(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022062750
(43)【公開日】2022-04-21
(54)【発明の名称】燃料電池システム
(51)【国際特許分類】
H01M 8/04 20160101AFI20220414BHJP
H01M 8/10 20160101ALN20220414BHJP
【FI】
H01M8/04 N
H01M8/04 J
H01M8/10 101
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2020170862
(22)【出願日】2020-10-09
(71)【出願人】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(71)【出願人】
【識別番号】000000011
【氏名又は名称】株式会社アイシン
(74)【代理人】
【識別番号】110000028
【氏名又は名称】特許業務法人明成国際特許事務所
(72)【発明者】
【氏名】細井 貴己
(72)【発明者】
【氏名】西海 弘章
(72)【発明者】
【氏名】三島 崇司
(72)【発明者】
【氏名】奥野 仁
(72)【発明者】
【氏名】山田 俊秀
【テーマコード(参考)】
5H126
5H127
【Fターム(参考)】
5H126BB06
5H127AA06
5H127AB04
5H127AC06
5H127AC09
5H127BA02
5H127BA22
5H127BA28
5H127BA33
5H127BA57
5H127BA58
5H127BA59
5H127BA60
5H127BB02
5H127BB07
5H127BB12
5H127BB17
5H127BB22
5H127BB37
5H127BB39
5H127BB40
5H127CC01
5H127EE19
5H127EE23
(57)【要約】
【課題】弁装置を含む燃料電池システムの耐久性、弁装置の動作の確実性を向上させる。
【解決手段】燃料電池システムは、燃料電池と、カソードオフガス排出流路部と、気液分離器と、カバー部材とを備える。気液分離器は、本体部と、本体部の下方部分に接続され、端部に第1弁座が形成され、少なくとも本体部に溜まった水を排出するための第1排出流路部と、第1弁座に接触可能に構成されて第1排出流路部の開度を調整する第1弁体と、第1弁体を駆動する第1駆動部と、を有する第1弁装置とを有する。カバー部材は、気液分離器のうち、少なくとも第1排出流路部と第1弁座とを覆い、自身と気液分離器との間に、カソードオフガス排出流路部と連通するガス流路を形成するガス流路形成部を有する。ガス流路は、カバー部材に流入するカソードオフガスが第1排出流路部および第1弁座に接触し、第1駆動部に接触しない配置とされている。
【選択図】
図1
【特許請求の範囲】
【請求項1】
燃料電池システムであって、
燃料電池と、
前記燃料電池に接続され、前記燃料電池から排出されるカソードオフガスが通るカソードオフガス排出流路部と、
前記燃料電池から排出されるアノードオフガスが流入し、前記アノードオフガスから水を分離する気液分離器であって、
水を貯留可能な中空の本体部と、
前記本体部の下方部分に接続され、端部に第1弁座が形成され、少なくとも前記本体部に溜まった水を排出するための第1排出流路部と、
前記第1弁座に接触可能に構成されて前記第1排出流路部の開度を調整する第1弁体と、前記第1弁体を駆動する第1駆動部と、を有する第1弁装置と、
を有する気液分離器と、
前記気液分離器のうち、少なくとも前記第1排出流路部と前記第1弁座とを覆い、自身と前記気液分離器との間に、前記カソードオフガス排出流路部と連通するガス流路を形成するガス流路形成部を有するカバー部材と、
を備え、
前記ガス流路は、前記カバー部材に流入する前記カソードオフガスが前記第1排出流路部および前記第1弁座に接触し、前記第1駆動部に接触しない配置とされている、
燃料電池システム。
【請求項2】
請求項1に記載の燃料電池システムにおいて、
前記気液分離器は、
前記第1排出流路部よりも上方において前記本体部に接続され、端部に第2弁座が形成され、少なくとも前記アノードオフガスのうちの気体成分を排出するための第2排出流路部と、
前記第2弁座に接触可能に構成されて前記第2排出流路部の開度を調整する第2弁体と、前記第2弁体を駆動する第2駆動部と、を有する第2弁装置と、
をさらに有し、
前記カバー部材は、前記第2排出流路部と前記第2弁座と、をさらに覆う、燃料電池システム。
【請求項3】
請求項2に記載の燃料電池システムにおいて、
前記第2排出流路部は、前記本体部における予め設定されている貯水量の液面よりも上方において、前記本体部に接続されている、燃料電池システム。
【請求項4】
請求項1から請求項3までのいずれか一項に記載の燃料電池システムにおいて、
前記燃料電池にカソード反応ガスを供給するカソード反応ガス供給装置と、
前記カソード反応ガス供給装置と前記燃料電池とを接続し、前記燃料電池に前記カソード反応ガスを導くカソード反応ガス供給流路部と、
前記カソード反応ガス供給流路部に接続され、前記カソード反応ガス供給装置から供給される前記カソード反応ガスが前記燃料電池を介さずに通るバイパス流路部と、
を、さらに備え、
前記カバー部材は、前記バイパス流路部に接続され、
前記ガス流路には、前記バイパス流路部から前記カソード反応ガスが流入する、燃料電池システム。
【請求項5】
請求項2に従属する請求項4、または請求項3に従属する請求項4に記載の燃料電池システムにおいて、
前記ガス流路は、前記バイパス流路部から前記カバー部材に流入する前記カソード反応ガスが、前記第1排出流路部と前記第1弁座と前記第2排出流路部と前記第2弁座とに接触し、前記第1駆動部と前記第2駆動部とに接触しない配置とされている、燃料電池システム。
【請求項6】
請求項1から請求項3までのいずれか一項に記載の燃料電池システムにおいて、
前記燃料電池にカソード反応ガスを供給するカソード反応ガス供給装置と、
前記カソード反応ガス供給装置と前記燃料電池とを接続し、前記燃料電池に前記カソード反応ガスを導くカソード反応ガス供給流路部と、
前記カソード反応ガス供給流路部に接続され、前記カソード反応ガス供給装置から供給される前記カソード反応ガスが前記燃料電池を介さずに通るバイパス流路部と、
を、さらに備え、
前記バイパス流路部は、前記カソードオフガス排出流路部のうち、前記カバー部材との接続部分よりも上流側に接続され、
前記ガス流路は、前記カソードオフガスと前記バイパス流路部を通る前記カソード反応ガスとが混合されて流入する混合ガスが、前記第1排出流路部および前記第1弁座に接触し、前記第1駆動部に接触しない配置とされている、燃料電池システム。
【請求項7】
請求項1から請求項6までのいずれか一項に記載の燃料電池システムにおいて、
前記気液分離器は、前記本体部の側面から突出して前記第1排出流路部と前記第1弁座とを取り囲み、開口が形成された囲み部を、さらに有し、
前記カバー部材は、前記囲み部と相対して配置されて前記開口を塞ぐように前記気液分離器に接続され、
前記囲み部の底面は、前記カバー部材に向かって下方に傾斜している、燃料電池システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、燃料電池システムに関する。
