッキング音82、メカニカルノイズ83、及びエンジン近傍音90の概略的な計算の一例を示しており、位相φは変わらないと仮定している。
観測ノッキング筒内圧93=ASin(Ωt+φ)
ノッキング振動81=ABSin(Ωt+φ)
ノッキング音82=ABCSin(Ωt+φ)
メカニカルノイズ83=NSin(Ωt+φN)
エンジン近傍音90=(ABC+N)Sin(Ωt+φ)
【0109】
これに対して、
図10Bは位相を考慮した例である。以下のように、観測ノッキング筒内圧93、ノッキング振動81、ノッキング音82、メカニカルノイズ83、及びエンジン近傍音90の概略的な計算の一例を示しており、次元(単位)が変化する度に位相φが変化することを考慮している。
観測ノッキング筒内圧93=ASin(Ωt+φA)
ノッキング振動81=ABSin(Ωt+φA+φB)
ノッキング音82=ABCSin(Ωt+φA+φB+φC)
メカニカルノイズ83=NSin(Ωt+φN)
エンジン近傍音90=ABCSin(Ωt+φA+φB+φC)+NSin(Ωt+φN)
【0110】
図10Bに示す例は、圧力が振動となり、音となって放射される際の位相成分の変化が考慮されているため、
図10Aに示す例よりも、信号を良好に解析することができる。そこで、信号処理装置10は、
図3Aに示すように、マスクαを生成するネットワークの重みW及び伝達関数Hの学習時に、位相を加味して学習する構成となっている。このような信号処理装置10は、エンジン近傍音90(入力物理量)を抽出ノッキング音91a(抽出信号)と雑音91b(ノイズ成分)とに良好に分離することができる。つまり、信号処理装置10は、雑音(ノッキング音以外の音(背景音))の中にノッキング音(目的音)が混入しないように、エンジン近傍音90(入力物理量)を抽出ノッキング音91a(抽出信号)と雑音91b(ノイズ成分)とに分離することができる。このような信号処理装置10は、特許文献2及び特許文献3に記載された従来技術よりも、ノッキングの有無の評価性能を向上させることができる。また、このような信号処理装置10は、良好な官能試験を行うことができる。
【0111】
(官能試験の概要)
以下、
図11A乃至
図12Cを参照して、官能試験の概要について説明する。
図11A乃至
図12Cは、それぞれ、官能試験における信号処理の説明図である。
【0112】
図2に示すように、圧力と音の各信号は、データ収集装置6によって収集され、信号処理装置10に出力される。信号処理装置10は、信号切出部11で各信号を切り出し、スペクトログラム算出部12でスペクトログラムを算出して、スペクトログラムを信号記憶部13に記憶する。
【0113】
本実施形態に係る信号処理装置10は、前記した分離モードと前記した官能試験モードとを実行することができる。分離モード時に、信号処理装置10は、入力物理量(エンジン近傍音90)を抽出信号(抽出ノッキング音91a)とノイズ成分(雑音91b)とに分離する。そして、官能試験モード時に、信号処理装置10は、抽出信号(抽出ノッキング音91a)のレベルを変更してレベル変更抽出信号(レベル変更ノッキング音91aa(
図12A))を生成し、ノイズ成分(雑音91b)と合成して加工音91c(
図12C)を生成する。
【0114】
官能試験モード時において、検査者は、頭部にヘッドホン8(
図1)を装着して、レベル指定部9を操作可能な態勢で待機する。そして、操作者は、許容可能なレベルを周囲に宣告して、レベル指定部9を操作してレベル指定情報を信号処理装置10に入力する。信号処理装置10は、入力されたレベル指定情報に基づいて、抽出信号(抽出ノッキング音91a)のレベルを変更する。
【0115】
図11Aは、入力物理量(エンジン近傍音90)を示しており、
図11Bと
図11Cは、分離モード時に入力物理量(エンジン近傍音90)から分離された抽出信号(抽出ノッキング音91a)とノイズ成分(雑音91b)とを示している。
図12Aは、官能試験モード時に、抽出信号(抽出ノッキング音91a)のレベルを3db上昇させる変更を行って生成されたレベル変更抽出信号(レベル変更ノッキング音91aa)を示しており、
図12Bは、レベル変更抽出信号(レベル変更ノッキング音91aa)と合成されるノイズ成分(雑音91b)を示しており、
図12Cは、レベル変更抽出信号(レベル変更ノッキング音91aa)とノイズ成分(雑音91b)とを合成した加工音91cを示している。信号処理装置10は、加工音91cを生成することにより、検査すべき目的音(ノッキング音)を聞き分け易い状態にすることができる。このような信号処理装置10は、目的音(ノッキング音)の有無を高精度に検査者に把握させることができ、検査性能を向上させることができる。また、信号処理装置10は、検査者により許容不可能と判断された加工音91cのスペクトログラムの絶対値の総和を求めて、総和値以下の任意の値を閾値記憶部25に書き込む。これにより、閾値Tは検査者の官能にあった値となる。
【0116】
なお、信号処理装置10は、運用に応じて、官能試験モード時に、レベル変更抽出信号(レベル変更ノッキング音91aa)に測定対象から受聴者の耳位置までの伝達関数He(図示せず)を掛けてから、前記受聴者の耳位置でのノイズ成分を合成して加工音を生成するようにしてもよい。
【0117】
<信号処理装置(推定装置)の動作>
以下、
図13乃至
図18を参照して、信号処理装置10の動作について説明する。
図13は、信号処理装置10(推定装置)のデータ収集処理を示すフローチャートである。
図14Aは、信号処理装置10(推定装置)の学習処理を示すフローチャートである。
図14Bは、学習処理のサブルーチンを示すフローチャートである。
図14Cは、学習処理のサブルーチンの変更例を示すフローチャートである。
図15Aは、信号処理装置10(推定装置)の閾値算出処理を示すフローチャートである。
図15Bは、信号処理装置10(推定装置)の
図17の分離処理及び
図18の官能試験処理の後に行われる閾値算出処理を示すフローチャートである。
図16は、信号処理装置10(推定装置)の判定処理を示すフローチャートである。
図17は、信号処理装置10(推定装置)の分離処理を示すフローチャートである。
図18は、信号処理装置10(推定装置)の官能試験処理を示すフローチャートである。
【0118】
学習モードの場合、信号処理装置10は、
図13のデータ収集処理を行った後、
図14Aと
図14Bの学習処理を行う。また、閾値算出モードの場合、信号処理装置10は、
図13のデータ収集処理を行った後、
図15Aの閾値算出処理を行う。また、分離モードで分離処理及び官能試験モードで官能試験処理を行った場合に、信号処理装置10は、分離処理及び官能試験処理の後に、
