(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022072026
(43)【公開日】2022-05-17
(54)【発明の名称】AC-ACコンバータ
(51)【国際特許分類】
H02M 7/48 20070101AFI20220510BHJP
【FI】
H02M7/48 E
【審査請求】未請求
【請求項の数】11
【出願形態】OL
(21)【出願番号】P 2020181218
(22)【出願日】2020-10-29
(71)【出願人】
【識別番号】503405689
【氏名又は名称】ナブテスコ株式会社
(74)【代理人】
【識別番号】100105924
【弁理士】
【氏名又は名称】森下 賢樹
(72)【発明者】
【氏名】大野 泰生
【テーマコード(参考)】
5H770
【Fターム(参考)】
5H770AA04
5H770AA09
5H770AA17
5H770BA01
5H770BA04
5H770CA02
5H770CA10
5H770DA03
5H770DA21
5H770DA24
5H770DA27
5H770HA03W
5H770HA07Z
5H770KA01W
5H770KA01Z
(57)【要約】
【課題】小型化・高密度化されたAC-ACコンバータを提供する。
【解決手段】AC-ACコンバータは、3相AC電源から供給される3相AC入力電圧をDC電圧に変換する3の倍数個の整流回路モジュールと、DC電圧を3相AC出力電圧に変換する整流回路モジュールと同数のインバータ回路モジュールとを備える。整流回路モジュールのそれぞれが有する3つの入力端子の各々は、3相AC電源の各相の出力端子と、当該整流回路モジュールと異なる整流回路モジュールの入力端子とインダクタを介して接続される。
【選択図】
図1
【特許請求の範囲】
【請求項1】
3相AC電源から供給される3相AC入力電圧をDC電圧に変換する、3の倍数個の整流回路モジュールと、
前記DC電圧を3相AC出力電圧に変換する前記整流回路モジュールと同数のインバータ回路モジュールとを備え、
前記整流回路モジュールのそれぞれが有する3つの入力端子の各々は、前記3相AC電源の各相の出力端子と、当該整流回路モジュールと異なる前記整流回路モジュールの入力端子とインダクタを介して接続されるAC-ACコンバータ。
【請求項2】
前記DC電圧を一定のDC電圧とし、AC電源から入力される3相入力電流と前記3相AC入力電圧との位相が一致するように前記整流回路モジュールおよび前記インバータ回路モジュールを構成するスイッチング素子を制御する制御部を備える請求項1に記載のAC-ACコンバータ。
【請求項3】
前記制御部は、前記3相AC入力電圧に関する3相AC電力および前記DC電圧に関するDC電力の脈動を外部のモータの負荷を用いて吸収するように前記整流回路モジュールおよび前記インバータ回路モジュールを構成するスイッチング素子を制御する請求項2に記載のAC-ACコンバータ。
【請求項4】
前記制御部は、前記整流回路モジュールの後段に設けられたDCリンクのDCリンク電圧と目標リンク電圧との差を基に目標キャパシタ電力を計算し、目標DC電力から前記目標キャパシタ電力を引くことにより目標モータ電力を計算し、前記目標キャパシタ電力と前記目標モータ電力を基に前記DCリンクの電圧脈動を外部のモータの負荷を用いて吸収するように前記整流回路モジュールおよび前記インバータ回路モジュールを構成するスイッチング素子を制御することを特徴とする請求項3に記載のAC-ACコンバータ。
【請求項5】
DCリンクはコンデンサを備え、
前記コンデンサは前記3相AC入力電圧に関する3相AC電力および前記DC電圧に関するDC電力の脈動を吸収することを特徴とする請求項1に記載のAC-ACコンバータ。
【請求項6】
前記整流回路モジュールの数は3であることを特徴とする請求項1に記載のAC-ACコンバータ。
【請求項7】
前記整流回路モジュールの各々は、前記整流回路モジュールの3つの入力端子のうちの1つに接続され、前記3相AC電源から供給される3相AC入力電力のエネルギーをバッファリングして前記整流回路モジュールに過剰な電力が入力することを防ぐためのエネルギーバッファ回路を備える請求項1から6のいずれかに記載のAC-ACコンバータ。
【請求項8】
前記整流回路モジュールの前段にローパスフィルタが設けられていることを特徴とする請求項1から7のいずれかに記載のAC-ACコンバータ。
【請求項9】
前記ローパスフィルタはLCローパスフィルタであることを特徴とする請求項8に記載のAC-ACコンバータ。
【請求項10】
前記インバータ回路モジュールの各々は、2つのAC-AC変換サブモジュールとともにモジュール化されていることを特徴とする請求項1から9のいずれかに記載のAC-ACコンバータ。
【請求項11】
前記整流回路モジュールと前記インバータ回路モジュールとが同じ回路で構成されることを特徴とする請求項1から10のいずれかに記載のAC-ACコンバータ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、AC-ACコンバータに関する。
【背景技術】
【0002】
3相モータは、ファン、ポンプ、FA機器等の産業機器で広く使われている。このような3相モータを駆動するためのモータ駆動システムは、一般に、3相AC電圧を整流してDC電圧(整流電圧)を生成する整流回路、その後段のDCリンク、およびDCリンク電圧から3相AC電圧を生成するインバータ回路で構成されるAC-ACコンバータを含む。
【先行技術文献】
【非特許文献】
【0003】
【非特許文献1】M.Guacci、D.Bortis、and J.W.Kolar、“High-Eciency Weight-Optimized Fault-Tolerant Modular Multi-Cell Three-Phase GaN Inverter for Next Generation Aerospace Applications,” in Proc. of IEEE Energy Conversion Congress and Exposition(ECCE-USA)、Portland、OR、USA、Sept.2018、pp.1334-1341.
