(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022063842
(43)【公開日】2022-04-22
(54)【発明の名称】フリップ・チップ・トポロジーを有するトランジスタおよび該トランジスタを有する電力増幅器
(51)【国際特許分類】
H01L 23/12 20060101AFI20220415BHJP
H01L 25/18 20060101ALI20220415BHJP
H01L 21/60 20060101ALI20220415BHJP
H01L 23/00 20060101ALI20220415BHJP
H03F 3/24 20060101ALI20220415BHJP
H03F 1/02 20060101ALI20220415BHJP
【FI】
H01L23/12 501P
H01L25/04 Z
H01L21/60 311S
H01L23/00 C
H03F3/24
H03F1/02 188
【審査請求】未請求
【請求項の数】20
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2021129926
(22)【出願日】2021-08-06
(31)【優先権主張番号】17/068,051
(32)【優先日】2020-10-12
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】504199127
【氏名又は名称】エヌエックスピー ユーエスエイ インコーポレイテッド
【氏名又は名称原語表記】NXP USA,Inc.
(74)【代理人】
【識別番号】100142907
【弁理士】
【氏名又は名称】本田 淳
(72)【発明者】
【氏名】ビカス シリムカル
(72)【発明者】
【氏名】ラマヌジャム スリニディ エンバー
(72)【発明者】
【氏名】イブラヒム カリル
【テーマコード(参考)】
5F044
5J500
【Fターム(参考)】
5F044KK12
5F044LL01
5J500AA01
5J500AA21
5J500AA41
5J500AC16
5J500AC36
5J500AC58
5J500AC86
5J500AF10
5J500AF16
5J500AH10
5J500AH24
5J500AH29
5J500AK12
5J500AK66
5J500AM19
5J500AQ03
5J500AQ04
5J500AQ06
5J500AS14
5J500LV08
5J500WU08
(57)【要約】 (修正有)
【課題】フリップ・チップ・トポロジーを有するトランジスタを有する電力増幅器及び半導体デバイスを提供する。
【解決手段】半導体デバイス70は、前部74を有するダイ本体72と、ダイ本体72に形成され、外周によって境界を示される能動エリアを有するトランジスタ92と、トランジスタの能動エリア内の第1のサブ領域102、第2のサブ領域104及び第3のサブ領域106に対してそれぞれ電気的に結合される第1の接点108、第2の接点110及び第3の接点112を形成する、パターニングされた導電性材料81を含有するダイ本体の前部上に形成される相互接続構造80と、相互接続構造の外側部分に形成され、第1の接点パッド、第2の接点パッド及び第3の接点に対して電気的に接続され、トランジスタの能動エリアの上に横たわる位置に配置される第3の接点パッドを含有する前部入出力(I/O)インターフェース86と、を備える。
【選択図】
図4
【特許請求の範囲】
【請求項1】
前部を有するダイ本体と、
前記ダイ本体に形成された能動エリアを有するトランジスタであって、前記能動エリアは、外周によって境界を示される、トランジスタと、
前記ダイ本体の前記前部上に形成される相互接続構造であって、前記相互接続構造は、前記トランジスタの前記能動エリア内の第1のサブ領域、第2のサブ領域、および第3のサブ領域に対してそれぞれ電気的に結合される、第1の接点、第2の接点、および第3の接点を形成する、パターニングされた導電性材料を含有する、相互接続構造と、
前記相互接続構造の外側部分に形成される前部入出力(I/O)インターフェースであって、前記前部I/Oインターフェースは、第1の接点パッド、第2の接点パッド、および第3の接点パッドを含有し、前記第1の接点パッドは、前記第1の接点に対して電気的に接続され、前記第2の接点パッドは、前記第2の接点に対して電気的に接続され、前記第3の接点パッドは、前記第3の接点に対して電気的に接続され、前記第3の接点パッドは、前記トランジスタの前記能動エリアの上に横たわる位置に配置される、前部I/Oインターフェースと
を備える、半導体デバイス。
【請求項2】
前記トランジスタは、電界効果トランジスタ(FET)を備え、
前記第1のサブ領域、前記第2のサブ領域、および前記第3のサブ領域は、前記FETの前記能動エリア内にチャネル・サブ領域、ドレイン・サブ領域、およびソース・サブ領域をそれぞれ含み、
前記第1の接点、前記第2の接点、および前記第3の接点は、ゲート電極構造、ドレイン電極構造、およびソース電極構造をそれぞれ備え、
前記第1の接点パッド、前記第2の接点パッド、および前記第3の接点パッドは、ゲート接点パッド、ドレイン接点パッド、およびソース接点パッドをそれぞれ備える、
請求項1に記載の半導体デバイス。
【請求項3】
前記トランジスタの前記能動エリアは、前記トランジスタの個別チャネルを構成する複数の能動領域を含み、前記複数の能動領域の各々は、非能動領域によって離間されており、前記複数の能動領域は、前記第1のサブ領域、前記第2のサブ領域、および前記第3のサブ領域を含み、前記非能動領域は、前記第1のサブ領域、前記第2のサブ領域、および前記第3のサブ領域を含まず、前記第3の接点パッドは、複数であり、前記非能動領域の上に横たわる位置に配置される、
請求項1に記載の半導体デバイス。
【請求項4】
二次構造に対するフリップ・チップ・ボンディングのために構成される前記第1の接点パッド、前記第2の接点パッド、および前記第3の接点パッドの各々上の導電性接続要素をさらに備える、
請求項1に記載の半導体デバイス。
【請求項5】
前記ダイ本体は、基板貫通ビアを含まない、
請求項1に記載の半導体デバイス。
【請求項6】
前記第3の接点は、前記第3の接点パッドを前記第3のサブ領域に電気的に接続する、前記ダイ本体の前記前部から前記相互接続構造を通って延在する導電性垂直接続部およびパターニングされた前記導電性材料からなる複数の層を含む、
請求項1に記載の半導体デバイス。
【請求項7】
前記第1の接点は、前記相互接続構造のパターニングされた前記導電性材料から形成されたタップ相互接続部を含み、前記タップ相互接続部は、前記第1のサブ領域と前記第1の接点パッドとの電気接点であり、
前記第2の接点は、前記相互接続構造のパターニングされた前記導電性材料から形成されたピラーを含み、前記ピラーは、前記第2のサブ領域と前記第2の接点パッドとの電気接点であり、
前記相互接続構造は、パターニングされた前記導電性材料から形成されたシールド構造を備え、前記シールド構造は、前記第3の接点に電気的に接続されており、前記シールド構造は、前記タップ相互接続部および前記ピラーから電気的に絶縁されており、前記シールド構造は、前記ピラーと前記タップ相互接続部との間に介在しており、前記タップ相互接続部は、前記第1のサブ領域に対する入力の一部を形成し、前記ピラーは、前記第2のサブ領域からの出力の一部を形成し、前記シールド構造は、前記タップ相互接続部と前記ピラーとの間の電界を遮断するように構成される、
請求項1に記載の半導体デバイス。
【請求項8】
前記第1の接点パッドおよび前記第2の接点パッドは、前記トランジスタの前記能動エリアの前記外周の外側の位置に配置される、
請求項1に記載の半導体デバイス。
【請求項9】
前記第1の接点および前記第2の接点は、第1の軸に沿って互いに実質的に平行に延在し、前記トランジスタの前記能動エリアにおいて横たわり、
前記第1の接点パッドは、前記能動エリアの第1の側面に隣接して位置し、
前記第2の接点パッドは、前記能動エリアの第2の側面に隣接して位置し、前記第2の側面は、前記第1の側面と対向し、前記第1の側面および前記第2の側面は、前記第1の軸に対して垂直な第2の軸に沿って向き付けられている、
請求項8に記載の半導体デバイス。
【請求項10】
前記第3の接点パッドは、前記第1の接点パッドと前記第2の接点パッドとの間に配置される、
請求項9に記載の半導体デバイス。
【請求項11】
ダイ支持面を有するモジュール基板と、電力ダイとを備える電力増幅器であって、
前記電力ダイは、
前部を有するダイ本体と、
前記ダイ本体に形成された能動エリアを有する電界効果トランジスタ(FET)であって、前記能動エリアは、外周によって境界を示される、電界効果トランジスタと、