【背景技術】
【0002】
燃料電池では、アノード反応ガスおよびカソード反応ガスが供給され、これらの反応ガスを用いた電気化学反応により発電が行われる。燃料電池に供給されたアノード反応ガス、例えば、水素ガスのうちの一部は、電気化学反応に用いられずにアノードオフガスの一部として排出される。そこで、燃費向上を目的として、燃料電池のアノードの下流に気液分離器を設け、アノードオフガスを気体成分と水とに分離して、得られた気体成分を再び燃料電池に供給し、水を排出する構成が採用され得る。かかる構成では、低温環境下において気液分離器から排水を行うための弁装置が凍結し、排水が阻害されるおそれがある。そこで、カソードオフガスの排出配管内に弁装置を配置し、燃料電池から排出される高温のカソードオフガスによって弁装置を暖める構成が提案されている(特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載の構成は、弁装置の凍結を防止できる優れたものであるが、燃料電池システムは様々な環境で用いられるため、気液分離器の弁装置を含む燃料電池システムの耐久性、弁装置の動作の確実性向上の観点から更なる改良が望まれる。
【課題を解決するための手段】
【0005】
本開示は、以下の形態として実現することが可能である。
【0006】
(1)本開示の一形態によれば、燃料電池システムが提供される。この燃料電池システムは、燃料電池と、前記燃料電池に接続され、前記燃料電池から排出されるカソードオフガスが通るカソードオフガス排出流路部と、前記燃料電池から排出されるアノードオフガスが流入し、前記アノードオフガスから水を分離する気液分離器であって、水を貯留可能な中空の本体部と、前記本体部の下方部分に接続され、端部に第1弁座が形成され、少なくとも前記本体部に溜まった水を排出するための第1排出流路部と、前記第1弁座に接触可能に構成されて前記第1排出流路部の開度を調整する第1弁体と、前記第1弁体を駆動する第1駆動部と、を有する第1弁装置と、を有する気液分離器と、前記気液分離器のうち、少なくとも前記第1排出流路部と前記第1弁座とを覆い、自身と前記気液分離器との間に、前記カソードオフガス排出流路部と連通するガス流路を形成するガス流路形成部を有するカバー部材と、を備え、前記ガス流路は、前記カバー部材に流入する前記カソードオフガスが前記第1排出流路部および前記第1弁座に接触し、前記第1駆動部に接触しない配置とされている。
この形態の燃料電池システムによれば、カバー部材により形成されるガス流路は、カバー部材に流入するカソードオフガスが第1排出流路部および第1弁座に接触し、第1駆動部に接触しない配置とされているので、カバー部材に流入するカソードオフガスにより第1排出流路部および第1弁座を暖めて弁装置の凍結を抑制しつつ、第1駆動部における腐食の進行を抑制できる。このため、弁装置を含む燃料電池システムの耐久性、弁装置の動作の確実性を向上できる。
(2)上記形態の燃料電池システムにおいて、前記気液分離器は、前記第1排出流路部よりも上方において前記本体部に接続され、端部に第2弁座が形成され、少なくとも前記アノードオフガスのうちの気体成分を排出するための第2排出流路部と、前記第2弁座に接触可能に構成されて前記第2排出流路部の開度を調整する第2弁体と、前記第2弁体を駆動する第2駆動部と、を有する第2弁装置と、をさらに有し、前記カバー部材は、前記第2排出流路部と前記第2弁座と、をさらに覆ってもよい。
この形態の燃料電池システムによれば、第1排出流路部よりも上方において気液分離器の本体部に接続された第2排出流路部を備えるので、本体部内に溜まった水に起因して第1排出流路部や第1弁座が凍結して、第1排出流路部からアノードオフガスを排出できない状況であっても、第2排出流路部からアノードオフガスを排出できる。また、カバー部材は、第2排出流路部と第2弁座とをさらに覆うので、カバー部材に流入するカソードオフガスにより第1排出流路部および第1弁座に加えて、第2排出流路部と第2弁座とを暖めることができる。
(3)上記形態の燃料電池システムにおいて、前記第2排出流路部は、前記本体部における予め設定されている貯水量の液面よりも上方において、前記本体部に接続されていてもよい。
この形態の燃料電池システムによれば、第2排出流路部は、気液分離器の本体部における予め定められている貯水量の液面よりも上方において、本体部に接続されているので、かかる液面の高さを適切に設定することにより、本体部に貯留している水が第2排出流路部に接触することを抑制して、第2排出流路部および第2弁体が凍結することを抑制できる。
(4)上記形態の燃料電池システムにおいて、前記燃料電池にカソード反応ガスを供給するカソード反応ガス供給装置と、前記カソード反応ガス供給装置と前記燃料電池とを接続し、前記燃料電池に前記カソード反応ガスを導くカソード反応ガス供給流路部と、前記カソード反応ガス供給流路部に接続され、前記カソード反応ガス供給装置から供給される前記カソード反応ガスが前記燃料電池を介さずに通るバイパス流路部と、を、さらに備え、前記カバー部材は、前記バイパス流路部に接続され、前記ガス流路には、前記バイパス流路部から前記カソード反応ガスが流入してもよい。
この形態の燃料電池システムによれば、カバー部材は、バイパス流路部に接続され、ガス流路には、バイパス流路部からカソード反応ガスが流入するので、バイパス流路部を通るカソード反応ガスをカバー部材内に導入し、かかるカソード反応ガスを利用して第1排出流路部および第1弁座をさらに暖めることができる。加えて、バイパス流路部を通るカソード反応ガスは、燃料電池の発電に寄与しないガスであるので、その流量を燃料電池の発電状況とは独立して自由に制御し得る。したがって、この形態の燃料電池システムによれば、第1排出流路部および第1弁座の昇温を精度良く制御できる。
(5)上記形態の燃料電池システムにおいて、前記ガス流路は、前記バイパス流路部から前記カバー部材に流入する前記カソード反応ガスが、前記第1排出流路部と前記第1弁座と前記第2排出流路部と前記第2弁座とに接触し、前記第1駆動部と前記第2駆動部とに接触しない配置とされていてもよい。
この形態の燃料電池システムによれば、ガス流路は、バイパス流路部からカバー部材に流入するカソード反応ガスが、第1排出流路部と第1弁座と第2排出流路部と第2弁座とに接触し、第1駆動部と第2駆動部とに接触しない配置とされているので、カバー部材に流入するカソード反応ガスにより直接的に、第1排出流路部と第1弁座と第2排出流路部と第2弁座とを暖めることができる。
(6)上記形態の燃料電池システムにおいて、前記燃料電池にカソード反応ガスを供給するカソード反応ガス供給装置と、前記カソード反応ガス供給装置と前記燃料電池とを接続し、前記燃料電池に前記カソード反応ガスを導くカソード反応ガス供給流路部と、前記カソード反応ガス供給流路部に接続され、前記カソード反応ガス供給装置から供給される前記カソード反応ガスが前記燃料電池を介さずに通るバイパス流路部と、を、さらに備え、前記バイパス流路部は、前記カソードオフガス排出流路部のうち、前記カバー部材との接続部分よりも上流側に接続され、前記ガス流路は、前記カソードオフガスと前記バイパス流路部を通る前記カソード反応ガスとが混合されて流入する混合ガスが、前記第1排出流路部および前記第1弁座に接触し、前記第1駆動部に接触しない配置とされていてもよい。