【非特許文献2】J.W.Kolar and T.Friedli“The Essence of Three-Phase PFC Rectifir Systems-Part I,” IEEE Transactions on Power Electronics、vol. 28、no.1、1,pp.176-198、Jan. 2013.
【非特許文献3】J. Wen and K.Smedley、“A New Multilevel Inverter-Hexagram Inverter for Medium Voltage Adjustable Speed Drive Systems PartII.Three-phase Motor Drive,” in Proc. of the IEEE Power Electronics Specialists Conference(PESC)、Orlando、FL、USA、June 2007、pp.1571-1577.
【非特許文献4】J.Wen and K.M.Smedley、,“Synthesis of Multilevel Converters Based on Single-and/or Three-Phase Converter Building Blocks、”IEEE Transactions on Power Electronics、vol.23、no.3、pp.1247-1256、May 2008.
【発明の概要】
【発明が解決しようとする課題】
【0004】
モータ駆動システムでは、低耐圧な素子が使用できること、設計工数が低減できること、部品が共通化できることなどを目的として、モータ駆動システム全体を小型化・高密度化できることが求められる。これを実現する技術の1つとして、モータを3相巻線のセグメントごとに独立させたモジュラーモータで構成し、各セグメントをモジュラーごとに駆動するために、インバータ回路をモジュラー化した「モジュラーモータ駆動システム(MMD:Modular Motor Drive)」が提案されている(例えば非特許文献1参照)。しかしながらこのタイプのMMDでは、インバータ回路はモジュラー化されているものの、整流回路はモジュラー化されていない。この場合、整流回路に高耐圧の半導体素子が必要となるため、モータ駆動システム全体の小型化・高密度化は困難である。
【0005】
3相ブリッジ構成の整流回路をモジュラー化する方法としては、6スイッチ昇圧型整流回路が提案されている(例えば非特許文献2参照)。この回路では、昇圧用インダクタとしてフィルタ用インダクタを利用する。この場合、昇圧動作を実現するためには、整流回路の出力電圧(すなわちインバータ回路のDCリンク電圧の合計)を、入力電圧の線間ピーク電圧より大きく取らなければならない。このため整流回路を高電圧で動作させなければならず、高耐圧の素子が必要となる。その結果、モータ駆動システム全体の小型化・高密度化が困難となるとともに、入力電圧に応じた専用設計が必要となり、設計・製造コストが増す。
【0006】
整流回路をモジュラー化する別の方法としては、整流回路とインバータ回路に同一の低電圧素子回路を用いたBack to Back Hexagram Converterがある(例えば非特許文献3参照)。しかしながらこの構成は、絶縁されたオープンデルタ接続が必要とするため、小型化・高密度化やコスト面で不利である。
【0007】
整流回路をモジュラー化するさらに別の方法としては、いくつかの相互接続された3相AC―DC整流器セルを用いるものがある(例えば非特許文献4参照)。この相互接続は整流器セルの耐圧を下げることができるため、整流器セルとインバータに同じセルを用いることができる。しかしながら、入力に並列接続されたインバータセルを用いて1つの負荷を駆動するためには、絶縁された追加的なDC-DCコンバータが必要となる。この追加的なDC-DCコンバータは、モータ駆動システム全体の小型化・高密度化を妨げる原因となる。
【0008】
以上述べたように、従来の整流回路には、モータ駆動システムを十分小型化・高密度化できないという課題がある。本発明は、こうした課題に鑑みてなされたものであり、その目的は、モータ駆動システムを小型化・高密度化することにある。
【課題を解決するための手段】
【0009】
上記課題を解決するために、本発明のある態様のAC-ACコンバータは、3相AC電源から供給される3相AC入力電圧をDC電圧に変換する3の倍数個の整流回路モジュールと、DC電圧を3相AC出力電圧に変換する整流回路モジュールと同数のインバータ回路モジュールとを備える。整流回路モジュールのそれぞれが有する3つの入力端子の各々は、3相AC電源の各相の出力端子と、当該整流回路モジュールと異なる前記整流回路モジュールの入力端子とインダクタを介して接続される。
【0010】
