IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ タカノ株式会社の特許一覧

特開2022-7302表面検査装置、モバイル端末、及び、プログラム
<>
  • 特開-表面検査装置、モバイル端末、及び、プログラム 図1
  • 特開-表面検査装置、モバイル端末、及び、プログラム 図2
  • 特開-表面検査装置、モバイル端末、及び、プログラム 図3
  • 特開-表面検査装置、モバイル端末、及び、プログラム 図4
  • 特開-表面検査装置、モバイル端末、及び、プログラム 図5
  • 特開-表面検査装置、モバイル端末、及び、プログラム 図6
  • 特開-表面検査装置、モバイル端末、及び、プログラム 図7
  • 特開-表面検査装置、モバイル端末、及び、プログラム 図8
  • 特開-表面検査装置、モバイル端末、及び、プログラム 図9
  • 特開-表面検査装置、モバイル端末、及び、プログラム 図10
  • 特開-表面検査装置、モバイル端末、及び、プログラム 図11
  • 特開-表面検査装置、モバイル端末、及び、プログラム 図12
  • 特開-表面検査装置、モバイル端末、及び、プログラム 図13
  • 特開-表面検査装置、モバイル端末、及び、プログラム 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022007302
(43)【公開日】2022-01-13
(54)【発明の名称】表面検査装置、モバイル端末、及び、プログラム
(51)【国際特許分類】
   G01N 21/88 20060101AFI20220105BHJP
【FI】
G01N21/88 Z
【審査請求】未請求
【請求項の数】12
【出願形態】OL
(21)【出願番号】P 2020110200
(22)【出願日】2020-06-26
(71)【出願人】
【識別番号】000108627
【氏名又は名称】タカノ株式会社
(74)【代理人】
【識別番号】100095407
【弁理士】
【氏名又は名称】木村 満
(74)【代理人】
【識別番号】100132883
【弁理士】
【氏名又は名称】森川 泰司
(74)【代理人】
【識別番号】100181618
【弁理士】
【氏名又は名称】宮脇 良平
(74)【代理人】
【識別番号】100148149
【弁理士】
【氏名又は名称】渡邉 幸男
(74)【代理人】
【識別番号】100165489
【弁理士】
【氏名又は名称】榊原 靖
(74)【代理人】
【識別番号】100214514
【弁理士】
【氏名又は名称】鳴村 英幸
(72)【発明者】
【氏名】本多 正彦
【テーマコード(参考)】
2G051
【Fターム(参考)】
2G051AA89
2G051AB07
2G051BA20
2G051CA03
2G051CA04
2G051CB01
2G051EA08
2G051EA11
2G051EA16
2G051EA21
2G051EB01
2G051EC03
(57)【要約】
【課題】より手軽に被検査体の表面を検査することができる表面検査装置を提供する。
【解決手段】表面検査装置は、携帯性を有する。そして、検査画像を表示する表示部と、前記検査画像が投影された被検査体の表面を撮影することによって、複数の撮影画像を取得する撮影部と、前記複数の撮影画像に基づいて、前記被検査体の表面に存在する欠陥を明瞭化した処理画像を生成する演算部と、を備える。
【選択図】図2

【特許請求の範囲】
【請求項1】
携帯性を有する表面検査装置であって、
検査画像を表示する表示部と、
前記検査画像が投影された被検査体の表面を撮影することによって、複数の撮影画像を取得する撮影部と、
前記複数の撮影画像に基づいて、前記被検査体の表面に存在する欠陥を明瞭化した処理画像を生成する演算部と、
を備える表面検査装置。
【請求項2】
前記表示部は、前記検査画像及び前記処理画像を表示する単一の表示素子を含む、
請求項1に記載の表面検査装置。
【請求項3】
前記表示部、前記撮影部及び前記演算部を収容する単一の筐体をさらに備える、
請求項1または2に記載の表面検査装置。
【請求項4】
前記筐体に取り付けられ、前記被検査体に対する前記筐体の相対位置を固定するアタッチメントをさらに備える、
請求項3に記載の表面検査装置。
【請求項5】