図15Bの閾値算出処理を行う。また、判定モードの場合、信号処理装置10は、
図13のデータ収集処理を行った後、
図16の判定処理を行う。ただし、信号処理装置10は、
図13のデータ収集処理を行いながら、リアルタイムで
図16の判定処理を行うようにしてもよい。また、分離モードの場合、信号処理装置10は、
図13のデータ収集処理を行った後、
図17の分離処理を行う。また、官能試験モードの場合、信号処理装置10は、
図15Bの閾値算出処理を行う前に、
図18の官能試験処理を行う。
【0119】
(データ収集処理)
以下、
図13を参照して、データ収集処理を説明する。
図13に示すように、ステップS20において、データ収集装置6が、音圧信号、筒内圧信号(教師信号)、及び、角度情報を信号切出部11に入力する。なお、分離モード、閾値算出モード、又は判定モードの場合、ステップS20では、筒内圧信号を入力する必要がない。
ステップS21において、信号切出部11は、角度情報から各気筒の燃焼行程タイミングを算出する。
【0120】
ステップS22において、信号切出部11は、ステップS21で算出した燃焼行程タイミングに合わせて、TDC付近の音圧信号と筒内圧信号を切り出す。
ステップS23において、スペクトログラム算出部12は、ステップS22で切り出した音圧信号に対して短時間フーリエ変換(STFT)を行い、音圧信号のスペクトログラムを算出する。
ステップS24において、スペクトログラム算出部12は、音圧信号のスペクトログラムを信号記憶部13に書き込む。また、信号切出部11は、筒内圧信号(教師信号)を信号記憶部13に書き込む。
【0121】
(学習処理)
以下、
図14A乃至
図14Cを参照して、学習モードで実行される学習処理を説明する。
図14Aに示すように、ステップS30において、信号処理装置10は、信号記憶部13から音圧信号のスペクトログラム及び筒内圧信号を読み出して、学習部21に入力する。
ステップS31において、学習部21は、ステップS30で入力された音圧信号のスペクトログラム及び筒内圧信号を用いて、ニューラルネットワーク94で入力物理量に関連する振幅と位相成分を加味して、マスクαを生成するネットワークの重みW、及び、伝達関数Hを学習する。学習部21は、畳み込みニューラルネットワーク(例えば、U-Net)によりマスクαを生成するネットワークの重みWを学習し、伝達関数Hとして、抽出信号のスペクトルに乗じる重みを学習する。
【0122】
ステップS32において、学習部21は、学習したマスクαを生成するネットワークの重みW及び伝達関数Hを学習済みパラメータ記憶部22に書き込む。
【0123】
なお、ステップS31の処理は、例えば
図14Bに示す一連のルーチンの処理によって行われる。
図14Bに示すように、ステップS101において、学習部21は、予め乱数で重みWを初期化した畳み込みニューラルネットワークに入力物理量を入力して生成したマスクを用いて入力物理量をノイズ成分と抽出信号とに分離する。
【0124】
ステップS102において、学習部21は、伝達関数Hを掛け合わせて抽出信号(抽出ノッキング音91a)を推定信号(推定ノッキング筒内圧92)に変換する。
ステップS103において、学習部21は、マスクαを生成するネットワークの重みW、及び、伝達関数Hの更新を行う。ステップS103では、学習部21は、逆短時間フーリエ変換(ISTFT)で求めたノイズ成分(雑音91b)の信号波形と教師信号(観測ノッキング筒内圧93)とのコヒーレンスが小さくなるとともに、逆短時間フーリエ変換(ISTFT)で求めた抽出信号(抽出ノッキング音91a)の信号波形と教師信号(観測ノッキング筒内圧93)とのコヒーレンスが大きくなるように、また、推定信号(推定ノッキング筒内圧92)と教師信号(観測ノッキング筒内圧93)に対して短時間フーリエ変換(STFT)を行い求めたスペクトログラムとの誤差が小さくなるように、マスクαを生成するネットワークの重みW、及び、伝達関数Hを更新する。
【0125】
ステップS104において、学習部21は、コヒーレンスと誤差が収束したか否かを判定し、収束したと判定された場合(“Yes”の場合)に、ステップS31の処理を終了し、一方、収束していないと判定された場合(“No”の場合)に、ステップS101以降の処理を繰り返す。なお、ステップS104において、コヒーレンスと誤差が収束した状態とは、教師信号(観測ノッキング筒内圧93)とノイズ成分(雑音91b)を逆短時間フーリエ変換(ISTFT)して求めた信号波形とのコヒーレンスが値「0」に近い値で、かつ、教師信号(観測ノッキング筒内圧93)と抽出信号(抽出ノッキング音91a)を逆短時間フーリエ変換(ISTFT)して求めた信号波形とのコヒーレンスが「1」に近い値で、かつ、教師信号(観測ノッキング筒内圧93)に対して短時間フーリエ変換(STFT)を行い求めたスペクトログラムに対する推定信号(推定ノッキング筒内圧92)の誤差が「0」に近い値に収束した状態である。
【0126】
なお、ステップS31の処理は、
図14Bの代わりに、例えば
図14Cに示す処理を行うようにしてもよい。
図14Cに示す処理は、
図14Bに示す処理と比べると、ステップS103の処理の代わりに、ステップS103aの処理を行う点で相違している。
ステップS103aにおいて、学習部21は、ステップS103の条件に加え、さらに、推定信号(推定ノッキング筒内圧92)に対して逆短時間フーリエ変換(ISTFT)を行い求めた信号波形の最大値、及び、最大値と最小値との差(ノッキングインテンシティ)と、教師信号(観測ノッキング筒内圧93)の最大値、及び、最大値と最小値との差(ノッキングインテンシティ)を算出し、前者の最大値と後者の最大値との誤差、及び、前者の最大値と最小値との差(ノッキングインテンシティ)と後者の最大値と最小値との差(ノッキングインテンシティ)における誤差がそれぞれ小さくなるようにするという条件を満たすように、マスクαを生成するネットワークの重みW、及び、伝達関数Hの更新を行う。すなわち、ステップS103aでは、学習部21は、逆短時間フーリエ変換(ISTFT)で求めたノイズ成分(雑音91b)の信号波形と教師信号(観測ノッキング筒内圧93)とのコヒーレンスが小さくなるとともに、逆短時間フーリエ変換(ISTFT)で求めた抽出信号(抽出ノッキング音91a)の信号波形と教師信号(観測ノッキング筒内圧93)とのコヒーレンスが大きくなるように、また、推定信号(推定ノッキング筒内圧92)と教師信号(観測ノッキング筒内圧93)に対して短時間フーリエ変換(STFT)を行い求めたスペクトログラムとの誤差が小さくなるように、さらに、推定信号(推定ノッキング筒内圧92)に対して逆短時間フーリエ変換(ISTFT)を行い求めた信号波形の最大値、及び、最大値と最小値との差(ノッキングインテンシティ)と、教師信号(観測ノッキング筒内圧93)の最大値、及び、最大値と最小値との差(ノッキングインテンシティ)を算出し、前者の最大値と後者の最大値との誤差、及び、前者の最大値と最小値との差(ノッキングインテンシティ)と後者の最大値と最小値との差(ノッキングインテンシティ)における誤差がそれぞれ小さくなるように、マスクαを生成するネットワークの重みW、及び、伝達関数Hを更新する。