実施の形態のAC-ACコンバータは、DC電圧を一定のDC電圧とし、AC電源から入力される3相入力電流と前記3相AC電圧との位相が一致するように整流回路モジュールおよびインバータ回路モジュールを構成するスイッチング素子を制御する制御部を備えてもよい。
【0011】
制御部は、制御部は、3相AC入力電圧に関する3相AC電力およびDC電圧に関するDC電力の脈動を外部のモータの負荷を用いて吸収するように整流回路モジュールおよびインバータ回路モジュールを構成するスイッチング素子を制御してもよい。
【0012】
制御部は、整流回路モジュールの後段に設けられたDCリンクのDCリンク電圧と目標リンク電圧との差を基に目標キャパシタ電力を計算し、目標DC電力から目標キャパシタ電力を引くことにより目標モータ電力を計算し、目標キャパシタ電力と目標モータ電力を基にDCリンクの電圧脈動外部のモータの負荷を用いて吸収するように整流回路モジュールおよびインバータ回路モジュールを構成するスイッチング素子を制御してもよい。
【0013】
DCリンクはコンデンサを備え、コンデンサは3相AC電圧に関する3相AC電力およびDC電圧に関するDC電力の脈動を吸収してもよい。
【0014】
整流回路モジュールの数は3であってもよい。
【0015】
整流回路モジュールのそれぞれは、3つの入力端子のうちの1つに接続され、3相AC電源から供給される3相AC入力電力のエネルギーをバッファリングして整流回路モジュールに過剰な電力が入力することを防ぐためのエネルギーバッファ回路を備えてもよい。
【0016】
整流回路モジュールの前段にローパスフィルタが設けられていてもよい。
【0017】
ローパスフィルタはLCローパスフィルタであってもよい。
【0018】
インバータ回路モジュールの各々は、2つのAC-AC変換サブモジュールとともにモジュール化されていてもよい。
【0019】
整流回路モジュールとインバータ回路モジュールとが同じ回路で構成されてもよい。
【0020】
なお、以上の構成要素の任意の組合せや、本発明の構成要素や表現を方法、装置、プログラム、プログラムを記録した一時的なまたは一時的でない記憶媒体、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
【発明の効果】
【0021】
本発明によれば、モータ駆動システムを小型化・高密度化することができる。
【図面の簡単な説明】
【0022】
【
図1】第1の実施の形態に係るAC-ACコンバータの機能ブロック図である。
【
図2】比較例に係るAC-ACコンバータの機能ブロック図である。
【
図3】(a)は、第1の3相AC電圧の時間的変化を示すグラフである。(b)は、(a)の3相AC電圧のフェーザ表示である。
【
図4】(a)は、整流回路モジュールが3個の場合の第1の3相AC電圧のフェーザ表示である。(b)は整流回路モジュールが6個の場合の第1の3相AC電圧のフェーザ表示である。(c)は整流回路モジュールが9個の場合の第1の3相AC電圧のフェーザ表示である。
【
図5】第2の実施の形態に係るAC-ACコンバータの機能ブロック図である。
【
図6】第3の実施の形態に係るAC-ACコンバータにおける制御部の機能ブロック図である。
【
図7】第4の実施の形態に係るAC-ACコンバータの機能ブロック図である。
【
図8】第5の実施の形態に係るAC-ACコンバータにおけるエネルギーバッファ回路を含む整流回路の機能ブロック図である。
【
図9】第6の実施の形態に係るAC-ACコンバータにおける整流回路の機能ブロック図である。
【
図10】第7の実施の形態に係るAC-ACコンバータにおけるAC-AC変換サブモジュールの機能ブロック図である。
【
図11】複数の実施の形態のAC-ACコンバータにおける整流回路モジュールの回路構成を示す図である。
【発明を実施するための形態】
【0023】
以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示である。実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項の中で「第1」、「第2」等の用語が用いられる場合、特に言及がない限りこの用語はいかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するだけのためのものである。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。
【0024】
[第1の実施の形態]
図1は、第1の実施の形態に係るAC-ACコンバータ1の機能ブロック図である。AC-ACコンバータ1は、整流回路100と、インバータ回路300と、を備える。整流回路100は、商用電源などの3相AC電源からの3相AC入力電圧(以下、「第1の3相AC入力電圧」という)から、DC電圧を生成する。このDC電圧はインバータ回路300に出力される。インバータ回路300は、整流回路100から出力されたDC電圧を、3相AC入力電圧(以下、「第2の3相AC電圧」という)に変換する。第2の3相AC出力電圧により、3相モータが駆動される。