前記表示部、前記撮影部及び前記演算部に電力を供給する蓄電池をさらに備える、
請求項1から4のいずれか1項に記載の表面検査装置。
【請求項6】
外部機器と無線通信を行う手段をさらに備える、
請求項1から5のいずれか1項に記載の表面検査装置。
【請求項7】
前記撮影部は、
撮像素子と、
前記撮像素子に被写体の光学像を結像する光学系と、
前記撮像素子及び前記光学系の振動を計測する慣性センサと、
前記慣性センサにより計測された振動に関する情報に基づいて、前記撮像素子又は前記光学系を移動させる移動機構と、
を含む、請求項1から6のいずれか1項に記載の表面検査装置。
【請求項8】
前記演算部は、前記複数の撮影画像各々にブレ補正処理を施した画像に基づいて、前記処理画像を生成する、
請求項1から7のいずれか1項に記載の表面検査装置。
【請求項9】
前記検査画像は、パターンが一方向に移動する動画である、
請求項1から8のいずれか1項に記載の表面検査装置。
【請求項10】
前記パターンは、明領域及び暗領域からなる縞状パターンである、
請求項9に記載の表面検査装置。
【請求項11】
検査画像を表示する表示素子と、
前記検査画像が投影された被検査体の表面を撮影することによって、複数の撮影画像を取得する撮像素子と、
前記複数の撮影画像に基づいて、前記被検査体の表面に存在しうる欠陥を明瞭化した処理画像を生成する画像生成手段と、
を備え、
前記処理画像が前記表示素子に表示される、モバイル端末。
【請求項12】
表示素子及び撮像素子を備えるモバイル端末のコンピュータに、
前記表示素子に検査画像を表示する第1表示処理と、
前記撮像素子により前記検査画像が投影された被検査体の表面を撮影することによって、複数の撮影画像を取得する撮影処理と、
前記複数の撮影画像に基づいて、前記被検査体の表面に存在しうる欠陥を明瞭化した処理画像を生成する画像生成処理と、
前記処理画像を前記表示素子に表示する第2表示処理と、
を実行させるプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、表面検査装置、モバイル端末、及び、プログラムに関する。
【背景技術】
【0002】
被検査体、例えば自動車のボディに存在するキズ、塗装剥がれ等の欠陥を検出する技術の開発が進められている。例えば特許文献1には、検査画像を表示する照明装置と、当該照明装置により照明された被検査体を複数回撮影することで、複数の撮影画像を得るカメラと、当該複数の撮影画像に基づいて、被検査体の欠陥の有無を検査する検査手段と、を備える画像検査装置、が開示されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2017-227474号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に開示される画像検査装置は、主に据置き型として利用されるものと推察され、可搬性あるいは携帯性に乏しいものと推察される。画像検査装置を容易に持ち運ぶことができれば、より手軽に被検査体の表面を検査することができると考えられる。
【0005】
本開示は、上記課題に鑑みてなされたものであり、その目的は、主に、より手軽に被検査体の表面を検査することができる表面検査装置を提供することにある。
【課題を解決するための手段】
【0006】
上記目的を達成するための、本開示の一実施態様に係る表面検査装置は、携帯性を有する表面検査装置であって、検査画像を表示する表示部と、前記検査画像が投影された被検査体の表面を撮影することによって、複数の撮影画像を取得する撮影部と、前記複数の撮影画像に基づいて、前記被検査体の表面に存在する欠陥を明瞭化した処理画像を生成する演算部と、を備える。
【発明の効果】
【0007】
上記構成の表面検査装置は、携帯性を有しているため、より手軽に被検査体の表面を検査することができる。
【図面の簡単な説明】
【0008】
図1】第1の実施形態による表面検査装置の外観を示す正面図である。
図2】第1の実施形態による表面検査装置の構成を示すブロック図である。
図3】第1の実施形態による表面検査装置のコンピュータが実行する検査処理の流れを示すフローチャートである。
図4】第1の実施形態において、表面検査装置の表示部が検査画像を表示する様子を示す模式図である。
