IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ウシオ電機株式会社の特許一覧

特開2022-74804活性化ガス発生装置および活性化ガス発生方法
<>
  • 特開-活性化ガス発生装置および活性化ガス発生方法 図1
  • 特開-活性化ガス発生装置および活性化ガス発生方法 図2
  • 特開-活性化ガス発生装置および活性化ガス発生方法 図3
  • 特開-活性化ガス発生装置および活性化ガス発生方法 図4
  • 特開-活性化ガス発生装置および活性化ガス発生方法 図5
  • 特開-活性化ガス発生装置および活性化ガス発生方法 図6
  • 特開-活性化ガス発生装置および活性化ガス発生方法 図7
  • 特開-活性化ガス発生装置および活性化ガス発生方法 図8
  • 特開-活性化ガス発生装置および活性化ガス発生方法 図9
  • 特開-活性化ガス発生装置および活性化ガス発生方法 図10
  • 特開-活性化ガス発生装置および活性化ガス発生方法 図11
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022074804
(43)【公開日】2022-05-18
(54)【発明の名称】活性化ガス発生装置および活性化ガス発生方法
(51)【国際特許分類】
   B01J 19/08 20060101AFI20220511BHJP
   H05H 1/26 20060101ALI20220511BHJP
【FI】
B01J19/08 C
H05H1/26
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2020185163
(22)【出願日】2020-11-05
(71)【出願人】
【識別番号】000102212
【氏名又は名称】ウシオ電機株式会社
(74)【代理人】
【識別番号】100152294
【弁理士】
【氏名又は名称】木村 雅宜
(72)【発明者】
【氏名】中村 謙介
(72)【発明者】
【氏名】鮫島 貴紀
(72)【発明者】
【氏名】平岡 尊宏
(72)【発明者】
【氏名】大塚 優一
【テーマコード(参考)】
2G084
4G075
【Fターム(参考)】
2G084AA01
2G084AA07
2G084BB12
2G084BB37
2G084CC19
2G084CC34
2G084DD15
2G084DD22
2G084FF31
2G084FF33
2G084FF36
2G084GG01
2G084GG23
2G084HH09
2G084HH20
2G084HH45
2G084HH52
4G075AA03
4G075AA61
4G075AA63
4G075BA08
4G075CA02
4G075CA15
4G075DA02
4G075DA18
4G075EB01
4G075FB02
(57)【要約】
【課題】より効率的に処理できる活性化ガス発生装置とその方法を提供すること。
【解決手段】原料ガスに対して放電を印加させるプラズマ発生部1と、このプラズマ発生部をコントロールするプラズマ制御部2と、原料ガスの温度を常温よりも高い温度に設定する原料ガス加熱部5と、この原料ガス加熱部における加熱温度を調整するための原料ガス制御部6と、プラズマ発生部にて生成した活性化ガスを噴出する活性化ガス噴出部3と、よりなることを特徴する。
【選択図】 図1
【特許請求の範囲】
【請求項1】
原料ガスに対して放電を印加させるプラズマ発生部と、このプラズマ発生部をコントロールするプラズマ制御部と、原料ガスの温度を常温よりも高い温度に設定する原料ガス加熱部と、この原料ガス加熱部における加熱温度を調整するための原料ガス制御部と、プラズマ発生部にて生成した活性化ガスを噴出する活性化ガス噴出部と、よりなることを特徴する活性化ガス発生装置。
【請求項2】
前記原料ガス制御部は、前記原料ガスの温度を100℃以上に設定していることを特徴とする請求項1の活性化ガス発生装置。
【請求項3】
前記原料ガス加熱部と前記プラズマ発生部は同一チャンバに内蔵されていることを特徴する請求項1の活性化ガス発生装置。
【請求項4】
前記原料ガス加熱部と前記プラズマ発生部は電気的に同一経路にて構成されていることを特徴とする請求項1の活性化ガス発生装置。
【請求項5】