【0025】
整流回路100はモジュール化されている。すなわち整流回路100は、第1の整流回路モジュール11と、第2の整流回路モジュール12と、第3の整流回路モジュール13と、インダクタ20、21、22、23、24、25と、を備える。後述するように、第1、第2および第3の整流回路モジュール11、12および13の各々は例えば、6個のスイッチング素子で構成された3相ブリッジ回路であり、3つの入力端子と2つの出力端子とを備える。第1、第2および第3の整流回路モジュール11、12および13はすべて、各々がインダクタを介して互いに接続される。すなわち、第1の整流回路モジュール11は、インダクタ23を介して第2の整流回路モジュール12と接続され、インダクタ25を介して第3の整流回路モジュール13と接続される。第2の整流回路モジュール12は、インダクタ24を介して第3の整流回路モジュール13と接続され、インダクタ23を介して第1の整流回路モジュール11と接続される。第3の整流回路モジュール13は、インダクタ25を介して第1の整流回路モジュール11と接続され、インダクタ24を介して第2の整流回路モジュール12と接続される。以下、このようにすべての素子や回路が他のすべての素子や回路と相互接続されている接続形態を「メッシュ接続」という。すなわちこの実施の形態では、第1、第2および第3の整流回路モジュール11、12および13は、インダクタを介してメッシュ接続される。
【0026】
第1の整流回路モジュール11の入力端子の1つは、インダクタ20を介して3相AC電源のU相の出力端子に接続される。第1の整流回路モジュール11には、インダクタ20を介して3相電源のU相500Uが入力する。第1の整流回路モジュール11への入力電圧をvu、入力電流をiuとする。第2の整流回路モジュール12の入力端子の1つはインダクタ21を介して3相AC電源のV相の出力端子に接続される。第2の整流回路モジュール12には、インダクタ21を介して3相電源のV相500Vが入力する。第2の整流回路モジュール12への入力電圧をvv、入力電流をivとする。第3の整流回路モジュール13の入力端子の1つは、インダクタ22を介して3相AC電源のW相の出力端子に接続される。第3の整流回路モジュール13には、インダクタ22を介して3相電源のW相500Wが入力する。第3の整流回路モジュール13への入力電圧をvw、入力電流をiwとする。
【0027】
第1、第2および第3の整流回路モジュール11、12および13の後段には、それぞれDCリンクvdc1、vdc2、vdc3が設けられている。
【0028】
第1の整流回路モジュール11は、入力電圧vuおよび入力電流iuに起因する電力脈動を脈動を除去し、第1のDC電圧を生成する。第2の整流回路モジュール12は、入力電圧vvおよび入力電流ivに起因する電力脈動を脈動を除去し、第2のDC電圧を生成する。第3の整流回路モジュール13は、入力電圧vwおよび入力電流をiwに起因する電力脈動を脈動を除去し、第3のDC電圧を生成する。第1、第2および第3のDC電圧はそれぞれ、整流回路101の外部にある、第1、第2および第3のDCリンクに出力する。第1、第2および第3のDCリンクの電圧(DCリンク電圧)をそれぞれvdc1、vdc2およびvdc3とする。第1、第2および第3の整流回路モジュール11、12および13がインダクタを介してメッシュ接続されることにより、各DCリンク電圧vdc1、vdc2およびvdc3は均等なものとなる。
【0029】
第1、第2および第3の外部のDCリンク電圧vdc1、vdc2およびvdc3は、インバータ回路300に入力する。インバータ回路300はモジュール化されており、第1のインバータ回路モジュール31と、第2のインバータ回路モジュール32と、第3のインバータ回路モジュール33と、を備える。第1、第2および第3の外部のDCリンク電圧vdc1、vdc2およびvdc3はそれぞれ、インバータ回路300の第1、第2および第3のインバータ回路モジュール31、32、33に入力する。第1のインバータ回路モジュール31は、第1のDCリンク電圧vdc1から3相AC電圧v11a、v11bおよびv11cを生成する。第2のインバータ回路モジュール32は、第2のDCリンク電圧vdc2から3相AC電圧v12a、v12bおよびv12cを変換生成する。第3のインバータ回路モジュール33は、第3のDCリンク電圧vdc3から3相AC電圧v13a、v13bおよびv13cを生成する。
【0030】
3相AC電圧v11a、v11bおよびv11cは、3相モータ600の第1の巻線WS1に供給される。3相AC電圧v12a、v12bおよびv12cは、3相モータ600の第2の巻線WS2に供給される。3相AC電圧v13a、v13bおよびv13cは、3相モータ600の第3の巻線WS3に供給される。このようにして、3相モータ600は、第1、第2および第3の巻線WS1、WS2およびWS3に供給される3相出力によって駆動される。