この形態の燃料電池システムによれば、バイパス流路部は、カソードオフガス排出流路部のうち、カバー部材との接続部分よりも上流側に接続され、ガス流路は、カソードオフガスとバイパス流路部を通るカソード反応ガスとが混合されて流入する混合ガスが、第1排出流路部および第1弁座に接触し、第1駆動部に接触しない配置とされているので、カバー部材に流入する混合ガスにより第1排出流路部および第1弁座を暖めることができると共に、第1駆動部における腐食の進行を抑制できる。加えて、バイパス流路部を通るカソード反応ガスは、燃料電池の発電に寄与しないガスであるので、その流量を燃料電池の発電状況とは独立して自由に制御し得る。したがって、この形態の燃料電池システムによれば、第1排出流路部および第1弁座の昇温を精度良く制御できる。
(7)上記形態の燃料電池システムにおいて、前記気液分離器は、前記本体部の側面から突出して前記第1排出流路部と前記第1弁座とを取り囲み、開口が形成された囲み部を、さらに有し、前記カバー部材は、前記囲み部と相対して配置されて前記開口を塞ぐように前記気液分離器に接続され、前記囲み部の底面は、前記カバー部材に向かって下方に傾斜していてもよい。
この形態の燃料電池システムによれば、囲み部の底面は、カバー部材に向かって下方に傾斜しているので、第1排出流路部から排出される水を、カバー部材に向かわせて出口部からカソードオフガスと共に排出し易くできる。
【0007】
本開示は、種々の形態で実現することも可能である。例えば、気液分離器とカバー部材とが組み付けられた気液分離器セットや、燃料電池システムを搭載した車両等の形態で実現することができる。
【図面の簡単な説明】
【0008】
【
図1】本開示の一実施形態としての燃料電池システムの概略構成を示すブロック図である。
【
図2】気液分離器セットの外観構成を示す斜視図である。
【
図3】気液分離器セットを分解して示す分解斜視図である。
【
図6】ガス流路におけるガスの流れを示す説明図である。
【
図11】第2実施形態における燃料電池システムの概略構成を示すブロック図である。
【発明を実施するための形態】
【0009】
A.第1実施形態:
A1.システム全体構成:
図1は、本開示の一実施形態としての燃料電池システム10の概略構成を示すブロック図である。本実施形態において、燃料電池システム10は、車両に搭載され、トラクションモータや各種補機類に電力を供給する。燃料電池システム10は、燃料電池20と、カソード側ガス給排系30と、アノード側給排系50と、気液分離器セット40と、制御部60とを備える。
【0010】
燃料電池20は、「燃料電池スタック」とも呼ばれ、各々が一つの発電要素となり得る複数の単セルが積層された構成を有する。各単セルは、いわゆる固体高分子型燃料電池と呼ばれ、アノード反応ガスとしての水素ガスと、カソード反応ガスとしての空気の供給を受けて発電する。各単セルは、イオン伝導性を有する高分子電解質膜の両面に電極を配置した膜電極接合体と、膜電極接合体を挟持する一対のセパレータとを有する。アノード側における膜電極接合体とセパレータとの間には、水素ガスが流通する流路が形成されている。カソード側における膜電極接合体とセパレータとの間には、空気が流通する流路が形成されている。
【0011】
カソード側ガス給排系30は、カソード反応ガスとしての空気を燃料電池20に供給し、また、燃料電池20からカソードオフガスを排出する。カソードオフガスには、各単セルのカソードにおいて電気化学反応によって生成された生成水が含まれる。
【0012】
カソード側ガス給排系30は、カソード反応ガス供給流路部302と、カソードオフガス排出流路部304と、バイパス流路部306と、排出流路部308と、エアクリーナ31と、カソード反応ガス供給装置としてのエアコンプレッサ32と、インタークーラ33と、封止弁装置34と、調圧弁装置35と、バイパス弁装置36と、マフラ37とを備える。
【0013】
カソード反応ガス供給流路部302は、エアコンプレッサ32と燃料電池20とを接続し、燃料電池20に空気(圧縮空気)を導く。カソードオフガス排出流路部304は、燃料電池20と後述する気液分離器セット40におけるカバー部材43とを接続する。カソードオフガス排出流路部304には、燃料電池20から排出されるカソードオフガスが通る。バイパス流路部306は、カソード反応ガス供給流路部302においてインタークーラ33よりも下流側に接続されている。また、バイパス流路部306は、後述する気液分離器セット40のうちのカバー部材43に接続されている。バイパス流路部306には、エアコンプレッサ32から供給される空気が燃料電池20を介さずに通る。排出流路部308は、後述する気液分離器セット40のうちのカバー部材43に接続され、気液分離器セット40から排出されるガス(後述の混合ガス)および水が通る。上述の各流路部302~308は、いずれも1つまたは複数の管により構成されている。
【0014】
エアクリーナ31は、カソード反応ガス供給流路部302においてエアコンプレッサ32よりも上流側に配置され、燃料電池20に供給される空気中の異物を除去する。エアコンプレッサ32は、エアクリーナ31の下流側且つインタークーラ33の上流側に配置され、エアクリーナ31を介して流入する空気を圧縮して排出する。インタークーラ33は、カソード反応ガス供給流路部302においてエアコンプレッサ32の下流側に配置され、エアコンプレッサ32における断熱圧縮によって昇温された空気を冷やして排出する。封止弁装置34は、カソード反応ガス供給流路部302において、カソード反応ガス供給流路部302とバイパス流路部306との接続部よりも下流側に配置されている。封止弁装置34は、燃料電池20に流入する空気の流量を調整する。調圧弁装置35は、カソードオフガス排出流路部304に配置されており、燃料電池20のカソード側圧力(背圧)を調整する。バイパス弁装置36は、バイパス流路部306に配置されており、バイパス流路部306を通る空気の流量を調整する。このバイパス弁装置36における開度の他、封止弁装置34の開度およびエアコンプレッサ32の回転数が制御されることにより、燃料電池20に供給される空気の流量と、バイパス流路部306を通る空気の流量とが適切な量となるように制御される。
【0015】
気液分離器セット40は、気液分離器41とカバー部材43とが互いに組み付けられて構成されている。
【0016】
気液分離器41には、燃料電池20から排出されるアノードオフガスが流入する。アノードオフガスには、各単セルに供給された水素ガスのうち、電気化学反応に用いられなかった残りの水素ガスや、各単セルにおいて電解質膜を透過してカソードから移動する生成水に由来する水蒸気や、同様に電解質膜を透過してカソードから移動する窒素ガスなどが含まれている。気液分離器41は、流入するアノードオフガスから水蒸気を凝集させて液水として分離し、かかる液水を外部に排出する。また、気液分離器41は、水を分離した後のカソードオフガス、すなわち、主に水素ガスから成るガスを外部に排出する。
【0017】
気液分離器41は、本体部410と、第1排出流路部415と、第1弁装置47と、第2排出流路部417と、第2弁装置48とを備える。
【0018】