原料ガスに対して放電を印加させてプラズマを発生させるに際し、プラズマを発生させる前に、原料ガスを常温よりも高い温度に設定することを特徴とする活性化ガス発生方法。
【請求項6】
前記原料ガスは100℃以上に設定されることを特徴とする請求項5の活性化ガス発生方法。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は活性化ガス発生装置および活性化ガス発生方法に関する。特に、窒素ガスなどの原料ガスをプラズマに曝して生成する活性化ガス発生装置、および、その方法に関する。
【背景技術】
【0002】
従来、物体の接合や塗装の前処理に際して表面処理を行っていた。近年は、液体による化学的方法に代えて、プラズマから生成される活性化ガスを使って物体表面に極性官能基を導入する方法が注目されている。
【0003】
このようなプラズマから生成される活性化ガスを使った処理対象物は、プラスチック、紙、繊維、半導体ウエハ、液晶、フィルムなどであり、これらの物体に向けて活性化ガスを照射することで、物体表面の親水性改善、接着性向上、印刷密着性向上、さらには、物体表面に付着する有機物の除去・洗浄をしたり、物体表面に酸化膜を生成したりできる(特許文献1)。
【0004】
近年においては、プラスチック材料の表面改質は重要であり、エンジニアリングプラスチック(エンプラ)の応用が高まっている。特に、スーパエンジニアリングプラスチック(スーパエンプラ)と呼ばれる低誘電率で耐候性に良好な材料は、電子回路基板への応用を目指して、表面処理も大いに研究が進められている。これらエンプラやスーパエンプラを用いた基板の製造工程では、短時間処理の観点から、ロールツーロールやコンベアを使って、対象物体を搬送させながら、活性化ガスを照射する方法が検討されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特許第5940239号
【特許文献2】特許第6267534号
【発明の概要】
【発明が解決しようとする課題】
【0006】
この発明が解決しようする課題は、より効率的に処理できる活性化ガス発生装置とその方法を提供することにある。
【課題を解決するための手段】
【0007】
上記課題を解決するために、本発明に係る活性化ガス発生装置は、原料ガスに対して放電を印加させるプラズマ発生部と、このプラズマ発生部をコントロールするプラズマ制御部と、原料ガスの温度を常温よりも高い温度に設定する原料ガス加熱部と、この原料ガス加熱部における加熱温度を調整するための原料ガス制御部と、プラズマ発生部にて生成した活性化ガスを噴出する活性化ガス噴出部と、よりなることを特徴する。
【0008】
前記原料ガス制御部は、前記原料ガスの温度を100℃以上に設定していることを特徴とする。
【0009】
前記原料ガス加熱部と前記プラズマ発生部は、同一チャンバに内蔵されていることを特徴する。
【0010】
前記原料ガス加熱部と前記プラズマ発生部は、電気的に同一経路にて構成されていることを特徴とする。
【0011】
本発明に係る活性化ガス発生方法は、原料ガスに対して放電を印加させてプラズマを発生させるに際し、プラズマを発生させる前に、原料ガスを常温よりも高い温度に設定することを特徴とする。
【0012】
前記原料ガスは100℃以上に設定されることを特徴とする。
【発明の効果】
【0013】
上記構成を有する活性化ガス発生装置および活性化ガス発生方法は、原料ガスを加熱することを特徴としている。すなわち、常温の活性化ガス(プラズマ化されたガス)ではなく、加熱された活性化ガスを物体表面に接触させること自体は従来から知られているが、本発明は、さらに一歩進み、活性化された後に加熱するのではなく、活性化する前の原料ガスを加熱することを特徴としている。
【0014】
また、従来のように、プラズマに曝されて生成した活性化ガスを加熱する場合は、活性化ガスの発生領域と、処理対象物との間において、何らかの加温機構を設けなければならず、装置の大型複雑化という問題だけでなく、せっかく生成させた活性化ガスが対象物に到達する前に死活してしまうなど効率という点で不利になりかねない。本件発明は、プラズマに曝す前の原料ガスを加熱することで、加熱機構を処理領域と関係なく自由に設定することができ、結果として、活性化ガス領域と処理対象物の距離を小さくすることができ、活性化ガスを効果的に物体の表面処理に活用できる。