【0031】
前述の実施の形態では、整流回路モジュールの数およびインバータ回路モジュールの数はともに3個であった。しかしこれに限られず、整流回路モジュールおよびインバータ回路モジュールの数は、両者が同数であれば任意の3の倍数であってよい。
【0032】
[比較例]
図2は、比較例に係るAC-ACコンバータ2の機能ブロック図である。AC-ACコンバータ2は、本発明に至る過程で案出されたものである。比較例に係るAC-ACコンバータ2は、実施の形態に係るAC-ACコンバータ1の第1、第2および第3の整流回路モジュール11、12および13に代えて、整流器120を備える。すなわち比較例の整流器120は、モジュラー化されておらず単一のDCバスで構成されている点で、実施の形態と異なる。AC-ACコンバータ2のその他の構成はAC-ACコンバータ1と同じであるので、重複する説明は省く。
【0033】
整流器120には、それぞれインダクタ20、21および22を介して、3相電源のU相500U、V相500VおよびW相500Wが入力する。整流器120は、U相500Uの入力電圧vuおよび入力電流iuに起因する電力脈動、V相500Vの入力電圧vvおよび入力電流ivに起因する電力脈動、ならびにW相500Wの入力電圧vwおよび入力電流iwに起因する電力脈動を除去し、DC電圧を生成する。
【0034】
前述のように、整流器120はモジュラー化されておらず、1つのDCバスで構成される。この場合、入出力ピーク電圧は高電圧となるため、整流器120に使用される回路素子は高耐圧であることが要求される。これに対し整流回路100は、3つの整流回路モジュール11、12および13でモジュール化されているため、個々のモジュールの耐電圧を入出力ピーク電圧1/3にまで下げることができる。従って、インバータ回路を含めたすべてのモジュールは、低耐圧の回路素子を使用することができる。これにより、モータ駆動システム全体の小型化・高密度化を実現することができる。このように、本実施の形態によれば、モータ駆動システムを小型化・高密度化することができる。
【0035】
整流回路モジュールの数は、3の倍数である。以下、この点について説明する。
図3(a)は、第1の3相AC電圧の時間的変化を示すグラフである。図示される通り、第1の3相AC電圧v
RiA、v
RiB、v
RiCはそれぞれ、120度ずつ互いに位相がずれている。
図3(b)は、
図3(a)の3相AC電圧のフェーザ表示である。フェーザ表示は、時間の経過とともに電源周波数f
Gで回転する。
図3(b)は、電源周期をT
Gとしたき、t=T
Gにおける3相AC電圧を示す。
図3(b)の正三角形の各辺は線間電圧となる点に注意する。
【0036】
図4(a)は、第1の実施の形態において、第1、第2および第3の整流回路モジュール11、12および13をインダクタを介してメッシュ接続したときの、第1の3相AC電圧のフェーザ表示である。このグラフは、3個の正三角形R1、R2、R3を組み合わせた形となる。線間電圧を示す各辺は、一直線かつ対称的に揃っている。
図4(b)は、6個の整流回路モジュールをインダクタを介してメッシュ接続したときの、第1の3相AC電圧のフェーザ表示である。このグラフは、6個の正三角形R1、R2、R3、R4、R5、R6を組み合わせた形となる。この場合も線間電圧を示す各辺は、一直線かつ対称的に揃っている。
図4(c)は、9個の整流回路モジュールをインダクタを介してメッシュ接続したときの、第1の3相AC電圧のフェーザ表示である。このグラフは、9個の正三角形R1、R2、R3、R4、R5、R6、R7、R8、R9を組み合わせた形となる。この場合も線間電圧を示す各辺は、一直線かつ対称的に揃っている。このように整流回路モジュールの数を3の倍数とすることにより、線間電圧を示すフェーザ表示の各辺を一直線かつ対称的に揃えることができる。これにより、入力電圧の各位相を乱すことなくスムーズに保つことができる。
【0037】
特に実施の形態の整流回路を用いたモータ駆動装置で3相モータを駆動する場合、整流回路モジュールを3の倍数とすることにより、モータの巻線の数の整数倍の駆動電圧を生成することができる。これによりスムーズなモータ駆動を実現することができる。そして整流回路モジュールの数を3、6、9、…と増やすほど、各モジュールの耐電圧は1/3、1/6、1/9、…と小さくなる。従って、より低耐圧の回路素子を使用することができる。
【0038】
特に整流回路モジュールの数は3であってよい。この場合、最小限の整流回路モジュールでスムーズなモータ駆動を実現することができる。これにより、部品点数を削減することができる。
【0039】
[第2の実施の形態]
図5は、第2の実施の形態に係るAC-ACコンバータ3の機能ブロック図である。AC-ACコンバータ3は、