前記ダイ本体の前記前部上に形成される相互接続構造であって、前記相互接続構造は、前記FETの前記能動エリア内のチャネル・サブ領域、ドレイン・サブ領域、およびソース・サブ領域に対してそれぞれ電気的に結合される、ゲート電極、ドレイン電極、およびソース電極を形成する、パターニングされた導電性材料を含有する、相互接続構造と、
前記相互接続構造の外側部分に形成される前部入出力(I/O)インターフェースであって、前記前部I/Oインターフェースは、ゲート接点パッド、ドレイン接点パッド、およびソース接点パッドを含有し、前記ゲート接点パッドは、前記ゲート電極に対して電気的に接続され、前記ドレイン接点パッドは、前記ドレイン電極に対して電気的に接続され、前記ソース接点パッドは、前記ソース電極に対して電気的に接続され、前記ソースパッドは、前記FETの前記能動エリアの上に横たわる位置に配置される、前部I/Oインターフェースと、
前記ゲート接点パッド、前記ドレイン接点パッド、および前記ソース接点パッドの各々上の導電性接続要素であって、前記ゲート接点パッド、前記ドレイン接点パッド、および前記ソース接点パッドが前記モジュール基板の前記ダイ支持面に面した状態で、前記電力ダイを反転された向きで取り付ける、導電性接続要素と
を備える、電力増幅器。
【請求項12】
前記FETの前記能動エリアは、前記FETの個別チャネルを構成する複数の能動領域を含み、前記複数の能動領域の各々は、非能動領域によって離間されており、前記複数の能動領域は、前記チャネル・サブ領域、前記ドレイン・サブ領域、および前記ソース・サブ領域を含み、前記非能動領域は、前記チャネル・サブ領域、前記ドレイン・サブ領域、および前記ソース・サブ領域を含まず、前記ソース接点パッドは、複数であり、前記非能動領域の上に横たわる位置に配置される、
請求項11に記載の電力増幅器。
【請求項13】
前記ダイ本体は、基板貫通ビアを含まない、
請求項11に記載の電力増幅器。
【請求項14】
前記ゲート電極は、前記相互接続構造のパターニングされた前記導電性材料から形成されたタップ相互接続部を含み、前記タップ相互接続部は、前記チャネル・サブ領域と前記ゲート接点パッドとの電気接点であり、
前記ドレイン電極は、前記相互接続構造のパターニングされた前記導電性材料から形成されたピラーを含み、前記ピラーは、前記ドレイン・サブ領域と前記ドレイン接点パッドとの電気接点であり、
前記相互接続構造は、パターニングされた前記導電性材料から形成されたシールド構造を備え、前記シールド構造は、前記ソース電極に電気的に接続されており、前記シールド構造は、前記タップ相互接続部および前記ピラーから電気的に絶縁されており、前記シールド構造は、前記ピラーと前記タップ相互接続部との間に介在しており、前記タップ相互接続部は、前記チャネル・サブ領域に対する入力の一部を形成し、前記ピラーは、前記ドレイン・サブ領域からの出力の一部を形成し、前記シールド構造は、前記タップ相互接続部と前記ピラーとの間の電界を遮断するように構成される、
請求項11に記載の電力増幅器。
【請求項15】
前記ゲート接点パッドおよび前記ドレイン接点パッドは、前記FETの前記能動エリアの前記外周の外側の位置に配置される、
請求項11に記載の電力増幅器。
【請求項16】
前記ゲート電極および前記ドレイン電極は、第1の軸に沿って互いに実質的に平行に延在し、前記FETの前記能動エリアにおいて横たわり、
前記ゲート接点パッドは、前記能動エリアの第1の側面に隣接して位置し、
前記ドレイン接点パッドは、前記能動エリアの第2の側面に隣接して位置し、前記第2の側面は、前記第1の側面と対向し、前記第1の側面および前記第2の側面は、前記第1の軸に対して垂直な第2の軸に沿って向き付けられている、
請求項15に記載の電力増幅器。
【請求項17】
前記ソース接点パッドは、前記ゲート接点パッドと前記ドレイン接点パッドとの間に配置される、
請求項16に記載の電力増幅器。
【請求項18】
電力ダイを提供することであって、前記電力ダイは、前部を有するダイ本体と、前記ダイ本体に形成された能動エリアを有するトランジスタであって、前記能動エリアは、外周によって境界を示される、トランジスタと、前記ダイ本体の前記前部上に形成される相互接続構造であって、前記相互接続構造は、前記トランジスタの前記能動エリア内のチャネル・サブ領域、ドレイン・サブ領域、およびソース・サブ領域に対してそれぞれ電気的に結合される、ゲート接点、ドレイン接点、およびソース接点を形成する、パターニングされた導電性材料を含有する、相互接続構造と、前記相互接続構造の外側部分に形成される前部入出力(I/O)インターフェースであって、前記前部I/Oインターフェースは、ゲート接点パッド、ドレイン接点パッド、およびソース接点パッドを含有し、前記ゲート接点パッドは、前記ゲート接点に対して電気的に接続され、前記ドレイン接点パッドは、前記ドレイン接点に対して電気的に接続され、前記ソース接点パッドは、前記ソース接点に対して電気的に接続され、前記ソース接点パッドは、前記トランジスタの前記能動エリアの上に横たわる位置に配置される、前部I/Oインターフェースとを備える、電力ダイを提供することと、
前記ゲート接点パッド、前記ドレイン接点パッド、および前記ソース接点パッドの各々上において導電性接続要素を形成することと、
前記ゲート接点パッド、前記ドレイン接点パッド、および前記ソース接点パッドがモジュール基板のダイ支持面に面した状態で、前記電力ダイを前記モジュール基板に反転された向きで取り付けるよう、前記導電性接続要素を利用することと
を備える電力増幅器を実装する方法。
【請求項19】
前記トランジスタの前記能動エリアは、前記トランジスタの個別チャネルを構成する複数の能動領域を含み、前記複数の能動領域の各々は、非能動領域によって離間されており、前記複数の能動領域は、前記チャネル・サブ領域、前記ドレイン・サブ領域、および前記ソース・サブ領域を含み、前記非能動領域は、前記チャネル・サブ領域、前記ドレイン・サブ領域、および前記ソース・サブ領域を含まず、前記ソース接点パッドは、複数であり、前記非能動領域の上に横たわる位置に配置され、
前記導電性接続要素を利用することは、前記ソース接点パッドの各々上の前記導電性接続要素を前記モジュール基板の接地要素に対して接続することをさらに含む、
請求項18に記載の方法。
【請求項20】
前記ゲート電極は、前記相互接続構造のパターニングされた前記導電性材料から形成されたタップ相互接続部を含み、前記タップ相互接続部は、前記チャネル・サブ領域と前記ゲート接点パッドとの電気接点であり、
前記ドレイン電極は、前記相互接続構造のパターニングされた前記導電性材料から形成されたピラーを含み、前記ピラーは、前記ドレイン・サブ領域と前記ドレイン接点パッドとの電気接点であり、
前記相互接続構造は、パターニングされた前記導電性材料から形成されたシールド構造を備え、前記シールド構造は、前記ソース電極に電気的に接続されており、前記シールド構造は、前記タップ相互接続部および前記ピラーから電気的に絶縁されており、前記シールド構造は、前記ピラーと前記タップ相互接続部との間に介在しており、前記タップ相互接続部は、前記チャネル・サブ領域に対する入力の一部を形成し、前記ピラーは、前記ドレイン・サブ領域からの出力の一部を形成し、前記シールド構造は、前記タップ相互接続部と前記ピラーとの間の電界を遮断するように構成され、
前記接続することは、前記シールド構造と前記モジュール基板の前記接地要素との間に接地へのパスを提供することを含む、
請求項19に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般に、半導体デバイスに関する。より具体的には、本発明は、フリップ・チップ・トポロジーを有するトランジスタを有する電力増幅器に関する。
【背景技術】
【0002】
電力増幅器は、典型的には、モジュール基板と、少なくとも1つの無線周波数(RF)電力ダイとを含み、少なくとも1つのRF電力ダイは、モジュール基板に対して直立した向きまたは反転されていない向きで取り付けられる。モジュール基板は、例えば、プリント回路板(PCB)、セラミック基板、またはRF電力ダイが電気的に相互接続される導電性ルーティング特徴部を有する別の基板であってもよい(例えば、特許文献1参照)。所与の電力増幅器は、任意の数の他のマイクロ電子構成要素、例えば、個別に配置されたキャパシタおよび抵抗器などに加えて、単一のRF電力ダイまたは複数のRF電力トランジスタを含有し得る。
【0003】