【図面の簡単な説明】
【0015】
図1】本発明に係る活性化ガス発生装置を示す。
図2】本発明に係るプラズマ発生部を示す。
図3】本発明に係る原料ガス加熱部を示す。
図4】本発明に係るプラズマ処理装置を示す。
図5】本発明に係るプラズマ発生部を示す。
図6】本発明に係る活性化ガス発生装置の効果を表す実験結果を示す。
図7】本発明に係る活性化ガス発生装置の効果を表す実験結果を示す。
図8】本発明に係る活性化ガス発生装置の効果を表す実験結果を示す。
図9】本発明に係る活性化ガス発生装置の効果を表す実験結果を示す。
図10】本発明に係る活性化ガス発生装置の他の実施形態を示す。
図11】本発明に係る活性化ガス発生装置の他の実施形態を示す。
【発明を実施するための形態】
【0016】
図1は本発明に係る活性化ガス発生装置の全体構成を示す。活性化ガス発生装置は、プラズマを発生させる領域となるプラズマ発生部1と、プラズマ発生部1に電力を供給するプラズマ制御部2と、プラズマにより活性化されたガス(活性化ガス)を処理対象物に向けて噴射する活性化ガス噴出部3と、プラズマを生成するための原料ガスを導入するための原料ガス供給部4と、この原料ガスを所定温度に加熱するための原料ガス加熱部5と、原料ガスの流量や加熱温度を制御する原料ガス制御部6より構成される。原料ガス供給部4は、窒素ガスなどの原料ガスのボンベや、圧力調整器、流量計などから構成される。また、原料ガス制御部6は、原料ガス供給部4と原料ガス加熱部5の双方を全体としてコントロールする機構である。
【0017】
図2図1に示したプラズマ発生部1の概略構成を示す。チャンバ10は全体が箱型のケーシングから構成されており、その内部に一対の電極11,12が配置されるとともに、壁の一部には、原料ガスを導入する供給口14と、活性化ガスを排出する排出口15が形成されている。これら電極11、12は、平板形状であって、例えばタングステン製の金属材料から構成される。空隙13はプラズマの生成に適した距離が設定されており、例えば、電極間距離は1.0mm、平板状電極の大きさは20mm×20mmである。一対の電極11,12は、図1に示したプラズマ制御部2から電力が供給される。これらにより、空隙13においてプラズマが発生して、原料ガスがプラズマに曝されることで活性化ガスが生成される。なお、原料ガスは、例えば、窒素ガスが採用されており、このため、活性化ガスは窒素ラジカルや活性種が発生する。後述するように、供給口14からは常温よりも高温化された原料ガス(窒素ガス)が導入される。
【0018】
チャンバ10の外部に配置されたプラズマ制御部2は、一対の電極11、12に電力を供給するだけでなく、電力量、印加時間、印加するタイミング、印加電圧の周波数をコントロールするとともに、電気的な制御以外にも、供給口14に連携して、開閉量を制御することで原料ガスの導入量と導入タイミングをコントロールすることができる。
【0019】
なお、排出口15は、図1に示す活性化ガス噴出部に相当するが、単なる開口ではなく、前記供給口14と同様に、プラズマ制御部2によって、活性化ガスの排出量や排出タイミングが調整できる機構を備えている。
【0020】
図3図1に示した原料ガス加熱部5の概略構成を示す。原料ガス加熱部5は、原料ガスが取り込まれる加熱チャンバ50と、加熱チャンバ50に対して原料ガスを導入するガス導入部51と、加熱チャンバ50内において加熱されたガスを排出するガス排出口52と、この加熱チャンバ50の内部に配置された加熱源54とより構成される。
【0021】
加熱源54は、例えば、シーズヒータ、セラミックスヒータ、IHヒータ、赤外線LED、ハロゲンランプなど気体を加熱できるものが適宜使われ、図1に示した原料ガス制御部6によってコントロールされる。加熱源51は原料ガスと同一空間に配置してもよいが、仕切部材を用いて原料ガスが流れる空間とは隔離させてもよい。
【0022】