図5】第1の実施形態において、表面検査装置の撮影部が被検査体の表面を撮影する様子を示す模式図である。
図6】第1の実施形態において、差分画像を生成する際の概念図である。
図7】第1の実施形態において、第1加工画像を生成する際の概念図である。
図8】第1の実施形態において、第2加工画像を生成する際の概念図である。
図9】第1の実施形態において、二値画像を生成する際の概念図である。
図10】第1の実施形態において、表面検査装置の表示部が二値画像を表示する様子を示す模式図である。
図11】第1の実施形態の第1変形例において、表面検査装置にアタッチメントが装着される様子を示す模式図である。
図12】第1の実施形態の第2変形例による撮影部の構成を示す模式図である。
図13】第1の実施形態の第3変形例による演算部を示すブロック図である。
図14】第2の実施形態による表面検査装置の構成を示すブロック図である。
【発明を実施するための形態】
【0009】
(第1の実施形態)
以下、図面を参照しながら、第1の実施形態による表面検査装置1の構造及び構成について説明する。表面検査装置1には、例えば、市販されるスマートフォンが利用される。
【0010】
まず、図1に示される表面検査装置1の正面図を参照して、表面検査装置1の外観構造を説明する。
【0011】
表面検査装置1は、主に、所定の画像を表示する表示部12と、被写体を撮影することができる撮影部13と、表示部12及び撮影部13を収容する筐体11と、を有する。筐体11の側面には、表面検査装置1の動作又は表示部12による表示のON/OFFを制御する電源ボタン141p,撮影部13による被写体の撮影を制御するシャッターボタン141s等の操作ボタン141が設けられている。なお、表面検査装置1は、一般的なスマートフォンであり、通話のためのマイク142及びスピーカ143を具備する。
【0012】
次に、図2に示される表面検査装置1のブロック図を参照して、表面検査装置1のハードウェア構成及び機能構成を説明する。
【0013】
表面検査装置1は、表示部12,撮影部13,操作ボタン141,マイク142及びスピーカ143に加え、さらに、CPU(Central Processing Unit)15,RAM(Random Access Memory)16,ROM(Read Only Memory)17及び通信部18を備える。これらのハードウェアユニットは、プリント配線基板の上に載置されるか、または、プリント配線基板に設けられるコネクタを介して当該プリント配線基板と電気的に接続されて、筐体11のなかに収容される。
【0014】
CPU(演算部)15は、各種演算処理を行い、表面検査装置1の全体動作を統括制御する。CPU15は、ROM17に記憶される制御プログラムを読み出し、RAM16にロードして、各種機能に関する演算,各種ハードウェアユニットの制御等を行う。CPU15は、制御プログラムにしたがって、例えば、表示部12に所望の画像を表示し、また、撮影部13により被写体を撮影する。さらに、CPU15は、撮影部13により撮影された画像,ROM17に記憶される画像等の加工及び合成に係る処理を行う。
【0015】
RAM16は、例えば、アプリケーションプログラム,ハードウェアユニットに設定される数値情報等を一時的に記憶する。RAM16には、例えば、SRAM(Static RAM),DRAM(Dynamic RAM)等の揮発性メモリが用いられる。
【0016】
ROM17は、例えば、撮影部13により撮影された画像,被写体の表面検査に係るプログラム171等を長期的に記憶する。ROM17には、例えば、マスクROM,EEPROM(Electrically Erasable Programmable ROM)等の不揮発性メモリが用いられる。
【0017】
通信部18は、アンテナ182を介して、携帯電話基地局と無線通信を行う通信モジュール181を含む。通信モジュール181は、高周波回路,ベースバンド回路等を含む。
【0018】
通信モジュール181は、CPU15からの通信信号を変調し、アンテナ182を介して当該変調された高周波信号を携帯電話基地局に送信する。当該通信信号は、例えば、マイク142により検出された音声信号である。
【0019】
また、通信モジュール181は、アンテナ182を介して受信した高周波信号を復調し、当該復調された通信信号をCPU15に転送する。当該通信信号は、例えば、CPU15により音声信号に変換され、スピーカ143から出力される。