【0127】
(閾値算出処理)
以下、
図15Aを参照して、閾値算出モードで実行される閾値算出処理を説明する。
図15Aに示すように、ステップS40において、第1推定部23は、ニューラルネットワーク94により生成したマスクαを用いて、音圧信号のスペクトログラムからエンジン1のノッキング音(抽出信号)を抽出する。
ステップS41において、閾値算出部24は、エンジン1の各サイクルでノッキング音(抽出信号)のスペクトログラムの絶対値を総和する。
【0128】
ステップS42において、閾値算出部24は、エンジン1の全サイクルにおけるノッキング音(抽出信号)のスペクトログラムの中央値を算出する。
ステップS43において、閾値算出部24は、中央値に任意のマージンを加算し、閾値とする。
ステップS44において、閾値算出部24は、算出した閾値を閾値記憶部25に書き込む。
【0129】
なお、信号処理装置10は、
図17の分離処理及び
図18の官能試験処理の後に、
図15Bの閾値算出処理を実行する機能を有している。以下、
図15Bを参照して、
図17の分離処理及び
図18の官能試験処理の後に行われる閾値算出処理を説明する。
図15Bに示すように、ステップS140において、信号調整部51は、ノイズ成分記憶部26cと抽出信号記憶部26dから、官能試験で許容不可となった信号を取得し、第1推定部23に供給する。
ステップS141において、第1推定部23は、ニューラルネットワーク94により生成したマスクαを用いて、官能試験で許容不可となった信号のスペクトログラムからノッキング音(抽出信号)のスペクトログラムを取得し、閾値算出部24に供給する。
ステップS142において、閾値算出部24は、第1推定部23から供給されたノッキング音(抽出信号)のスペクトログラムの絶対値を総和する。
【0130】
ステップS143において、閾値算出部24は、総和値以下の任意の値を閾値とする。
ステップS144において、閾値算出部24は、算出した閾値を閾値記憶部25に書き込む。
【0131】
(判定処理)
以下、
図16を参照して、判定モードで実行される判定処理を説明する。
図16に示すように、ステップS50において、第2推定部31は、ニューラルネットワーク94により生成したマスクαを用いて、信号記憶部13より入力された音圧信号のスペクトログラムからエンジン1のノッキング音(抽出信号)を抽出する。
【0132】
ステップS51において、閾値判定部32は、エンジン1の各サイクルでノッキング音(抽出信号)のスペクトログラムの絶対値を総和する。
ステップS52において、閾値判定部32は、閾値記憶部25に記憶済みの閾値と、総和したノッキング音(抽出信号)とを比較し、ノッキング音(抽出信号)が閾値を超えているか否かを判定する。
総和したノッキング音(抽出信号)が閾値を超えている場合(ステップS52でYes)、閾値判定部32は、ノッキング有りと判定する(ステップS53)。
【0133】
総和したノッキング音(抽出信号)が閾値以下の場合、(ステップS52でNo)、閾値判定部32は、ノッキング無しと判定する(ステップS54)。
ステップS55において、閾値判定部32は、閾値判定の結果及びノッキング音(抽出信号)をモニタ7に出力する。
【0134】
(分離処理)
以下、
図17を参照して、分離モードで実行される分離処理を説明する。
図17に示すように、ステップS60において、分離部40は、ニューラルネットワーク94により生成されたマスクαを用いて、入力物理量をノイズ成分と抽出信号とに分離する。
ステップS61において、学習処理部20は、分離したノイズ成分と抽出信号を、それぞれに対応するノイズ成分記憶部26cと抽出信号記憶部26dに記憶する。
【0135】
(官能試験処理)
以下、
図18を参照して、官能試験モードで実行される官能試験処理を説明する。
図18に示すように、ステップS70において、信号合成部50の信号調整部51は、レベル指定部9からのレベル指定情報の入力を受け付ける。
ステップS71において、信号調整部51は、抽出信号記憶部26dから抽出信号を取得するとともに、ノイズ成分記憶部26cからノイズ成分を取得し、レベル指定情報に応じて抽出信号のレベルを変更してレベル変更抽出信号を生成する。
【0136】
ステップS72において、信号調整部51は、レベル変更抽出信号とノイズ成分とを合成して加工音を生成する。
ステップS73において、信号合成部50の信号出力部52は、加工音を放音部(ヘッドホン8)に出力して、放音部から加工音を放音させる。
ステップS74において、信号合成部50は、レベル指定部9からの終了の指示があったか否かを判定し、終了の指示があったと判定された場合(“Yes”の場合)に、加工音を第1推定部23に出力し、閾値算出部24により閾値を算出したのち、閾値記憶部25に書き込み、
図18の処理を終了する。一方、終了の指示がないと判定された場合(“No”の場合)に、ステップS75において、信号合成部50の信号調整部51は、レベル指定部9からのレベル指定情報の変更を受け付け、ステップS71以降の処理を繰り返す。
【0137】
なお、
図17の分離処理及び
図18の官能試験処理の後に、信号処理装置10は、
図15Bに示す閾値算出処理を行う。
【0138】
<信号処理装置(推定装置)の主な特徴>
(1)
図3Bに示すように、本実施形態に係る信号処理装置10(推定装置)は、学習部21と、分離部40と、を備える。学習部21は、ニューラルネットワーク94により、ノイズ成分(雑音91b)が含まれている入力物理量(エンジン近傍音90)から位相を加味してノイズ成分を除去するためのマスクαを生成するネットワークの重みW、及び、入力物理量(エンジン近傍音90)からノイズ成分が除去された抽出信号(抽出ノッキング音91a)を、教師信号(観測ノッキング筒内圧93)と同じ次元(単位)の推定信号(推定ノッキング筒内圧92)に位相を加味して変換するための伝達関数Hを学習する。分離部40は、入力物理量(エンジン近傍音90)をノイズ成分と抽出信号(抽出ノッキング音91a)とに分離する。
【0139】