加熱チャンバ50の内部には温度センサ53が設置されており、原料ガスを加熱するための温度値をフィードバック制御している。詳細は後述するが、原料ガスのみを所定温度に加熱するものであり、活性化ガスを加熱するものではなく、また、活性化ガスの温度検知しているわけではない。仮に、前述したプラズマ発生部のチャンバ内に温度センサを配置するとプラズマによる劣化や誤検知が生じかねないが、原料ガスを対象とすることで確実かつ容易に温度検知とフィードバック制御ができる。ただ、温度センサは、加熱チャンバ50の内部に配置することまで限定されるものではなく、ガス排出口52の内部やその後に続く配管の内部に設置することも可能である。温度センサは、例えば、熱電対やサーミスタなど一般的なセンサが適用される。
【0023】
ここで、原料ガス加熱部5は、図3に示すように、加熱チャンバとその内部に加熱源を設ける構成に限定されるものではなく、例えば、気体加熱器(商品名「クリーンホット」:新熱工業株式会社)を使うこともできる。これはガス流路に接続するだけで当該ガスを加熱できるものであり、加熱効率が高く、クリーンに原料ガスをすばやく昇温することができる。
【0024】
図4は本発明に係る活性化ガス発生装置を使った処理装置を示す。活性化ガス発生装置については、プラズマ発生部1とプラズマ制御部2のみを表している。プラズマ発生部1からの噴射される活性化ガスPは処理対象物Sに照射される。処理対象物Sは、ロール状の巻かれたフィルムであって、搬送機構7により、いわゆるロールツーロール方式で駆動される。搬送機構7は駆動機構71と駆動制御部72よりなり、駆動制御部72はプラズマ制御部2と連携している。なお、プラズマ発生部1は全体が保温材16で覆われている。加熱化されたプラズマの温度を一定値に維持するためである。
【0025】
図5図4に示したプラズマ発生部1の構造を示す。電極11は絶縁体17に貼り付けられた板状部材からなる。もう一方の電極12はブロック状部材からなり、絶縁体17と電極12の間に、加熱された原料ガスが流れるとともに、当該領域においてプラズマが発生する。なお、絶縁体17を使う理由は電極同士の直接の放電ではなく、誘電体を介在させたいわゆる誘電体バリア放電をするためであり、これにより、電極、特に電極11の損耗を抑えることができる。
【0026】
次に、本発明の効果示す実験1について説明する。この実験1は原料ガスの加熱温度と処理効果の関係を考察するものである。具体的には、原料ガスをプラズマに曝して活性化ガスを作り、この活性化ガスを試料に照射させて、試料表面における水接触角(濡れ性)を測定した。原料ガスの温度は、25℃(常温)、50℃、100℃、150℃、200℃と5つのパターンで変化させた。試料はポリプロピレン、原料ガスは窒素ガス、原料ガス加熱部へのガス流量は10リットル/分、活性化ガス発生装置の噴出口は40mm×0.2mm、活性化ガス発生装置の電極への供給電力は20W、活性化ガス噴出口と処理対象物との距離は7mm、照射時間は40msとした。
【0027】
図6は実験1の結果を示す。縦軸は試料表面における水の接触角を示し、横軸は原料ガスの温度を示す。図より、原料ガスの温度が25℃(常温)、すなわち加熱していない場合の水接触角は80°(deg)であるのに対し、原料ガスの温度が50℃の場合の水接触角は74°、原料ガスの温度が100℃の場合の水接触角は70°、原料ガスの温度が150℃の場合の水接触角は67°、原料ガスの温度が200℃の場合の水接触角は69°となった。水接触角は小さいほど処理性が高いことを意味するので、原料ガスの加熱温度を常温より高く設定することで処理性が高まることが示されており、特に、原料ガスを100℃~200℃に加熱することでより処理性は一層高まっている。
【0028】
次に、本発明に効果を示す別の実験2について説明する。この実験は、原料ガスを加熱させた場合と、原料ガスは常温のままとして活性化ガスを加熱した場合について考察している。具体的には、原料ガスは常温(25℃)のままでプラズマにより活性化ガス生成して試料に照射した場合(実験2-1)、200℃に加熱した原料ガスからプラズマにより活性化ガスを作り試料に照射した場合(実験2-2)、さらには、原料ガスは加熱することなく常温(25℃)のままでプラズマから活性化ガスを作り、当該活性化ガスをステージに設けたヒータにより50℃近傍まで加熱させた状態で試料に照射した場合(実験2-3)の各々について、照射時間0ms、6ms、15ms、30ms、60ms、150ms、300mと変化させて実験をした。照射時間0msは活性化ガスを照射する前の水の接触角を表している。その他の条件は実験1と同じである。