【0020】
なお、通信部18は、CPU15が実行する制御プログラムを、基地局を介して所定のサーバからダウンロードすることができる。当該制御プログラムには、後述の検査処理を記述するプログラム171が含まれる。
【0021】
表示部12は、所定の画像を表示する表示素子121を含む。表示素子121には、例えば、LCD(Liquid Crystal Display)素子,有機EL(Electro―Luminescence)素子等が用いられる。または、LCD素子,有機EL素子等にタッチセンサを重ねて配置したタッチパネルデバイスを用いてもよい。
【0022】
表示部12は、CPU15から出力される画像信号に基づいて、当該画像信号が表す画像を表示素子121に表示する。または、CPU15からの制御信号に基づいて、ROM17に記憶される画像データが表す画像を、表示素子121に表示する。
【0023】
撮影部13は、例えば、光信号を電気信号に変換する撮像素子(光電変換素子)131,撮像素子131上に被写体の光学像を結像する光学系132等を含む。撮像素子131には、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)イメージセンサが用いられる。光学系132は、凸レンズ,凹レンズ等の光学レンズを含み、例えば焦点距離が24mm以下の超広角レンズを構成する。
【0024】
撮影部13は、CPU15からの制御信号に基づいて、撮像素子131により取得された画像データをROM17に記憶する。CPU15は、ユーザによりシャッターボタン141sが操作されたタイミングで、撮影部13に当該制御信号を送信する。なお、撮影部13は、被写体に対するピント,ブレ等の状態を解析して,自律的に、撮像素子131により取得される画像データをROM17に記憶してもよい。
【0025】
なお、表面検査装置1は、各ハードウェアユニットに電力を供給する蓄電池19をさらに備える。蓄電池19には、例えばリチウムイオン電池が用いられる。
【0026】
続いて、CPU(演算部)15の機能構成について説明する。本実施形態において、CPU15は、主に、撮影部13により取得された複数の撮影画像を加工及び合成する手段として機能する。具体的には、撮影部13により取得された複数の撮影画像を合成することによって差分画像を生成する差分画像生成手段151、当該差分画像を加工することによって第1加工画像及び第2加工画像を生成する第1加工画像生成手段152及び第2加工画像生成手段153、並びに、当該第1加工画像及び当該第2加工画像に基づいて二値画像を生成する二値画像生成手段154、として機能する。これらの画像生成手段151~154として機能するCPU15は、後述する検査処理のステップS131~S134をそれぞれ実行して、各種の処理画像を生成する。
【0027】
次に、図3に示されるフローチャートを参照して、CPU15が実行する検査処理を説明する。本検査処理を記述するプログラム171は、ROM17に記憶されており、例えば、ユーザによる開始の操作によって実行される。
【0028】
CPU15は、第1表示処理ステップS110において、表示部12に、検査画像Pαを表示させる。検査画像Pαを表す画像データは、例えばROM17に記憶されている。
【0029】
図4に、表示部12に検査画像Pαが表示される様子を示す。検査画像Pαは、例えば、第1の方向Xに延伸する明領域W及び暗領域Bが第2の方向Yに周期的に配列する縞状パターンが、第2の方向Yに一定の速さで移動(スクロール)する動画である。
【0030】
なお、明領域Wとは、輝度が相対的に高い領域であり、ここでは白を表示する領域とする。また、暗領域Bとは、輝度が相対的に低い領域であり、ここでは黒を表示する領域とする。
【0031】
図3に戻って、CPU15による検査処理の説明を続ける。ユーザによりシャッターボタン141sが操作されると、ステップS120に移行する。
【0032】
CPU15は、撮影処理ステップS120において、撮影部13に、検査画像Pαが投影された被検査体Kの表面を撮影させる。これによって、被検査体Kの表面を写す複数の撮影画像Pβ ~Pβ (N:1より大きい任意の整数)を取得する。撮影画像Pβ ~Pβ は、例えばモノクロ写真である。