このような本実施形態に係る信号処理装置10(推定装置)は、入力物理量をノイズ成分と抽出信号とに良好に分離することができる。特に、信号処理装置10(推定装置)は、ノイズ成分と、官能試験でのレベル変更に適した信号とに分離することができる。このような信号処理装置10(推定装置)は、背景音に目的音(ノッキング音)が混入しているか否かを評価し易くすることができる。そのため、信号処理装置10(推定装置)は、例えば特許文献2及び特許文献3に記載された従来技術よりも、ノッキングの有無の評価性能を向上させることができる。また、信号処理装置10は、良好な官能試験を行うことができ、官能試験で許容不可となったデータに基づいて閾値を決定することで、検査者に近い判定ができる。
【0140】
(2)
図3Aに示すように、本実施形態に係る信号処理装置10(推定装置)の学習部21は、マスクαを生成するネットワークの重みW、及び、伝達関数Hを学習する際に、入力物理量(エンジン近傍音90)に関連する振幅と位相成分を加味して学習する。
【0141】
このような本実施形態に係る信号処理装置10(推定装置)は、雑音(ノッキング音以外の音(背景音))の中にノッキング音(目的音)が混入しないように、エンジン近傍音90(入力物理量)を抽出ノッキング音91a(抽出信号)と雑音91b(ノイズ成分)とに分離することができる。このような信号処理装置10は、特許文献2及び特許文献3に記載された従来技術よりも、ノッキングの有無の評価性能を向上させることができる。また、このような信号処理装置10は、良好な官能試験を行うことができる。
【0142】
(3)本実施形態に係る信号処理装置10(推定装置)の学習部21は、ノイズ成分(雑音91b)と教師信号(観測ノッキング筒内圧93)との関連性が小さくなるとともに、抽出信号(抽出ノッキング音91a)と教師信号(観測ノッキング筒内圧93)との関連性が大きくなるように、ネットワークの重みW、及び、伝達関数Hを学習する。具体的には、
図3Aに示すように、本実施形態に係る信号処理装置10(推定装置)の学習部21は、ノイズ成分(雑音91b)を逆短時間フーリエ変換(ISTFT)して求めた信号波形と教師信号(観測ノッキング筒内圧93)とのコヒーレンス(及び/又はコヒーレントアウトプットパワー)が小さくなるとともに、抽出信号(抽出ノッキング音91a)を逆短時間フーリエ変換(ISTFT)して求めた信号波形と教師信号(観測ノッキング筒内圧93)とのコヒーレンス(及び/又はコヒーレントアウトプットパワー)が大きくなるように、ネットワークの重みW、及び、伝達関数Hを学習する。
【0143】
このような本実施形態に係る信号処理装置10(推定装置)は、雑音91b(ノイズ成分)からノッキング筒内圧に起因する音を排除することができる。
【0144】
(4)
図3Aに示すように、本実施形態に係る信号処理装置10(推定装置)の学習部21は、ネットワークの重みW、及び、伝達関数Hを学習する場合に、教師信号(観測ノッキング筒内圧93)に対する推定信号(推定ノッキング筒内圧92)の誤差が小さくなるように、学習する。具体的には、信号処理装置10(推定装置)の学習部21は、教師信号(観測ノッキング筒内圧93)に対して短時間フーリエ変換(STFT)を行い求めたスペクトログラムに対する推定信号(推定ノッキング筒内圧92)の誤差が小さくなるように、学習する。又は、信号処理装置10(推定装置)の学習部21は、教師信号(観測ノッキング筒内圧93)と、抽出信号(抽出ノッキング音91a)に対して、逆短時間フーリエ変換(ISTFT)と高速フーリエ変換(FFT)とを行い、伝達関数Hを掛け、逆高速フーリエ変換(IFFT)を行い求めた推定信号(推定ノッキング筒内圧92)の信号波形との誤差が小さくなるように、学習する。
【0145】
このような本実施形態に係る信号処理装置10(推定装置)は、教師信号(観測ノッキング筒内圧93)に対して短時間フーリエ変換(STFT)を行い求めたスペクトログラムに対する推定信号(推定ノッキング筒内圧92)の誤差が小さくなるように、ネットワークの重みW、及び、伝達関数Hを学習することができる。又は、信号処理装置10(推定装置)は、教師信号(観測ノッキング筒内圧93)と、抽出信号(抽出ノッキング音91a)に対して、逆短時間フーリエ変換(ISTFT)と高速フーリエ変換(FFT)とを行い、伝達関数Hを掛け、逆高速フーリエ変換(IFFT)を行い求めた推定信号(推定ノッキング筒内圧92)の信号波形との誤差が小さくなるように、ネットワークの重みW、及び、伝達関数Hを学習することができる。
【0146】
(5)
図2に示すように、本実施形態に係る信号処理装置10(推定装置)は、抽出信号(抽出ノッキング音91a)のレベルを変更して、入力物理量(エンジン近傍音90)から分離されたノイズ成分と合成して加工音を生成する信号合成部50を備える。
【0147】
このような本実施形態に係る信号処理装置10(推定装置)は、検査すべき目的音(ノッキング音)を聞き分け易い状態にすることができる。このような信号処理装置10は、目的音(ノッキング音)の有無を高精度に検査者に把握させることができ、官能試験で許容不可となったデータに基づいて閾値を決定することで、検査者に近い判定ができる。
【0148】
(6)
図2に示すように、本実施形態に係る信号処理装置10(推定装置)の信号合成部50は、操作者による抽出信号(抽出ノッキング音91a)のレベルの指定を受け付ける信号調整部51を有している。
【0149】
このような本実施形態に係る信号処理装置10(推定装置)は、抽出信号(抽出ノッキング音91a)のレベルを任意にかつ細やかに変更することができる。
【0150】
(7)
図14A及び
図17に示すように、本実施形態に係る信号処理装置10(推定装置)は、以下の信号処理方法を実現することができる。すなわち、本実施形態に係る信号処理方法は、学習工程(
図14AのステップS30からステップS32の工程)と、分離工程(
図17のステップS60からステップS61の工程)と、を含む。学習工程では、ニューラルネットワーク94により、ノイズ成分(雑音91b)が含まれている入力物理量(エンジン近傍音90)から位相を加味してノイズ成分を除去するためのマスクαを生成するネットワークの重みW、及び、入力物理量(エンジン近傍音90)からノイズ成分が除去された抽出信号(抽出ノッキング音91a)を、教師信号(観測ノッキング筒内圧93)と同じ次元(単位)の推定信号(推定ノッキング筒内圧92)に位相を加味して変換するための伝達関数Hを学習する。分離工程では、入力物理量(エンジン近傍音90)をノイズ成分と抽出信号(抽出ノッキング音91a)とに分離する。
【0151】
このような本実施形態に係る信号処理方法は、入力物理量をノイズ成分と抽出信号とに良好に分離することができる。特に、ノイズ成分と、官能試験でのレベル変更に適した信号とに分離することができる。