【0029】
図7は実験結果を示す。縦軸は処理対象物の表面における水の接触角を示し、横軸は試料に対する活性化ガスの照射時間を示す。図より、例えば、照射時間150msに着目すると、実験2-1は水接触角が70°以上、実験2-3は水接触角が69°、実験2-2は水接触角が61°であり、その他の条件が同一であるにもかかわらず、原料ガスを加熱することで処理性が高まっていることがわかる。
【0030】
上記は、照射時間150msにおいて比較しているが、それ以外の照射時間であっても、同一の傾向が示されており、同一の照射時間において比較すると、実験2-1、実験2-3、実験2-2の順に効果が表れている。
【0031】
次に、水接触角に着目した場合を説明する。例えば、水接触角60°で比較した場合、実験2-2では150msの照射時間で水接触角60°近くに達成しているに対し、実験2-3は300msにて接触角65°に近い値となっており、実験2-1にいたっては300msにおいても水接触角は68°程度であり、60°にはいたっていない。つまり、原料ガスを加熱することで、照射時間を短くすることが可能となり、結果として処理時間が短いという大きな効果を得ることができる。特に、エンプラやスーパエンプラを処理対象物とするロールツーロール方式やコンベア方式では処理時間が短いことは大きな利点となる。
【0032】
次に、本発明の効果を示す実験3について説明する。この実験3は原料ガス加熱部からプラズマ発生部へのガス流量について考察している。具体的には、原料ガスの温度を、25℃(常温)と200℃(加熱)の2パターンとして、各々の温度において、ガス流量を10リットル/分と20リットル/分の2パターンで水接触角を測定した。つまり、実験3-1はガス温度25℃でガス流量10リットル/分、実験3-2はガス温度200℃でガス流量10リットル/分、実験3-3はガス温度25℃でガス流量20リットル/分、実験3-4はガス温度200℃でガス流量20リットル/分となる。また、各実験においてそれぞれ、照射時間が0ms、6ms、15ms、30ms、60ms、150ms、300msのとき接触角を測定した。他の実験条件は実験1や実験2と同じである。
【0033】
図8は実験結果を示す。縦軸は試料表面における水接触角を示し、横軸は照射時間、すなわち、活性化ガスをポリプロピレンに照射する時間を示す。図より、実験3-1と実験3-3、実験3-2と実験3-4の比較より、同じガス流量であっても、原料ガスの温度が25℃(常温)よりも200℃のほうが水接触角は小さいことが示される。さらに、実験3-1と実験3-2、実験3-3と実験3-4の比較より、ガス温度が同じであっても、ガス流量が10リットル/分よりも20リットル/分のほうが水接触角は低いことが示される。
【0034】
ここで、流量が大きいことは、プラズマを作るための原料ガスの容量が大きいということであり、ある意味処理性が高まることは当然とも思える。しかしながら、流量を増加させるだけでは、活性化ガスが処理物に到達する前に消滅するケースも多くなり、必ずしも流量が処理性に対して支配的ということにはならない。同じ流量であっても、原料ガスの温度を高めることのほうがより有効であることが分かる。
【0035】
具体的にみてみると、照射時間150msにおいて、原料ガス温度を200℃とした場合は、流量が10リットル/分であっても20リットル/分であっても、水接触角は60°近傍であるのに対して、原料ガス温度を25℃とした場合は流量が10リットル/分であっても20リットル/分であっても水接触角は70°よりも大きい値になっているからである。
【0036】
なお、本実験において、ガス流量として、10リットル/分と20リットル/分を選択した理由は、ボイルシャルルの法則に基づき、温度が298K(25℃)から473K(200℃)にほぼ2倍増加していることから、流量についても同一の倍増値を設定している。
【0037】
次に、本発明に関連する別の実験4について説明する。実験4は、試料の表面温度と原料ガスの加熱温度の関係を考察するものである。原料ガスの温度は、活性化ガスの温度に影響するし、さらに、試料の表面温度にも影響する。本実験では試料の温度を変化させて水接触角との関係を考察している。具体的には、試料であるポリプロピレンをセラミックヒータの上部に載置させて、試料の温度を25℃、50℃、100℃、150℃と変化させた。原料ガス加熱部からプラズマ発生部へのガス流量は10リットル/分、活性化ガスの照射時間は40msとし、その他の条件は前記実験1、実験2、実験3と同じである。