【0033】
図5に、撮影部13により、被検査体Kの表面を撮影する様子を示す。表示部12に検査画像Pαを表示させた状態で、表面検査装置1を被検査体Kに近づけると、表示部12に表示される検査画像Pαが被検査体Kの表面に投影される。
【0034】
検査画像Pαは、縞状パターンが一方向に移動する動画である。このため、検査画像Pαが投影された被検査体Kの表面を異なる時点において複数回撮影すると、被検査体Kの表面において明領域Wが投影される領域W及び暗領域Bが投影される領域Bの位置が異なる複数の撮影画像Pβ ~Pβ を得ることができる。
【0035】
図3に戻って、CPU15による検査処理の説明を続ける。
【0036】
CPU15は、画像生成処理ステップS130において、複数の撮影画像Pβ ~Pβ に基づいて、被検査体Kの表面に存在す欠陥Kdを明瞭化した処理画像を生成する。画像生成処理ステップS130は、例えば、複数の撮影画像Pβ ~Pβ に基づいて差分画像Pγを生成するステップS131(図6)と、差分画像Pγに基づいて第1加工画像Pδ 及び第2加工画像Pδ を生成するステップS132(図7),S133(図8)と、第1加工画像Pδ 及び第2加工画像Pδ に基づいて二値画像Pεを生成するステップS134(図9)と、を含む。
【0037】
図6に、差分画像生成ステップS131において、複数の撮影画像Pβ ~Pβ に基づいて差分画像Pγを生成する様子を示す。ここで、複数の撮影画像Pβ ~Pβ 及び差分画像Pγは、n×m(n,m:1より大きい任意の整数)の行列状に配列された複数の画素により構成されるものとする。なお、第i行第j列(i:1以上n以下の任意の整数,j:1以上m以下の任意の整数)に位置する画素を[i,j]と表すこととする。また、各画素の明るさ(明度)を表す値を輝度値と呼ぶこととする。
【0038】
差分画像Pγの[i,j]に位置する画素の輝度値は、複数の撮影画像Pβ ~Pβ の[i,j]に位置する画素(差分画像Pγにおいて輝度値を設定しようとする画素と同じ位置の画素)のうち、最も明るい画素の輝度値から最も暗い画素の輝度値を差し引いた輝度値に基づいて設定される。具体的には、例えば、差分画像Pγの[1,1]に位置する画素の輝度値は、複数の撮影画像Pβ ~Pβ の[1,1]に位置する画素のうち、最も明るい画素(例えば撮影画像Pβ における[1,1]の画素)の輝度値から、最も暗い画素(例えば撮影画像Pβ における[1,1]の画素)の輝度値を差し引いた輝度値に基づいて設定される。差分画像Pγの[1,1]の画素から[n,m]の画素まで、同様の処理を行って、差分画像Pγの全画素の輝度値を設定する。
【0039】
被検査体Kの表面に欠陥Kdが存在する場合、差分画像Pγにおいて、欠陥Kdに対応する領域(画素群)の輝度値は、通常、その周囲の輝度値よりも低くなる。これによって、肉眼では視認し難い欠陥Kdでも、差分画像Pγにおいて明瞭に欠陥を認識することができる。
【0040】
しかし、差分画像Pγでは、意匠としての被検査体Kの表面形状(起伏)によって、欠陥と見誤り得る像が現れることがある。また、差分画像Pγでは、欠陥と、光電変換,信号処理等の際に混入する信号ノイズに起因する像と、が見分け難い場合もある。このため、以下の画像処理が実行される。
【0041】
図7に、第1加工画像生成ステップS132において、差分画像Pγに基づいて第1加工画像Pδ を生成する様子を示す。ここで、第1加工画像Pδ は、n×mの行列状に配列された複数の画素により構成されるものとする。
【0042】
CPU15は、第1加工画像Pδ を、p個(p:1より大きい任意の整数)のグループ(画素群)に区分けする。例えば、16×16の正方行列状の画素群を単位画素群として、第1加工画像Pδ を、画素が重ならないように、p個(例えば100個)の単位画素群に区分する。
【0043】
そして、p個の画素群に区分される第1加工画像Pδ における第q番目(q:1以上p以下の任意の整数)の画素群Gに含まれる複数の画素各々の輝度値を、対応する差分画像Pγの画素群G(第1加工画像Pδ の輝度値設定画素群と同じ位置の画素群)に含まれる複数の画素の輝度値に基づいて画一化した輝度値に設定する。具体的には、例えば[1,1]の画素を含む第1の画素群Gに含まれる256(16×16)個の画素各々の輝度値を、対応する差分画像Pγの画素群Gに含まれる256個の画素の輝度値の平均の輝度値に設定する。第1加工画像Pδ の第1の画素群Gから第pの画素群Gまで、同様の処理を行って、第1加工画像Pδ の全画素の輝度値を設定する。