本体部410は、中空の構造を有し、アノードオフガスから分離された凝集された水を貯留可能な空間が内部に形成されている。第1排出流路部415は、本体部410における最下部に接続され、少なくとも本体部410に溜まった水を排出する。「少なくとも本体部410に溜まった水を排出する」とは、本体部410に溜まった水のみを排出する場合の他、水が溜まっていない場合には、本体部410内に存在するアノードオフガスのみを排出する場合や、溜まった水を先に排出し、その後、水分離後のアノードオフガスを排出する場合も含むことを意味する。なお、第1排出流路部415は、本体部410における最下部に限らず下方部分のいずれかの位置に接続されてもよい。第1弁装置47は、第1排出流路部415の開度を調整する。第2排出流路部417は、第1排出流路部415よりも上方において本体部410に接続され、少なくともアノードオフガスのうちの気体成分を排出する。「少なくともアノードオフガスのうちの気体成分を排出する」とは、アノードオフガスのうちの気体成分のみを排出する場合の他、本体部410において第2排出流路部417との接続箇所の近傍に付着している水を、アノードオフガスの排出の勢いを利用して一緒に排出する場合も含むことを意味する。なお、「アノードオフガスのうちの気体成分」には、凝集させることができずオフガスから分離されずに残存する水蒸気も含み得る。第2排出流路部417は、本体部410における予め定められた貯水量の液面よりも上方において、本体部410に接続されている。上述の「予め定められた貯水量」とは、本実施形態では、通常運転時において本体部410において想定される最大貯水量を意味する。具体的には、
図1に示すように、本体部410に最大貯水量だけ溜まった状態で車両が想定される最大傾斜路を走行することにより、かかる液面Lvが水平方向に対して傾斜した状態において、液面Lvの上端よりも高い位置に第2排出流路部417が位置するように、本体部410への第2排出流路部417の接続位置が設定されている。これにより、本体部410に溜まった水が凍結した際に第2排出流路部417や第2弁装置48(後述の第2弁体481)も併せて凍結することを回避できる。なお、燃料電池システム10では、制御部60は、通常運転中において定期的に第1弁装置47を駆動させて開弁し、本体部410内の水を第1排出流路部415から排出するようにしている。そして、上述の「最大貯水量」とは、開弁と次の開弁との間の時間内において貯留し得る最大の貯水量を意味する。
【0019】
カバー部材43は、気液分離器41の一部を覆う。より具体的には、カバー部材43は、本体部410の外表面の一部と、第1排出流路部415と、第1弁装置47の構成部である後述の弁体(第1弁体471)と、第2排出流路部417と、第2弁装置48の構成部である後述の弁体(第2弁体481)とを覆う。
【0020】
カバー部材43は、ガス流路形成部434と、第1入口部431と、第2入口部432と、出口部433とを備える。
【0021】
ガス流路形成部434は、自身と気液分離器41との間にガス流路430を形成する。第1入口部431には、カソードオフガス排出流路部304が接続されている。このため、第1入口部431からガス流路430にカソードオフガスが流入する。第2入口部432には、バイパス流路部306が接続されている。このため、第2入口部432からガス流路430に空気が流入する。本実施形態では、第1入口部431と第2入口部432とのうち、第1入口部431が下方に位置し、第2入口部432が上方に位置している。カソードオフガスが流入する第1入口部431がより下方に位置するので、燃料電池20とカバー部材43との間において、カソードオフガス排出流路部304をカバー部材43に向かうにつれて下方に傾斜するように配置させ易くできる。これにより、カソードオフガスと共に排出される液水を燃料電池20から外部へと排出し易くできる。また、バイパス流路部306を通る空気は、カソードオフガスに比べて含水量が少ないドライなガスであるため、第2排出流路部417および第2弁体481の近傍に水を付着させることなく、第2排出流路部417および第2弁体481を暖めることができる。
【0022】
図1において太い破線の矢印で示すように、ガス流路430において、第1入口部431から流入したカソードオフガスの流れF1と、第2入口部432から流入した空気の流れF2とは混ざり合い、混合ガスの流れF3が形成される。出口部433には、排出流路部308が接続されている。出口部433は、ガス流路430内の混合ガスを排出流路部308に排出する。なお、気液分離器セット40の詳細構成については、後述する。
【0023】
アノード側給排系50は、アノード反応ガスとしての水素ガスを燃料電池20に供給し、また、燃料電池20からアノードオフガスを排出する。
【0024】
アノード側給排系50は、アノード反応ガス供給流路部501と、アノードオフガス排出流路部502と、循環流路部503と、タンク51と、主止弁装置52と、レギュレータ53と、インジェクタ54と、水素ポンプ55とを備える。
【0025】
アノード反応ガス供給流路部501は、タンク51と燃料電池20とを接続し、燃料電池20に水素ガスを導く。アノードオフガス排出流路部502には、燃料電池20から排出されるアノードオフガスが通る。循環流路部503は、気液分離器41とアノード反応ガス供給流路部501とを接続し、気液分離器41において水が分離された後のアノードオフガス、すなわち、主に水素ガスから成るガスを、アノード反応ガス供給流路部501に戻す。このような構成により、燃料電池20に供給された水素ガスのうち、各単セルにおいて発電に用いられなかった水素ガスが再利用され、燃費を向上できる。
【0026】
タンク51は、高圧の水素ガスを貯蔵している。主止弁装置52は、アノードオフガス排出流路部502においてタンク51の下流側に配置され、タンク51からの水素ガスの排出と停止とを実現する。レギュレータ53は、アノード反応ガス供給流路部501において主止弁装置52の下流側に配置され、インジェクタ54よりも上流側の圧力を調整する。
インジェクタ54は、アノードオフガス排出流路部502において、レギュレータ53よりも下流側であり、且つ、アノード反応ガス供給流路部501と循環流路部503との接続箇所よりも上流側に配置されている。インジェクタ54は、制御部60によって設定された駆動周期や開弁時間に応じて、電磁的に駆動する開閉弁であり、燃料電池20に供給される水素ガスの流量を調整する。水素ポンプ55は、循環流路部503に配置され、気液分離器41から排出されたガスをアノード反応ガス供給流路部501へと送る。
【0027】
制御部60は、燃料電池システム10全体を統合制御する。制御部60は、CPU、ROM、RAMを備えるコンピュータとして構成されている。本実施形態において、各弁装置は電磁弁として構成され、制御部60と電気的に接続されている。制御部60は、各弁装置の動作を制御する。また、制御部60は、エアコンプレッサ32、インジェクタ54、水素ポンプ55と電気的に接続され、これらを制御する。
【0028】
図示は省略されているが、燃料電池システム10は、他の構成要素を備えている。具体的には、冷却媒体により燃料電池20の温度を調整する冷却媒体循環系や、燃料電池20から出力される電力を昇圧し、また、必要に応じて交流電力に変換して供給する電力供給系などを備えている。