従来の設計では、RF電力ダイは、RF電力ダイの後部接点(例えば、接地)としての役割を果たす、金属化された後部を含むことが多く、後部接点は、このダイに一体化されたトランジスタ回路の対応する端子に対して電気的に結合される。例えば、電界効果トランジスタ(FET)の場合において、FETのソース端子は、そのような後部接点を通じて接地に対して電気的に結合され得る。トランジスタのその他の端子(例えば、FETの場合におけるゲート端子およびドレイン端子)に対する接点は、RF電力ダイの前部に位置する入出力ボンド・パッドとして形成されてもよく、具体的には、ダイ本体の前部上に形成された多層システムの外部端子表面に形成されてもよい。所与のシステム(例えば、電力増幅器)内に設置される場合、ワイヤ・ボンドは、前部の入出力ボンド・パッドとモジュール基板の対応する電気ルーティング特徴部との間に形成されて、RF電力ダイの電気相互連結を完成させ得る。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明は、フリップ・チップ・トポロジーを有するトランジスタを有する電力増幅器に関する。
【課題を解決するための手段】
【0006】
本開示の態様は、添付の特許請求の範囲において定義される。
第1の態様において、前部を有するダイ本体と、前記ダイ本体に形成された能動エリアを有するトランジスタであって、前記能動エリアは、外周によって境界を示される、トランジスタと、前記ダイ本体の前記前部上に形成される相互接続構造であって、前記相互接続構造は、前記トランジスタの前記能動エリア内の第1のサブ領域、第2のサブ領域、および第3のサブ領域に対してそれぞれ電気的に結合される、第1の接点、第2の接点、および第3の接点を形成する、パターニングされた導電性材料を含有する、相互接続構造と、前記相互接続構造の外側部分に形成される前部入出力(I/O)インターフェースであって、前記前部I/Oインターフェースは、第1の接点パッド、第2の接点パッド、および第3の接点パッドを含有し、前記第1の接点パッドは、前記第1の接点に対して電気的に接続され、前記第2の接点パッドは、前記第2の接点に対して電気的に接続され、前記第3の接点パッドは、前記第3の接点に対して電気的に接続され、前記第3の接点パッドは、前記トランジスタの前記能動エリアの上に横たわる位置に配置される、前部I/Oインターフェースとを備える、半導体デバイスが提供される。
【0007】
第2の態様において、ダイ支持面を有するモジュール基板と、電力ダイとを備える電力増幅器であって、前記電力ダイは、前部を有するダイ本体と、前記ダイ本体に形成された能動エリアを有する電界効果トランジスタ(FET)であって、前記能動エリアは、外周によって境界を示される、電界効果トランジスタと、前記ダイ本体の前記前部上に形成される相互接続構造であって、前記相互接続構造は、前記FETの前記能動エリア内のチャネル・サブ領域、ドレイン・サブ領域、およびソース・サブ領域に対してそれぞれ電気的に結合される、ゲート電極、ドレイン電極、およびソース電極を形成する、パターニングされた導電性材料を含有する、相互接続構造と、前記相互接続構造の外側部分に形成される前部入出力(I/O)インターフェースであって、前記前部I/Oインターフェースは、ゲート接点パッド、ドレイン接点パッド、およびソース接点パッドを含有し、前記ゲート接点パッドは、前記ゲート電極に対して電気的に接続され、前記ドレイン接点パッドは、前記ドレイン電極に対して電気的に接続され、前記ソース接点パッドは、前記ソース電極に対して電気的に接続され、前記ソースパッドは、前記FETの前記能動エリアの上に横たわる位置に配置される、前部I/Oインターフェースと、前記ゲート接点パッド、前記ドレイン接点パッド、および前記ソース接点パッドの各々上の導電性接続要素であって、前記ゲート接点パッド、前記ドレイン接点パッド、および前記ソース接点パッドが前記モジュール基板の前記ダイ支持面に面した状態で、前記電力ダイを反転された向きで取り付ける、導電性接続要素とを備える、電力増幅器が提供される。
【0008】
第3の態様において、電力ダイを提供することであって、前記電力ダイは、前部を有するダイ本体と、前記ダイ本体に形成された能動エリアを有するトランジスタであって、前記能動エリアは、外周によって境界を示される、トランジスタと、前記ダイ本体の前記前部上に形成される相互接続構造であって、前記相互接続構造は、前記トランジスタの前記能動エリア内のチャネル・サブ領域、ドレイン・サブ領域、およびソース・サブ領域に対してそれぞれ電気的に結合される、ゲート接点、ドレイン接点、およびソース接点を形成する、パターニングされた導電性材料を含有する、相互接続構造と、前記相互接続構造の外側部分に形成される前部入出力(I/O)インターフェースであって、前記前部I/Oインターフェースは、ゲート接点パッド、ドレイン接点パッド、およびソース接点パッドを含有し、前記ゲート接点パッドは、前記ゲート接点に対して電気的に接続され、前記ドレイン接点パッドは、前記ドレイン接点に対して電気的に接続され、前記ソース接点パッドは、前記ソース接点に対して電気的に接続され、前記ソース接点パッドは、前記トランジスタの前記能動エリアの上に横たわる位置に配置される、前部I/Oインターフェースとを備える、電力ダイを提供することと、前記ゲート接点パッド、前記ドレイン接点パッド、および前記ソース接点パッドの各々上において導電性接続要素を形成することと、前記ゲート接点パッド、前記ドレイン接点パッド、および前記ソース接点パッドがモジュール基板のダイ支持面に面した状態で、前記電力ダイを前記モジュール基板に反転された向きで取り付けるよう、前記導電性接続要素を利用することとを備える電力増幅器を実装する方法が提供される。
【0009】
同様の参照符号が、別個の図の全体にわたり同一または機能的に同様の要素を指し、図面が必ずしも縮尺通りに描かれているとは限らず、下記の詳細な説明と共に本願明細書に援用され、かつ、本願明細書の一部を形成する、添付の図面は、様々な実施形態をさらに例示し、全て本発明による様々な原理および利点を解説するための役割を果たす。
【図面の簡単な説明】
【0010】
【
図2】先行技術の半導体デバイスのレイアウトの部分平面図。
【
図4】一実施形態による、フリップ・チップ・トポロジーを有する半導体デバイスの簡略化された断面側面図。
【
図5】
図4の半導体デバイスの簡略化された平面図。
【
図6】点線のボックスによって
図5において輪郭を描かれた半導体デバイスの拡大部分の平面図。
【
図7】半導体デバイスが組み込まれ得る、より大きい電子アセンブリ(部分的に図示される)の
図4~
図6の半導体デバイスの部分等角図。
【
図8】別の実施形態による、フリップ・チップ・トポロジーを有する少なくとも1つの半導体デバイスを含有する電力増幅器集積回路の平面図。
【発明を実施するための形態】
【0011】
概観において、本願明細書において開示される実施形態は、半導体デバイス、より具体的には、フリップ・チップ・トポロジーを有するトランジスタ・デバイスを必然的に伴う。トランジスタ・デバイスのレイアウトは、前部入出力(I/O)インターフェースを通じて、トランジスタの入力端子、出力端子、およびソース端子の相互接続を可能にする。ダイの前部I/Oインターフェースに含有される接点パッドとモジュール基板の対応する電気ルーティング特徴部との間の電気相互接続は、導電性接続要素、例えば、半田ボールまたは導電性ピラーなどを利用して形成されて、ワイヤ・ボンドの使用が回避され得る。トランジスタ・デバイスのレイアウトは、トランジスタ・フィンガー間の間隙の効果的な利用を可能にして、ソース領域のための接点パッドを作成し、それによって、コンパクトなトランジスタをもたらす。さらに、トポロジーは、パターニングされた導電性材料と、ダイ本体の前部から相互接続構造を通って延在する導電性垂直接続部とを通じて、ソース電流の垂直な流れを可能にして、接地への低インピーダンスパスを提供する。また、入力接点パッドと出力接点パッドとの間の典型的には接地されるソース接点の配置は、入力と出力との間に効果的な絶縁を提供し得る。そのようなフリップ・チップ半導体デバイスは、電力または信号増幅の目的のために利用される、少なくとも1つの無線周波数(RF)電力ダイを含有する電力増幅器、例えば、モジュール式の電子アセンブリ内への組み込みに対して良く適合し得る。そのように組み込まれる場合、所与のフリップ・チップ半導体デバイスは、半導体デバイスの前部I/Oインターフェースがモジュール基板のダイ支持面に面するように、プリント回路板(PCB)またはセラミック基板などのモジュール基板に対して、反転された向きで取り付けられ得る。
【0012】
本開示は、本発明による少なくとも1つの実施形態を実施可能な様式でさらに解説するために提供される。本開示は、本発明をいかなる形でも限定するためではなく、発明の原理およびその利点についての理解および認識を高めるためにさらに提示される。本発明は、本出願の係属期間中に行われる任意の補正を含む、添付の特許請求の範囲、および発行されるそれらの請求項のあらゆる均等物によってのみ定義される。
【0013】