【0044】
第1加工画像Pδ を構成する画素各々の輝度値は、差分画像Pγの比較的広い範囲の画素の輝度値を画一化した輝度値に設定される。このため、第1加工画像Pδ においては、一般にサイズが小さい欠陥Kdに対応する像及び信号ノイズに起因する像は現れにくく、第1加工画像Pδ は、主に、被検査体Kの起伏に起因した明るさの分布を反映した画像となる。
【0045】
図8に、第2加工画像生成ステップS133において、差分画像Pγに基づいて第2加工画像Pδ を生成する様子を示す。ここで、第2加工画像Pδ は、n×mの行列状に配列された複数の画素により構成されるものとする。
【0046】
CPU15は、第2加工画像Pδ を、u個(u:pより大きい任意の整数)のグループ(画素群)に区分けする。例えば、4×4の正方行列状の画素群を単位画素群として、第2加工画像Pδ を、画素が重ならないように、u個(例えば1600個)の単位画素群に区分する。
【0047】
そして、u個の画素群に区分される第2加工画像Pδ における第v番目(v:1以上u以下の任意の整数)の画素群gに含まれる複数の画素各々の輝度値を、対応する差分画像Pγの画素群g(第2加工画像Pδ の輝度値設定画素群と同じ位置の画素群)に含まれる複数の画素の輝度値に基づいて画一化した輝度値に設定する。具体的には、例えば[1,1]の画素を含む第1の画素群gに含まれる16(4×4)個の画素各々の輝度値を、対応する差分画像Pγの画素群gに含まれる16個の画素の輝度値の平均の輝度値に設定する。第2加工画像Pδ の第1の画素群gから第uの画素群gまで、同様の処理を行って、第2加工画像Pδ の全画素の輝度値を設定する。
【0048】
第2加工画像Pδ を構成する画素各々の輝度値は、差分画像Pγの比較的狭い範囲に含まれる画素の輝度値を画一化した輝度値に設定される。このため、第2加工画像Pδ においては、一般にサイズが小さい欠陥Kdに対応する像も発現して、第2加工画像Pδ は、被検査体Kの起伏に加え、欠陥Kdに起因した明るさの分布を反映した画像となる。なお、第2加工画像Pδ においても、信号ノイズに起因する像は現れにくい。
【0049】
図9に、二値画像生成ステップS134において、第1加工画像Pδ 及び第2加工画像Pδ に基づいて二値画像Pεを生成する様子を示す。ここで、二値画像Pεは、n×mの行列状に配列された複数の画素により構成されるものとする。
【0050】
二値画像Pεを構成する画素の輝度値は、第1加工画像Pδ を構成する画素の輝度値と第2加工画像Pδ を構成する画素の輝度値との比率に応じて、最大輝度値(白)か最小輝度値(黒)のいずれかに設定される。すなわち、二値画像Pεの[i,j]に位置する画素の輝度値は、第1加工画像Pδ の[i,j]に位置する画素の輝度値Bij に対する第2加工画像Pδ の[i,j]に位置する画素の輝度値Bij の比率(Bij /Bij )が、閾値未満である場合には黒に設定され、閾値以上である場合には白に設定される。具体的には、例えば、二値画像Pεの[1,1]に位置する画素の輝度値は、第1加工画像Pδ の[1,1]に位置する画素の輝度値B11 に対する第2加工画像Pδ の[1,1]に位置する画素の輝度値B11 の比率(B11 /B11 )が閾値未満である場合には黒に設定され、当該閾値以上である場合には白に設定される。二値画像Pεの[1,1]の画素から[n,m]の画素まで、同様の処理を行って、二値画像Pεの全画素の輝度値を設定する。
【0051】
第1加工画像Pδ は、主に被検査体Kの起伏に起因した明るさの分布を反映した画像である。第2加工画像Pδ は、主に被検査体Kの起伏及び欠陥Kdに起因した明るさの分布を反映した画像である。このため、第1加工画像Pδ を構成する画素の輝度値Bに対して第2加工画像Pδ を構成する画素の輝度値Bを除算する(B/B)ことにより、被検査体Kの起伏の影響が低減され、欠陥Kdがより明瞭化された(強調された)画像を得ることができる。
【0052】
図3に戻って、CPU15による検査処理の説明を続ける。
【0053】