【0029】
A2.気液分離器セット40の詳細構成:
図2は、気液分離器セット40の外観構成を示す斜視図である。
図3は、気液分離器セット40を分解して示す分解斜視図である。
図4は、気液分離器セット40の左側面図である。
図5は、気液分離器セット40の右側面図である。
図3では、互いの接合を解除した状態の気液分離器41とカバー部材43とを表している。
図2~
図5には、互いに直交するX軸、Y軸およびZ軸が表されている。本実施形態において、「X軸方向」とは、+X方向と-X方向とを総称する方向を意味する。同様に、「Y軸方向」とは、+Y方向と-Y方向とを総称する方向を意味し、「Z軸方向」とは、+Z方向と-Z方向とを総称する方向を意味する。なお、後述する
図6、
図8および
図10に示すX軸Y軸およびZ軸は、いずれも
図2~
図5に示すX軸Y軸およびZ軸にそれぞれ対応する。車両に燃料電池システム10が搭載された状態において、+Z方向は鉛直上方に該当する。また、X-Y平面は、水平面と平行である。
【0030】
図2~
図5に示すように、気液分離器41の-Y方向の側面部分には、ボルト452によりカバー部材43が取り付けられている。気液分離器41は、アッパ部品401とロア部品402とがZ軸方向に並んで配置され、これら2つの部品401、402がボルト451によって互いに締結された概略構造を有する。アッパ部品401は、本体部410の上方側を構成し、ロア部品402は、本体部410の下方側を構成する。
【0031】
アッパ部品401の天井部分には、突起部463が設けられている。突起部463には、排出口412と、固定穴464とが形成されている。排出口412には、
図2~
図5では省略されている循環流路部503が接続されている。固定穴464の内部には、図示しないナットが設けられており、かかるナットに図示しないボルトが螺合して、気液分離器セット40を所定位置に固定している。
【0032】
図2、
図3、
図5に示すように、ロア部品402には、突起部461が設けられている。突起部461には、流入口411と、固定穴462とが形成されている。流入口411には、アノードオフガス排出流路部502が接続されている。固定穴462の内部には、図示しないナットが設けられており、かかるナットに図示しないボルトが螺合して、気液分離器セット40を所定位置に固定している。
【0033】
図4に示すように、ロア部品402の-X方向の側面部分において上方側に第2弁装置48が取り付けられている。また、
図5に示すように、ロア部品402の+X方向の側面部分において下方側には、第1弁装置47が取り付けられている。
【0034】
図3~
図5に示すように、ロア部品402の-Y方向の側面部分には、囲み部42が形成されている。囲み部42は、本体部410(ロア部品402)の側面から-Y方向に突出するように配置されている。囲み部42は、-Y方向の端部に開口428が形成されたカップ状の空間形成部427と、開口428の周囲に形成されたフランジ部429とを備える。空間形成部427は、カバー部材43のガス流路形成部434と共にガス流路430を形成する。空間形成部427の+Y方向の外表面は、ロア部品402の-Y方向の側面に接している。空間形成部427の内壁面は、底面421、左側面422、右側面423、および天井面424を備える。後述するように、底面421は、カバー部材43に向かって下方に傾斜している。左側面422は、-Z方向に向かうにつれて+X方向に位置する傾斜が設けられている。空間形成部427には、第1開口425と、第2開口426が形成されている。第1開口425は、底面421と右側面423と天井面424とが交差する部分のうち、下方に配置されている。第1開口425からは、第1排出流路部415および第1弁装置47が有する弁体(後述の第1弁体471)が露出している。第2開口426は、左側面422と天井面424との交差する部分のうち、上方に配置されている。第2開口426からは、第2排出流路部417および第2弁装置48が有する弁体(後述の第2弁体481)が露出している。したがって、囲み部42は、露出したこれらの構成要素、つまり、第1排出流路部415および第1弁体471と、第2排出流路部417および第2弁体481とを囲んでいるといえる。
【0035】
図2~
図5に示すように、ガス流路形成部434は、カバー部材43における中央部に位置し、Y軸方向を深さ方向とし、+Y方向に開口する器状の外観形状を有する。ガス流路形成部434の開口は、囲み部42の開口428とY軸方向において接合して互いに閉塞する。これにより、カバー部材43の内壁面と、空間形成部427の内壁面とに囲まれたガス流路430が形成される。ガス流路430は、カバー部材43に流入するカソードオフガスおよびカソード反応ガスが第1排出流路部415と後述の第1弁体471と第2排出流路部417と後述の第2弁体481とに接触し、後述の第1駆動部479および第2駆動部489に接しない配置とされている。
【0036】
ガス流路形成部434の-X方向且つ-Z方向の端部には、第1入口部431の一端が接続されている。同様に、ガス流路形成部434において、-X方向且つ+Z方向の端部には第2入口部432の一端が接続され、+X方向且つ-Z方向の端部には出口部433の一端が接続されている。第1入口部431、第2入口部432、出口部433はいずれも円筒形の外観形状を有する。
図4および
図5に示すように、本実施形態では、第1入口部431の直径と、第2入口部432の直径と、出口部433の直径とのうち、第2入口部432の直径が最も小さく、第1入口部431の直径が2番目に小さく、出口部433の直径が最も大きい。
図2および
図3に示すように、ガス流路形成部434におけるX軸方向の略中央には、屈曲部435が形成されている。屈曲部435は、ガス流路形成部434のZ軸方向の全体に亘って気液分離器41に向かって凸に屈曲している。ガス流路形成部434の開口を取り囲むように、フランジ部439が形成されている。かかるフランジ部439と上述の囲み部42のフランジ部429とはY軸方向に相対して配置され、これらがボルト452によって締結されることにより、カバー部材43は、気液分離器41(囲み部42)に取り付けられる。
【0037】
A3.ガス流路430におけるガスの流れ:
図6は、ガス流路430におけるガスの流れを示す説明図である。
図6では、説明の便宜上、気液分離器セット40からカバー部材43を取り外した状態、すなわち、気液分離器セット40における気液分離器41のみを表している。
【0038】
第1入口部431からガス流路430に流入するカソードオフガスの流れF1と、第2入口部432から流入する空気(バイパス流路部306を通った空気)の流れF2とは、ガス流路430において合わさって混合ガスの流れF3となり、出口部433から排出される。ここで、第2入口部432は、ガス流路形成部434における-X方向且つ+Z方向の端部に設けられているため、空間形成部427において、-X方向且つ+Z方向の端部に設けられている第2開口426の近傍に流れF2が位置することとなる。このため、第2開口426に露出する第2排出流路部417および後述の第2弁体481に、流れF2が直接的に接触することとなる。したがって、比較的高温のカソードオフガスに直接的に接触することにより、後述の第2弁座418を含む第2排出流路部417と後述の第2弁体481とは昇温される。