第1および第2、上部および底部、上方および下方等などの関係語の使用は、もしあれば、1つのエンティティまたはアクションと別のエンティティまたはアクションとを区別するためにのみ使用され、そのようなエンティティまたはアクション間のそのような関係または順序を必ずしも要求または示唆しないことが理解されるべきである。さらに、図のうちのいくつかは、様々な構造的な層内に作られる異なる要素を区別するために、様々なシェーディングおよび/またはハッチングを使用して例示され得る。構造的な層内のこれらの異なる要素は、蒸着、パターニング、エッチングなどの、現在および今後の微細加工技法を利用して作られ得る。したがって、例示においては異なるシェーディングおよび/またはハッチングが利用されていても、構造的な層内の異なる要素は、同じ材料で形成されてもよい。
【0014】
図1を参照すると、
図1は、共通ソース電界効果トランジスタ(FET)デバイス構成20の概略図を示す。共通ソースFET構成20において、ゲートGは、入力ポート22(例えば、信号入力または制御)としての役割を果たし、ドレインDは、出力ポート24(例えば、電流供給)としての役割を果たす。ソースSは、
図1に示されるように接地されるFETリードであるので、共通ソース構成20における共通接続部26(例えば、グランドまたは基準電圧)としての役割を果たす。したがって、共通ソース構成20は、FETの3つのリードのうちの2つが入力ポートおよび出力ポートとしての役割を果たし、第3のリードが共通接続部として利用される、2ポート能動デバイスの例である。考察を明確にするために、本願明細書において論じられるトランジスタ・レイアウトは、共通ソース構成20を有する。しかしながら、下記の考察は、例えば、ゲートが共通接続部としての役割を果たし得る、またはドレインが共通接続部としての役割を果たし得る、他の2ポート能動半導体デバイス構成に対して等しく適用される。
【0015】
図2および
図3を参照すると、
図2は、先行技術の半導体デバイスまたはダイ30のレイアウトの部分平面図を示し、
図3は、半導体デバイス30の簡略化された側面図を示す。つまり、半導体デバイス30は、従来のダイ配置の例である。半導体デバイス30は、上面34と下面36とを有するベース基板32(ダイ本体とも称される)を含む(
図3を参照)。本願明細書において相互接続構造38と称される、ビルド・アップ構造または前部層システムは、ベース基板32の上面上に形成される。相互接続構造38は、ベース基板32の上面34から相互接続構造38を通って延在する導電性垂直接続部(すなわち、導電性ビア)と、パターニングされた導電性材料とを含み得る。ベース基板32の上面34と下面36との間の電気的接続は、導電性基板貫通ビア(TSVs:through substrate vias)を使用して行われ得る。例示される構成において、半導体デバイス30は、複数のソース・ビア40を含む。ソース・ビア40は、半導体デバイス30の上に横たわる相互接続構造38内へ延在しないことがあり、または相互接続構造38を完全に貫通して延在しないことがあり、したがって、見えないので、ソース・ビア40は、
図2では点線の楕円形として、および
図3では点線の列として表される。
【0016】
半導体デバイス30は、複数の平行な細長いトランジスタ接点またはフィンガー42を含む能動エリア(例えば、トランジスタ)を含む。複数の平行な細長いトランジスタ接点またはフィンガー42の各々は、半導体デバイス30のそれぞれのゲート・ボンド・パッド44およびドレイン・ボンド・パッド46の間に全体的に延在する。この例において、ゲート・ボンド・パッド44およびドレイン・ボンド・パッド46は、相互接続構造38の上部外側部分48(
図3を参照)上に配置される。これらのゲート・ボンド・パッド44およびドレイン・ボンド・パッド46は、相互接続構造38のパターニングされた導電性材料(図示せず)を通じて接点42に対して適切に電気的に接続される。また、半導体デバイス30は、複数のチャネル領域50を含み、チャネル領域50は、接点42の近隣のもの同士の間の空間を特に含む。半導体デバイス30において、接点42は、複数の細長いゲート接点52と、複数の細長いドレイン接点54と、複数の細長いソース接点56とを含む。
【0017】
細長いゲート接点52は、1つまたは複数のゲート・ボンド・パッド44から、1つまたは複数のドレイン・ボンド・パッド46の方へ延在する(ただし、1つまたは複数のドレイン・ボンド・パッド46までは延在しない)。細長いドレイン接点54は、1つまたは複数のドレイン・ボンド・パッド46から、1つまたは複数のゲート・ボンド・パッド44の方へ延在する(ただし1つまたは複数のゲート・ボンド・パッド44までは延在しない)。ゲート接点52は、チャネル領域50の上に横たわってもよく、ゲート・ボンド・パッド44は、複数の細長いゲート接点52の全てを電気的に相互接続する。他の構成においては、複数のゲート・ボンド・パッドが実装されてもよく、ただし、各ゲート・ボンド・パッドは、ゲート接点のサブセットを電気的に接続する。細長いドレイン接点54は、チャネル領域50の側面に沿って全体的に延在し、ドレイン・ボンド・パッド46は、細長いドレイン接点54の全てを電気的に相互接続する。細長いソース接点56の各々は、ソース・ビア40のうちの1つまたは複数に対して電気的に結合され、ソース・ビア40は、ゲート接点52に隣接して配置される。ソース・ビア40の各々は、ベース基板32を通って延在して、それぞれのソース・ビア40に対して結合されるソース接点56のうちの1つまたは複数と、半導体デバイス30の下面36との間に(例えば、および、接地基準としての役割を果たす半導体デバイス30の下面36上の導電層58に対して、
図3を参照)導電性パスを提供する。
【0018】
本願明細書において使用される場合、「ソース・ドレイン間ピッチ」は、ソース接点50およびドレイン接点48のうちの近隣のものの中心間の(
図2において水平方向における)距離を指す。また、「接点」および「フィンガー」との語は類義語として上述しているが、トランジスタ「フィンガー」は、ダイ上のソース接点およびドレイン接点の近隣ペアをグループ化したものであると考慮されることも可能であり、したがって、「ソース・ドレイン間ピッチ」も、所与のトランジスタ・フィンガーのソース接点およびドレイン接点のペアの中心間の(水平方向における)距離を指すことができる。
【0019】
図3を特に参照すると、所与のシステム内に設置される場合、ボンド・ワイヤ60は、前部ボンド・パッド(例えば、ゲート・ボンド・パッド44およびドレイン・ボンド・パッド46)と、二次構造(例えば、モジュール基板66)の対応する電気ルーティング特徴部62、64との間に形成されて、システム内の半導体デバイス30の電気相互接続を完成させ得る。
【0020】
高効率電力増幅器(PA:power amplifier)設計は、無線通信システムのますます不可欠な部分になってきている。実際に、セルラー基地局マーケットは、第5世代(5G)通信に適すると期待される窒化ガリウム(GaN)ベースの無線周波数(RF)製品へと、ゆっくり移行しつつある。ドハティPA回路または他のマルチ・パスPA回路を採用する多くの実装において、商用無線インフラストラクチャ・システムに含まれる電力トランジスタ製品は、面積/体積/重さに敏感なだけでなく、ますますコストに敏感になってきているので、物理的なダイ面積は、重要な関心事項である。GaN技術を用いると、1平方ミリメートル当たりの技術が、シリコン(Si)または他のIII-Vベースの半導体の技術よりも著しく高価であるので、これは特に重要である。GaNは、原基板上に製造されないので、格子不整合は、直径およそ15.24センチメートル(6インチ)を超えるウェーハサイズを成長させることを防止する。したがって、各GaNウェーハは、Siウェーハ技術を使用して典型的に達成可能であるよりも少ない電力トランジスタ・ダイを生み出す傾向がある。
【0021】
残念ながら、ワイヤ・ボンディング・プロセスは時間がかかる、そのため、高価な組立プロセスとなることがある。さらに、半導体デバイス30へ/から電力を転送するためのボンド・ワイヤ60を含むトランジスタ全体のサイズは、ドハティPA回路サイズにとって重要である。つまり、ワイヤ・ボンディングされた半導体ダイは、ボンド・ワイヤ60の存在に起因して、余分な空間を消費する。さらに、ワイヤ・ボンド相互接続(例えば、ボンド・ワイヤ60)に起因する損失および結合/放射は、半導体デバイスのRF性能上の不利益をもたらすことがある。またさらに、ワイヤ・ボンディングされた半導体ダイは、典型的には、後部の金属化されたソース端子(例えば、導電層58)へ、相互接続構造38から遠ざかる方向において、ベース基板を通るシリコン貫通ビア(例えば、ソース・ビア40)の存在を必要とする。いくつかの半導体デバイス内にTSVを含むことは、さらなる限定に関連付けられる。TSV形成は、かなりのコストおよび期間を製作プロセスに対して追加する。また、TSV形成は、電力ダイのダイ亀裂または他の構造的な妥協の可能性を高める可能性があり、これは歩留まりを潜在的に減少させ、ダイあたりの平均製造コストを増加させることがある。