【0152】
(8)
図3Aに示すように、本実施形態に係る信号処理装置10(推定装置)は、入力物理量(エンジン近傍音90)からノイズ成分(雑音91b)を除去した抽出信号(抽出ノッキング音91a)に伝達関数Hを掛け合わせて、教師信号(観測ノッキング筒内圧93)と同じ次元(単位)の推定信号(推定ノッキング筒内圧92)を推定する推定装置である。本実施形態に係る信号処理装置10(推定装置)は、前記した学習部21と、分離部40と、を備える。学習部21は、ニューラルネットワーク94により、入力物理量(エンジン近傍音90)からノイズ成分を除去して抽出信号(抽出ノッキング音91a)を抽出するためのマスクαを生成するネットワークの重みW、及び、伝達関数Hを学習する。推定信号推定部(第2推定部31)は、マスクαを用いて、ノイズ成分が除去された抽出信号(抽出ノッキング音91a)を取得する。学習部21は、ネットワークの重みW、及び、伝達関数Hを学習する際に、マスクα、及び、伝達関数Hに対して、入力物理量(エンジン近傍音90)に関連する振幅と位相成分を加味して学習する。
【0153】
このような本実施形態に係る信号処理装置10(推定装置)は、ネットワークの重みW、及び、伝達関数Hを学習する際に、マスクα、及び、伝達関数Hに対して、入力物理量(エンジン近傍音90)に関連する振幅と位相成分を加味して学習することができる。
【0154】
(9)
図3Aに示すように、本実施形態に係る信号処理装置10(推定装置)の推定信号推定部(第2推定部31)は、ノイズ成分が除去された抽出信号(抽出ノッキング音91a)を抽出する。
【0155】
このような本実施形態に係る信号処理装置10(推定装置)は、入力物理量(エンジン近傍音90)に関連する振幅と位相成分が加味された推定信号(推定ノッキング筒内圧92)を生成することができる。
【0156】
(10)
図14Cに示すように、本実施形態に係る信号処理装置10(推定装置)の推定信号推定部(第2推定部31)は、ノイズ成分が除去された抽出信号(抽出ノッキング音91a)に伝達関数Hを掛け合わせることで推定信号(推定ノッキング筒内圧92)の最大値、及び、最大値と最小値との差(ノッキングインテンシティ)を推定する。その際に、最大値、及び、最大値と最小値との差の誤差が小さくなるように、マスクαを生成するネットワークの重みW、及び、伝達関数Hを更新するとよい。
【0157】
このような本実施形態に係る信号処理装置10(推定装置)は、さらに好適に、入力物理量(エンジン近傍音90)に関連する振幅と位相成分を加味された推定信号(推定ノッキング筒内圧92)を生成することができる。
【0158】
(11)本実施形態に係る信号処理装置10(推定装置)は、以下の推定方法を実現することができる。すなわち、本実施形態に係る推定方法は、入力物理量(エンジン近傍音90)からノイズ成分(雑音91b)を除去した抽出信号(抽出ノッキング音91a)に伝達関数Hを掛け合わせて、教師信号(観測ノッキング筒内圧93)と同じ次元(単位)の推定信号(推定ノッキング筒内圧92)を推定する方法である。
図14B又は
図14Cに示すように、本実施形態に係る推定方法は、学習工程(ステップS103の工程)と、推定信号推定工程(ステップS102の工程)と、を含む。学習工程(ステップS103の工程)では、ニューラルネットワーク94により、入力物理量(エンジン近傍音90)からノイズ成分を除去して抽出信号(抽出ノッキング音91a)を抽出するためのマスクαを生成するネットワークの重みW、及び、伝達関数Hを学習する。推定信号推定工程(ステップS102の工程)では、マスクαを用いて、ノイズ成分が除去された抽出信号(抽出ノッキング音91a)を取得し、伝達関数Hを掛け合わせることで抽出信号(抽出ノッキング音91a)を推定信号に変換する。本実施形態に係る推定方法は、学習工程(ステップS103の工程)において、ネットワークの重みW、及び、伝達関数Hを学習する際に、マスクα、及び、伝達関数Hに対して、入力物理量(エンジン近傍音90)に関連する振幅と位相成分を加味して学習する。
【0159】
このような本実施形態に係る推定方法は、ネットワークの重みW、及び、伝達関数Hを学習する際に、マスクα、及び、伝達関数Hに対して、入力物理量(エンジン近傍音90)に関連する振幅と位相成分を加味して学習することができる。
【0160】
以上の通り、本第1実施形態に係る信号処理装置10(推定装置)によれば、入力物理量からノイズ成分を除去して抽出信号を抽出するためのマスクを生成するネットワークの重み、及び、伝達関数を学習する際の精度を向上することができる。このような信号処理装置10(推定装置)は、入力物理量をノイズ成分と抽出信号とに良好に分離することができ、推定信号の精度を向上することができる。特に、信号処理装置10(推定装置)は、ノイズ成分と、官能試験でのレベル変更に適した信号とに分離することができる。このような信号処理装置10(推定装置)は、背景音に目的音(ノッキング音)が混入しているか否かを評価し易くすることができる。そのため、信号処理装置10(推定装置)は、ノッキングの有無の評価性能を向上させることができる。また、信号処理装置10は、良好な官能試験を行うことができる。
【0161】
[第2実施形態]
以下、
図19を参照して、本第2実施形態に係る信号処理装置10A(推定装置)の構成について説明する。
図19は、第2実施形態に係る信号処理装置10A(推定装置)の構成を示すブロック図である。
【0162】
図19に示すように、本第2実施形態に係る信号処理装置10A(推定装置)は、第1実施形態に係る信号処理装置10(推定装置)(
図2参照)と比較すると、信号合成部50が以下の機能を有する点で相違している。すなわち、信号合成部50は、教師信号(観測ノッキング筒内圧93)に伝達関数Hの逆数を掛け、入力物理量(エンジン近傍音90)から分離されたノイズ成分と合成して加工音を生成する機能を有する。
【0163】
このような本第2実施形態に係る信号処理装置10A(推定装置)は、第1実施形態に係る信号処理装置10と同様に、目的音(ノッキング音)の有無を高精度に検査者に把握させることができ、検査性能を向上させることができる。
【0164】
なお、信号合成部50は、教師信号(観測ノッキング筒内圧93)のレベル(大きさ)を変更したレベル変更教師信号に伝達関数Hの逆数を掛け、入力物理量(エンジン近傍音90)から分離されたノイズ成分と合成して加工音を生成する機能を有してもよい。
【0165】