【0039】
第2開口426の近傍を通過した流れF2は、空間形成部427の内壁面(左側面422)に沿って下方に向かう。ここで、第1入口部431は、ガス流路形成部434における-X方向且つ-Z方向の端部に設けられているため、流れF1は、ガス流路430における-Z方向側を、+X方向に、また、後述のように+Y方向に沿うこととなる。このため、流れF1は、下降していきた流れF2と合流し、流れF3が形成される。つまり、流れF3は、カソードオフガスと、燃料電池20をバイパスした空気との混合ガスの流れである。そして、流れF3は、第1開口425の近傍に位置することとなる。このため、第1開口425から露出する第1排出流路部415および後述の第1弁体471に、流れF3が直接的に接触することとなる。したがって、比較的高温のカソードオフガスを含む混合ガスに直接的に接触することにより、後述の弁座416を含む第1排出流路部415と後述の第1弁体471とは昇温される。なお、混合ガスには、エアコンプレッサ32の断熱圧縮により昇温し、その後インタークーラ33により冷却されたとはいえ、氷点よりも高い温度の空気が含まれている。このため、第1排出流路部415および第1弁体471は、カソードオフガスのみに直接的に接触するよりも、より多くのガスに接触してより多くの熱量が得られるため、より昇温され易い。
【0040】
図7は、気液分離器セット40の部分断面図である。
図7では、
図5に示すVII-VII断面線に沿った断面を示している。
図7に示すように、気液分離器41(ロア部品402)の内側には、フィルタ装置419が設けられている。このフィルタ装置419よりも下方の端部には、Z軸方向に延びる筒状の下端部413が設けられている。第1排出流路部415は、この下端部413の側方に連通し、X軸方向に延びる筒状の外観形状を有する。
図7に示すように、第1排出流路部415の端部は、第1弁座416として構成されている。弁座416に後述の第1弁体471が接することにより、第1排出流路部415は閉塞される。
【0041】
第1弁装置47は、第1弁座416に接触可能に構成されて第1排出流路部415の+X方向の端部の開口を開閉する第1弁体471と、第1弁体471を駆動する第1駆動部479とを備える。第1駆動部479は、自身の-X方向の端部に第1弁体471が接合された押しピン472と、プランジャ473と、コイル474と、ステータコア475と、ヨーク476と、コネクタ部477とを備える。第1弁装置47はノーマリクローズタイプの弁装置であり、通電されない状態において第1弁体471は、第1弁座416に接して第1排出流路部415の端部開口を塞いでいる。本実施形態において第1弁体471は、樹脂により構成されている。コネクタ部477に接続される図示しないケーブルを介してコイル474に電流が供給されることにより磁力が発生し、これにより、ヨーク476、ステータコア475、プランジャ473を通る磁束の流れ(磁気回路)が形成される。そうすると、押しピン472がバネの付勢力に勝ってプランジャ473へと磁気吸引され、第1弁体471もプランジャ473に向かって移動することとなり、第1排出流路部415の端部開口が開放される。
【0042】
図7に示すように、第1弁装置47において、第1開口425に露出する部分は、第1弁座416を有して樹脂により構成された第1弁体471のみである。したがって、コイル474等の金属製構成部品を含む第1駆動部479は、第1開口425に露出していない。このため、第1駆動部479に混合ガスの流れF3が直接的に触れることを抑制して、第1駆動部479における腐食の進行を抑制できる。
【0043】
図7に示すように、第1入口部431から流入するカソードオフガスの流れF1は、当初は+X方向に進むが、ガス流路形成部434の屈曲部435により、気液分離器41(囲み部42)に向かうように(+Y方向に)ガイドされる。このため、その後に流れF2と合流して得られる流れF3は、第1開口425に向かうこととなる。したがって、第1開口425において露出する第1排出流路部415および第1弁体471に、流れF3が直接的に接触することとなる。
【0044】
なお、
図7に示すように、囲み部42において内壁面は、開口428から第1開口425に向かうに連れて先細りするような構造を有している。これにより、より多くの量の混合ガスを第1開口425に向かわせることができ、第1開口425に露出する第1排出流路部415および第1弁体471をより早期に昇温できる。
【0045】
図8は、気液分離器セット40の部分断面図である。
図8では、
図4に示すVIII-VIII断面線に沿った断面を示している。第2弁装置48は、第1弁装置47と同様な構成を有する。具体的には、第2弁装置48は、第2弁座418に接触可能に構成されて第2排出流路部417の-X方向の端部の開口を開閉する第2弁体481と、第2弁体481を駆動する第2駆動部489とを備える。第2駆動部489は、自身の+X方向の端部に第2弁体481が接合された押しピン482と、プランジャ483と、コイル484と、ステータコア485と、ヨーク486とを備える。第2弁装置48は、第1弁装置47と同様にノーマリクローズタイプの弁装置であり、通電されない状態において樹脂製の第2弁体481は、第2弁座418に接して第2排出流路部417の端部開口を塞いでいる。図示しないコネクタ部に接続される図示しないケーブルを介してコイル484に電流が供給されることにより磁力が発生し、これにより、ヨーク486、ステータコア485、プランジャ483を通る磁束の流れ(磁気回路)が形成される。そうすると、押しピン482がバネの付勢力に勝ってプランジャ483へと磁気吸引され、第2弁体481もプランジャ483に向かって移動することとなり、第2排出流路部417の端部開口が開放される。
【0046】
図8に示すように、第2弁装置48において、第2開口426に露出する部分は、第2弁座418を有して樹脂により構成された第2弁体481のみである。したがって、コイル484等の金属製構成部品を含む第2駆動部489は、第2開口426に露出していない。このため、第2駆動部489に空気の流れF2が直接的に触れることを抑制して、第2駆動部489における腐食の進行を抑制できる。
【0047】
なお、
図8に示すように、囲み部42において内壁面は、開口428から第2開口426に向かうに連れて先細りするような構造を有している。これにより、より多くの量の混合ガスを第2開口426に向かわせることができ、第2開口426に露出する第2排出流路部417および第2弁体481をより早期に昇温できる。
【0048】
図9は、気液分離器セット40の部分断面図である。
図9では、
図2に示すVIIII-VIIII断面線に沿った断面を示している。なお、
図9では、説明の便宜上、出口部433の位置を破線で示している。
【0049】