図1のAC-ACコンバータ1の構成に追加して、制御部40を備える。AC-ACコンバータ3のその他の構成はAC-ACコンバータ1と同じであるので、重複する説明は省く。
【0040】
制御部40は、DC電圧を一定とし、AC電源から入力される3相入力電流と第1の3相AC電圧との位相が一致するように、整流回路モジュール11、12、13およびインバータ回路モジュール31、32、33を構成するスイッチング素子を制御する。
図5では、1個の制御部40が、整流回路モジュール11、12、13およびインバータ回路モジュール31、32、33を構成するスイッチング素子をまとめて制御する形態が示されている。しかしこれに限られず、例えば、6個の制御部が与えられ、これらがそれぞれ個別に整流回路モジュール11、12、13およびインバータ回路モジュール31、32、33を構成するスイッチング素子を制御してもよい。
【0041】
このように制御部40が整流回路モジュール11、12、13およびインバータ回路モジュール31、32、33を構成するスイッチング素子を制御することにより、整流回路モジュール11、12および13が生成したDC電圧が発生する電力の脈動を除去することができる。これにより、整流回路100をPFC整流回路とすることができ、力率=1の制御を実現することができる。
【0042】
[第3の実施の形態]
第3の実施の形態では、
図5の制御部40は、第1の3相AC電圧に関する3相AC電力およびDC電圧に関するDC電力の脈動を外部のモータの負荷を用いて除去するように、整流回路モジュールおよびインバータ回路モジュールを構成するスイッチング素子を制御する。この実施の形態によれば、大容量のDCリンクキャパシタを用いることなく、電力脈動を除去することができる。
【0043】
以下、
図6を用いて、第3の実施の形態における制御部40の構成と動作を詳しく説明する。
図6は、制御部40の詳細な機能ブロック図である。制御部40は、DCリンク電圧制御部42と、整流回路制御部44と、速度制御部46と、インバータ制御部48と、を備える。制御部40は、整流回路モジュール11、12、13およびインバータ回路モジュール31、32、33を構成するスイッチング素子を制御して、生成されるDC電圧および3相AC電圧を調整する。
【0044】
DCリンク電圧制御部42は、第1入力端42bと、第2入力端42cと、出力端42dと、を備える。整流回路制御部44は、入力端44bと、出力端44cと、を備える。速度制御部46は、第1入力端46bと、第2入力端46cと、出力端46dと、を備える。インバータ制御部48は、入力端48bと、第1出力端48cと、第2出力端48dと、第3出力端48eと、を備える。制御部40は、DCリンク電圧制御部42の出力端42dと、整流回路制御部44の入力端44bとの間に、ローパスフィルタ43aを備える。制御部40は、速度制御部46の第2入力端46cの前段に、ローパスフィルタ43bを備える。
【0045】
DCリンク電圧制御部42の第1入力端42bには、目標DCリンク電圧vDC
*が入力される。第2入力端42cには、現在のDCリンク電圧vDCが入力される。DCリンク電圧制御部42は、vDC
*とvDCとの差分ΔvDC(図示しない)を基に、目標キャパシタ電力pC
*を求め、これを出力端42dから出力する。
【0046】
DCリンク電圧制御部42の出力端42dから出力された目標キャパシタ電力PC
*は分岐点v3で2つに分岐され、一方は、ローパスフィルタ43aに入力される。ローパスフィルタ43aは、PC
*から高周波成分を除去して目標平均キャパシタ電力<PC>*を生成し、これを出力する。ローパスフィルタ43aから出力された<PC>*は分岐点v4で2つに分岐され、一方は、速度制御部46の出力端46dから出力された目標平均インバータ出力<PINV>*と足し合わされる。その結果、目標平均整流電力<PPFC>*が、<PPFC>*=<PC>*+<PINV>*として算出される。算出された<PPFC>*は、整流回路制御部44の入力端44bに入力される。分岐点v4で分岐された<PC>*の他方は、分岐点v3で分岐されたPC
*の他方から減算され、入力電力脈動pC,ACが生成される。すなわち入力電力脈動pC,ACは、目標キャパシタ電力PC
*からその脈動部分のみを抽出したものである。入力電力脈動pC,ACは、目標整流電力pPFC
*から減算されて、目標モータ電力pM
*が算出される(pM
*=pPFC
*-pC,AC)。算出されたpM
*は、インバータ制御部48の入力端48bに入力される。
【0047】
このように、インバータ制御部48に入力される目標モータ電力pM
*は、目標整流電力pPFC
*から入力電力脈動pC,ACを減算したものである。すなわち、3相モータ600には、DCリンクの脈動ΔpDCが入力される。3相モータ600は、3相モータ600に接続された負荷が持つイナーシャによりこの脈動を補償する。その結果DCリンクの脈動は吸収され、pM=pGが成立する。すなわち、モータ電力pMは入力電力pGに一致する。