また、信号合成部50は、教師信号(観測ノッキング筒内圧93)ではなく、教師信号(観測ノッキング筒内圧93)と同じ次元である任意の信号(例えば、任意のノッキング筒内圧信号)に伝達関数Hの逆数を掛け、入力物理量(エンジン近傍音90)から分離されたノイズ成分と合成して加工音を生成する機能を有してもよい。
【0166】
また、信号合成部50は、伝達関数Hの値を変更した変更伝達関数Hcの逆数を教師信号(観測ノッキング筒内圧93)に掛け、入力物理量(エンジン近傍音90)から分離されたノイズ成分と合成して加工音を生成するようにしてもよい。
【0167】
また、信号合成部50は、教師信号(観測ノッキング筒内圧93)のレベル(大きさ)を変更したレベル変更教師信号に伝達関数Hの値を変更した変更伝達関数Hcの逆数を掛け、入力物理量(エンジン近傍音90)から分離されたノイズ成分と合成して加工音を生成する機能を有してもよい。
【0168】
ここで、例えば、変更伝達関数Hcは、伝達関数Hのある周波数帯に該当する振幅及び/又は位相を、増加又は減少させたものである。
【0169】
また、信号合成部50は、音響加振実験で測定した測定対象から受聴者の耳位置までの伝達関数He(図示せず)を抽出信号に掛け、実車走行時に測定した受聴者の耳位置のノイズ成分を合成して加工音を生成する機能を有してもよい。
【0170】
また、信号合成部50は、ニューラルネットワーク94により推定された伝達関数Hの逆数を教師信号(観測ノッキング筒内圧93)に掛けて推定ノッキング音を求め、さらに、音響加振やシミュレーションで求めた測定対象から受聴者(車両の場合は搭乗者(特にドライバー))の耳位置までの伝達関数He(図示せず)を掛け、実車走行時に測定した受聴者の耳位置のノイズ成分を合成して加工音を生成する機能を有してもよい。このような信号合成部50は、例えば推定ノッキング音から求めた受聴者(車両の搭乗者(特にドライバー))の耳位置のノッキング音に、実走行時の受聴者の耳位置で観測したノイズ成分(実走行音)を合成して、実走行時のノッキング音をシミュレーションすることができる。
【0171】
なお、本発明は、前記した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更や変形を行うことができる。
【0172】
例えば、前記した実施形態は、本発明の要旨を分かり易く説明するために詳細に説明したものである。そのため、本発明は、必ずしも説明した全ての構成要素を備えるものに限定されるものではない。また、本発明は、ある構成要素に他の構成要素を追加したり、一部の構成要素を他の構成要素に変更したりすることができる。また、本発明は、一部の構成要素を削除することもできる。
【0173】
例えば、以下に説明するように、信号処理装置10(推定装置)は、試験対象を任意の物品に変更することができる。また、信号処理装置10(推定装置)は、入力物理量や教師信号を任意の信号に変更することができる。
【0174】
(1)例えば、信号処理装置10は、
図20に示す環境において、
図21に示す第1変形例のように変更して使用することができる。
図20は、第1変形例の説明図である。
図21は、第1変形例において、マスクを生成するネットワークの重み及び伝達関数の学習の説明図である。
【0175】
図20は、車両3の車室3aにおいて、受聴者(車両の搭乗者(特にドライバー))の耳位置で検知されるインパネ3b(インストルメントパネル)の振動音を評価する場合の一例を示している。
図20に示す例において、受聴者耳位置走行音190(受聴者の耳位置で聞こえる車室内音)が入力物理量であり、観測インパネ振動加速度193が教師信号である。
図21に示すように、信号処理装置10の学習部21は、マスクαを用いて入力物理量(受聴者耳位置走行音190)を抽出信号(抽出インパネ振動音191a)とノイズ成分(雑音191b)とに分離する。なお、マスクα及び伝達関数Hは、入力物理量に関連する振幅や位相成分を含んでいる。
【0176】
また、
図21に示すように、信号処理装置10の学習部21は、ノイズ成分(雑音191b)を逆短時間フーリエ変換(ISTFT)して求めた信号波形と教師信号(観測インパネ振動加速度193)とのコヒーレンスが小さくなるとともに、抽出信号(抽出インパネ振動音191a)を逆短時間フーリエ変換(ISTFT)して求めた信号波形と教師信号(観測インパネ振動加速度193)とのコヒーレンスが大きくなるように、ネットワークの重みW、及び、伝達関数Hを学習する。これにより、信号処理装置10は、雑音(インパネ3bの振動に起因しない音(背景音))の中に目的音(インパネ3bの振動に起因する音)が混入しないように、入力物理量(受聴者耳位置走行音190)を抽出信号(抽出インパネ振動音191a)とノイズ成分(雑音191b)とに分離することができる。
【0177】
また、
図21に示すように、信号処理装置10の学習部21は、抽出信号(抽出インパネ振動音191a)に対して、逆短時間フーリエ変換(ISTFT)と高速フーリエ変換(FFT)とを行い、伝達関数Hを掛け、逆高速フーリエ変換(IFFT)と短時間フーリエ変換(STFT)とを行うことで、抽出信号(抽出インパネ振動音191a)を推定信号(推定インパネ振動加速度192)に変換している。そして、学習部21は、推定信号(推定インパネ振動加速度192)と教師信号(観測インパネ振動加速度193)に対して短時間フーリエ変換(STFT)を行い求めたスペクトログラムとの誤差が最小となるように、ニューラルネットワーク94により、マスクαを生成するネットワークの重みW、及び、伝達関数Hを学習する。
【0178】
このような信号処理装置10は、例えば官能試験時に、受聴者耳位置走行音190(受聴者の耳位置で聞こえる車室内音)のうち、インパネ3bの振動に起因する音の大きさを検査者に把握させ易くすることができる。例えば、インパネ3bの振動に起因する音が比較的大きい場合に、信号処理装置10は、信号合成部50の信号調整部51で加工音を生成して、検査者の聴感による主観評価を行うことで、インパネ3bの振動低減の目標値を設定することができる。
【0179】
(2)また、信号処理装置10は、
図22に示す環境において、
図23に示す第2変形例のように変更して使用することができる。
図22は、第2変形例の説明図である。
図23は、第2変形例において、マスクを生成するネットワークの重み及び伝達関数の学習の説明図である。
【0180】
図22は、冷蔵庫203の近傍において、コンプレッサーの振動音を評価する場合の一例を示している。
図22に示す例において、受聴者の耳位置で聞こえる冷蔵庫音290が入力物理量であり、観測コンプレッサー振動加速度293が教師信号である。