図9に示すように、囲み部42の底面421は、カバー部材43に向かって下方に傾斜している。本実施形態において傾斜角度θ1は、10度である。なお、10度に限らず任意の角度であってもよい。このような構成により、第1排出流路部415から排出される水を、カバー部材43に向かわせることができる。なお、本実施形態では、ガス流路形成部434の底面も同様に傾斜している。そして、出口部433は、ガス流路形成部434における-Y方向且つ-Z方向の端部に接続されているので、囲み部42からカバー部材43に向かって流れる水を、混合ガスと共に出口部433から排出し易くできる。
【0050】
図10は、気液分離器セット40の部分断面図である。
図9では、
図2に示すX-X断面線に沿った断面を示している。
図10に示すように、囲み部42の左側面422は、第2開口426の近傍において、カバー部材43に向かうに連れて下方に傾斜している。本実施形態において傾斜角度θ2は、10度である。なお、10度に限らず任意の角度であってもよい。このような構成により、第2開口426から排出される水を、カバー部材43に向かわせることができる。なお、第2開口426から排出される水としては、例えば、燃料電池システム10の停止中に第2排出流路部417の近傍において結露した水であって、第2排出流路部417から排出されるガスと共に吹き飛ばされて排出された水等が相当する。
【0051】
以上説明した第1実施形態の燃料電池システム10によれば、カバー部材43により形成されるガス流路430は、カバー部材430に流入するカソードオフガスが第1排出流路部415および第1弁座416に接触し、第1駆動部479に接触しない配置とされているので、カバー部材43に流入するカソードオフガスにより第1排出流路部415および第1弁座416を暖めて第1弁装置47の凍結を抑制しつつ、第1駆動部479における腐食の進行を抑制できる。このため、第1弁装置47を含む燃料電池システム10の耐久性、第1弁装置47の動作の確実性を向上できる。
【0052】
また、燃料電池システム10は、第1排出流路部415よりも上方において気液分離器41の本体部410に接続された第2排出流路部417を備えるので、本体部410内に溜まった水に起因して第1排出流路部415や第1弁座416が凍結して、第1排出流路部415からアノードオフガスを排出できない状況であっても、第2排出流路部417からアノードオフガスを排出できる。また、カバー部材43は、第2排出流路部417と第2弁座418とをさらに覆うので、カバー部材43に流入するカソードオフガスにより第1排出流路部415および第1弁座416に加えて、第2排出流路部417と第2弁座418とを暖めることができる。
【0053】
また、第2排出流路部417は、気液分離器41の本体部410における想定される最大貯水量の液面Lvよりも上方において、本体部410に接続されているので、第2排出流路部417に本体部410に貯留している水が接触することを抑制して、第2排出流路部417および第2弁座418が凍結することを抑制できる。
【0054】
また、カバー部材43は、バイパス流路部306に接続され、ガス流路430には、バイパス流路部406からカソード反応ガスが流入するので、バイパス流路部406を通るカソード反応ガスをカバー部材43内に導入し、かかるカソード反応ガスを利用して第1排出流路部415および第1弁座416をさらに暖めることができる。加えて、バイパス流路部306を通るカソード反応ガスは、燃料電池20の発電に寄与しないガスであるので、その流量を燃料電池20の発電状況とは独立して自由に制御し得る。したがって、本実施形態の燃料電池システム10によれば、第1排出流路部415および第1弁座416の昇温を精度良く制御できる。
【0055】
また、ガス流路430は、バイパス流路部306からカバー部材43に流入するカソード反応ガスが、第1排出流路部415と第1弁座416と第2排出流路部417と第2弁座418とに接触し、第1駆動部479と第2駆動部489とに接触しない配置とされているので、カバー部材43に流入するカソード反応ガスにより直接的に、第1排出流路部415と第1弁座416と第2排出流路部417と第2弁座418とを暖めることができる。
【0056】
また、囲み部42の底面421は、カバー部材43に向かって下方に傾斜しているので、第1排出流路部415から排出される水を、カバー部材43に向かわせて出口部433からカソードオフガスと共に排出し易くできる。
【0057】
また、第1排出流路部415と排出流路部308との間は、流路部ではなく、カバー部材43および囲み部42によって接続されている。加えて、カバー部材43および囲み部42によって形成されるガス流路430には、比較的温度が高いカソードオフガスとバイパス流路部306を通る空気が流入する。これらのことから、燃料電池システム10によれば、第1排出流路部415から排出された水が排出流路部308に向かう途中で凍結しないようにヒータ等の加熱手段を設けることを要しない。したがって、燃料電池システム10のコンパクト化を実現でき、また、燃料電池システム10の構築コストおよび運用コストを抑えることができる。
【0058】
B.第2実施形態:
図11は、第2実施形態における燃料電池システム10aの概略構成を示すブロック図である。第2実施形態の燃料電池システム10aは、カバー部材43に代えてカバー部材43aを備える点と、バイパス流路部306がカバー部材43に代えてカソードオフガス排出流路部304に接続されている点において、第1実施形態の燃料電池システム10と異なる。第2実施形態の燃料電池システム10aにおけるその他の構成は、第1実施形態の燃料電池システム10と同じであるので、同一の構成には同一の符号を付し、その詳細な説明を省略する。
【0059】
カバー部材43aは、第2入口部432が省略されている点において、第1実施形態のカバー部材43と異なる。カバー部材43aにおけるその他の構成は、カバー部材43と同じであるので、同一の構成には同一の符号を付し、その詳細な説明を省略する。
【0060】
バイパス流路部306は、カソードオフガス排出流路部304のうち、第1入口部431との接続部分よりも上流側に接続されている。したがって、第1入口部431からガス流路430には、カソードオフガスと、バイパス流路部306に流入する空気とが混合された混合ガスが流入することとなる。このため、
図11に示すように、ガス流路430には、第1入口部431から混合ガスの流れF3が生じている。
【0061】
以上説明した第2実施形態の燃料電池システム10aは、第1実施形態の燃料電池システム10と同様な効果を有する。加えて、バイパス流路部306は、カソードオフガス排出流路部304のうち、カバー部材43との接続部分よりも上流側に接続され、ガス流路430は、カソードオフガスとバイパス流路部306を通るカソード反応ガスとが混合されて流入する混合ガスが、第1排出流路部415と第1弁座416と第2排出流路部417と第2弁座418とに接触し、第1駆動部479および第2駆動部489に接触しない配置とされているので、カバー部材43に流入する混合ガスにより第1排出流路部415と第1弁座416と第2排出流路部417と第2弁座418とを暖めることができると共に、第1駆動部479および第2駆動部489における腐食の進行を抑制できる。加えて、バイパス流路部306を通るカソード反応ガスは、燃料電池20の発電に寄与しないガスであるので、その流量を燃料電池20の発電状況とは独立して自由に制御し得る。したがって、第2実施形態の燃料電池システム10aによれば、第1排出流路部415と第1弁座416と第2排出流路部417と第2弁座418との昇温を精度良く制御できる。