【0038】
図9は実験結果を示す。縦軸は試料表面における水の接触角を示し、横軸は試料であるポリプロピレンの温度を示す。図より、試料の温度が25℃の場合に接触角は80°、試料の温度が50℃の場合に接触角は71°、試料の温度が100℃の場合に接触角は82°、試料の温度が150℃の場合に接触角は86°となり、試料の温度が50°において、もっとも処理性が高いことが分かる。この実験からも分かるように、試料の温度を必要以上に高温化することは、反って、処理性能を低くすることになる。結局、材料との関係で最適な温度が存在しており、特に、プラスチック材料の場合は40℃~70℃の範囲が最適である。
【0039】
このように、本発明では、処理対象物(試料)の最適な温度を事前に把握しておき、その最適値を達成するための条件を原料ガス制御部に記憶させることができる。上記実験は便宜的に、試料を加熱機構の上に載置して行ったが、このような方法は、生産性を考慮した場合は試料を全体として加熱することになり、活性化ガスとの接触面(加熱機構と反対側)における温度制御の迅速性に劣ることとなる。あるいは、活性化ガスそのものを加熱する場合は、プラズマ発生部と処理対象物の間の領域に加熱機構を設けることになり、装置の大型化だけでなく、処理対象物を表面部分だけではなく、全体として加熱させてしまうという問題も発生する。このような理由から本発明における原料ガスの加熱は効果が大きいことが示される。
【0040】
さらに、短時間で、対象物体を処理するためには、プラズマが発生する領域(プラズマ発生部)を可能な限り対象物体に近づける必要がある。プラズマにより発生した活性化ガスが失活する前に、対象物体に到達させる必要があるからである。本発明は、活性化ガスを加熱するものではないため、プラズマ発生部の後段に加熱機構や温度制御機構を設ける必要はなく、装置が簡易化するとともに、活性化ガスを効率よく処理対象物に照射することができる。
【0041】
活性化ガスの照射処理は処理対象物の表面のみを高温化すれば良い。このため、処理対象物の全体を加熱したり、処理対象物を高温の炉に入れたりする必要もない。本実験では、活性化ガス発生装置への導入ガス温度(原料ガスの温度)を100℃以上、より具体的には150±50℃としたとき、処理対象物の表面上の温度は50℃近辺となり、処理性において最適な条件が得られていることがわかる。
【0042】
また、原料ガスを加熱することで以下の効果を同時に得ることができる。プラズマ発生部の内部空間において、ガスの体積が膨張するため、プラズマガスの噴出速度が上がり、短時間で処理対象物に活性化ガスを届けることができる。
【0043】
一般に、プラズマ処理においては、可能な限り、処理対象物の表面に活性化ガスを到達させて、開始反応を起こすことが重要である。そこで、活性化ガスを増加させるために、プラズマの照射幅、即ち照射面積を広くすることが考えられる。その際には、プラズマ発生部を多数並列に並べることで実現が可能である。しかしながら、その方式を用いれば、活性化ガス発生装置の倍数近いコストが発生するし、装置の大型化を招くし、装置の設置スペースの問題が発生してしまう。
【0044】
また、1つのプラズマ発生部に多量の電力を投入する方法も考えられる。その際には、単純に、プラズマ放電装置の投入電力を増加させると言う方法がある。プラズマ発生部の電極への印加電圧を上げるか、印加周波数を増加する。しかしながら、この場合、プラズマ発生部の電極は非常に高い高温となる。ヒータで温度をアシストする程度の温度とは比べものにならないほどの高温となるような電力を入れれば、プラズマを発生させる機構に問題を生じさせる。例えば、電極部が誘電体を使った場合、電極と誘電体の間では線膨張率が異なるため、その両者の接着部分で歪が生じて、セラミックスが割れるなどの故障の問題を引き起こす。誘電体を用いないプラズマ放電装置であっても、非常に速い速度で電極の損耗が進むことになる。
【0045】