【0022】
本願明細書において考察される実施形態は、ワイヤ・ボンディングされた半導体デバイスと比べてRF性能上の不利益をほとんどまたは全く有さずに、ボンド・ワイヤおよびソースTSVの使用を回避し、ボンド・ワイヤの欠如に起因して面積消費の低減を可能にし、よりロバストな機械的構造を生み出すフリップ・チップ・トランジスタ・トポロジーを必然的に伴う。また、コスト削減は、TSV形成に関連付けられるプロセス工程を除去することによって実現され得、一方で、製造歩留まりは、IC製作期間中のダイ亀裂の低減された可能性に起因して改善され得る。
【0023】
図4は、一実施形態による、フリップ・チップ・トポロジーを有する半導体デバイス70の簡略化された断面側面図を示す。半導体デバイス70は、例えば、いくつかの実施形態において、電力増幅器(
図8に関連して考察される)において実装され得る無線周波数(RF)電力ダイであってもよい。半導体デバイス70は、前部74と対向する後部76とを有するダイ本体72を含む。ダイ本体72の前部74および後部76は、半導体デバイス70の垂直軸に沿って離間され、垂直軸は、前部74に対して実質的に直交して延在し、
図4の右上部に現れている座標凡例78のZ軸に対応する。相互接続構造80は、「ビルド・アップ構造」または「前部層システム」と代わりに称され、導電性垂直接続部83(例えば、金属プラグ)と、パターニングされた導電性材料81(例えば、メタル層)の複数の層とを含有し、前部74上のビルド・アップによってダイ本体72と一体的に形成される。パターニングされた導電性材料81および垂直接続部83は、例示の明確さのために、右斜め上向きのハッチングによって表される。相互接続構造80は、1より大きい、パターニングされた導電性材料81の任意の実数の層を含むことができ、垂直軸(ここでも、前部74に対して直交して延在し、座標凡例78のZ軸に平行な軸として本願明細書において定義される)に沿って異なるレベルまたは高さで形成される3~5層のパターニングされた導電性材料を一般に含有し得る。
【0024】
相対的な配置の用語、例えば、「の上方に」および「の下方に」などは、相互接続構造80内に形成される様々な特徴を説明するために下記で利用される。そのような用語は、例えば、第2の特徴部が第1の特徴部よりベース基板前部74の近くに位置する場合に、第1の特徴部または要素が、第2の特徴部または要素「の上方の」レベルに位置するものとして説明され得るように、ダイ本体72の前部74への相対的な近接性に関して定義される。同様に、「の上に」および「の上に横たわる」という用語は、垂直軸に沿って見たときに、垂直に重複する関係を共有する2つの特徴部または要素間の相対的な配置を説明するために、本文書の全体にわたって利用される。したがって、一例として、相互接続構造80は、自由空間における半導体デバイス70の特定の向きにかかわらず、ダイ本体72の前部74の上に、またはダイ本体72の前部74の上に横たわって形成されるものとして説明される。
【0025】
先に示されたように、相互接続構造80に含まれるパターニングされた導電性材料層の数は、実施形態によって変わるであろう。例示される実施形態において、および非限定的な例として、相互接続構造80は、5つのパターニングされた導電性材料層を含有するものとして概略的に描かれる。一般的な命名法によって、これらのパターニングされた導電性材料層は、「M1」から「M5」のパターニングされた導電性材料層と称され得、記述子「M1」は、パターニングされた導電性材料81の最初に形成される層を指し、記述子「M2」は、M1のパターニングされた導電性材料81の後に形成される、パターニングされた導電性材料81の次の層を指し、記述子「M3」は、M2のパターニングされた導電性材料81の後に形成される、パターニングされた導電性材料81の層を指すなどである。さらに、前述の説明に合わせて、M1のパターニングされた導電性材料81は、本願明細書において、パターニングされた導電性材料81の「最も内側の」または「内側の」層として称され得、一方で、M5のパターニングされた導電性材料81は、パターニングされた導電性材料81の「最も外側の」または「外側の」層として称され得る。パターニングされた導電性材料81および垂直接続部83の層は、誘電材料の層によって囲まれ、これは、
図4において参照符号「82」によって一般に識別される、相互接続構造80の誘電体を集合的に形成する。誘電体82は、少なくとも1つの外部端子誘電体層84も含んでもよく、外部端子誘電体層84は、半田マスクとして、または不動態化層としての役割を果たす。
【0026】
前部I/Oインターフェース86は、相互接続構造80の外部端子面(半導体デバイス70の「前部」と一般に称される)に沿ってさらに提供され、複数の接点パッド88を含み、複数の接点パッド88は、下記でさらに考察されているように、半導体デバイス70に一体化されるトランジスタICの異なる端子に対して電気的接続を提供する。半導体デバイス70は、下記でより詳細に考察されるように、二次構造に対するフリップ・チップ・ボンディングのために構成される接点パッド88上に形成される導電性接続要素90(例えば、ピラー、半田ボール、または他のそのような接点拡張部)を付加的に含んでもよい。
【0027】
図4に関連して
図5を一時的に参照すると、
図5は、半導体デバイス70内に実装され得る、本願明細書においてトランジスタ92と称される、トランジスタ集積回路(IC)の簡略化された平面図を示す。トランジスタ92は、ダイ本体72に形成される能動エリア94を有し、ダイ本体72においては、外周によって能動エリア94の境界が示されている。
図5において、能動エリア94の外周は、点線のボックスによって全体的に輪郭を描かれている。
図5のさらなる考察は、
図4の説明に続いて下記に提供されるであろう。
【0028】
図4の参照に戻ると、トランジスタ92の能動エリア94(
図5)は、トランジスタ92の個別チャネルを構成する、ダイ本体72内の複数の能動領域96を含み、能動領域96は、ダイ本体72内でも非能動領域100によって離間されている。
図4の例示される例において、能動領域96は、点線のボックスによって輪郭を描かれており、非能動領域100は、隣接する能動領域96間の空間を構成する。
【0029】
この例において、相互接続構造80の導電性材料81の最も内側の(M1)層は、様々な導電性(例えば、金属)特徴部を形成するようにパターニングされ、様々な導電性特徴部は、半導体デバイス70に形成されるトランジスタ92の各能動領域96に含まれる、能動的な第1のサブ領域102、第2のサブ領域104、および第3のサブ領域106に対して接点を提供する。トランジスタ92がFETである場合、能動的なトランジスタ・サブ領域は、一般に、ダイ本体72の前部74に隣接する位置において、ダイ本体72に形成される、または、おそらく、使用されるインプラントの性質および所望のトランジスタ・トポロジーに依存して、いくらかの量だけ前部74の下方に埋められる、ドープされたソース・サブ領域106およびドープされたドレイン・サブ領域104を含むであろう。本願明細書において現れるような、「能動領域96」という用語は、隣接するソース・サブ領域106とドレイン・サブ領域104との間に位置する半導体材料の第1のサブ領域102も包含し、能動領域96においては、トランジスタ92が導通し始めるときに、トランジスタ・チャネルが形成される。そのため、第1のサブ領域102は、本願明細書においてチャネル・サブ領域102と称されることもあり、第2のサブ領域104は、本願明細書においてドレイン・サブ領域104と称されることもあり、第3のサブ領域106は、本願明細書においてソース・サブ領域106と称されることもある。したがって、トランジスタ92の能動領域96は、トランジスタ92の能動エリア94(
図5)内にチャネル・サブ領域102、ドレイン・サブ領域104、およびソース・サブ領域106を含み、非能動領域100は、チャネル・サブ領域102、ドレイン・サブ領域104、およびソース・サブ領域106を含まない(例えば、「欠く」または「持っていない」)。
【0030】
代替的な実装において、1つまたは複数のバイポーラ・トランジスタが半導体デバイスに一体化される場合、能動的なトランジスタ領域は、エミッタ領域とコレクタ領域とを含み得る。一般に、トランジスタ集積回路92または「トランジスタ92」が半導体デバイス70内に形成されるということが述べられ得る。「トランジスタIC」という用語は、いくつかの構成において、2つ以上のトランジスタ92が半導体デバイス70に一体化され得ること、および/または、付加的な回路要素(例えば、インピーダンス・マッチング、高調波終端、もしくはバイアス回路構成)が半導体デバイス70内に形成され得ることを示すために利用される。
【0031】