【0048】
3相モータ600の速度ωは、3相モータ600による入力電力pGの補償に起因して、入力電力pGの周波数fGの2倍の周波数2fGで脈動する。そこで、以下のようにローパスフィルタを用いてωの高周波成分を除去する。現在のモータの速度ωはローパスフィルタ43bに入力される。ローパスフィルタ43bは、ωから高周波成分を除去して現在のモータの平均速度<ω>を生成し、これを速度制御部46の第2入力端46cに入力する。速度制御部46の第1入力端46bには、3相モータ600の目標平均速度<ω>*が入力される。速度制御部46は、<ω>*と<ω>との差分Δω(図示しない)を基に目標平均インバータ出力<PINV>*を求め、これを出力端46dから出力する。
【0049】
整流回路制御部44は、フィードフォワードでDCリンク電圧vDCを一定に保つように整流回路10を制御する。速度制御部46の出力端46dから出力された目標平均インバータ出力<PINV>*は、ローパスフィルタ43aから出力された目標平均キャパシタ電力<PC>*と足し合わされる。その結果、目標平均整流電力<PPFC>*が、<PPFC>*=<PC>*+<PINV>*として算出される。算出された<PPFC>*は、整流回路制御部44の入力端44bに入力される。整流回路制御部44は、入力された<PPFC>*を基に目標入力電流iG
*(図示しない)を算出し、インダクタ電流差から出力デューティ比dBを求め、これを出力端44cから出力する。出力された出力デューティ比dBは、パルス幅変調器(図示しない)を介して整流回路100に入力されて所望の制御が実現する。
【0050】
本実施の形態によれば、上記のように具体的に構成した制御部により、電力脈動をモータの負荷を用いて除去することができる。これにより、大容量のDCリンクキャパシタを用いる必要がなくなり、モータ駆動システム全体のさらなる小型化・高密度化、低コスト化、長寿命化が可能となる。
【0051】
[第4の実施の形態]
図7は、第4の実施の形態に係るAC-ACコンバータ4の機能ブロック図である。AC-ACコンバータ1は、整流回路101と、インバータ回路300と、を備える。整流回路101は、
図1の整流回路100に対して、各整流回路モジュール11、12および13の後段に、それぞれコンデンサC1、C2、C3を備えたDCリンクが設けられている。コンデンサC1、C2、C3は、入力3相AC電圧が発生する電力および整流回路モジュール11、12および13が生成したDC電力の脈動を除去する。
【0052】
典型的な例では、整流回路103が数kWおよび数100Vで動作する場合、これらのコンデンサの容量はmFのオーダである。本実施の形態によれば、特別な制御部を設けることなく、電力脈動を除去することができる。
【0053】
[第5の実施の形態]
第5の実施の形態では、AC-ACコンバータは、エネルギーバッファ回路を備える。
図8は、エネルギーバッファ回路14を含む整流回路の機能ブロック図である。エネルギーバッファ回路14は、整流回路モジュール11、12、13の3つの入力端子のうちの1つに接続される。エネルギーバッファ回路14は、整流回路モジュールと同様に、例えば6個のスイッチング素子で構成された3相ブリッジ回路である。
エネルギーバッファ回路14は、3相AC電源から供給される3相AC入力電力のエネルギーをバッファリングして、整流回路モジュール11、12、13に過剰な電力が入力することを防ぐ。本実施の形態によれば、入力電力が整流回路モジュールに入力する前段で、エネルギーをバッファリングすることができるので、よりスムーズな電圧制御を実現することができる。
【0054】
[第6の実施の形態]
図9は、第6の実施の形態に係るAC-ACコンバータにおける整流回路102の機能ブロック図である。整流回路102では、
図1の整流回路100の第1、第2および第3の整流回路モジュール11、12および13の前段に、それぞれ第1、第2および第3のローパスフィルタ71、72および73が設けられている。第1のローパスフィルタ71は、インダクタL11、L12およびL13、ならびにコンデンサC11、C12、C13、C14およびC15から構成されるπ型フィルタである。第2のローパスフィルタ72は、インダクタL21、L22およびL23、ならびにコンデンサC21、C22、C23、C24およびC25から構成されるπ型フィルタである。第3のローパスフィルタ73は、インダクタL31、L32およびL33、ならびにコンデンサC31、C32、C33、C34およびC35から構成されるπ型フィルタである。整流回路102のその他の構成は整流回路100と同じであるので、重複する説明は省く。
【0055】
第1、第2および第3のローパスフィルタ71、72および73はそれぞれ、入力AC電圧から高周波成分を除去して、ノイズ除去された入力AC電圧を生成する。第1、第2および第3の整流回路モジュール11、12および13は、このノイズ除去された入力AC電圧からDC電圧を生成する。本実施の形態によれば、よりノイズの少ないDC電圧を生成することができる。