CPU15は、第2表示処理ステップS140において、表示部12に、例えば二値画像Pεを表示させる。なお、このとき、撮影画像Pβ ~Pβ ,差分画像Pγ等を併せて表示させてもよい。
【0054】
図10に、表示部12に二値画像Pε(そこに写される欠陥像Pd)が表示される様子を示す。肉眼では視認し難い欠陥Kdを、二値画像Pεでは明瞭に認識することができる。
【0055】
このように、本実施形態による表面検査装置1は携帯性を有しているので、据置き型の検査装置よりも手軽に、被検査体Kの表面に存在しうる欠陥Kdを確認することができる。また、一般的なスマートフォンを表面検査装置1として利用できるので、誰でも簡単に、被検査体Kの表面に存在しうる欠陥Kdを検査することができる。
【0056】
(第1の変形例)
第1の実施形態において、被検査体Kの表面を撮影する際、撮影部13のブレ(振動)をできるだけ抑制して、より明瞭な撮影画像Pβ ~Pβ を取得することが好ましい。以下、第1の変形例として、ブレを抑えるためのアタッチメントを装着した表面検査装置について説明する。
【0057】
図11に、撮影部13により、被検査体Kの表面を撮影する様子を示す。本変形例では、筐体11に、被検査体Kとの相対位置を固定するアタッチメント111が取り付けられている。なお、アタッチメント111は、表示部12及び撮影部13を塞がずに、筐体11に取り付けることができる。アタッチメント111は、例えば樹脂により形成されており、一般的な樹脂成型方法により、所望の形状で作製することができる。
【0058】
表面検査装置1にこのようなアタッチメント111を装着して、アタッチメント111を被検査体Kに接触させることにより、その表面を安定的に撮影することができる。その結果、ブレが抑制された、明瞭な撮影画像Pβ ~Pβ を得ることができる。
【0059】
(第2の変形例)
第1の変形例によるアタッチメント111に限らず、いわゆる光学式ブレ補正処理により、明瞭な撮影画像Pβ ~Pβ を取得してもよい。以下、第2の変形例として、撮影部13がブレ補正機構を備える表面検査装置について説明する。
【0060】
図12に、ブレ補正機構を備える撮影部13の構成を示す。本変形例において、撮影部13は、撮像素子131及び光学系132に加え、さらに、加速度センサ,ジャイロセンサ等を含む慣性センサ133と、撮像素子131又は光学系132を移動させる移動機構134と、を備える。
【0061】
慣性センサ133は、撮影の際の撮影部13あるいは表面検査装置1自体のブレを検出して、CPU15に当該ブレに関する情報を送信する。CPU15は、当該情報に基づいて移動機構134を制御し、当該ブレを相殺するように撮像素子131又は光学系132の位置を調整する。
【0062】
このようなブレ補正処理により、明瞭な撮影画像Pβ ~Pβ を得てもよい。
【0063】
(第3の変形例)
第1の変形例又は第2の変形例のように、撮影の際の撮影部13のブレはできるだけ抑制されることが好ましい。しかし、撮影部13のブレにより不明瞭な撮影画像Pβ ~Pβ が得られても、当該撮影画像Pβ ~Pβ に、いわゆる電子式ブレ補正処理を施して、明瞭な画像を得てもよい。以下、第3の変形例として、撮影画像Pβ ~Pβ に電子的なブレ補正処理を施す手段を有する表面検査装置について説明する。
【0064】
図13に、CPU15の機能ブロック図を示す。CPU15は、上述した画像生成手段151~154に加え、さらにブレ補正画像生成手段155として機能する。
【0065】
ブレ補正画像生成手段155としてのCPU15は、撮影部13により取得された複数の撮影画像Pβ ~Pβ にブレ補正処理を施して、複数のブレ補正画像を生成する。ブレ補正処理には、既知の重ね合わせ方式,画像復元方式等を採用することができる。なお、本変形例において、差分画像生成手段151は、複数のブレ補正画像に基づいて、差分画像Pγを生成する。
【0066】
このようなブレ補正処理により、被検査体Kの明瞭な画像を得てもよい。
【0067】
(第2の実施形態)
第1の実施形態では、検査画像及び処理画像(二値画像あるいは差分画像)が共通の表示素子121に表示されていた。しかし、検査画像及び処理画像は、別々の表示デバイスに表示されてもよい。第2の実施形態では、検査画像が表示素子121に表示され、処理画像が外部モニタに表示される例を説明する。