下記の説明において、単一のFET(例えば、トランジスタ92)を含有するトランジスタICは、解説の目的のために考察される。しかしながら、さらなる実施形態において、他のタイプのトランジスタ(例えば、バイポーラトランジスタ)が、半導体デバイス70に一体化されてもよく、および/または、より複雑なトランジスタIC、例えば、RF電力ダイなどの単一の半導体デバイス上に形成される複数のトランジスタを含有する多段トランジスタICなどが提供されてもよい。さらに、実施形態は、様々な異なるダイ技術、トランジスタ・タイプ、およびトランジスタ・トポロジーを用いて実装されてもよい。例えば、半導体デバイス70によって搭載される1つまたは複数のトランジスタが、FETの形式をとる場合、FETは、下記のダイ技術、すなわち、シリコンベースのFET(例えば、横方向に拡散された金属酸化物半導体FETもしくはLDMOS FET)またはIII-V FET(例えば、GaN FET、GaAs FET、リン化ガリウム(GaP)FET、リン化インジウム(InP)FET、アンチモン化インジウム(InSb)FET、もしくは別のタイプのIII-Vトランジスタ)のうちのいずれかを利用して実装されることが可能である。
【0032】
導電性ルーティング特徴部またはワイヤリング特徴部は、相互接続構造80内に形成されて、外部に露出される接点パッド88から、M1のパターニングされた金属層に含まれる対応するパターニングされた特徴部、およびトランジスタ92のチャネル・サブ領域102、ドレイン・サブ領域104、ソース・サブ領域106へ、電気的な相互接続を提供する。導電性材料81および垂直接続部83から形成される、これらのパターニングされた特徴部は、
図4の概略図において非常に簡略化された形式で示されており、半導体デバイス70に含まれるトランジスタ(または複数のトランジスタ)のレイアウトに最適となるように、必要に応じて、幾何学的な複雑さを変えることができる。相互接続構造80が、パターニングされた導電性材料81の3つ以上の層を含有する場合、比較的複雑なワイヤリング・スキームまたはアーキテクチャが採用されることが可能である。そのようなアーキテクチャは、一般に知られており、したがって、説明においては深く考察されないことになる。しかしながら、説明のこの時点では、接点パッド88に含まれる各タイプの接点パッド(例えば、ゲート接点パッド、ドレイン接点パッド、およびソース接点パッド)は、相互接続構造80を通って延在する電極構造を通じて、トランジスタ92の対応する能動チャネル・サブ領域102、ドレイン・サブ領域104、およびソース・サブ領域106に対して電気的に結合され得ることが、一般に留意され得る。
【0033】
具体的には、およびFETの例を再び参照すると、接点パッド88に含まれる第1のタイプの接点パッドは、相互接続構造80を通って延在する、ゲート電極構造108と本願明細書において称される第1の接点を通じて、M1のパターニングされた金属層内に、またはM1のパターニングされた金属層の下に含まれる、対応する金属特徴部(例えば、トランジスタ92のチャネル・サブ領域102の上に横たわる「ゲート端子」)に対して電気的に結合され得る。接点パッド88(例えば、1つまたは複数のドレイン接点パッド)に含まれる第2のタイプの接点パッドは、相互接続構造80を通って延在する、ドレイン電極構造110と本願明細書において称される第2の接点を通じて、M1のパターニングされた金属層に含まれる金属特徴部(例えば、トランジスタ92のドープされたドレイン・サブ領域104に対してオーム接触を提供する「ドレイン端子」)に対して電気的に結合され得る。最後に、接点パッド88に含まれる第3のタイプの接点パッドは、相互接続構造80を通って延在する、ソース電極構造112と本願明細書において称される第3の接点を通じて、M1のパターニングされた金属層に含まれる対応する金属特徴部(例えば、トランジスタのドープされたソース・サブ領域106に対して接点を提供する「ソース端子」または「ソース金属」)に対して電気的に結合され得る。
【0034】
上述した手法において、半導体デバイス70が、電力増幅器などの、より大きいデバイスまたはモジュールに一体化される場合、前部I/Oインターフェース86は、トランジスタ92に対する電気的接続を可能にするために、相互接続構造80の外側領域に形成される。一定の場合において、トランジスタ92の動作に関連付けられた他の電気的接続を支持するために、付加的な例示されていない接点パッド、例えば、1つまたは複数のFETのゲート・バイアスまたはドレイン・バイアスのために電気的接続を提供する接点パッドなどが、前部I/Oインターフェース86内に含まれてもよい。いくつかの利点は、そのようなトランジスタ・トポロジーおよび一体化されたワイヤリング・スキームが理由で達成され、これらは共同で、前部I/Oインターフェース86を通じて全てのトランジスタ端子に対して排他的な接続を提供する。特有の前部ワイヤリング構造またはトポロジーは、特有の補完的なトランジスタ・レイアウトと組み合わされて、少なくとも1つの信号入力または制御接点(例えば、FETの場合には、1つまたは複数のゲート接点パッド)、少なくとも1つの電流供給接点(例えば、FETがNチャネル・デバイスであるか、またはPチャネル・デバイスであるかに依存して、FETの場合には、ドレイン接点パッドまたはソース接点パッドのいずれか)、ならびに、少なくとも1つの電流還流接点(例えば、ここでも、FETがNチャネル・デバイスであるか、またはPチャネル・デバイスであるかに依存して、FETの場合には、ドレイン接点パッドまたはソース接点パッドのいずれか)を含む、そのような前部I/Oインターフェース86の提供を可能にする。
【0035】
半導体デバイス70が、バルクSiウェーハなどのバルク半導体ウェーハの個片化された片を利用して作られる場合、半導体デバイス70のダイ本体72は全体的に、単一の半導体材料から構成され得る。例えば、この場合において、ダイ本体72は、1cm当たり約520Ωを越え、おそらくは、1cm当たり1メガΩに近いか、または1メガΩを越える電気抵抗率を有する高抵抗率Si材料から構成されてもよい。他の実例において、半導体デバイス70は、比較的高いトランジスタ電力密度を可能にするタイプの層状ダイ技術を利用して製作されてもよい。そのような電力密度が高いダイ技術の例は、GaN材料(つまり、重量で、その主要な構成要素としてGaNを含有する半導体材料)の1つまたは複数の層が、炭化ケイ素(SiC)などの別の材料の1つまたは複数の基板層上に形成される層状GaN構造である。半導体デバイス70のダイ本体72を作るのに適した層状ダイ技術の他の例は、GaAs構造を含み、GaAs構造は、比較的高い電力密度を有するトランジスタIC(例えば、トランジスタ92)の形成を同様に支持する。ダイ本体72が、高抵抗率Si(または他のバルク半導体)材料で構成される場合と同様に、そのような層状ダイ技術も、典型的には、層状ダイ構造の厚さを通じて、つまり、ダイ本体72の場合には、中心線または座標凡例78のZ軸に平行な垂直軸に沿って、1cm当たり520Ωを越える比較的高い電気抵抗を有する。
【0036】
高電気抵抗ダイ構造を利用して製作され、バックメタル構造(例えば、FETの場合において、ソース端子に対して電気的に接続されるバックメタル構造)を通じて電気接地(電流還流)パスを提供する、従来のRF電力ダイ設計において、TSVは、典型的には、トランジスタの対応するドープされた(例えば、ソース)領域とバックメタル構造との間に電気的接続を提供するために利用される。先に考察されたように、TSV形成は、ダイ制作プロセスに対して複雑さおよびコストを追加する傾向があり、いくつかの実例においては、プロセス・パラメータ(例えば、熱暴露)および他の要因に依存して、一定の(例えば、より薄い)ダイ構造の場合における亀裂形成または他の構造的な妥協の可能性の増加に起因して、製造歩留まりを減少させることがある。相互接続構造80内の特有のトランジスタ・レイアウトおよび一体化されたワイヤリング戦略を活用することによって、半導体デバイス70のフリップ・チップ・トポロジーは、TSV無しの構造を有するように(または、おそらく、低減された数のTSVを含有するように)製作されて、製造効率を改善し、製造コストを低下させ、歩留まりを上昇させ、一方で、下記で考察される他の性能上の利点を提供することができる。
【0037】
図4~
図5を集合的に参照すると、前述したように、
図5は、半導体デバイス70に実装され得るトランジスタ92の簡略化された平面図を示す。トランジスタ92は、ダイ本体72と、上に横たわる相互接続構造80とを含む。この例示において、相互接続構造80の誘電体82は、相互接続構造80内の様々な特徴部をより良く視覚化するように、図示されていない。
【0038】
上記で考察されたように、トランジスタ92の能動エリア94は、能動領域96と、非能動領域100とを含む。一般に参照される接点パッド88(