【0056】
図9に示されるローパスフィルタ71、72および73は、インダクタとコンデンサで構成されるシンプルなLCローパスフィルタである。この場合、ローパスフィルタ71、72および73を低コストで簡単に実現することができる。しかしながらこれに限られず、ローパスフィルタはオペアンプなど他の好適な任意の方法で実現されてもよい。さらに
図6のLCローパスフィルタはπ型ローパスフィルタであるが、これに限られず、L型、T型など、他の好適な任意のタイプのLCローパスフィルタであってよい。
【0057】
[第7の実施の形態]
第7の実施の形態のAC-ACコンバータでは、インバータ回路モジュールの各々は、2つのAC-AC変換サブモジュールとともにモジュール化されている。
図10は、第7の実施の形態に係るAC-AC変換サブモジュール801、802の機能ブロック図である。AC-AC変換サブモジュール801は、整流回路サブモジュールPFC11と、インバータサブモジュールINV11と、を備える。AC-AC変換サブモジュール802は、整流回路サブモジュールPFC12と、インバータサブモジュールINV12と、を備える。AC-AC変換サブモジュール801および802はそれぞれ、
図7のインバータ回路モジュール31とともにモジュール化される。
【0058】
整流回路サブモジュールPFC11およびPFC12は、整流回路モジュール11と同じ回路で構成される。インバータサブモジュールINV11およびINV12は、インバータ回路モジュール31と同じ回路で構成される。AC-AC変換サブモジュール801および802はそれぞれ、インバータ回路モジュール31により生成された3相AC電圧から3相AC電圧を生成する。AC-AC変換サブモジュール801および802により生成された3相AC電圧はそれぞれ、モータの二重巻線WS11およびWS12に供給される。
【0059】
インバータ回路モジュール32および33(例えば、
図7参照)もそれぞれ、AC-AC変換サブモジュール801および802と同様の構成の2つのAC-AC変換サブモジュールとともにモジュール化される。AC-AC変換サブモジュールの動作は、上記のAC-AC変換サブモジュール801および802と同様である。
【0060】
本実施形態によれば、二重巻線を持つモータのための小型で高密度のモータ駆動装置を実現することができる。
【0061】
図11に、前述の各実施の形態の整流回路モジュール11の回路構成の例を示す。整流回路モジュール11は、スイッチング素子SW1、SW2、SW3、SW4、SW5およびSW6で構成される3相ブリッジ回路である。しかしこれに限られず、整流回路モジュールは、ブリッジレス回路など他の好適な任意の回路で構成されてもよい。
【0062】
ある実施の形態では、すべての整流回路モジュールとインバータ回路モジュールが同じ回路で構成される。この実施の形態によれば、回路部品を共通化できるため、設計や製造に係るコストを低減することができる。
【0063】
以上、本発明の実施の形態をもとに説明した。この実施の形態は例示であり、いろいろな変形および変更が本発明の特許請求の範囲内で可能なこと、またそうした変形例および変更も本発明の特許請求の範囲にあることは当業者に理解されるところである。従って、本明細書での記述および図面は限定的ではなく例証的に扱われるべきものである。
【0064】
以下、変形例について説明する。変形例の図面および説明では、実施の形態と同一または同等の構成要素、部材には、同一の符号を付する。実施の形態と重複する説明を適宜省略し、実施の形態と相違する構成について重点的に説明する。
【0065】
実施の形態の整流回路モジュールは、インダクタを介してメッシュ接続されている。これに限られず整流回路モジュールは、ダイオードを介してメッシュ接続されてもよい。この場合、小型で高密度の整流回路をより低コストで実現することができる。
【0066】
変形例は実施の形態と同様の作用・効果を奏する。
【0067】
上述した各実施の形態と変形例の任意の組み合わせもまた本発明の実施の形態として有用である。組み合わせによって生じる新たな実施の形態は、組み合わされる各実施の形態および変形例それぞれの効果をあわせもつ。
【符号の説明】
【0068】
1、2、3、4・・AC-ACコンバータ、
11・・第1の整流回路モジュール、
12・・第2の整流回路モジュール、
13・・第3の整流回路モジュール、
20、21、22、23、24、25・・インダクタ、
31・・第1のインバータ回路モジュール、
32・・第2のインバータ回路モジュール、
33・・第3のインバータ回路モジュール、
40・・制御部、
100、101、102・・整流回路、
300・・インバータ回路、
600・・3相モータ、
801、802・・AC-AC変換サブモジュール。