図23に示すように、信号処理装置10の学習部21は、マスクαを用いて入力物理量(冷蔵庫音290)を抽出信号(抽出コンプレッサー音291a)とノイズ成分(雑音291b)とに分離する。なお、マスクα及び伝達関数Hは、入力物理量に関連する振幅や位相成分を含んでいる。
【0181】
また、
図23に示すように、信号処理装置10の学習部21は、ノイズ成分(雑音291b)を逆短時間フーリエ変換(ISTFT)して求めた信号波形と教師信号(観測コンプレッサー振動加速度293)とのコヒーレンスが小さくなるとともに、抽出信号(抽出コンプレッサー音291a)を逆短時間フーリエ変換(ISTFT)して求めた信号波形と教師信号(観測コンプレッサー振動加速度293)とのコヒーレンスが大きくなるように、ネットワークの重みW、及び、伝達関数Hを学習する。これにより、信号処理装置10は、雑音(コンプレッサーの振動に起因しない音(背景音))の中に目的音(コンプレッサーの振動に起因する音)が混入しないように、入力物理量(冷蔵庫音290)を抽出信号(抽出コンプレッサー音291a)とノイズ成分(雑音291b)とに分離することができる。
【0182】
また、
図23に示すように、信号処理装置10の学習部21は、抽出信号(抽出コンプレッサー音291a)に対して、逆短時間フーリエ変換(ISTFT)と高速フーリエ変換(FFT)とを行い、伝達関数Hを掛け、逆高速フーリエ変換(IFFT)と短時間フーリエ変換(STFT)とを行うことで、抽出信号(抽出コンプレッサー音291a)を推定信号(推定コンプレッサー振動加速度292)に変換している。そして、学習部21は、推定信号(推定コンプレッサー振動加速度292)と教師信号(観測コンプレッサー振動加速度293)に対して短時間フーリエ変換(STFT)を行い求めたスペクトログラムとの誤差が最小となるように、ニューラルネットワーク94により、マスクαを生成するネットワークの重みW、及び、伝達関数Hを学習する。
【0183】
このような信号処理装置10は、例えば官能試験時に、受聴者の耳位置で聞こえる冷蔵庫音290のうち、コンプレッサーの振動に起因する音の大きさを検査者に把握させ易くすることができる。例えば、コンプレッサーの振動に起因する音が比較的大きい場合に、信号処理装置10は、信号合成部50の信号調整部51で加工音を生成して、検査者の聴感による主観評価を行うことで、コンプレッサーの振動低減の目標値を設定することができる。
【0184】
(3)また、信号処理装置10は、
図24に示す第3変形例のように変更して使用することができる。
図24は、第3変形例において、マスクを生成するネットワークの重み及び伝達関数の学習の説明図である。
【0185】
図24に示す例では、車両3の車室3aにおいて、受聴者(車両の搭乗者(特にドライバー))の耳位置で検知されるエンジン1(
図1)の放射音に含まれる燃焼音を評価する場合の一例を示している。
図24に示す例では、エンジン1(
図1)の教師信号としての筒内圧390と、入力物理量としての放射音390aと振動390bとを観測し、それぞれに基づいてマスクと伝達関数を学習する構成を示している。
【0186】
信号処理装置10は、マスクα1を用いて放射音390a(入力物理量)から燃焼音391aa(抽出信号)を取得するとともに、雑音391ab(ノイズ成分)を取得する。雑音391ab(ノイズ成分)は、放射音390a(入力物理量)から燃焼音391aa(抽出信号)を除去することで取得される。
【0187】
信号処理装置10の学習部21は、ノイズ成分(雑音391ab)と教師信号(筒内圧390)とのコヒーレンスが小さくなるとともに、抽出信号(燃焼音391aa)と教師信号(筒内圧390)とのコヒーレンスが大きくなるように、また、推定信号(推定筒内圧392a)と教師信号(筒内圧390)に対して短時間フーリエ変換(STFT)を行い求めたスペクトログラムとの誤差が最小になるように、ニューラルネットワーク94により、マスクα1を生成するネットワークの重みW1(図示せず)、及び、伝達関数H1を学習する。マスクα1は、放射音390a(入力物理量)に含まれる燃焼音の割合と位相成分(位相の修正量)を表す。また、伝達関数H1は、燃焼音391aa(抽出信号)を推定筒内圧392a(推定信号)に変換するための振幅(ゲイン)と位相成分である。
【0188】
また、信号処理装置10は、マスクα2を用いて振動390b(入力物理量)から燃焼振動391ba(抽出信号)を取得するとともに、ノイズ振動391bb(ノイズ成分)を取得する。ノイズ振動391bb(ノイズ成分)は、振動390b(入力物理量)から燃焼振動391ba(抽出信号)を除去することで取得される。
【0189】
信号処理装置10の学習部21は、ノイズ成分(ノイズ振動391bb)と教師信号(筒内圧390)とのコヒーレンスが小さくなるとともに、抽出信号(燃焼振動391ba)と教師信号(筒内圧390)とのコヒーレンスが大きくなるように、また、推定信号(推定筒内圧392b)と教師信号(筒内圧390)に対して短時間フーリエ変換(STFT)を行い求めたスペクトログラムとの誤差が最小になるように、ニューラルネットワーク94により、マスクα2を生成するネットワークの重みW2(図示せず)、及び、伝達関数H2を学習する。マスクα2は、振動390b(入力物理量)に含まれる燃焼振動の割合と位相成分(位相の修正量)を表す。また、伝達関数H2は、燃焼振動391ba(抽出信号)を推定筒内圧392b(推定信号)に変換するための振幅(ゲイン)と位相成分である。
【0190】
さらに、信号処理装置10は、数値シミュレーション又は加振実験によって求めたエンジンルーム内の音と受聴者の耳位置の音との伝達関数H1aを燃焼音391aa(抽出信号)に掛け合わせて推定空気伝搬音393a(推定信号)を生成する。また、信号処理装置10は、数値シミュレーション又は加振実験によって求めたエンジンマウント振動と受聴者の耳位置の音との伝達関数H2bを燃焼振動391ba(抽出信号)に掛け合わせて推定個体伝搬音393b(推定信号)を生成する。この後、信号処理装置10は、推定空気伝搬音393a(推定信号)と推定個体伝搬音393b(推定信号)とを合成して推定受聴者耳位置音393(合成推定信号)を生成する。
【0191】
このような信号処理装置10は、例えば官能試験時に、受聴者(車両の搭乗者(特にドライバー))の耳位置で検知される燃焼音をシミュレーションすることができる。
【符号の説明】
【0192】
1…エンジン
2…エンジンECU
3…車両
3a…車室
3b…インパネ
4…音圧センサ
5…筒内圧センサ
6…データ収集装置
7…モニタ
8…ヘッドホン(放音部)
9…レベル指定部
10,10A…信号処理装置(推定装置)
11…信号切出部
12…スペクトログラム算出部
13…信号記憶部
14…スイッチ