図4に図示される)のゲート接点パッド114およびドレイン接点パッド116(
図5において「G」および「D」と表される)は、半導体デバイス70の相互接続構造80の外側部分に形成される前部I/Oインターフェース86内に含有される。複数の平行な細長いトランジスタ接点(ランナーまたはフィンガーとも称される)は、それぞれのゲート接点パッド114とドレイン接点パッド116との間に延在する。半導体デバイス70において、細長いトランジスタ接点は、第1の接点108、第2の接点110、および第3の接点112を含み、これらは、トランジスタ92がFETである場合、ゲート電極構造108、ドレイン電極構造110、およびソース電極構造112と本願明細書において代替的に称される。そのため、ゲート接点パッド114およびドレイン接点パッド116は、相互接続構造80内のそれぞれのゲート電極構造108およびドレイン電極構造110に対して適切に電気的に接続される。
【0039】
細長いゲート電極構造108(例えば、ランナーまたはフィンガー)は、1つまたは複数のゲート接点パッド114から、相互接続構造80を通って、1つまたは複数のドレイン接点パッド116の方へ延在し(ただし、1つまたは複数のドレイン接点パッド116までは延在しない)、細長いドレイン電極構造110(例えば、ランナーまたはフィンガー)は、1つまたは複数のドレイン接点パッド116から、1つまたは複数のゲート接点パッド114の方へ延在する(ただし、1つまたは複数のゲート接点パッド114までは延在しない)。ゲート電極構造108は、トランジスタ92の(例えば、能動領域96内の)チャネル領域の上に横たわり得、ゲート電極構造108は、ゲート接点パッド114の下にあるゲート・マニホールド構造118によって電気的に相互接続され得る。さらに、ゲート電極構造108は、トランジスタ92の能動領域96内のチャネル・サブ領域102(特に
図4を参照)に対して電気的に接続される。ドレイン電極構造110は、一般に、トランジスタ92のチャネル領域の側面に沿って延在し得、ドレイン電極構造110は、ドレイン接点パッド116の下にあるドレイン・マニホールド構造120によって電気的に相互接続され得る。さらに、ドレイン電極構造110は、トランジスタ92の能動領域96内のドレイン・サブ領域104(特に
図4を参照)に対して電気的に接続される。
【0040】
いくつかの実施形態において、ゲート接点パッド114およびドレイン接点パッド116は、トランジスタ92の能動エリア94の外周の外部の位置に配置される。より具体的には、ゲート電極構造108およびドレイン電極構造110は、半導体デバイス70の第1の軸に沿って互いに実質的に平行に延在し、第1の軸は、前部74に実質的に平行に延在し、
図5の右上部に現れている座標凡例122のY軸に対応する。ゲート接点パッド114は、能動エリア94の第1の側面124に隣接して位置し、ドレイン接点パッド116は、能動エリア92の第2の側面126に隣接して位置し、ただし、第1の側面124および第2の側面126は、互いに対向し、第1の側面124および第2の側面126は、半導体デバイス70の第2の軸に沿って向き付けられ、第2の軸は、前部74に実質的に平行に延在し、第1の軸に対して垂直であり、第2の軸は、座標凡例122のX軸に対応する。
【0041】
相互接続構造80内の細長いソース電極構造112は、トランジスタ92のトランジスタ・エリア94内の非能動領域100の上に横たわる。一般に参照される接点パッド88のソース接点パッド128(
図5において「S」によって例示される)は、ソース電極構造112に対して電気的に接続され、先に考察されたように、ソース電極構造112は、ソース・サブ領域106に対して電気的に結合される。ゲート接点パッド114およびドレイン接点パッド116のように、ソース接点パッド128も、半導体デバイス70の相互接続構造80の外側部分に形成される前部I/Oインターフェース86内に含有される。しかしながら、ソース接点パッド128は、トランジスタ92の能動エリア94上に横たわる、より具体的には、トランジスタ92の能動エリア94の非能動領域100の上に横たわる、位置に配置される。したがって、ソース接点パッド128は、隣接する能動領域96のゲート電極構造110間に配置され、ゲート接点パッド114とドレイン接点パッド116との間にさらに配置される。ソース接点パッド128の位置、およびソース接続パッド128上の導電接続要素90(例えば、ピラー、半田バンプなど)の存在は、接地への低インピーダンス・パスを提供することができる。さらに、ゲート接点パッド114およびドレイン接点パッド116に対するソース接点パッド128の構成は、ゲート接点パッド114とドレイン接点パッド116との間に効果的な絶縁を提供することができる。一実施形態によれば、半導体デバイス70のトランジスタ92は、ダイ本体72を通って延在する従来のシリコン貫通ビア(TSV)を欠く。代わりに、相互接続構造80内のソース電極構造112の適切に構成されたルーティング特徴部は、ソース・サブ領域106を前部I/Oインターフェース86においてソース接点パッド128に対して電気的に相互接続する。
【0042】
図6は、点線のボックスによって、
図5において輪郭を描かれたトランジスタ92の拡大部分の平面図を示す。この拡大図においては、ドレイン電極構造110(例えば、フィンガーまたはランナー)の一部、ゲート電極構造108(例えば、フィンガーまたはランナー)の一部、およびソース電極112の一部が、トランジスタ92のタップ位置130において見える。トランジスタ92は、導電性材料、典型的には金属から形成される複数のタップ相互接続部132(1つが図示されている)を含み得る。タップ相互接続部132は、ゲート電極構造108とゲート・タップ134との間で、ダイ本体72内に形成されるチャネル・サブ領域102(
図4)に対して電気的に接続される。したがって、タップ相互接続部132は、チャネル・サブ領域102への入力の一部を形成し、タップ位置130は、タップ相互接続部132がドレイン電極構造110(典型的には、ドレイン・サブ領域104からの出力の一部を形成するピラー、
図4を参照)に接近する場所である。
【0043】
出力メタライゼーション(例えば、ドレイン電極構造110)に対して課される望ましくないフィードバック容量の電位は、入力メタライゼーション(例えば、タップ相互接続部132)において最も大きい。つまり、ゲート電極構造108からタップされる入力信号は、ドレイン電極構造110からの出力信号に対して寄生フィードバック容量を追加することができる。したがって、トランジスタ92は、相互接続構造80内に形成され、タップ位置130においてゲート電極構造108のタップ相互接続部132とドレイン電極構造110との間に介在されるシールド構造136(1つが図示されている)を含み得る。そのようなシールド構造136は、タップ相互接続部132とドレイン電極構造110のピラーとの間の電界を大きく遮断するように構成される。シールド構造136のシールドトレース138(1つが図示されている)は、ゲート電極構造108に対して戦略的に長手方向にアラインされ得る。相互接続構造80内のシールドトレース138は、パターニングされた導電性材料81(
図3)および垂直接続部83(
図3)を用いて適切に構成されて、接地へのパスを提供するようにシールド構造136をソース電極構造112と電気的に相互接続し得る。シールドトレース138とソース電極構造112との間のこの電気的な相互接続は、例示の単純さのために、点線によって表される。
【0044】
図6の拡大図は、ソース接点パッド128を下にあるソース電極構造112に対して結合する、ソース接点パッド128のうちの1つおよび垂直接続部83を付加的に示す。多数の垂直接続部83が、ソース接点パッド128の下に示されているが、垂直接続部83は、代替的な実施形態において異なって配置されてもよい。例えば、垂直接続部83の行は、ソース接点パッド128に隣接し、ソース接点パッド128に電気的に相互接続される相互接続構造80内に形成されてもよい。
【0045】
図7は、半導体デバイス70が組み込まれ得る、より大きい電子アセンブリ(部分的に図示される)の
図4~
図6の半導体デバイス70の部分等角図を示す。そのフリップ・チップ・トポロジーに起因して、半導体デバイス70は、反転された向きでの電力増幅器内への設置に良く適合し得、それにより、前部I/Oインターフェース86は、潜在的には任意の数の付加的なマイクロ電子構成要素と共に、少なくとも1つの半導体デバイス70が取り付けられる二次構造142(例えば、電力増幅器基板)のダイ支持面140の方を向く。
【0046】
前部I/Oインターフェース86が、ボンド・ワイヤを使用せずに、二次構造142のダイ支持面140において、対応する接点パッドまたは電気ルーティング特徴部に物理的におよび電気的に相互接続され得るように、半導体デバイス70は、反転された向きで二次構造142に対して取り付けられることが可能である。具体的には、前部I/Oインターフェース86に含まれる接点パッド88(