【0068】
図14に、第2の実施形態よる表面検査装置1aのハードウェア構成を示す。本実施形態では、表示部12は、検査画像Pαを表示する表示素子121と、処理画像(例えば二値画像)を表示する外部モニタ122と、を備える。
【0069】
外部モニタ122には、例えばLCDモニタが用いられる。外部モニタ122は、例えば、CPU15から出力される画像信号に基づいて、当該画像信号が表す画像を表示する。なお、外部モニタ122は、例えばHDMI(登録商標)ケーブルを介してCPU15から画像信号を受信してもよいし、例えば、Bluetooth(登録商標),Wi-Fi(登録商標)等の近距離無線通信規格に基づいて、無線通信によりCPU15から画像信号を受信してもよい。
【0070】
(その他の変形例)
以上説明した実施形態及び変形例では、表面検査装置1,1aとしてスマートフォンを想定した。しかし、表面検査装置1,1aは、スマートフォンに限られず、表示機能,撮影機能及び画像を加工及び合成する機能を備えたモバイル端末であればどのようなデバイスでもかまわない。例えば、ノート型パソコン,タブレット端末、ウェアラブル端末等のモバイル端末が、スマートフォンと代替できるデバイスとして利用することができる。また、少なくともCPU,RAM及びROMを含むマイクロコンピュータと、5~10インチ程度の画面サイズの表示素子と、例えば100万画素以上の撮影画素数を有する撮像素子と、を組み立てて、携帯性を有する独自の表面検査装置1,1aを作製してもよい。
【0071】
なお、携帯性を有する表面検査装置1,1aとは、以下のいずれかの構成を有する表面検査装置をいうものとする。つまり、第1の構成として、各ハードウェアユニットが単一の筐体11に収められているものとする。また、第2の構成として、各ハードウェアユニットが蓄電池19により駆動されるものとする。また、第3の構成として、外部機器と無線通信を行う手段、具体的には近距離無線通信規格に基づく無線通信手段,通信部18等を有しているものとする。最後に、第4の構成として、ユーザが容易に持ち運べる重量、例えば3kg以下の重量であるものとする。
【0072】
また、被検査体Kの表面に存在する欠陥Kdを明瞭化する検査処理は、第1の実施形態による検査処理に限られない。肉眼では視認し難い欠陥Kdを明瞭に認識できる画像処理であれば、どのような加工及び合成に係る処理であってもかまわない。
【0073】
また、そのような画像処理を、CPU15ではなく、外部の演算装置が行ってもよい。例えば、撮影部13により取得された撮影画像Pβを所定のサーバに転送し、当該サーバにより画像処理が行われた画像を表示部12に表示してもよい。
【0074】
さらに、検査画像は、第1の実施形態による検査画像Pα図4)に限られない。例えば、特許文献1に記載される、表示部の全表示領域が明領域である検査画像でもよいし、周期が異なる2種以上の縞状パターンを含む検査画像であってもよい。
【0075】
なお、上述の実施形態及び変形例では、CPU15が、各種機能に関する演算,各種ハードウェアユニットの制御等をソフトウェア的に行う例を説明した。しかし、それらの演算及び制御が、例えば専用の論理回路によってハードウェア的に行われてもよい。
【0076】
以上、実施形態及びその変形例に沿って、本開示を説明したが、本開示はこれらに制限されるものではない。種々変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
【符号の説明】
【0077】
1 表面検査装置
11 筐体
111 アタッチメント
12 表示部
121 表示素子
122 外部モニタ
13 撮影部
131 撮像素子
132 光学系
133 慣性センサ
134 移動機構
141 操作ボタン
141p 電源ボタン
141s シャッターボタン
142 マイク
143 スピーカ
15 CPU(演算部)
151 差分画像生成手段
152 第1加工画像生成手段
153 第2加工画像生成手段
154 二値画像生成手段
155 ブレ補正画像生成手段
16 RAM
17 ROM
171 プログラム
18 通信部
181 通信モジュール
182 アンテナ
19 蓄電池

図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14