【0062】
C.他の実施形態:
(C1)各実施形態の気液分離器41において、第2排出流路部417および第2弁装置48を省略してもよい。かかる構成においても、第1排出流路部415および第1弁座416を、カソードオフガスおよびバイパス流路部306を通る空気を利用して暖めることができる。
【0063】
(C2)各実施形態において、第2排出流路部417は、本体部410における想定される最大貯水量の液面、特に、車両が想定される最大傾斜路を走行した場合の液面Lvの上端よりも上方において本体部410に接続されていたが、本開示はこれに限定されない。例えば、第2排出流路部417は、本体部410における車両が平地を走行した場合の最大貯留量の液面よりも上方において、本体部410に接続されてもよい。また、第2排出流路部417は、本体部410における最大貯留量の液面よりも下方に配置されていてもよい。
【0064】
(C3)各実施形態において、バイパス流路部306を省略してもよい。かかる構成においても、カソードオフガス排出流路部304を介して第1入口部431からガス流路430に流入するカソードオフガスを利用して、第1排出流路部415、第1弁座416、第2排出流路部417、および第2弁座418を暖めることができる。なお、かかる構成においては、カバー部材43において第2入口部432を省略してもよい。
【0065】
(C4)各実施形態において、ガス流路形成部434は、ガス流路430として、第2入口部432から流入する空気を、第1排出流路部415と、第1弁体471と、第2排出流路部417と、第2弁体481とにそれぞれ接触させるような流路を形成していたが、本開示はこれに限定されない。例えば、第2入口部432から流入する空気を、第1入口部431から流入するカソードオフガスと同様に、第1入口部431および第1弁体471に直接的に接触させ、第2排出流路部417および第2弁体481に直接的に接触させないようにしてもよい。かかる構成においても、ガス流路形成部434の内壁面や空間形成部427の内壁面における輻射熱により、第2排出流路部417および第2弁体481を暖めることができる。
【0066】
(C5)各実施形態において、囲み部42の底面421は、カバー部材43に向かって下方に傾斜していたが、本開示はこれに限定されない。底面421は、水平面と平行であってもよいし、カバー部材43に向かって上方に傾斜してもよい。
【0067】
(C6)第1実施形態では、第1入口部431と第2入口部432とのうち、第1入口部431が下方に位置し、第2入口部432が上方に位置していたが、これに代えて、第1入口部431が上方に位置し、第2入口部432が下方に位置していてもよい。かかる構成によれば、カソードオフガス排出流路部304を介して第1入口部431からガス流路430に流入するアノードオフガスは第2開口426の近傍を通過するため、アノードオフガスを、第1排出流路部415および第2弁体481に加えて、第2排出流路部417および第2弁体481に直接的に接触させることができる。そして、アノードオフガスは、燃料電池20の内部から排出されるため高温であるので、上記構成によれば、第2排出流路部417および第2弁体481をより効率的に暖めて、昇温速度を向上できるという効果を奏する。
【0068】
(C7)各実施形態において、ガス流路形成部434は、屈曲部435を備えていたが、屈曲部435を省略してもよい。また、屈曲部435に代えて、又は、屈曲部435に加えて、第2開口426の近傍にも屈曲部を設けてもよい。第2開口426の近傍に設ける屈曲部は、屈曲部435と同様に、第1実施形態では、第2入口部432から流入する空気を、第2実施形態では、第1入口部431から流入する混合ガスを、それぞれ第2開口426に向かわせるガイドの役割を果たすように屈曲させてもよい。かかる構成によれば、第2開口426に露出する第2排出流路部417および第2弁座418をより効率的に暖めて昇温速度を向上させることができる。
【0069】
(C8)各実施形態では、燃料電池システム10、10aは、トラクションモータや補機に電力を供給するためのシステムとして、車両に搭載されて用いられていたが、本開示はこれに限定されない。例えば、車両に代えて、船舶や航空機など、駆動用電源を必要とする他の任意の種類の移動体に搭載されて使用されてもよい。また、定置型電源として用いられてもよい。また、燃料電池20を構成する各単セルは、固体高分子型燃料電池であったが、リン酸型燃料電池、溶融炭酸塩型燃料電池、固体酸化物型燃料電池等、種々の種類の燃料電池であってもよいしてもよい。
【0070】
(C9)各実施形態において、第1弁体471は、第1開口425に露出していなくてもよい。また、第2弁体481は、第2開口426に露出していなくてもよい。これらの構成においても、第1排出流路部415および弁座416が第1開口425に露出することにより、これらの凍結を抑制できる。同様に、第2排出流路部417および第2弁座418が第2開口426に露出することにより、これらの凍結を抑制できる。
【0071】
本開示は、上記各実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する各実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
【符号の説明】
【0072】
10…燃料電池システム、10a…燃料電池システム、20…燃料電池、30…カソード側ガス給排系、31…エアクリーナ、32…エアコンプレッサ、33…インタークーラ、34…封止弁装置、35…調圧弁装置、36…バイパス弁装置、37…マフラ、40…気液分離器セット、41…気液分離器、42…囲み部、43…カバー部材、43a…カバー部材、47…第1弁装置、48…第2弁装置、50…アノード側給排系、51…タンク、52…主止弁装置、53…レギュレータ、54…インジェクタ、55…水素ポンプ、60…制御部、302…流路部、302…カソード反応ガス供給流路部、304…カソードオフガス排出流路部、306…バイパス流路部、308…排出流路部、401…アッパ部品、402…ロア部品、410…本体部、411…流入口、412…排出口、413…下端部、415…第1排出流路部、416…第1弁座、417…第2排出流路部、418…第2弁座、419…フィルタ装置、421…底面、422…左側面、423…右側面、424…天井面、425…第1開口、426…第2開口、427…空間形成部、428…開口、429…フランジ部、430…ガス流路、431…第1入口部、432…第2入口部、433…出口部、434…ガス流路形成部、435…屈曲部、439…フランジ部、451…ボルト、452…ボルト、461…突起部、462…固定穴、463…突起部、464…固定穴、471…第1弁体、472…押しピン、473…プランジャ、474…コイル、475…ステータコア、476…ヨーク、477…コネクタ部、479…第1駆動部、481…第2弁体、482…押しピン、483…プランジャ、484…コイル、485…ステータコア、486…ヨーク、489…第2駆動部、501…アノード反応ガス供給流路部、502…アノードオフガス排出流路部、503…循環流路部、F1…流れ、F2…流れ、F3…流れ、Lv…液面