図5に示されるゲート接点パッド114、ドレイン接点パッド116、およびソース接点パッド128を含む
図4)は、導電接続要素90(例えば、半田ボール、導電性ピラーなど)を利用して、二次構造142の対応するルーティング特徴部144に電気的におよび機械的に相互接続され得る。このような相互接続インターフェースは、構造的耐久性を向上させる可能性があり、また、場合によっては、別様に、長いワイヤ・ボンドが存在するために、電力増幅器に含まれる電力ダイ(または複数のダイ)の高周波動作中に発生する寄生損失を低減し得る。
【0047】
図8は、別の実施形態によるフリップ・チップ・トポロジーを有する少なくとも1つの半導体デバイスを含有する電力増幅器集積回路(IC)150の平面図を示す。「電力増幅器」という用語は、本願明細書において現れる場合、電力または信号増幅の目的のために利用される少なくとも1つのRF電力ダイを含有するモジュール式電子アセンブリを指す。そのため、上述したように、半導体デバイス70は、RF電力ダイであってもよく、
図8に関連してRF電力ダイ70と称される。電力増幅器150は、少なくとも1つのRF電力ダイ70を含んでいてもよい。一部の構成では、電力増幅器150は、ドハティ電力増幅器ICにおいて用いられるピーク増幅器ダイとキャリア増幅器ダイとの両方を含んでいてもよく、これらは、プリント回路板(PCB)またはセラミック基板などのモジュール基板154のダイ支持面152に対して取り付けられる。さらに、ピーク増幅器ダイおよびキャリア増幅器ダイのいずれかまたは両方は、単段増幅器または多段増幅器を具現化し得る。
【0048】
例示される例において、電力増幅器IC150は、電力ダイ70を含む一次または前置増幅器トランジスタ段156と、別の電力ダイ160を含む二次または最終増幅器トランジスタ段158と、シャントキャパシタおよびバイアス回路構成などの、様々な他の電子構成要素(明確さのために、これらのうちの少数のみについて符号を付けている)とを有するデュアル・ステージ電力増幅器である。前置増幅器トランジスタ段156の電力ダイ70および二次増幅器トランジスタ段158の電力ダイ160は、半導体デバイス70(
図4~
図7)に関連して上記で詳細に説明されたフリップ・チップ・トポロジーを有し得る。導電性接続要素90(例えば、半田ボール、またはピラーであり、点線の形式で図示される)は、先に考察されたように電力ダイ70、160の接点パッド(例えば、ゲート接点パッド114、ドレイン接点パッド116、およびソース接点パッド128、
図5)上に配設され得、その結果、電力ダイ70、160は、電力ダイ70、160の前部I/Oインターフェースがモジュール基板154のダイ支持面152に面するように、モジュール基板154のダイ支持面152に対して反転されて取り付けられる(物理的に連結され、電気的に相互接続される)ことが可能である。同様に、様々な他の電子構成要素が、ダイ支持面152に対して取り付けられて、電力増幅器150を形成してもよく、電力増幅器150は、最終的には、より大きい電子システムまたはアセンブリ内に設置され得る。
【0049】
したがって、電力増幅器を実装するための方法論は、前部を有するダイ本体を含む1つまたは複数の電力ダイと、ダイ本体に形成される能動エリアを有するトランジスタであって、能動エリアは、外周によって境界が示される、トランジスタと、ダイ本体の前部上に形成される相互接続構造であって、トランジスタの能動エリア内のチャネル・サブ領域、ドレイン・サブ領域、およびソース・サブ領域に対してそれぞれ電気的に結合される、ゲート接点、ドレイン接点、およびソース接点を形成するパターニングされた導電性材料を含有する、相互接続構造と、相互接続構造の外側部分に形成される前部入出力(I/O)インターフェースであって、前部I/Oインターフェースは、ゲート接点パッド、ドレイン接点パッド、およびソース接点パッドを含有し、ゲート接点パッドは、ゲート接点に対して電気的に接続され、ドレイン接点パッドは、ドレイン接点に対して電気的に接続され、ソース接点パッドは、ソース接点に電気的に接続される、前部I/Oインターフェースとを提供することを含み、ソース接点パッドは、トランジスタの能動エリアの上に横たわる位置に配置される。方法論は、ゲート接点パッド、ドレイン接点パッド、およびソース接点パッドの各々上に導電性接続要素を形成する工程と、ゲート接点パッド、ドレイン接点パッド、およびソース接点パッドが、モジュール基板のダイ支持面に面した状態で、反転された向きでモジュール基板に対して電力ダイを結合するために導電接続要素を利用する工程とをさらに含む。いくつかの実施形態において、利用する動作は、ソース接点パッドの各々上の導電性接続要素をモジュール基板の接地要素に対して接続する工程と、電力ダイのシールド構造とモジュール基板の接地要素との間に接地へのパスを提供する工程とをさらに含む。
【0050】
したがって、ボンド・ワイヤの使用が回避され、このことは、特に、RF電力ダイ70、160が、3ギガヘルツに近い、または3ギガヘルツを超える、より高い周波数において動作させられる場合に、電力増幅器150の動作期間中の寄生損失を最小限にして、動作効率を改善させ得る。さらに、反転および取付に続いて、銅フランジなどの熱拡張部(図示せず)が、電力ダイ70、160の露出された後部76(
図4)に対して、過度な熱生成および蓄積の影響を特に受けやすいそれらの電力ダイについての熱除去を容易にするために取り付けられ得る。特定のタイプの電力増幅器ICに一体化されるものとして下記に説明されるが、説明されたフリップ・チップ・トポロジーを有する電力ダイ70の実施形態は、プッシュ・プル・タイプの増幅器モジュールを含む、様々な異なるタイプのモジュール(マイクロ電子パッケージを含む)に一体化されることが可能であることが強調される。
【0051】
したがって、本願明細書において開示される実施形態は、半導体デバイス、より具体的には、フリップ・チップ・トポロジーを有するトランジスタ・デバイスを必然的に伴う。トランジスタ・デバイスのレイアウトは、前部入出力(I/O)インターフェースを通じて、トランジスタの入力端子、出力端子、およびソース端子の相互接続を可能にする。ダイの前部I/Oインターフェースに含有される接点パッドと、モジュール基板の対応する電気ルーティング特徴部との間の電気相互接続は、半田ボールまたは導電性ピラーなどの導電性接続要素を利用して形成されて、ボンド・ワイヤの使用を回避し得る。トランジスタ・デバイスのレイアウトは、トランジスタ・フィンガー間の間隙の効果的な利用を可能にして、ソース領域のための接点パッドを作成し、それによって、コンパクトなトランジスタをもたらす。さらに、トポロジーは、パターニングされた導電性材料、およびダイ本体の前部から相互接続構造を通って延在する導電性垂直接続部を通じた、ソース電流の垂直な流れを可能にして、接地への低インピーダンス・パスを提供する。またさらに、半導体デバイスは、TSVを欠くように作られて、製造コストおよび複雑さを低下させ、構造的なロバスト性の増加を提供する。また、入力接点パッドと出力接点パッドとの間の、典型的には接地されるソース接点の配置は、入力と出力との間に効果的な絶縁を提供し得る。そのようなフリップ・チップ半導体デバイスは、電力または信号増幅の目的のために利用される少なくとも1つの無線周波数(RF)電力ダイを含有する電力増幅器、例えば、モジュール式電子アセンブリ、への組み込みにとって良く適合し得る。そのように組み込まれる場合、所与のフリップ・チップ半導体デバイスは、半導体デバイスの前部I/Oインターフェースがモジュール基板のダイ支持面に面するように、プリント回路板(PCB)またはセラミック基板などのモジュール基板に対して反転された向きで取り付けられ得る。
【0052】
本開示は、本発明の真の、意図された、および公正な範囲および精神を限定するのではなく、本発明による様々な実施形態を作り出し、使用する方法について解説するように意図されている。前述の説明は、網羅的であるように、または開示されている精密な形式に本発明を限定するように意図されていない。変形またはバリエーションが、上記の教示に照らして可能である。実施形態は、本発明の原理およびその実際的な適用例の最良の例示を提供するように、ならびに、様々な実施形態において、および想定される特定の使用に適するような様々な変形を用いて、当業者が本発明を利用することを可能にするように、選択および説明された。あらゆるそのような変形およびバリエーションは、それらに公正に、合法的に、および正当に与えられる広さに従って解釈された場合に、特許に向けて本出願の係属期間中に補正され得るような、添付の特許請求の範囲、およびそのあらゆる均等物によって決定されるような本発明の範囲内にある。
【外国語明細書】