20…学習処理部
21…学習部
22…学習済みパラメータ記憶部
23…第1推定部
24…閾値算出部
25…閾値記憶部
26a…教師信号記憶部
26b…推定信号記憶部
26c…ノイズ成分記憶部
26d…抽出信号記憶部
30…判定処理部
31…第2推定部(推定信号推定部)
32…閾値判定部
40…分離部
50…信号合成部
51…信号調整部
52…信号出力部
81…ノッキング振動
82…ノッキング音
83…メカニカルノイズ(ノイズ成分)
90…エンジン近傍音(入力物理量)
91a…抽出ノッキング音(抽出信号)
91aa…レベル変更ノッキング音(レベル変更抽出信号)
91b…雑音(ノイズ成分)
91c…加工音
92…推定ノッキング筒内圧(推定信号)
93…観測ノッキング筒内圧(教師信号)
94…ニューラルネットワーク
94A…マスク生成ネットワーク
95…U-Net
96…下向きパス(Encoder)
97…階層
98…上向きパス(Decoder)
99…出力
100…信号処理システム
190…受聴者耳位置走行音(入力物理量)
191a…抽出インパネ振動音(抽出信号)
191b…雑音(ノイズ成分)
192…推定インパネ振動加速度(推定信号)
193…観測インパネ振動加速度(教師信号)
203…冷蔵庫
290…冷蔵庫音(入力物理量)
291a…抽出コンプレッサー音(抽出信号)
291b…雑音(ノイズ成分)
292…推定コンプレッサー振動加速度(推定信号)
293…観測コンプレッサー振動加速度(教師信号)
390…筒内圧(教師信号)
390a…放射音(入力物理量)
390b…振動(入力物理量)
391aa…燃焼音(抽出信号)
391ab…雑音(ノイズ成分)
391ba…燃焼振動(抽出信号)
391bb…ノイズ振動(ノイズ成分)
392a,392b…推定筒内圧(推定信号)
393…推定受聴者耳位置音(合成推定信号)
393a…推定空気伝搬音(推定信号)
393b…推定個体伝搬音(推定信号)
α,α1,α2…マスク
F11,F21,F31,F37…スペクトログラム
F12,F22,F32,F36,F93…信号波形
F13,F23…コヒーレンス
F33,F35…スペクトル
F34…周波数応答特性
H,H1,H1a,H2,H2b,He…伝達関数
Hc…変更伝達関数
M1…学習モード用接続部
M2…閾値算出モード用接続部
M3…判定モード用接続部
M4…分離モード用接続部
M5…官能試験モード用接続部
W…ネットワークの重み
T…閾値
【手続補正書】
【提出日】2021-07-15
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
入力物理量からノイズ成分を除去した抽出信号に伝達関数を掛け合わせて、教師信号と同じ次元の推定信号を推定する推定装置であって、
ニューラルネットワークにより、前記入力物理量から前記ノイズ成分を除去して前記抽出信号を抽出するためのマスクを生成するネットワークの重みを学習するとともに、前記伝達関数を学習する学習部と、
前記マスクを用いて、前記ノイズ成分が除去された抽出信号を取得し、前記伝達関数を掛け合わせることで抽出信号を推定信号に変換する推定信号推定部と、を備え、
前記学習部は、前記入力物理量に関連する振幅と位相成分を加味して、前記マスクを生成するネットワークの重みを学習するとともに、前記入力物理量に関連する振幅と位相成分を加味して、前記伝達関数を学習する
ことを特徴とする推定装置。
【請求項2】
請求項1に記載の推定装置において、
前記推定信号推定部は、前記ノイズ成分が除去された抽出信号に、振幅と位相成分を加味した前記伝達関数を掛け合わせることで推定信号を推定する
ことを特徴とする推定装置。
【請求項3】
請求項2に記載の推定装置において、
前記推定信号推定部は、前記ノイズ成分が除去された抽出信号に前記伝達関数を掛け合わせることで推定信号の最大値、及び、最大値と最小値との差を推定する
ことを特徴とする推定装置。
【請求項4】
入力物理量からノイズ成分を除去した抽出信号に伝達関数を掛け合わせて、教師信号と同じ次元の推定信号を推定する推定方法であって、
ニューラルネットワークにより、前記入力物理量から前記ノイズ成分を除去して前記抽出信号を抽出するためのマスクを生成するネットワークの重みを学習するとともに、前記伝達関数を学習する学習工程と、
前記マスクを用いて、前記ノイズ成分が除去された抽出信号を取得し、前記伝達関数を掛け合わせることで抽出信号を推定信号に変換する推定信号推定工程と、を含み、
前記学習工程において、前記入力物理量に関連する振幅と位相成分を加味して、前記マスクを生成するネットワークの重みを学習するとともに、前記入力物理量に関連する振幅と位相成分を加味して、前記伝達関数を学習する
ことを特徴とする推定方法。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0010
【補正方法】変更
【補正の内容】
【0010】
前記課題を解決するため、本発明は、入力物理量からノイズ成分を除去した抽出信号に伝達関数を掛け合わせて、教師信号と同じ次元の推定信号を推定する推定装置であって、ニューラルネットワークにより、前記入力物理量から前記ノイズ成分を除去して前記抽出信号を抽出するためのマスクを生成するネットワークの重みを学習するとともに、前記伝達関数を学習する学習部と、前記マスクを用いて、前記ノイズ成分が除去された抽出信号を取得し、前記伝達関数を掛け合わせることで抽出信号を推定信号に変換する推定信号推定部と、を備え、前記学習部は、前記入力物理量に関連する振幅と位相成分を加味して、前記マスクを生成するネットワークの重みを学習するとともに、前記入力物理量に関連する振幅と位相成分を加味して、前記伝達関数を学習する構成とする。
【手続補正3】
【補正対象書類名】明細書
【補正対象項目名】0011
【補正方法】変更
【補正の内容】
【0011】
また、本発明は、入力物理量からノイズ成分を除去した抽出信号に伝達関数を掛け合わせて、教師信号と同じ次元の推定信号を推定する推定方法であって、ニューラルネットワークにより、前記入力物理量から前記ノイズ成分を除去して前記抽出信号を抽出するためのマスクを生成するネットワークの重みを学習するとともに、前記伝達関数を学習する学習工程と、前記マスクを用いて、前記ノイズ成分が除去された抽出信号を取得し、前記伝達関数を掛け合わせることで抽出信号を推定信号に変換する推定信号推定工程と、を含み、前記学習工程において、前記入力物理量に関連する振幅と位相成分を加味して、前記マスクを生成するネットワークの重みを学習するとともに、前記入力物理量に関連する振幅と位相成分を加味して、前記伝達関数を学習する構成とする。
その他の手段は、後記する。