さらに、プラズマ発生部の放電長(図2に示す空隙13)を大きくすれば投入電力を大きくできる。しかしながら、この方式では放電長を大きくする分、放電電圧も高くしなければならず、高い電圧に対する設計上の制限が発生することになる。例えば、印加電圧が高くなれば電極を保持する材料とその他の金属体との沿面距離の確保が必要になるし、電線や電気的接続口の大型化、電気部品の構成の面で設計自由度を侵害することから、一定以上の高電圧化は得策ではない。
【0046】
さらに、プラズマ発生部の電極のサイズを大きくすることで電力密度を一定のままに、合計の電力を多く投入する方法が考えられる。しかしながら、プラズマで生成される活性化ガスの寿命の視点から、必ずしも有利に働かない。その理由は、活性化ガスの寿命は、数マイクロ秒から数ミリ秒程度であり、電極サイズを大きくしても、初期に作られた活性化ガスが維持されるわけではなく、処理対象物へ到達することなく死活する成分が多くなるからである。
【0047】
図10は本発明に係る活性化ガス発生装置の他の実施形態を示す。この実施形態は、プラズマ発生部と原料ガス加熱部が、同一チャンバに内蔵されていることである。
【0048】
チャンバ10の内部には、プラズマ発生部を構成する電極11と電極12が配置されている。チャンバ10の供給口14から原料ガスが導入されると、原料ガス加熱部の構成する加熱源54にて原料ガスが所望の温度まで加熱される。加熱された原料ガスは一対の電極間のプラズマを発生させる。このプラズマは排出口15から排出される。なお、プラズマ制御部はチャンバ10の外部に配置されるが図示は省略している。この構造の利点は、原料ガス加熱部とプラズマ発生部をつなぐ配管が不要となり、これにより配管における無駄な放熱を回避できることであり、エネルギ効率を高めることができる。
【0049】
図11は本発明に係る活性化ガス発生装置の他の実施形態を示す。この実施形態は、プラズマ発生部と原料ガス加熱部が、電気的に同一系統で構成されることに特徴と有する。
【0050】
チャンバ10の内部には、プラズマ発生部を構成する電極11と電極12が配置されている。チャンバ10の供給口14から原料ガスが導入されると、原料ガス加熱部の構成する加熱源54にて原料ガスが所望の温度まで加熱される。加熱された原料ガスは一対の電極間のプラズマを発生させる。このプラズマは排出口15から排出される。なお、プラズマ制御部はチャンバ10の外部に配置されるが図示は省略している。
【0051】
ここで、加熱源54を構成する電気系統と、プラズマ発生部を構成する電気系統は、直列に接続されている。この構造の利点は、原料ガス加熱部としてヒータを用いた場合など、ヒータで発生した熱をプラズマ発生部の電極に伝達することが可能となり、熱の利用効率を高めることが可能となる。なお、この実施形態においても、プラズマ発生部と原料ガス加熱部は同一チャンバに配置することが可能であるが、必ずしも限定されるわけではなく、個々にチャンバ内に配置するとともに、プラズマ発生部と原料ガス加熱部を電気的に同一系統で構成することもできる。
【0052】
原料ガス加熱部における加熱源(ヒータ)の制御は、プラズマ発生部における導入口の温度を監視して、ヒータへの投入電力に対して、PID制御を行ってもよい。あるいは、ヒータに熱電対を設けてカスケード制御やフィードバック制御を行ってもかまわない。さらには、処理対象物の表面温度を監視して、原料ガス加熱部の加熱源の温度を制御し、その投入電力を制御することもできる。
【0053】
本発明に係るプラズマ処理装置は、処理対象物がエンジニアリングプラスチックやスーパエンジニアリングプラスチックの場合に適している。これらはロールツーロール方式により高速処理を行うため処理効率の高いことが要求されるからである。しかしながら、限定されるわけではなく、プリント基板や液晶基板をステージに載置させて処理する方法なども適用できる。
【符号の説明】
【0054】
1 プラズマ発生部
2 プラズマ制御部
3 活性化ガス噴出部
4 原料ガス供給部
5 原料ガス加熱部
6 原料ガス制御部
10 チャンバ
11 電極
12 電極
13 空隙
14 供給口
15 排出口
50 加熱チャンバ
51 ガス導入部
52 ガス排出口
53 温度センサ
54 加熱源
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11